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EQUILIBRIUM COMPUTATIONS FOR MULTICOMPONENT PLASMAS
by Frank J. Zeleznik and Sanford Gordon

Lewis Research Center

SUMMARY
2392/

A method is presented for the calculation of multicomponent plasma
properties. The method includes both Debye-Huckel and ionization potential
lowering effects. These effects are shown to be partially compensating. A
perturbation technique is used to make the calculation compatible with a
scheme used for calculating ideal gas properties. Thermodynamic derivatives,
such as heat capacity, can be calculated directly.

hy ,ﬂg
INTRODUCTION Ag ——""—7«

Plasmas have become important in many areas of scientific and technical
work. Often the important plasma systems are not simple one-component systems
but may involve many different chemical elements. There are several schemes
(ref. 1) and many computer programs for the computation of the equilibrium
properties of thermodynamic systems that can be regarded as mixtures of ideal
gases. These methods, however, must be modified to account for the presence of
Coulomb forces.

In principle, the presence of long-range Coulomb forces in a plasma in-
validates the independent-particle (ideal gas) approach and requires the con-
sideration of interactions among all particles in the system. Even for simple
systems, however, this approach is extremely difficult and has yielded an
exact solution only for a one-dimensional plasma model (refs. 2 and 3). A
scheme is presented in this report for calculating the thermodynamic properties
of many component plasmas that can be applied to most systems and can be ex-
pected to yield results which are an improvement over the ideal gas calcula-
tions.

The thermodynamic properties for a system of independent particles (ideal
gas) can be calculated from a partition function that is a product of two
factors. One factor represents the contribution of the translational
kinetic energy to the partition function while the other factor Qijnt repre-
sents the contributions from the internal energy levels. Because of the
assumed independence of the particles, the energy levels used to calculate the
internal partition functions are the energy levels for an isolated particle.
These energy levels are available for many species from spectroscopic data.
Plasma computations that assume ideal gas behavior and neglect Coulomb effects




are typified by calculations of Kubin and Presley (ref. 4) and-early computa-
tions of Hilsenrath (ref. 5) and Rouse (refs. 6 and 7). A calculation that
assumes nonideal behavior but still neglects Coulomb effects is reported by
Rosenbaum and Levitt (ref. 8).

An attempt to incorporate the effect of Coulomb forces produces two changes
in the partition function from the partition function in the ideal gas case.
First, a third factor appears in the partition function. This factor accounts
for the effect of interparticle forces upon the translational partition function
and represents the contribution to the partition function of the classical con- ‘
figuration integral. ©Second, in calculating the internal partition function,
one should no longer use the energy levels of an isolated atom or molecule but
should use the energy levels of the atom or molecule in the external field pro-
duced by the other particles of the system (refs. 9, 10, and 11). Thus, for a
plasma, the internal partition function 1s dependent upon the amount of ioniza-
tion in the plasma and therefore is a function of the charged particle concen-
trations. The concentration dependence of the energy levels is generally un-
known. Some recent attempts have been made to estimate this effect for
hydrogen-like atoms by calculating the energy levels for a screened Coulomb
potential (refs. 10 and 12 to 15). No data of this type, however, exist for
other species. An alternate and somewhat simpler technique has also been used
to take into account the fact that the internal partition function has concen-
tration dependence. This method uses isolated particle energy levels together
with an energy level cutoff and an ionization potential lowering that are
dependent upon electron concentration; it has been used by Rouse (refs. 16
to 18), Drellishak, Knopp, and Cambel (ref. 19), and Drellishak (ref. 20). The
difference between the two procedures, then, is that the first adjusts internal
energy levels by varying amounts while the second, in effect, adjust the levels
by a constant amount. When only the ground state 1s used, as by Harris
(ref. 21), the two procedures are equivalent.

The previous discussion was concerned with the effect of Coulomb forces on
the internal partition function Qipt. The effect of these forces on the
translational partition funetion Q¢ 1s usually calculated by assuming the
validity of the Debye-Huckel approximation. The Debye-Hickel theory is dis-
cussed in various textbooks (e.g., refs. 22 and 23). Its validity is discussed
by Balazs (ref. 24) in connection with the one-dimensional plasma for which an
exact solution is available. Duclos and Cambel (ref. 25) summarize the con-
clusions of various authors regarding the region of validity of the Debye-Huckel
approximation for three-dimensional plasmas. Myers, Buss, and Benson (ref. 26),
Hilsenrath and Klein (ref. 27), Harris (ref. 28), Harris and Trulio (ref. 29),
and McGee and Heller (refs. 30 and 31), among others, have all used the Debye-
Hickel approximation in calculations. Unfortunately, the calculations of McGee
and Heller are in error since they mistakenly use the excess Helmholtz free
energy for the excess Gibbs free energy and, in addition, they use an incorrect
expression for the excess entropy.

Some confusion exists in the literature regarding the term "ionization
potential lowering."” This term was discussed by Ecker and Kroll (ref. 32),
who showed that both the translational and internal energy level effects could
be regarded as an iconization potential lowering. This was also mentioned by
Harris (ref. 21). In this report the term "ionization potential lowering" will
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. mean oﬁly the effects associated with internal energy levels.

! The previously discussed Coulomb effects on both Qi and Qipt are in-
cluded in this report. TFor the effect on Q,., the validity of the Debye-Hickel
- limiting law approximation is assumed. For the effect on Qjnt, an ionization

- potential lowering that is proportional to «, the reciprocal of the Debye

| length, is assumed. This assumption is equivalent to that of Harris (ref. 21)
and Drellishak, Knopp, and Cambel (ref. 19). In performing numerical computa-

i tions, some scheme must also be used for cutting off the infinite number of
unperturbed internal energy levels. This aspect of the problem will not be

' consldered further; however, several of these cutoff schemes are reviewed by

)H5ster and Sewell (ref. 33) and also by Margenau and Lewis (ref. 11).

The usual procedure for calculating the thermodynamic properties of plasmas
is to assign volume and temperature as the independent thermodynamic parameters.
In contrast, the method developed in this report assigns the pressure and one
other thermodynamic variable selected from the three quantities temperature,
enthalpy, and entropy as independent parameters. For many applications, it is
. more convenient to have data as functions of pressure rather than volume. In

addition, this procedure permits the calculation of thermodynamic derivatives
such as specific heat without resorting to numerical differentiations of tabu-
' lar data (ref. 19).

THERMODYNAMIC FUNCTIONS FOR MULTICOMPONENT PLASMA
The Helmholtz free energy A of a plasma may be written as

| A=Ap+ A, (1)

| where the subscript I denotes the ideal gas contribution and ¢ denotes the
- contribution from Coulomb forces. (All symbols are defined in the appendix.)
In terms of the canonical partition function for an ideal gas system,

Ay = -XT In(Qy Qi) (2)

where T is the absolute temperature and k 1is Boltzmann's constant. The
+ translational partition function is given by

A-3/2
o= T e[|

i
- where V is the volume, i 1is Planck's constant divided by 2, my is the
mass per particle of species i, and N; dis the number of particles of
species 1. The internal partition function is given by

BNEE
Unt =T|-[Q§,§%] (4)
1

th

where the internal partition function for the i“" species is




(1) _ -E(()i)/kT e-e%i)/k‘I‘

i .
where Ej ° is the ground state energy for the ith i501ated species and e%l)
are the isolated energy levels relative to the ground state; Qiny 1s inde-
pendent of volume.

The contribution of the Coulomb forces to the Helmholtz free energy can be

written in the form
A QE( (6) |
KT lZn ‘

The first term in this equation represents the contrlbutlon of the Debye-Huckel
limiting law (refs. 22 and 23); that is, it is the effect of Coulomb forces on

the translational partition function. The second term represents the contribu-
tion from the displacement of the internal energ levels, It arises because the

truncated partition function Q(l) goes to Q( exp(-AE( /kT) when each in-

ternal energy level is displaced by the same amount AE(l). The amount of
energy level displacement will be a function of ionization. The quantity K 1is
the reciprocal of the Debye length and is given by

VkT 2: qul (7)

where g5 1is the charge on the ith species. The dielectric constant that

usually appears in the definition of the Debye length has been set equal to
unity in equation (7). The displacement of the internal energy levels of the
i specles is assumed to be proportional to «, and the proportiocnality con-
stants p; may be different for each species:

l) = By iK8o (8)

where f; has the dimensions of energy and a5 is the Bohr radius. Combining
equations (6) and (8) gives

A
<c__ 1 +v3._0
il T AL D D L) (9)

1

The assumption (eq. (8)) is consistent with the assumptions made by
Harris (ref. 21) and Drellishak, Knopp, and Cambel (ref. 19). For the hydrogen
plasma, Harris used gy = 2Ig Where Iy 1is the hydrogen atom ionization po-
tential. For species in the argon plasma, Drellishak assumed that the change
in ionization potential AI was given by the expression




) I . K&
Artd) 0 .
. AI(ArJ,j):__i,j—:%T_ j =0,1,2,3,4 (10)

If it is assumed that the energy of the free electron is zero, the ionization
potential of successively ionized species of argon can be expressed in terms
of their isolated particle ground state energies

j+1 j .
I(Ar+j) = E&J ) = Eé)J) J = 0,1,2,3,4

Therefore, the change in ionization potential is
j+1 j .
AI(Ar+j) = a(3*1) _ ap(d) j=0,1,2,3,4 (11)

The use of equations (8), (10), and (11) implies the following B's:

(12)

Once the form of the Helmholtz free energy (eq. (9)) has been selected, all
other thermodynamic functions can be calculated from it by the usual thermo-
dypamic relations. For example, with U = -TZ[B(A/T)/BT]v §. the internal
energy can be calculated as 7L

U=1U + U, (13)

where

54

K
—};_,'9- 2 BiN; (14)

= - L
T 8Bx VK -
i

Pl
NN

The equation of state for the system is obtained from the thermodynamic
relation P = -(aA/SV)T’Ni and can be written in the form

pIIN

Kao i
KT YN
i

The deviation of Z from unity indicates the departure from ideal behavior due
to Coulomb forces, and thus Z will be called the Coulomb compressibility.

The two terms in equation (15) that account for the deviation from unity are
compensating if the p; are taken to be positive. In terms of 2, equa-

tions (9) and (14) become

1 VK3

24 3 Ny
3

EZ:l—

+ 2 (15)

B
kT, Ny
i




w2z -1 XN | (16)
1 [ ]

UC

e = 5(2 - 1) ZNi (17)
1

The enthalpy H and the ideal gas enthalpy Hy are defined as

H=U+ PV =Ug + U, + FV (18)

Hy = Up + KT 2 N (19)
1

Equations (15), (17), (18), and (19) may be combined to give

H = Hy + 4(Z - 1)kT Q_Ny (20)
1

The expression for entropy in terms of volume and temperature can be ob-
tained from the thermodynamic relation S = -(BA/BT)V,Ni. Just as in the case

of the other thermodynamic functions, the contribution of the Coulomb forces can
be written in terms of the Coulomb compressibility:

S=87+(Z -1+ 1n2)k 2Ny (21)
1

The 1In Z term in the correction for nonideality arises because the volume was
eliminated by means of the equations of state (15). Usually 1ln Z is ignored;
however, by doing this one is disregarding a term that is of the same order of
magnitude as the term retained.

Expressing the equations for enthalpy and entropy in terms of moles nj
rather than the number of particles Nji gives

m m
O
H = Z (HT) 101 + 4(z2 - l)RT 2 ng (22)
i=1 i=1
m m
S = Z (sp)sng + (2 - 1+ 1In Z)R Z ni (23)
i=1 i=1

where

(sp); = (S%)i - R In p;



m
v .Z ni
i=1

In these equations it has been assumed that there are m different species
in the system. With the use of equations (22) and (23) the Gibbs free energy
becomes

F=F+F, (24)

where

Fr = 51: ni[(H‘%)i - T(ST)i] (25)

i=1

m
F, = [3(z - 1) - 1n Z]RT E ny (26)
i=1

INVERSION OF EQUATION OF STATE

It is desired to express the equations of this report in terms of pres-
sure, rather than in terms of volume, as one of the independent parameters.
Thus an expression for volume in terms of pressure is necessary in order to
eliminate volume from all thermodynamic functions. This expression can be ob-
tained by inverting the equation of state. This inversion is equivalent to ex-
pressing the Coulomb compressibility in terms of pressure and temperature.

If the dimensionless ionization parameter

) 3/2
1/2 2 Niay 283Ny
= 1 [xP i i
o= - —3-(@) 2 ) [1-m0 T (27)
KT 3Ny 2 Nqaf
i i
is introduced, the equation of state (15) becomes
1+ ez /2 o g (28)

The analytical solution of equation (28) in the form 2Z = Z(a) can be found
conveniently by studying the associated cubic equation

73 - 272 + 2 - o =0 (29)
This equation was obtained from equation (28) by rearranging terms and then

squaring. Not all roots of the cubic equation (29) are valid solutions for the
equation of state (28). The solution that is valid for both equations is




=& <i + cos %) O0<a<L g
Z(a) 20 - o 1/3 (30)
-2, O,a 42 _ 2
3 4 2 ¥ o) 1
a~ < a
O—
+ 2a? - ag 2 PR - M2
4 2 0
-
where
2
cos ¢ = -1 + E%_
%0
where
_ 2
%0 T 3./3

Figure 1 is a plot of Z as a function of o. If the ionizaticn poten-
tial lowering is neglected, o < O and Z < 1; whereas, if the Debye-Huckel
limiting law is neglected, o > O and Z > 1. Because these two contributions
are partially compensating, considerable ionization can occur with little effect
on the equation of state. It may be noted that there is no solution for
@ < -ag- At a=-ag, Z has the value 1/3 while, at o« = ag, Z equals 4/3.

For |a| < 0.1, the trigonometric solution (eq. 730)) can be replaced by
the expansion

ZEl+ou-%-+g@3-a4+%a5 || < 0.2 (31)

This expansion gives at least seven figure accuracy in this interval.

ITERATION EQUATIONS

In this section, the iteration equations used to calculate chemical equi-
librium will be derived. In the following section, the equations required for
the calculation of thermodynamic derivatives will be given. For the purposes
of this report, the derivations will be based on the minimization of the Gibbs
free energy and will be related to the somewhat different free energy minimiza-
tion methods described by White, Johnson, and Dantzig (ref. 34) and Zeleznik
and Gordon (ref. 1). In order to make the method compatible with the tech-
niques used in the computer programs described by Gordon and Zeleznik
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Figure 1. - Coulomb compressibility as function

of ionization parameter.

(refs. 35 and 36), the derivation used here
will be such that in the ideal gas limit the
equations will be identical in form to those
obtained by the equilibrium constant method
(ref. 1). This can be accomplished by re-
garding the sum of the moles of all gaseous
species as fixed at a value that is numeri-
cally equal to the assigned pressure Pg.
This assumption requires treating the total
mass of reactants as a variable just as has
been done in the past for the ideal gas
(refs. 1 and 37). Since the derivation of

the iteration equations closely parallels the

minimization procedure of reference 1, many
of the details will be omitted.

The thermodynamic state is assumed to b
specified by assigning the pressure and one

other thermodynamic variable selected from the three quantities, temperature,
enthalpy, and entropy. The pressure of the system is specified by

P

-P=P =0 (32

m
where P = 2: P;- The specification of the thermodynamic state is completed

i=1

by assigning either temperature, enthalpy, or entropy as follows:

vhere

The quantity A is the total mass of the system.

m
Ks:i (sT)ini+(z-1+1nz)RZni

Ah

i=1

i=1

To-T=0 (33)

hg -h=/4h =0 (34)

sg -8 =0 =0 (35)
m

(89),s + (2 - 1)RT X ny (36)

i=1

i=1

is arbitrary, it is convenient to let A Dbe that mass which is required in
order that the partial pressure of each species is numerically egual to the
number of moles of that species; that is, pi = nj._ In the following equa-

tions, nj; 1s substituted for p;. The value of A that permits this sub-
stitution is determined simultanecusly with the other variables of the problem.

Once the thermodynamic state has been specified, the equilibrium composi-

e

)

(37)

Since the size of the system

9
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tions can be obtained by minimizing the Gibbs free energy subject, to mass-
balance constraints. If there are (1 - 1) different chemical elements (where
1 is some fixed integer), the 1 equations for conservation of species and
charge neutrality can be written as
o) - .
by - by =lb; =0 (i=1...1) (38)
m

where Kbi = 2: ajjnj. The ajj are the stolchiometric coefficients. In
J=1

the set of equations (38), the equation corresponding to i = 1 refers to the

conservation of charge. TFor the case of a neutral plasma, b% = 0.

If the state is specified by assigning a temperature and a pressure, the
iteration equations are obtained by minimizing the gquadratic approximation to
F/RT subject to the constraints (egs. (32) and (33)) and the linearized form
of equation (38). The mass balance constraint is incorporated by means of
Lagrange multipliers =4, whereas the pressure equation and the temperature
equation are used directly. The resulting iteration equations are

m A
Z (6kj + ij)A 1n nj - Z ﬂiaik_
J=1 i=]1
H F
(G Az
RE Aln T = - | B& (k=1,2 . . . m) (39)
K |r,p K o,
m — — —
Y ainyAlnng - Kby AlnA =X fby (i=21,2...1) (40)
j:
m
EnjAJ_nnj=AP (41)
3=1
AInT =0 (42)
where
P
n RT - 5
J | on, on; J
i ke,
™ -
2 e
° RT I (43)
ne. = .
J | ong Ony PT kj
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It may be noted that, for assigned temperature, equation (42) is trivial and
may be omitted together with the A In T term in equation (39). If, however,
the temperature is specified indirectly by means of equation (34), then the
linearized form of equation (34) is used in place of equation (42):

S E H _
RT H = R A
nj ; Alnny- p=AlnA+ Aln T = %= (44)
JT,P P,nj

5=1

The following equation, (45), is used when the temperature is specified in-
directly by means of equation (35) instead of equation (42). This equation is
the linearized form of equation (35) to which has been added equation (41)
multiplied by the factor (2 - Z - 1n 2):

Wt
>
B
> |

S
n; a(R) +n:i(2-2-nm2zZ)pAlnn, -
J Snj o J J

2

A fs
+ T AInT="f + A2 - Z - 1n Z) (45)

P,nj

The most important difference between the preceding sets of iteration
equations and the corresponding equations for the case of an ideal gas is the
appearance of the matrix I in equation (39). In the ideal case (I' = 0),
these equations could be used to eliminate A In n; (j =1...m)in terms of
i (i=1...1), AlnA, and A In T. Thus the number of equations could be
reduced from m+ 1 + 2 to 1 + 2 and the amount of numerical computation
could be considerably reduced. For the case of a plasma (I # 0), such a
reduction cannot be performed as easily. This problem will be discussed more
fully in a later section.

THERMODYNAMIC FIRST DERIVATIVES

In addition to the thermodynamic functions themselves, it is often
desirable to have available the first derivatives of the thermodynamic func-
tions. All possible first derivatives can be expressed in terms of any three
independent ones. As in earlier papers (refs. 35 and 37), the heat capacity at
constant pressure



m

_ (3 SH D (o 3 1nng\ |
°p = <ﬁ>P ) <E>P,ni ' Z—Ti <5Hi_>T,P ( 3 In é>1> (s
i=1

and the derivatives of volume with respect to temperature and pressure (OV/dT)p
and (BV/BP)T are selected as the independent derivatives. If an average
molecular weight is introduced, the equations of state can be written

PV =z"-bfl RT (47)

This equation leads to the relations

QInV) _, _(2InM) , 147 da
Oln Tjp dInT/p 2z da 5lnTP,ni

X J In ng
Sl ()]

+ Z W(&) (5o (49)
= T, P T

From the procedure of reference (37), it is readily established that

dInM\ _(dInA (50)
OInT/p \oIn T
O 1ln M P
l+<F_)= (51)
In P/p L (3 In ni>
ngj\ ————
z, O 1n A /o
i=1

Pl ————
d1nk /g

i
5 lnnk>
nk(a n A /g

k=1

(Blnnl
alnP)T= (52)

1z




Therefore, the evaluation of the three independent first derivatives reduces
to the problem of calculating derivatives with respect to In T at constant
pressure.and with respect to In A at constant temperature. The derivatives
with respect to In T are obtained by solving the set of equations

m 1
oU, /0 In n. oU- O 4 oU
it L)+ k = + X =
MWy \d T b Sy \3mT)p " \Sm T °
j:l i=1
(k =1,2,3 . . . m) (53)
m
: In n. —
aijnj(g——];i.-‘l)P - Abg(%_ll_lnl.—g)P = 0 (i = 1}2)5 o o . Z) (54)
| a Inn:
_S_ na(m*l)l, =0 (55)
| =
where
m
; 1 B(EL 1
= F A 5.2 g i = RT
i=1 T,P  i=1
J=1 T,P

These m + 1 + 1 equations are identical in form to the m + 1 + 1 iteration
equations (39) to (41) although they are not derived from the iteration equa-
tions. They can be thought of, however, as being obtained from the iteration
equations by setting the right-hand side equal to zero and by formally dividing
through by A 1n T.

The derivatives with respect to 1n A are obtained by solving the set of

equations
m 1
. aUk o 1ln EJ N bUk a:n:i _ -0
Ja; \dm & /o 35 \d 1n &fp
=1 i=
(k =1,2,3 . . .m) (57)
m
dlnn °
. .n. - - A9 =
alJnJ STo & . b 0]
J= (1 =1,2,3 . . . 1) (58)




€

Again there is an obvious similarity between these equations and the iteration
equations (39) and (40).

*

SOLUTION OF EQUATIONS BY PERTURBATION

The problem of calculating the thermodynamic properties of a multicomponent
plasma has been reduced to the problem of solving one of three different sets
of simultaneous linear iteration equations. The set of equations (39), (40),
(41), (42) is used if the thermodynamic state is specified by assigning a
temperature and a pressure. A second set (eqs. (39), (40), (41), (44)) is used
if the state is specified by enthalpy and pressure while the third set (egs.
(39), (40), (41), (45)) is used when the state is specified by entropy and
pressure. When the iteration procedure has converged, two additional sets of
linear equations must be solved in order to calculate the three independent
derivatives discussed earlier. One of these sets is composed of equations (53),
(54), (55) while the other is formed from equations (57), (58).

These five sets of linear equations are very similar to each other, and
therefore simultaneous discussion of the solution of these sets is possible.
In the discussion of these equations, the more concise matrix notation
M v =w will be used to symbolize any one of the five sets of linear equations.
Further the matrix M and the column vectors v and w will be assumed to
have been partitioned so that the set of equations can be written in the form

ZERGP
bk

The column vector vy is associated with the variables related to
nj(j =1,2, . . .,m), while Y, is associated with the remaining variables.

1 ¥

= (59)

2 L}

1<

1<

The matrix Mil is square and has the dimension m. The matrix Méz is also

square and has the dimensions 1 + 2 for the iteration equations, while for

the sets (53), (54), (55) and (57), (58) it has the dimensions 1 + 1 and 1,
respectively.

If the set of equations represented by equation (59) is relatively small,
one can work directly with these equations. In multicomponent systems, however,
the number of equations could be quite large and their solutions could involve
a considerable amount of numerical difficulty. For this reason, working with
a reduced set of equations analogous to those used for the ideal gas problem
would be convenient. As has already been pointed out, the principal difference
between equation (59) and the corresponding ideal gas equations lies in the
fact in the ideal gas case M was a unit matrix. This permitted the first
member of equation (59) to be used in the direct elimination of v. from the
second member of the set and thereby gave a considerably reduced set of linear
equations in the variables v,. ©Since the objective is to provide a calculating
scheme compatible with the ideal gas case, a reduced set of linear equations

14




must first be‘constructed. With the square submatrix ‘Mll assumed to be non-

singular
5T Mii(?l - M:12‘—’2‘) | (60)

This equation is used to eliminate v
R s -1
which yields

(i, - ol )y, - w, - wpche )

Equations (6l) possess the disadvantage that they contain the matrix
Mi% = (I+ E)'l. The need for numerically calculating Mi% would be
1

from the second member of equation (59),

eliminated if a closed-form expression could be obtained for Obtaining

this expression is certainly not possible in a general case, baf it can be done
when the contribution of I' to Mil can be regarded as a perturbation. Then

the iterative expansion of Mii is >

WY - ki; (-1)r* (62)

where 2? = 1.

If the notation E'XZ =y 1is used for the reduced set of equations (61)

and if equation (62) is used to eliminate M;i from both N and y,

N = i (¥

k=0 ~
(63)
y= 5
£=0
where
nk) - m s(0K) _ (Liyem rky )
= =22 =1 =12
> (64)

X(k) = ‘_’25(0’k) - (-l)klilzl-l——\l%l—l

y

The index k effectively gives the order to which the perturbation matrix I
appears in the various terms. Therefore, conventional perturbation theory can
now be applied in the solution of the reduced set of equations (61). Writing

15



© X ’ '
v, = 1;6 vk ()

and equating terms in equations (61) with the same order of perturbation yields
the usual equations

n(0)y(0) - 4(0) K = 0
k 66
E(O)v_z(k) - ) 2 E(J’)zgk-j) K =1,2,5 . (ee)
J=1

These equations can be used to calculate 22 to the desired order of perturba-
tion. An expression for Xl can then be obtained from 22 by using equa-
tion (60). Grouping terms with the same order gives

2] 00
_ (n) _ Ry - _11k (n-k)
Il - Y‘l - Z ( l) _Itn"_‘rl ( l) Lk%zXZ (67)
n:o n=o k=O
The explicit expressions for the matrices N(k) and the vectors z‘k) will

be given for the case in which the equations to be solved by perturbation
correspond to the iteration equations. Using the notation

) o o - B
T e R T N o
P
T 2 njaf >ni  2omnjaf-3a0 2 Bing
i=1 i=1 i=1 i=1
= o
ap = (-——— = -2q (69)
0ln T P,n,
= &L - &
ap (m z (70)
T,ni
O
(] (@)
fk“ﬁk— = RT+]_nnk+l+3(Z-l)-an
T,P
2
m
37 - 1 dz
+ L—Z——)' Eni .dTI- Uk (71)
i=1
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H O
A=) (s2) n
. _ RT k dZ
by = " = “RT + 4(Z - 1) + 42111'5;“}{ (72)
T,P i=1
G 8
hp = TR['— = ___ﬁ&_._+ 4(z - l)zni+ 4 ) ng %(}T (73)
P,nj i=1 i=1
i=l
gives the following forms for y(k) and N(k):
m m
2 eipigny Ao 2, eijfm
J=1 J=1
(0) S S .
N o= P ay jh 3 0 D hsn s i,k=1...1 (74)
J= J=1
m m
+
2, ayjhyny  H/RT hyp ; hshng
J=1 J=
A Abi + i aiJnij
J_
m
4(0) - M+ Y nif. ik=1...1 (75)
b Jd
J=1
m
+— Ah
J=1
m m
> a3 503(F" ) joxt o > a3 503(L7) jtht
j,t=1 Jyt=1
Jds ’
m m
(r) _ r . .
N/ = (-1) Z :nj(zr)jta’kt Y e na(f)gtht (76)
3,t=1 J,t=1
m m
Z :hjnj(_f_‘r)jtakaG 0 Z - By (I7) jhe
J,t:l J,t—l
r=1,2,3. . .3 i,k=1...1
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m

r
> a; jn;(0F) 54fg

J,t=1

m

I(r) = (-1) % n3(0) 54y, r=1,2,3 . . . (77)
Jr =

>
h.n.(f).tf,c
== J5J J

A considerable amount of cancellation occurs in g(r) and Iﬁr)
(r = 1,2,3 . . .) because of two properties of the matrix T.

i niI‘ik =0 (78)

1=]

2 Ty= O (79)
1=

These properties are a direct result of Euler's theorem for homogeneous func-
tions. The function Fb, defined by equation (26), is homogeneous of degree 1
in the nj because o 1is homogeneous of degree zero in ny and thus so is
Z. By Euler's theorem

m

3F_
E i S, T Fe (80)
i=1

Differentiation with respect to mnx gives

m

2
ny O Te =0 (81)
1 Goydny
i=1

Equation (81) gives immediately the second of the properties of T (eq. (79)).
The first property (eq. (78)) also follows from this result by recalling that
the order of differentiation is immaterial; and thus for mny not equal to
zero equation (81) can be written in the form

m
2T

1 c
— nsn =
oy %k S04 0my
i=1l
This is just the first property of the matrix T (eq. (78)).
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» Equation.(78) immediately shows that the second last row of E(r) and the
second last element of X(r) vanish identically. Because of equation (79) the
contribution to E(r ) from the term 4(Z - 1) in hj vanishes as does the
contribution to x(r) from the term 1+ 3(Z - 1) - In Z in £j.

The same expressions for g(r) and x(r) (r =0,1,2 . . .) can be used
when the thermodynamic state is specified by temperature and pressure except

that now the last row and last column of l_i(r) as well as the last element of
x(r) must be deleted. When entropy and pressure are used as the thermodynamic
variables, it is only necessary to replace the last row of E(r ) with

2, e sy R STt X sy
=1 J=1
| r=20
‘ >k =1,2,3 . . .1 (82)
> sny(Dgeexe O s505(07 ) j¢ht
Jrt=1 J,t=1
r=1,2,3 . . .J
The last element of y_(r ) must be replaced by
‘ A m N
| RAS+(2-Z-an)AP+Es5njfj r=20
J=1
n ( (83)
Z: s3n:(TT ) s Fy r=1,2,3. ..
Jyt=1 I J J
where the following notation was used:
o(8) (s), -
= R _ j Z+ 1 az
;3 = lsn +2-2-1In2Z= R —lnnj+ 7 ni-azaj (84)
J Jo,P i=1
S c9) n; m
_ B(R> ( P)i T oz+1 Z az
ST =T Igf"Pn.= R + 7 nida,a‘T (85)
G i=1
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SUMMARY OF RESULTS .

A calculating scheme has been presented for obtaining equilibrium composi-
tions and thermodynamic properties of plasmas containing many species. This
scheme was made compatible with an existing calculating method for ideal gas
mixtures by using a perturbation technique for generating a reduced set of
working equations.

The method permits the inclusion of both Debye-Huckel and ionization po-
tential lowering effects in the calculation of plasmae properties. These two
effects are partially compensating.

The equation of state was Inverted in order to permit specifying the
thermodynamic state in -terms of pressure and temperature (or a function of
temperature) rather than the usual way of assigning volume and temperature.

The method given also permits the direct calculation of thermodynamic
derivatives such as heat capacity and thus elimates the necessity of using the
usually less accurate method of numerical differentiation.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, February 17, 1965.
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APPENDIX - SYMBOLS
Helmholtz free energy
total mass of system
stoichiometric coefficients
Bohr radius
heat capacity at constant pressure
energy

th isolated species

ground state energy level for i
Gibbs free energy

enthalpy

enthalpy per unit mass

Planck's constant divided by 2=n
ionization potential

Boltzmann's constant

mass per particle of gpecies 1
number of particles of species i
number of moles of species 1
absolute pressure

partial pressure

internal partition fumction
translational partition function
charge on ith species

universal gas constant

entropy

entropy per unit mass

absolute temperature

21




U internal energy

v volume

W mass

Z Coulomb compressibility

a dimensionless ionization parameter, eq. (27)
Bs proportionality constant

iy perturbation matrix, eq. (43)

5ij Kronecker delta

egi) isolated energy level relative to ground state
K reciprocal of Debye length

Tt Lagrange multiplier

Subscripts:

c Coulomb forces

I ideal gas

0 ground state

Superscripts:

o standard state

2z
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ERRATA
NASA Technical Note D-2806
EQUILIBRIUM COMPUTATIONS FOR MULTICOMPONENT PLASMAS

By Frank J. Zeleznik and Sanford Gordon
May 1965

Page 15: Line 8 should read
Mi% = (I+4) -1, where A=T except for equations (57) and
(58). The need for numerically calculating IE_% would be

Page 15: All I's below line 8 should be changed to A's.

Page 16, equation (67): The TI's should be changed to A's.
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