NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Interplanetary Radiation and Fault Tolerant Mini-Star Tracker SystemThe Charles Stark Draper Laboratory, Inc. is partnering with the NASA Marshall Space Flight Center (MSFC) Engineering Directorate's Avionics Design Division and Flight Mechanics & Analysis Division to develop and test a prototype small, low-weight, low-power, radiation-hardened, fault-tolerant mini-star tracker (fig. 1). The project is expected to enable Draper Laboratory and its small business partner, L-1 Standards and Technologies, Inc., to develop a new guidance, navigation, and control sensor product for the growing small sat technology market. The project also addresses MSFC's need for sophisticated small sat technologies to support a variety of science missions in Earth orbit and beyond. The prototype star tracker will be tested on the night sky on MSFC's Automated Lunar and Meteor Observatory (ALAMO) telescope. The specific goal of the project is to address the need for a compact, low size, weight, and power, yet radiation hardened and fault tolerant star tracker system that can be used as a stand-alone attitude determination system or incorporated into a complete attitude determination and control system for emerging interplanetary and operational CubeSat and small sat missions.
Document ID
20160008069
Acquisition Source
Marshall Space Flight Center
Document Type
Other
Authors
Rakoczy, John
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Paceley, Pete
(Draper (Charles Stark) Lab., Inc. Huntsville, AL, United States)
Date Acquired
June 29, 2016
Publication Date
January 1, 2015
Publication Information
Publication: George C. Marshall Space Flight Center Research and Technology Report 2014
Subject Category
Launch Vehicles And Launch Operations
General
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available