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Problems of elastic stability of a space rocket under dynamic, non-
conservative loads are presented. The spacecraft is treated as a slender,
uniform cylindrical bar with free-free ends. Analysis of the frequency of
the transverse vibration coupled with the longitudinal vibration under the action
of time-varying thrust force based on Galerkin's method leads to Mathieu's
equation. The elastic stability boundaries of the frequency ratio, longitudinal
to transverse, versus the thrust are obtained. The dynamic buckling thrust
of a uniform bar with various boundary conditions is presented. The aero-
dynamic force induced from the oscillation of the rocket in supersonic speed
on the critical thrust is investigated. A numerical illustration is given to
show the relationship of the critical thrust versus flight speed at various
flight altitudes.
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Symbol

DEFINITION OF SYMBOLS

Definition

Effective load carrying cross-sectional area

=a \/2(1 - cos BnTO)/ (Gn‘ro)zl

Constant, defined by equation (11)
NEA/m’

Velocity of sound in air

Modulus of elasticity

Bending moment of inertia

=P/ (m*E1/L?)

Length of bar

Mach number = U/c__

Mass per unit length of bar

Axial force

Thrust force function and its maximum value
Atmospheric pressure
Aerodynamic load per unit length
Radius of bar

=0 /9

Time variable

Thrust buildup time

Velocity of flight

iv




DEFINITION OF SYMBOLS ( Concluded)

Longitudinal displacement of bar

Transverse displacement

Coordinate along bar

1>0/an2912 = K

(B4L)*

TRYP_M /mLS 12

I

1. 4, polytropy index of air

smyRLp_/mLec €4, aerodynamic damping factor
Structural damping factor

= nmc/L, longitudinal frequency
Parameter of Mathieu equation defined by equation (23)
=t Q

to 1

Natural frequency of transverse vibration.
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ELASTIC STABILITY OF A SLENDER BAR WITH
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Problems of elastic stability of a space rocket under dynamic, non-
conservative loads are presented. The spacecraft is treated as a slender,
uniform cylindrical bar with free-free ends. Analysis of the frequency of
the transverse vibration coupled with the longitudinal vibration under the action
of time-varying thrust force based on Galerkin's method leads to Mathieu's
equation. The elastic stability boundaries of the frequency ratio, longitudinal
to transverse, versus the thrust are obtained. The dynamic buckling thrust
of a uniform bar with various boundary conditions is presented. .The aero-
dynamic force induced from the oscillation of the rocket in supersonic speed
on the critical thrust is investigated. A numerical illustration is given to
show the relationship of the critical thrust versus flight speed at various
flight altitudes.

INTRODUCTION

The means of finding the static buckling load of a slender column is the
well known Euler's method. If the external forces have a potential, they are
called conservative forces, in which case this method is applicable. If the forces
are nonconservative, this method is not applicable [1]. The theory of elastic
stability of nonconservative problems is based on the investigation of the small
oscillation of the system about its equilibrium position. Thorough discussion
and many practical examples of this so-called dynamic method may be found in
V. V. Bolotin's books listed as References 1 and 2.

The thrust force and the aerodynamic load acting on a space vehicle have
fixed directions relative to the vehicle and vibrate together with it when oscil-
lation is taking place. Hence, these forces are nonconservative, Determination
of the elastic stability of the vehicle, while disregarding the local buckling and
panel flutter, is the object of this study. The space vehicle may be treated
simply as a uniform, slender cylindrical bar with both ends free. A thrust force
is applied at the tail end along the body axis; this force is built up from zero to
its maximum magnitude in a short time interval and then is kept constant. Two
dynamic stability problems are presented here.



Dynamic Coupling of Longitudinal and Transverse Vibrations

The velocity of the longitudinal stress waves traveling in a solid bar is
equal to the speed of sound in the bar. In general, the frequency of the stress
waves traveling back and forth in a bar is much greater than its natural frequency
of transverse vibration; thus, the coupling is negligible, However, a rocket
usually has great mass density per length and a small effective load-carrying
cross-sectional area, Its longitudinal frequency may be of the same order of
magnitude as its transverse vibration frequency. In this case the elastic coupling
becomes significant.

Elastic Stability of a Space Vehicle under the Combined Action
of a Thrust and Aerodynamic Load
For a space rocket of large cross-sectional area, the aerodynamic force
and damping effect caused by its transverse oscillation in supersonic air flow

may have some significance to its dynamic stability. Such information may be
helpful to structural design engineers.

ANALYSIS
Coupling of Longitudinal and Transverse Vibrations

The well known equations of transverse and longitudinal vibrations of a
uniform bar and its boundary conditions of free-free ends are as follows [1, 3]:

94w P¥w d Iw
B ¥/ 57 "5 <N ox) Talx 1) t1)
N(x, t) = EA 28 (2)
ox
o*u 9%u
EASZ =m 5 (3)

i\&> _ <82w> _ (Bdw _<83w\> _
<3X2 . T \ax? X a \6x3 - 8x3/ =0 v (4)




EA @-—3) = -P(t) 93) =0 (5)
x=0 xX=

The coupling of longitudinal vibration with the transverse vibration as given by
the first term on the right-hand side of equation (1) can be obtained easily with

the aid of Figure 1 in which N(x, t) denotes the tensile force along the axis of
the bar.

q(x,t) s dxe
0 fr— X, u
M
P(t : - _ xu M
Q Q+dQ
— L — ]
w N+dN

FIGURE 1. COORDINATE SYSTEM

1. Solution of u(x, t). - To eliminate the nonhomogeneous boundary
condition of u given by equation (5), we introduce a new variable U and write
the solution of equation (3) in the form

u(x, t) =4 (x, t) —P—é} (x - x¢/2L). (6)

From equations (5) and (6),

- - - - (7)
<8x =0 ox =1,

Substituting from equation (6) into equation (3) yields

2
gu 29U +—L (XA_Xz/zL)d—P(Q- ¢ =EA/m. (8)




Now, if we let

~

o0
u(x, t)= Z T (1) cos 2 |
noo ™ L

which satisfies the boundary conditions given by equation (7), the approximate
solution of the unknown function u_(t) may be determined using Galerkin's
method. This involves substituting the assumed solution into equation (8)

and then multiplying both sides of the equation by cos n7x/L and integrating
from x =0 to x= L. This results in

d*q 5
n o~ _ 2L d*P(t _ )
7o +9nun 22 e > ©° 1, 2,... . 9n nre/L (9)
Y
_o_P)
W2 - L " (10)

The last equation represents the rigid body motion of the vehicle.

Equation (9) indicates that the solution of U (t) depends on the second
derivative of the thrust function P(t). It usually takes from one half to one
second for a rocket engine to build up to its full power; then the thrust remains
fairly constant until engine cutoff. The thrust buildup curve may be represented
by a second order curve with t as the buildup time and P_ as its maximum
thrust., Hence, let us ::1ssumeo °

- 1 __.1_' 2 < < t <
P(t)—PO[(1+2a)(t/to) 2a(t;/to)],0<a=2,0_t—t0 (11)
=P, t=t ,
o)

from which we obtain

d*P(t

= -P (a/t}) [S(t) -S(t -t )], (12)
dtz o o} o

where S(t) is a unit step function. The thrust function and its second derivative
is represented by Figure 2.




P(t)

ovya=0 . | 0 B

FIGURE 2, THRUST FUNCTION AND ITS SECOND DERIVATIVE

The solution of equation (9) may be obtained easily by using the Laplace transform,
2LP A
o

~ R ¢ T >
u () 2 3pa  COS (Bnt te), tZ t (13)

where

— 2 _ I - -1
An = (a/T0 ) ~l2(1 cos rn'ro)/rn . o tan

=9 /9y, = Q. .
rn n/ 1 TO 1 (o]

In study of stability problems, the initial conditions can be disregarded; hence,
we may drop out ¢n from equation (13) and use Po to replace P(t) in dealing
with the transverse vibration of the bar. Thus, we have

o0 2LPOA'_1
u({x, t) = E W cos Gnt cos
=1

nrx

1
2 = £
I (x-x°/2L) P /EA+2(P /mL)

(14)

and



2P An
cos O t sin
n

18

N(x, t) = -

BX (1 -x/L)P . (15)
L o

Il
[

n

2. Solution of Transverse Vibration w(x,t). -The solution of free
vibration (N = 0 and q = 0) of a free-free beam is [4]

w(x, t) = Z Civi(x) ejQit , (16)
i-1

where Ci is a constant, j =~ -1, and vi(x) is the ith normalized vibration mode,

Vi(X) = ﬁ [ChBix + cos BiX - 'yi(ShBix + sin Bix) 1.

(17)
The symbols in the two equations above are defined as follows: (. is the
eigenvalue of the frequency equation !
cos BL Ch BL = 1; (18)
Qi is the natural circular frequency of free vibration
9% =p* El/m = (p,L)* (n*El/1%) /m*m1? ; (19)

and Y is a constant

Ch3,L - cos 8.L
i i

L Shg.L - sin gL

The values of Bi and yi are

,BiL = 4,73000, 7.8532, 10,996, .., (21 + V)7

DI

'yi=.98250, 1. 00078, . 99997, ...

itd
_-




To solve equation (1) with g(x, t) = 0, we assume the solution in the form

o0

wix, t) = ), v, ()£ (1), (20)
i=1

where f.(t) is an unknown function to be determined. After substituting w(x,t)
from eqluation (20) and N(x, t) from equation (15) into equation (1), multiplying
the equation by v (x), and then integrating with respect to x from 0 to L, we
obtain a system of infinite simultaneous equations:

a2

kKo o
32 +Qk (1—aakk—2 Z o coant) fk
n=1 kk
-Q 2 = =
) (a2 ) m cosft)f =0, k=1,2 (21)
i=1 n=1 ki
#k

where

o= Po/mL25212 -z

- — 2
RTAoL K =.01972K K = PO/(nlEI/L )

L
a. = (24/2 )L { v, [v) - (L-x)vp'] dx

L
= 2 1 + - s ?
(Ql/ﬂk) L[ka(O)vi (0) { (L x)vkvidx]
L L nrx nwx
= - Q,/Q )2 —y'" gin —= + v —
H . aAn( 4 k) Lj(; Vidog Vi sin T Vi cos dx

L

1.2 nmx
=- A (/9 )% = w!sin — dx .
o n( / k) - {) v, v sin = dx



The prime in the above equations denotes derivative with respect to x. Using
the integration formulas given by Reference 5 we obtain

__511241‘,__?_1_{__ 3 33)+1_(1i+k——4-'8—i—3—ﬁ—k—3—-—_
W T\ S B T8 O P TR T T LT

(22)
k #i
= (24/9 L[ L +6) - . 2
a. = (29 p LI (v, ) - 4] (23)
The approximate formula for “n may be written in the form
ii
2[3,2L2 + nr
o 2 4o (=)™ + + :
unii - a(ﬁiL) [t- (=14, 41L312L2+r127r2 i T2 4Bi4L4 +airt | (24)
The above formulas give
31136. 151 312 :-9.211
3.21:.4:783 dgg = 3,027
Hy = /.1111 =7.15 Ai =. 1423KA1 .
Because u decreases with 1/n2, let us consider only the first mode of both
longitudine?l and transverse vibrations. Then from equation (21) we obtain
&y, o2
+ Q% (1 - aayy - 2uqcos O4t) f;=0. (25)

dt?

Equation (25) may be rewritten in the form of the well known Mathieu equation,




2 —_
d?izl'i' 912(1-2ﬁ1COS Olt) f1=0, (26)
where

Q2 =221 - aay) E=u/(1-aay).

Applying the stability boundary for the Mathieu equation givenby Reference 2
(pp. 24-28), we have the critical frequency ratio,longitudinal to transverse:

2 7
ko= - 273.
rge == N1-aagy s u (27a)
1 7
1'1* = ; '\/1 - aayg +pn2/ 3( 1- aa’ll) (27b)
1 ’
I'i* = ;’\/ 1- Qaqyg - 2[J,nz/(1 - 013.11) . (270)

The above equations for n = 1 and py = . 1423KA{ may be solved graphically, if we
write these equations in the forms

Ay =+ (1 - aay - ir)/. 1423K (28a)
Aiz = (1 - @aqy - r12) ( 1- aa“)/.00675K2 (ZSb)
Af = (1 - aagy - rd)(1- aay)/.0405K° , (28c)

Also, from equation (13)

Ay =aN2(1 - cos 1'17'0)'/(1'11'0)2 . (28)




The procedure is as follows:

(1) Plot A vs ry from equations (28) and (28a), respectively, by using K
as a parameter and note that oayy =.1213K;a and 7, are fixed.

(2) The intersections of these two curves give the upper and lower bounds
of ry of the instability region for the given K. It is shown as the upper branch in

Figure 3.

(3) Plot A12 vs ry from equation (28b) and the square of equation (28)

A oixran

(4) The intersection of these two curves gives the upper bound of the
instability region of the lower branch shown in Figure 3.

(5) Similarly, equations (28c) and (28) will yield the lower bound of
the instability region of the lower branch.

It is interesting to note that the thrust buildup time t,(= 7,/8) plays an
important role in determining dynamic elastic stability of a space rocket.

Dynamic Buckling Thrust and Frequency of Vibration

Let us return to equation (25) and disregard the cos 64t term in the
equation; in other words, we will neglect the effect of the longitudinal stress
wave; thus, we obtain

< TR
G2 T (1-aay £=0. (29)

Therefore, the fundamental frequency of transverse vibration of a uniform beam
under the influence of a thrust force is

Qz\/i—ozahﬂl. (30)

The critical dynamic thrust P * is the force that reduces the frequency of
vibration to zero. It follows immedia?tely that

a* =1/ay or Kx = PO=!</(1r2EI/L2) = (BL)4/?ay; . (31)

10
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For a free-free uniform beam, K* = 8,23, and for beams with other end condi-
tions, K* can be obtained easily with the aid of References 4 and 5. Formulas
for various end conditions are given in Tables I and II.

The Static Approach. -The critical thrust of a bar based on thestatic
approach is actually the buckling inertia load caused by acceleration. It is assumed
that the thrust force is increased gradually such that no transverse vibration is
induced. In some cases, this approach fails to yield the critical inertia load,
because under the given end conditions an equilibrium configuration of the beam can-
not be attained without having transverse vibration, The critical values of thrust
which causes inertia buckling of a clamped-free beam and a supported-supported
beam, obtained from Reference 6, are ,794 and 1,88 times TTZEI/LZ, respectively.

Elastic Stability Under Aerodynamic Load

It is a well known phenomenon that, as air flow passing around an elastic,
slender body, energy is emitted from the body into the surrounding medium when
the velocity of propagation of transverse wave of the body is greater than the
velocity of the flow; and conversely, the energy is absorbed by the body from the
medium. In the latter case the energy absorbed by the body has a tendency to
increase its magnitude of vibration. This is commonly called self-excited
motion or flutter. Our main concern here is not the panel flutter of the skin of
the shell structure; we are interested in estimating how the high speed aero-
dynamic flow affects the critical thrust. To this end, we shall avoid the compli-
cated three-dimensional problem of an elastic shell in a potential flow such as
that treated in Reference 1 (pp. 218 - 230). Our analysis will be made on the
following assumptions:

(1) The deformation of the cross section of the hollow cylindrical bar is
negligible; therefore, we may take the radial deformation of the rocket shell as
the product of the transverse deflection of the free-free, uniform bar and cos 0
with 6 measured from the plane of transverse motion around the cross section.

wr(x,(),t) =w(x,t) cos 0,

(2) The bar is sufficiently long in comparison with its diameter so that
the end effect may be ignored.

(3) The linear approximation theory may be applied to determine the
aerodynamic force exerted on the oscillating bar at supersonic speed. Let us
denote U as the speed of the rocket or the velocity of air flow relative to the
rocket, and by using the coordinates shown in Figure 4, we may write the
linearized aerodynamic pressure in the form:
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W, w ow
T r
p= . Ct -U 8x> . (32)

Then the dynamic load per unit length, q(x, t), in equation (1) is

/2 TRYp_ W Bwr
q=-2 [ pcosORdO=- S " -Uax/. (33)
-n/2 %

FIGURE 4. COORDINATE SYSTEM

Stability Criteria. -Now, we proceed to solve equation (1) in which
q(x, t) is substituted from equation (33) and N(x, t) is substituted from equation
(15) by neglecting the longitudinal stres wave. Similarly, applying Galerkin's
method, we obtain, by retaining only the first two terms,

d?f df
Et—zl +2(5 +L) Qi—é-: + Q21 - cayy - Bby)fy - Qi (aagy +Bbp)f, = 0

(34)

d*f df
g8t AL, FLIN G+ QML - cay - Bbyp)f - Q*(avagy +Bbyy) f1 =0 |

where Q4 and Q, are the first and second natural frequencies of free vibration,
g and g are the aerodynamic and structural damping factors, respectively,

15



TYRLp__ TRyp M

¢, =g - and ﬁ:—m—L—s-zl—z— (M = Mach No, =U/e_).  (35)
o 1
- (29 )? L'—41<1“k9/924/44
by = (21/2)) L{) vidx=4 - DY) B8 -8 L g

Note that the integration formula given by Reference 5 has been used to obtain
the last expression, from which we calculate )

b“ =0 b22 =0 b12 = =9, 212 b21 = 0. 1596

Here, we point out that the rigid body modes have no effect on the elastic
stability of a free~-free bar. The proof is very simple. Let us add the rigid body

motion fR and rotation f 0 to equation (20) to give

wix, ) =f (1) + xf (1) +i;1 V(X)L (1) (20a)

Substituting the above equation, with

N(x, t) = - Po(i - x/L)

and q(x, t), given by equation (33), into equation (1) and then multiplying the
resultant equation by vk(x) , we integrate it from x = 0 to x = L. Using the
integrals given by Reference 5,

L. L
‘£ ka(x) dx=0 and {) vk(x) dx =0 ,

we note immediately that the equations obtained are identical with equation (34),
s Qt Qt . .
Substituting f; = Bje " and f, = Bye"  into equation (34) and equating the

determinant of the coefficients of By and B, to zero yields the characteristic
equation

16




a Q4+2a0%+ 2,02 +a2,Q +2a,=0,
o

(37)

where
a =1
0
= = +
ay = 2€9y € 2(€.a és)
ay= Q{1 +T+ €% - alagy +T ag) ] T = (Q,/99)% = (B,/B1)* = 17.5985

ag= Q701 +T - a(ay + T ag) e

ag= QT [1 - alay +ay) + al(ayay, - apay;) - (apbyy + 2yybp) oB

- bjzbuﬁz] .

We recall that the Routh-Hurwitz stability criteria are as follows:

(a) a;>0; or e€>0
(b) | a; aj ) -
12 +1+
>0; or a*<2_3______r ~ , 294
a ayy + T ay
0
(c)la; a3 O
a @ ag >0 or Aa’-Ba+C >0,
0 a; ag

where
A= (an + Y‘-azz)/4'_[‘- - (3.11322 - 8123.21) =4, 1512

B =7= (1+T+€%) (agg+Tay) - [agy+ay, - (apbyy+agiby) B ]

1L

= 1.9263(8. 5985 + €2) - (9.194 - 5, 8763P)

(38)

(39)

(40)

17
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C=(1+T)(1+T+2€e/4r - (1 - b12b2132) = . 2829(8. 5985 + €?)

- (1 +14,70288%)

(d) d4>0

Condition (a) is satisfied if the damping factor is positive; and (d) is satisfied
for all values of o; (b) requires that &* be smaller than .294 or K < 14, 9;
and {c) can be used to determine the critical thrust for a given 8.

Frequency of Transverse Vibration. -Let us set the damping factor equal
to zero (a; = ag = 0) in equation (37) from which we may readily solve for the
frequency of vibration by using the thrust P or the aerodynamic factor g8 as a
parameter. A one-term approximation w1thout taking into account aerodynamic
effect is given by equation (30). Note that the coalescence point of these curves,
by definition, is the limit of stability of motion.

NUMERICAL EXAMPLE
Let us consider a large rocket with the following structural data:
R =4.572 m (15 ft),
L = 106.68 m (350 ft),
Weight = mgL = 2.72 x 10 kg (6 x 108 1b),
EI = 1, 4632 x 10! m%-kg (50 x 10% in%-1b),
from which we calculate

Q4 = 4. 66 rad/sec and T°EI/L? = 12,7 x 10 kg (28 x 10% 1b).

The values of éa and B8 given by equation (35) are given in Table III.

By using equation (40) the critical thrust versus the flight speed of the
rocket is plotted in Figure 5 with flight altitudes at 3048 m (10, 000 ft), 6096 m
(20,000 ft), and 9164 m (30,000 ft), respectively., These curves indicate that
structural damping has little effect on the critical thrust.



TABLE III. VALUES OF éa AND B

Altitude éa B
3048 m (10,000 ft) . 0192 L0236 M
6096 m (20, 000 ft) . 0137 .0158 M
9164 m (30, 000 ft) . 0090 L0102 M
15,240 m (50, 000 ft) . 0036 .00394 M
30,480 m (100,000 ft) . 00033 . 00036 M
42,672 m (140,000 ft) . 000034 . 000068 M

The variation of vibration frequency, which is represented by equation
(37) with a; = a3 = 0, is illustrated by Figures 6 and 7. In Figure 6 the frequency
ratio, frequency with thrust to frequency without thrust, is plotted against P
with 8 as a parameter, while in Figure 7 it is plotted against 8 with Po as a
parameter. Note that the one-term approximation given by equation (30) is also
shown in Figure 6. For a given rocket the value of B is proportional to Mach
number at a constant altitude. This is also shown in the figures.

CONCLUSIONS

(1) It has been proven that the rigid body modes do not affect the
elastic stability of a uniform bar with free-free ends.

(2) From a structural design point of view, the crifical thrust is more
than four times greater when the rocket is treated as free-free with an axial
thrust than when the rocket is treated as supported-supported with a vertical,
conservative force,

(3) Figure 3 indicates that the region of elastic instability decreases
with the thrust buildup time of the rocket.

(4) The critical thrust decreases rapidly at high supersonic speed and
low flight altitude.
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(5) Structural damping does not have significant effect on the critical
thrust.

(6) One must keep in mind that the aerodynamic load given by equation
(33) is a very crude approximation, but that it leads to the simplest formulation
to serve the purpose of our study. Certainly, one can find many other approaches
based on more realistic assumptions. Discussion of these approaches is beyond
the scope of this report.
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