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Cleveland, Ohio 

First and second partial derivatives of some thermodynamically defined rocket performance 
parameters are presented. Theae derivatives are useful for the extrapolation and interpolation of 
thermodynamic performance calculations for changes in combustion pressure, combustion en- 
thalpy, pressure ratio, and area ratio. The accuracy of the extrapolation or interpolation is indi- 
cated for a typical propellant combination. 

OR SOME propellant systems, performance data are F needed over a wide range of conditions such as chamber 
pressure, pressure ratio or area ratio, oxidant to fuel ratio, 
and, occasionally, initial enthalpy. The thermodynamic cal- 
culation of rocket performance is usually sufficiently difficult 
to require the use of automatic computers. Because of the 
cost and time involved in the computations, it  is often not 
feasible to explore the complete range of independent vari- 
ables. For this reason, the problem of extrapolating or inter- 
polating a limited number of performance calculations occurs 
frequently. 

The use of partial derivatives in extrapolating performance 
data with considerable accuracy for moderate changes in the 
independent variables was discussed previously by Gordon 
and Huff (l).a In Ref. 1, expressions were derived for first 
partial derivatives of the logarithm of specific impulse, charac- 
teristic velocity, and area ratio with respect to the logarithm 
of chamber pressure. In addition, first- and second-order 
corrections to impulse for a change in combustion enthalpy 
were also given. A similar first-order correction for the effect 
of combustion enthalpy (or heat of formation) on impulse was 
described by Gordon (2). 

In  this report, the list of partial derivatives is extended to 
include the derivatives of specific impulse I ,  specific impulse 
in vacuum I,.,, area per unit mass flow rate A / w ,  area ratio e, 
and characteristic velocity c* with respect to combustion 
pressure P,, combustion enthalpy h,, pressure ratio PJP,  and 
area ratio e. Examples are given to illustrate the use of the 
derivatives. 
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Analytical expressions for the derivatives of parameters 
with respect to oxidant to fuel ratio O/F can be derived; how- 
ever, the method of derivation of these expressions is some- 
what different from that used to obtain derivatives for a fixed 
O/F, and, therefore will not be presented in this paper. All 
derivatives in this paper are for a fixed O/F. 

Effect of Change in Initial Conditions 
on End Point of a Process 

All the thermodynamic properties of a system of known 
composition can be specified uniquely in terms of any two 
thermodynamic functions, say a! and 8. Thus the system can 
be represented by a point in a tnwdimensional space with 
coordinates (a,@. At any point in (a$) space, not only ape 
all the thermodynamic properties of the system known, but 
it is also possible to determine the rate of change of these 
properties along some curve in (a$) space. Thus if I) is a 
third thermodynamic function, the derivative (bj3/da)+ ex- 
presses the rate of change of j3 with respect to a change in a 
along a curve of constant I). This partial derivative is the 
usual thermodynamic first partial derivative discussed in 
thermodynamic textbooks. 

Thermodynamic Processes 

A process in thermodynamics means that a system orig- 
inally a t  some point ( ~ r ~ , j 3 ~ )  has been moved to a new point 
(a!,@. An infinitesimal process can be completely charac- 
terized by a derivative of the form (bj3/ba)+. A finite process 
can be specified by giving a starting point (o~g,&), a path, 
say a curve of constant I), and one of the coordinates of the 
end point a. For a given path, the only independent vari- 
ables of the process are the coordinates of the initial point 
(a!o,j30) and a coordinate, say a, of the final point. The other 
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coordinate of the final point, 0, and all other thermodynamic 
functions are dependent variables in the process. 

Let cp be any dependent thermodynamic variable associated 
with the end point of a finite process. The rates of change of 
cp with respect to the independent thermodynamic variables 
of the process are of two different types. For a change in a, 
the usual type of derivative (3cp/ba)+ is needed. However, 
for a change in one of the coordinates of the initial points, 
derivatives of the type (bp/aao)po and (bp/b/3,,),, are needed. 
Expressions for the latter type of derivative are obtained in 
the following section. 

Derivatives Associated With a Finite Process 

As indicated in the previous section, the process is defined 

[I I 
Whatever change in +o results from a change in the initial 
point (aO,Po) must be equal to the change in J.. This may be 
expressed in differential form as 

as taking place along a curve of constant J.. Therefore 

+o(ao,  P o )  = $(a, P )  = +(a, cp) 

Imposing in turn the conditions of constant a. and constant Po 
gives the following desired expressions for the partial deriva- 
tives of a function a t  the end point of a process with respect to 
the initial coordinates: 

In Eqs. [3 and 41 all the derivatives except (da/b/30)~, and 
(3a/bao)po are the standard thermodynamic first derivatives 
and can be immediately evaluated. The two exceptions can 
be evaluated for a specified form of the relation 

a = dao, Po) [5 1 
Two forms of Eq. [5] are considered in this paper: a = kl 
and a = kZaO, where kl 2nd k2  are constants. For a = kl, Eqs. 
(3 and 41 reduce to 

For the particular choice QI = klao, Eqs. [3 a d 41 give 

[7 1 

It may be seen that the right-hand sides of Eqs. [6 and S] 
are identical. 

Application to Rocket Performance 

First Derivatives of Thermodynamic Functions With 
Respect to P,, h,, and P J P  for an Isentropic Process 

In t,his paper, Eqs. [6-91 are applied to an isentropic proc- 
ess. For an isentropic expansion from P ,  and h, to an exit 
pressure PI  the follon-ing correspondences to functions in 
Eqs. [6-91 apply: s, = Go, P, = (yo, P = a, h, = PO, and 
s = $. From Eqs. [Sand 81 
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FromEq. [7] 

From Eq. [9] 

For any cp selected, the right-hand sides of Eqs. [lo-121 
are in terms of the usual first partial derivatives. Bridgman 
(3) presents a convenient scheme (given in many thermody- 
namic textbooks) for expressing all first partial derivatives in 
terms of three first partial derivatives, namely, ( a h / b T ) ~  = 
e,, (bv/bT)p, and ( a ~ / b P ) ~ .  An equation of state is required 
to evaluate these derivatives. In  rocket performance calcu- 
lations it is convenient to assume that the reaction products 
obey an ideal equation of state with a variable molecular 
weight 

PV = RT/M [I31 

I t  has been found useful in performance calculations to 
calculate molecular weight derivatives rather than volume 
derivatives to indicate changes in composition. From Eq. 
[I 31 there follows 

A further discussion of the molecular weight derivatives and a 
method for their numerical evaluation is given by Gordon et 
al. (4). With the aid of Bridgman's tables (3) and Eqs. 
(13-151, all other first partial derivatives ran he expressed 
in terms of c ,  ( b  In A f / b  In T ) p  and (b  In M/a In P)T .  As 
an example, assuming cp = T ,  Eq. [12] becomes 

( r T ) p  T, c ,  P. c ,  
- v ,  T 

- - - 

3 In hl 
- 

In a manner similar to the previous example, derivatives 
were obtained from Eqs. [10-12] for cp = T I  h, and p .  Ex- 
pressions for the logarithmic form of these derivatives are 
given in Table 1. The logarithmic form was selected to  pre- 
sent the results in dimensionless form. Expressions for 
molecular weight derivatives are also given in Table 1. These 
are obtained by considering molecular weight to be a function 
of temperature and pressure and expanding by the chain rule 
in differentiation. Derivatives of the form [b In cp/b In 
(P,/P) 1p,,he = [b In p / ( b  In ( P J P )  I, = - (b  In cp/b In P)* are 
also given in Table 1. Henceforth, derivatives a t  constant 
P, and h, will be shown as derivatives at constant s. The use 
of these derivatives will be discussed in a later section. 

A word of caution is required about the derivatives with 
respect to In h,. If a reference level for enthalpy is chosen so 
that h, is negative, the logarithmic derivative must be re- 
placed by a derivative with respect to h,. 
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Derivatives of Rocket Performance Parameters With 
Respect to P,, h,, and P, /P  for Isentropic Expansion 

Parameters that are usually of interest in performance cal- 
culations are defined in the following equations, where it is 
assumed that a consistent set of units is employed: 

I = [2(hc - h)]"2 

€ = (A/w)/(A/w)t = A / A t  

~ 7 1  

~ 9 1  

(S/w) = l / pu  = l/pI 1181 

E* = P,(A/w) ,  [201 

121 1 
c* = I / c *  (221 

I",, = I + ( A / w ) P  

A specific set of units and associated dimensional constants for 
Eqs. [17-221 is given in Ref. 4. 

Derivatives of the logarithm of I can be obtained directly 
from the derivatives of the logarithm of h in Table 1. Thus, 
for example 

Eqs. [18-221 can be used to obtain derivatives of the re- 
maining parameters in terms of the derivatives of the loga- 
rithm I and the thermodynamic functions. The results are 
included in Table 1. 

Second Derivatives of Specific Impulse With Respect to 
Pc, h,, and Pc/P  

An examination of Table 1 shows that the expressions for 
the derivatives of the logarithm of I include only the thermc- 
dynamic functions h, T, and M .  Therefore, the second 
derivative of the logarithm of I can be obtained by the 
methods previously discussed. However, for purposes of 
extrapolation, Iz is a better form than In I .  (This will be dis- 
cussed further in a later section.) The first and second 
derivatives of I* can be expressed in terms of logarithmic 
derivatives as follows: 

1198 

- -  
bxby 

Detailed expressions for the second partial derivatives of I2 
obtained by means of [ a b  J are given in Table 2. 

The expressions for the f i s t  derivatives of the remainder of 
the performance parameters in Table 1, unlike specificim- 
pulse, include first derivatives of thermodynamic functions. 
The second derivatives of these performance parameters are 
therefore not included in this paper, inasmuch as they involve 
second derivatives of thermodynamic functions which are 
generally not available. 

First Derivatives of Rocket Performance Parameters With 
Respect to P,, h,, and E 

The previous discussion of thermodynamic processes 
showed that a process could be specified by giving the value 
of two thermodynamic functions at the initial point, a path 
connecting the final point and initial point, and one of the 
coordinates of the final point. Thus for a given process, any 
parameter of the process X can be considered a function of the 
coordinates of the initial point and the coordinate of the 
final point. For the isentropic expansion of gases in a rocket 
nozzle, i t  is permissible to write 

X = U P , ,  h,, P d P )  [= 1 

€ = €(P.,  h., P J P )  t26 1 
Eliminating P J P  between the previous two equations gives 

A = w,, h., E) [27 1 

and for area ratio in particular 

where the functional forms of Eqs. 125 and 271 are not the 
same. 

If the functional relation in Eq. [25] were known, then this 
would provide an alternate method of obtaining the first, 
second, and fourth columns of derivatives in Table 1, Le., 
(b in A/b In Pc)PJP,h., (b  In Xjb In ~ J P J P , P ~ ,  and [b In X/b 
In ( P c / P ) . ] .  Similarly, if the functional relation in Eq. [27 J 
were known, the partial derivatives (b In X/b In Pc)t,ho (b In 
X/b In hC)*,pc, and (b  In X/b In E ) ,  could be obtained. How- 
ever, expressions for these last three derivatives need not be 
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qotained explicitly inasmuch as they can be related to the first 
set of three derivatives as shown in the next paragraph. d l n X  = (() b In X d l n P , +  (-) b In X x 

b In p c  q h c  b 1n h c  f,Pc The total differentials of Eqs. [25-271 are 

dlnX=(-) b In X dlnP.+(-) b l n X  x 

Eliminating d In E in Eq. [30] with Eq. [29] and then compar- 
ing the coefficients of the differentials with those of Eq. [28] 
with some rearrangement, the following relations give : 

b In Pc Pc/P ,hc  b In hc PJP,P, 

b In X 
p,lp [281 

d l n e  = (-) b In e d I n P , +  (-) b In e X 
b In P, P,/P,he b In hc PJP.P, 

h u w s ~  1962 1199 ' 



H z ( g ) +  1/303 ( g )  
( h c = 6 2 9  I C A L I G ,  

500 Pc=IOO PSIA)--../ 

_I 

< 400- 
Pc=lOOO P S I A )  

" ' H ~ ( 2 ) + 1 1 2 0 ~ ( 1 )  

P c =  100 P S I A )  
(h,--=- 190.6 C A L  / G I  

100 
PRESSURE RATIO, P c / P  

Fig. 1 Comparison of accurately calculated specific impulse data 
for stoichiometric Hz-02 or Hz-0, with data extrapolated from the 

reference point 

(OInX)  = ( O I n X )  - - (  b l n X  ) 
b In h, ..pC b In hc P J P , P ~  3 In (Pc /P)  I 

Second Derivative of Impulse With Respect to Area Ratio 

An approximate second derivative of impulse with respect 
to area ratio for constant P. and h, can be obtained by dif- 
ferentiation of [33], assuming that [b  In e/b In (PC/P)]# is 
constant. This is a very good approximation for pressure 
ratios greater than 10. With this assumption, there follows 

Partial Derivatives for Extrapolation 

The first and second partial derivatives given in Tables 1 
and 2 can be used for extrapolation purposes by assuming 
that the change in any one of the parameters X or functions (o 

can be obtained from a truncated Taylor series. Thus, for 
any function f, neglecting derivatives higher than the second 

Table 5 Comparison of accurately calculated characteristic 
velocity data for stoichiometric H,-0, with data extrapolated from 

reference point 

h, = 0 cal/g h, = -190.6cal/g h, = 629.1 cal/g 
P,, Accu- Extrapo- Accu- Extrapo- Accu- Extrapo- 
psia rate lated rate lated rate lated 

1000 7208" 7208 7075 7077 7625 7641 
600 7165 7166 7035 7034 7573 7599 
100 7008 7017 6887 6886 7386 7451 

a Reference point for extrapolation. 

! 2 (5)" (xi - zi0)(zi - x?) [35] 
2 i , j  dXi3Xj  

When only first derivatives are available, the last term in Eq. 
[35] is omitted. 

The accuracy obtained with Eq. [35] depends considerably 
on the form off and 2,. Those forms whose first derivatives 
are the most nearly constant over the range of interest can be 
expected to give the most accurately extrapolated values. 

An indication of the desirable forms for f and Z, can be ob- 
tained by an examination of some performance data and 
derivatives. In Table 3, data are given for stoichiometric 
H,(g)-O,(g) for P, = 1000 psia assuming equilibrium com- 
position during isentropic expansion. Table 3 is the direct 
output from an IBM 704 program. 

The symbols used in Table 3 for some parameters are some- 
what different from those used in the rest of this paper be- 
cause the IBM printer does not contain characters such as 
lower case letters, Greek letters, subscripts, or superscripts. 
The following examples illustrate the differences: 

(DLI/DLPC)PC/P = (b  In I / b  In Pc)pC/p,hc 

(DLCS/DHC)PC/P = (b In c*/bhc)pc /p ,p ,  

(DLAR/DLPCP)S = [b  In ~ / d  In (PJP)Is 

It can be seen from Table 3 that the derivatives [b  In e/b In 
( P J P )  are very nearly constant over a considerable range 
of pressure ratio. I t  is to be expected, therefore, that a good 
form of Eq. [35] for extrapolating area ratios to other pressure 
ratios is 

In contrast, the large differences in the values for [b In I /  
b In ( P J P ) ] ,  indicate that using In I forfand ln(P,/P) for x 
in Eq. [35] would not give particularly good results. A more 

Table 4 Comparison of accurately calculated area ratio data for stoichiometric H2-02 with data extrapolated from reference point 

h, = 0.0 cal/g h, = -190.6 cal/g h, = 629.1 cal/g 

Accurate ExtraDolated Accurate Extrauolated Accurate Extrapolated 
P,/P P ,  = 1OOOpsia P ,  = 100 psia P ,  = 100 psia 

10.0 2.440 2.228 2.468 2.289 2.466 2.337 
40.83 7.009 6.941 7.151 7.130 7.169 7.279 
68.05 10.50 10.49 10.75 10.77 10.81 11 .oo 

100.0 14.31" 14.31 14.69 14.70 14.81 15.01 
300.0 35.05 34.75 36.28 35.70 37.02 36.45 
400.0 44.39 43.84 46.04 45.04 47.22 45.98 
600.0 61.92 60.83 64.44 62.49 66.66 63.80 
800.0 78.38 76.75 81.77 78.83 85.21 80.49 

1000.0 94.08 91.90 98.31 94.40 103.2 96.38 

a Reference point for extrapolation. 
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nearIy constant set of derivatives can be obtained in this case 
by multiplying the logarithmic derivatives by Z, i.e. 

A still more nearly constant set of derivatives are 

For specific impulse, therefore, a good form of Eq. [35] for 
extrapolating to  other pressure ratios is 

A different situation occurs for temperature. In Table 3 
the derivative [b In T / b  In (PJP)] ,  is fairly constant over 
part of the range of interest (from P, /P  = 1 to about loo), 
whereas another derivative form [bT/b In (PC/P)l8 is more 
nearly constant over the remainder of the pressure ratio in- 
terval. A further complication arises because the derivative 
of temperature or logarithm of temperature with respect to 
pressure ratio has a maximum. Extrapolation may, there- 
fore, give very poor results no matter which derivative form 
is used. For most chemical systems, the derivatives [b In T/b 
In (PJP)]. are more nearly constant as a function of pressure 
ratio than are the derivatives [bT/b In (PC/P) l8 .  

Numerical Examples of Extrapolation 

Specific Impulse 

The use of the first and second derivatives permits the ex- 
trapolation of specific impulse data with considerable ac- 
curacy. This is illustrated by two numerical examples. 
Both examples start with the d a h  in Table 3 for a pressure 
ratio of 100. 

Example I 

(Pe /P)  = 2.30259). 
Extrapolate Z from Pc/P  = 100 to P,/P = lo00 (A In 

From Table 3, Z = 382.0, [b In Z/b In (PJP)]. = 0.08396, 
and y = 1.1215. From Eq. [ 241, [bZ2/b In (PJP)] .  = 24,504, 
whereas from the equation in Table 2, [b2(P)/b(ln P,/P)Z], = 
-2654.6. From Eq. [35] 

1' = (382.0)' 4- 24,504 (2.30259) + %(-2654.6)(2.30259)' 

Z2 = 195309 

z = 441.9 

This is an excellent agreement a i th  the accurately cdcu- 
lated value of 442.2 given in Table 3. 

Example 2 

Extrapolate Z from P,/P = 100 to lo00 (A In (PJP) = 
2.30259), from P,  = 1000 to  100 psia (A In P,  = -2.30259), 
from h, = 0 to -190.6 cal/g (from gaseous to liquid pro- 
pellant). 

Using the data in Table 3 for combustion chamber condi- 
tions and for a pressure ratio of 100, the three first derivatives 
of Z* from Eq. [24] are 

(bT2/b In Ps)PJP,h,  2600.4 

@Z2/dhJ P,/P.P = 28,648 

[bZ2/b In (PJP)], = 24,504 
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Numerical values for all the quantities that appear in the 
expressions for the second derivatives in Table 2 are given in 
Table 3 with the following three exc,eptions: 

= 0.015198 (see footnote, Table 2)  rs) hc 

= 0.041197 (see footnote, Table 2) 
(=)he 

= 0.007821 (see Table I) 

The six second derivatives of I 2  are (with subscripts omitted 
for brevity) 

b2(12)/b (In P,) = - 182.69 

b2(Z2)/b In P,bh, = 1.5610 

bZ(Z*)/b In P,b In ( P J P )  = 162.67 

by1 2) /bh,2 = -0.0036205 

b2(12)/bh,b In (PJP) = 5.3690 

b2(IZ) /d  [In (Pe/P) I’ = -2654.6 

Using the first and second derivatives in Eq. [35] gives 

1’ = (382.0)’ + 2600.4(-2.30259) + 28,648(-0.1906) + 
24,504(2.30259) f $( -182.69)( -2.30259)’ + 
~(-0.0036205)(-190.6)2 + $(-2654.6)(2.30259)2 
+ 1.5610(-2.30259)(-190.6) 4- 162.67 X 
(-2.30259)(2.30259) + 5.3690( - 190.6) (2.30259) 

I z  = 180,778 

Z = 425.2 

This is in very good agreement with an accurately calculated 
value of 426.5. 

Some additional numerical comparisons of accurate data 
with data extrapolated for various changes In P,, h,, and 
P,/P are given in Fig. 1 for specific impulse, in Table 4 for 
area ratio, and in Table 5 for characteristic velocity. The 
extrapolated data are all obtained from one accurately cal- 
culated reference point corresponding to  P, = 1000 psia, h, = 
0, and P c / P  = 100. The derivative forms used were first and 
second derivatives of 1 2 ,  first derivatives of In e, and first 
derivatives of c*. It is apparent that the extrapolated values 
are in excellent agreement with the accurately calculated 
values for a considerable range of extrapolation. 

Partial Derivatives for Interpolation 

Derivatives can be used to increase the accuracy of inter- 
polation in a specified range. This is because each derivative 
is approximately equivalent to  having an additional point 
in the specified interval. For example, if only functions are 
known at two points, only linear interpolation is possible. 
However, if the first derivatives of these functions are also 
known a t  the two points, cubic interpolation is possible. 
With second derivatives also known, quintic interpolation is 
possible. Thus, for example, the following equation may be 
obtained: 

where the coefficients A,  B, C, and D are determined by the 
solution of four simultaneous equations involving the values 
of Z2 and first derivatives of P, each at two pressure ratios. 

To illustrate the accuracy of interpolation which can be ob- 
tained by this technique, values were interpolated for T, IN, c, 
and I a t  pressure ratios of 300, 400, 600, and 800 using cubic 

equations derived from the data of Table 3 at pressure ratios 
of 100 and 1000. The functional forms for I and c which gave 
the best results as functions of the logarithm of P,/P are Z 2  
and In e. Both the linear and logarithmic forms gave es- 
sentially the same results for T and M .  

The interpolated results are compared in Table 6 with the 
accurately calculated values of Table 3. Included in Table 6 
are values of CP and I,,,. Values of CF were calculated from 
c *  and the interpolated values of I by means of Eq. [22], using 
consistent units. Values of Ivac were calculated from c* 
and the interpolated values of I and E by means of an alternate 
form of Eq. [19]: 

I,,, = I i- C*€/(P,/P) 141 1 
again using consistent units. As may be seen from Table 6, 
the interpolated results are in excellent agreement with the 
accurate results. 

In the case of specific impulse, a quintic equation can be ob- 
tained from data a t  two pressure ratios, inasmuch as both first 
and second derivatives are available. Specific impulse 
values interpolated over the entire range of pressure ratios 
from 10 to 10,000 from a quintic formed from data at these 
two points were within 0.1 Ib-sec/lb of accurately calculated 
values. 

Data are often desired at assigned area ratios. By use of 
derivatives obtained from Eq. [33], accurately interpolated 
parameters corresponding to assigned area ratios can be ob- 
tained in a manner similar to that just discussed for assigned 
pressure ratio interpolation. 

Nomenclature 
A ,  B, C ,  1)  = coefficients, Eq. [401 
A /w = area per unit mase flow rate 
C *  = characteristic velocity 
CP 
C P  = thrust coefficient 
h = enthalpy per unit niasa 
I = specific impulse, Eq. [I71 
I \ % L  = specific impulse in vacuum, Eq. [21 I 
ki, k2 = constants 
’If = molecular weight 
O/F = oxidant to fuel weight ratio 
P = pressure 
PC/P = pressure ratio 
R = universal gas constant, 1.98726 cal/mole-”K 

1‘ = absolute temperature 

= heat capacity at constant pressure per unit mass 

S = entropy per unit mass 

U = velocity 
0 = specific volume 
X,Y? = any variable 
a$, e,$ = any thermodynamic variable 
e = area ratio 
x 

Y 

= process parameter 

= isentropic exponent ( b  In P / b  In p ) $  
P = density 

Subscripts 

C = combustion chamber 
0 = initial coordinate of a finite process 
t = throat 

Superscript 

0 = reference condition 
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