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INTRODUCTION

Classical techniques for analysis and design of dynamic
systems are largely restricted to cases in which only one para-
meter of the system is adjustable., As a consegquence compilex
systems cannot be treated adequately with classical techniques.
Algebraic methods, as developed in NASA CRr617*. are capable of
treating systems in which two parameters.are adjustable, and’
thus permit analysis.and synthesis of systems which are too
complex for treatment with classical methods.

The tre§tment of algebraic methods presented in CR-617
develops the fundamental theoretical basis for the.coefficient
plane and parameter plaﬁe~methods. It also applies these
methods to basic problems such as stability analysis, casecade
compensation of systems, and related topics. The applications
_indicated in CR-617 are rather elementaxry, i.e., the problems

considered illustrated the procedures to be used but were not

very complex;grgﬁlemS, " This repof%‘is bgséd on the findings of

. N . . ¢

CR;617, and extends the épplicationg of fﬁe alagebraic methods to
problems of a more domplex.nature.

When cascade .compensation is used in a feedback control
system,qmo&e than one filter section may be required teo achieve
desired perform&nce. Frequency response methods involving trial
and error are often used,lbut parameter plane methods permit

analysis and design without trial and error if it is permissible’

*

Algebraic Methods for Dynamic Systems by G. J. Thaler, D. D.
Siljak and R. C. Doxrf, Nasa Contractor Report NASA CR-617,
Nov., 1966, ’



to use two identical filter sections. This problem is treated
in Chapter I of this report. The applicable parameter plane
equatiens are derived and a digital computer program based on
thesé equations is presented., The program is used to study the
effects of compensation on several systems.

Chapters I; and III are concernea with nonlinear systems.
Conventional methods such as frequency domain analysis of sys—,
tems with the Describing functioa have proven useful when the
system contains only one nenlineatrity (or several nonlinearities
cenveniently lecated so that they can be incorporated in one de-
eeribing functioen). These techniques can define stability and

estimate relatlve stablllty for falrly complex systems as long

P § v "1’121

as the condltlons of nonllnearlty are not ‘tdo complex., Such

cases are!ea51ly treated using algebralc methods, the effect of

the nonllnearlty'belng repre;enteEKas a movement of the operating
point on the parameter plane,‘%hleh*iﬁ turn represents a varia-
tion of the characteristic. roots ae a function of signal ampli-
tude. The algebraic methods are capable of extending such analy-
sis to systems containing two distinct nonlinear components, and-
can be used to predict the transient response of the system
rather accurately., Technigues for such problems are developed
in Chapter II.

Chapter III is concerned with a much more difficult non-
linear problem, that of asymmetrical nonlinear oscillations.

These are oscillations consi&ting of a limit cycle superimposed

on another signal. The problems studied on the parameter plane



involve steady-state operating conditions {(rather than transient
conditions), and permit analysis of the existence of oscil-
lations as well as their dependence on parameter values and in-
put signal values. Extension to linearization with either
signals is included, as well as some design considerations.
It.is felt that the results presented here indicate the
capabilities oé the algebraic methodé in dealing with complex
linear and nonlinear problems. It is also felt that the re-
sﬁlts presented here will be directly applicable to a numbexr of -
practical problems, and will point out avenues of approach to

still additienal probilems.



SOLUTION OF EQUATIONS WITH COEFFICIENTS
THAT ARE QUADRATIC IN « and B

1.1 INTRODUCTION
It has been shown that the characteristic equation can be
solved for o = Q(C:wn) and B = B(ﬁ,wn) whén the coefficients of

the characteristic equation are 'of the forms:

a) & = b o + ckB +dp

b) & = bka + ckB + hkaB + qk (1)
e) ay =y, + by + Bos + CpyB + opB” + &

R N T PN R

n-1 n
+

B + cknB dk

In addition practical solutions have ‘been obtained for the first
VoL T e Voo

two of these coefficient forms, i.e., computer programs have been

qk(n~l)

written for them and suéceéskully'éﬁﬁliéd.’l&he development to
be presented here.ié a particular solution for case l-lc, parti-
cularly in the sense that a computer program has been obtained
which solves the equations of a third order system for which the
coefficients are quadratic in @ and 8, but which do not contain
all of the o and B combinations indicated. At the same_timevtﬁe
solution is a general solution in the sense that the ?féépam c;
be modified to solve the equations of an nth order:sﬁgﬁem, ang

can also be modified to accept all of the @ and 8 forﬁgﬁingi—

cated in
2 2
= o :
e R S A Sl N LR PL R
The modifications to be made in the program are discussed, but

the necessary programming has not been done.

|



1.2 THE PROBLEM: Cascade Compensation with two identical
filter sections.

In the design of feedback control systems it is common to
use compensators which are filters placed in cascade with the
main transmission path. Frequently two sections of filter are
needed, and if identical sections are used with an isolation
amplifier so that their transfer functions can be multiplied,
then manipulation of the transfer function equation provides a
characteristic equatioh in which the coefficients are quadratic

in z and p, the zero and pole of the compensators. For example

let:
6 = oK — (1-2)
ST +Xs"+¥s
2 2
s+z,2 _ S +2zZs+z
<~ Gt =T 2 (1-3)
P s +2ps+p
: ka2 2
4G 6 = 0 = 1 +. éiK‘(g -+ZZ’S+§‘;} —— (1-4)
. {87 +RS"4YsY (s” £2ps+p”)
from which the characteristic edgaéion is
s5 + (X+2p)s4 + (]:_)2+2Xp+_Y)S43 +,(Xp2+2Yp + K)52 +
L] ; " !J : R - * ,
4 (Yp® + 2Kz)s + KzZ = 0 (1-~5)

Letting p 3 @ and z 2 8 it is noted that all of the forms speci-
fied in the guadratic case définition of . do appear in at 1easi
some of the coefficients except that there is no @8 product term.
The formulation just given does not conform to normal con-
trol system practice, however, in that an important restriction
on the design of the compensator is the usual requirement that
steady state accuracy must be maintained by keeping the error

2



coefficiepg unchanged. To do this’ the physical adjustment is to
alter the gajn of the amplifier, but in the mathematical analysis
it is moxe convenient to include this restriction in the transfer
function of the compeﬁsatof:by défihihg (for this case)

- (By2 (stz,2 -
e, = & ED (1-6)
This alters the algebraic form of the characteristic equation

which becomes:

K(§02(32+Zzs+zz)
0 =1+

(s°

+X52+Ys)(sz+2ps{p2)
2

(s3{X52+Ys)(sz+2ps+p2)+K EECS
Yoz

2+Zzs+22)

s7+(x+2p) s + (pP42xpHy) 87+ [sz+2YP+K(§92]S2
+[Yp2+2Kp(ET]S + Kp (1-7)

Choosing p = 8 and‘§=é @ this becomes

0 = 55 +(X+23)s4 + (32+2X5+Y)s3 + (X52+2Y8+Ka2)52

+ (vB%+2KBY)s + KB (1-8)

In equation 1-8 the coefficients are quadratic in @ and 8,
but there is no term of the form bkl&, and the program as written
does not make provision for such a term, though modification of
the program to incilude it is not difficult., The problem to be
studied, then is that of a third order system compensated with
two cascaded identical sections of filter, and with the added

requirement that the error coefficient be maintained constant

at a predetermined value.



1.3 DERIVATION OF THE GENERAL THIRD ORDER SYSTEM
RELATIONSHIPS

The general third order system is defined by the transfer

function

K }
{s+A) (s+B) (s+C)

G(s) (1-9)

which is a Type %ero system, but which can be changed to Type
1, 2, or 3 by setting one or more of the poles to zero. The
compensator transfer function, including the gain multiplier

which maintains the error coefficient is

2, 2 2
G = (_'Z%)Z (s+z)2 _ b (s™+2zs+2"")

(1-10)
< s¥p 22 (‘52+2ps+p2)

From 1-9 and 1-10 the characteristic equation is

[53 + (A+B‘+C)‘52 + (AB+BC+AC)s + ABC](52+2ps+.p2)+
2 2 2
+ K P3(s-+2z$+z } =0 (1-11)
7 ' > )
This expands to
5 4 21.3
+ (A+B+CH2p)s” .+ I_AB+BC+AC-h2p (A+B+C) +p ]s

. N , N ' ¢+ '2
+ [ABC+2p (AB+BC+CA) + pz.(A+B+C) + K %:lsz :
b

+ [2pABC+p2 (AB+BC+AC) + 2Kp (*E—) :|S+p2 (ABC+2K) = 0

A .
Let p = B 1;— Ly
A+BiC QZ r, = sum of roots (poles)
AB+BC+AC £ X Efri = sum of root products taken 2 at a time
Zgri A sum of root products taken n at a time
A A
ABC = I'Iri = products of the roots

4



Then equation 1-12 becomes:

5 | 4 " : 2y 3
87+ r,+ 28)s” + (E;g r, + ZZFiE+B }s~ +

(11 ri+2Z gl riB + Zri52+ K0!2)32 +

20z, 8 + ) i, r,8% + 2keB)s + (Il £, +2K)B° = O

Collecting like terms in « and B:

(1-13)

ozz‘(Ksz) + of (2Ks) + Bz(s3+ .ris'?' + Z gl r.s + II ri+K) +

+ p2s? + 2)r.s + 2§}H r,s2
1 5 I

v

+ (55 + r.s4 +‘Z Hr.s3 + Er.sz)
L1 5 i i
Using the basic parameter plane relationships:

n
Y 1F o FT_ (D) =0
k=0

n.
) D 2 T () =0
k=0
and defining:

2

321 = KW Ul(t)

B = KWQU (&)
22 T Ve

D, = ~2KwUO(CL

D, = ~2KuU, (&)

+ 21, s)
i

0

B, = 20%0,(8) -2)z, %70, () + 2§:§ r, o’U, (£)

- Zg rinOCK)

B, = 20U, () -2)r,0v,(2) + 2§:g.riw2U2(C)

=211 x; v, (L)

5

(1-14)

(1-15)

(1-16)

(1-17)

(x-18)

(1-19)

1-20)

1-21)

1-22)



21,

22

This results in

2
¢ By

2
@ Byy

BE

—W?UQ(t{ + i;yi?%Ul(ﬁ) —i;g riéUo(C)
+(nLrL+K)g—l(§)

-0’y (2) +ZrﬁﬁbW)—Z§rfmﬂﬁ
+ (T +K) U(2)

-Pu, () + ) etuy (8 <) Do’ ()
+ Hriszl(ﬁz

o () + )ry oy, (0 <) T xy o)
+17 riwzuz(g)

BDl

BDZ

2

+ B F21 + Gl
2

+ B F22 + G

BEll

i2

li
S

+ dPl + Ql

+aP, +Q, =0

(1~23)

{(1-24)

(1-25)

(1-26)
(1-27)
(1-28}
(1-29)

(1-30)

(1-31)
(1-32)

which are two non-linear algebraic eguations completely general-

ized in terms of the unceompensated system poles and root locus

gain, €, ® and the first kind of Chebyshev Functions.

These

must be solved simultaneously for the correct values of ¢ and

B. Mo do this, the method with the best chance of success

appears to be Sylvester's Method in which we form a set of four

equations by taking the original Equations (1-31) and (1-32) and

forming two more by a multiplication with ¢ giving:

azB

2
¥ Bygy

21

+ Py + Q) =0
+ @B, + Q, =0

6
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(1-34)



3 2

0’4

3

o

Now placing these equations in

Bop ¥R T 00

2
Byg T @B, + @,

If the o's are not zero then:

o B, 2
0 By, P,
Ba1 P21 9
Baz P Q

Expanding this determinant

2 2
By1Qp 7

B, B

2.2

~Q1Bys

0 By B
0 "By By
Byy Py 9

. Vs . b

| Ban” Py ¢ Qg

21822919, *+ P1P,B,10,

= 0
= 0

matrix form:

1 3]
Ql o
2
5Q2; ¥
0 o
0_| | 1
N £
3
Q
Q5
0 =0
.o

2

- N PyByy 0

2
= PyQ5By, +0.958,,8,,

(1-35)

(1-36)

(1-37)

(1-38)

(1-39)

Substituting equations (1-27) through (1-30) in equation (1-39)

provides a fourth order equation in B:

8% (-F2._B

22821 T 2Fp1Fy5Br180y * DDy F5Byy -
Fnggz - leDngl T DD Fr1Ba
33(-2E12F22B§l + 2E11F22321322 + 2F_.-E__.B..B
D|D,E),By1 ~ DyEy,By, = 2B Fy B
DgEllel + DyDyEy1Byy) *
Bz(“Eingl - 2F22G2331 * 2B11815851B55

2

21712721722

11721722 ©

+ 2F51G5By1Byy



2 2 2
2G1F99Br1Byy * DDyG,By; = DIG,B,, — Ej3By, -

2 2 |
2Fy4G1Byy — DyGyByy + DiD,GB,,) +
2 . | 2
P(-2E,,G,By) + 2B ;G,B) B,y + 2G4E,,B, B,, ~ 2E;,G;B),) +
2 2

.
{TGszl + 2G,G,B,.B

1828218, — G1By,) =0 (1-40)

from which the coefficients may be determined by a substitution
‘ e . T ii,’}‘:yhf‘i

of {1-17) through (1-26) and theivalués'of the first kind of

Chebyshev functions in terms of- { and W. -Singe the solution of

T -
i . .

a fourth oxder équation is at best diff?cult{ it is at this
point a digital ééﬁputé#ﬁbeéomes;;’neceééityl
The major probleﬁ is mot the actual solution of the quartic
itself, but rather the proper choice of one of the four solutions.
There are two marked characteristics, however, which help in thé
selection. These are:
a) Complex answers to the guartic have no physical signifi-
cance and may therefore be discarded as erroneous.
b} The definition of o requires that « and B be of the
same sign so that p and z will be of identical sign.
Using this information and that available from the Ross—Warren2
method as to compensator pole and zero location, it is foﬁnd that
the solution to the f guartic is the largest, positive, rea
value.
Now enteringeguation (1-27) with this value, and evaluafing
the other coefficients
@ = [-0,/8,, 17 (1-41)
for in the third order case P, is always identically zero.

8



Thus, with the programming of the appropriate equations,
the digital computer could give all of the values and plot the
constant zeta and constant omega loci on the Parameter Plane for
any desired wvalues.

1.4 SOME APPLICATIONS OF THE, PROGRAM

Several third order systems were investigated by the appli-
cation of the generalized equations and the Parameter Plane
curves, Figures 1-~1 through 1-8 were plotted. Of these, the
K/s3 family appears the most interesting. Further investigation
of three of the curves in this family, Figures 1-1, 1-2 and 1-3
shows that there is a relationship between K, the root locus
gain, « and B.

These relations are:

a) Choose a point on the 1/33 o-B plane.

b) Zeta reads directly.

¢) Determine the actual omega at that point by multiplying

the value read by the cube root of the uncompensated
system gain.

d) Read the value of o directly from the point chosen.

e) Read the value of P from the point chosen.

£) Obtain the true value of B by multiplying this value

by the cube root of the uncompensated system gain.
By this method, the values of « and B may be determined for
all 53 syvstems from one universal curve.
s

1.5 BANDWIDTH CURVES ON THE o-p Plane

In many instances, there is alsoc a bandwidth criterion
9



imposed on the engineer as well as an optimal operating point for
the plant under consideration. With this in mind, equations for
the pldetting of constant bandwidth curves on the &@-8 plane are
developed. For the purpose of this development a constant band-
width curve will be defined as:
A constant bandwidth curve for G(jub) = M is a curve drawn
upon the parameter plane which specifies the relation between
the parameters necessary if the transfer function G(s), which
is a function of the parameters, is to have magnitude M at
the real frequency o, -
Once these curves are obtaihed they may be superimposed on the
parameter plane thus indicating what values of the parameters are
necessary in order to meet the specifications.

Taking the rational transfer function and defining it:

m m-1
N p.s +p_ .8 + ... pys D
Lats) = ggg - m el 1 @7 (1-42)
qn~s + qn_ls + ... qls + qo‘
where the pm's and qn's are of the form:
= o:2+h0!+'0!B+'B+kf32+l
Pu T u u Ty Ju & u
u=20,12,...,m (1-43)
= a a? + boe,+ c_ af + 4 B +'-ef’B2 + £
Qg T Sy, =T Py M Eye v, o, v
) v.=0,1,2,...,n (1-44)
Theref T r
erefore %, b,
c(s) =952 - (1-45)
) g
V=

L0



Employing Equation 1-45 in the parameterized form the generalized

compensated third order transfer function is:

:

G(S,)‘ = Q(S) (1_4‘6)
where:

Ps) = aszz + 20BKs -+ BZK (1-47)
and: 2] .3 \ 2 ’

Q(s)=B[s +Z£Iris +21§ris+zgﬁ[ri]+

B [254 + 2 Z:IL"I:E:;_S3 + 2 Zgl ri52 + 2 Zglris]+

.[35 + Z ;I ris4 + Z gl ris3h' + Z gI risz] (1-48)

Making the definitions:

n
- B,V
Ar = Z\ (-1) I etc, for Br'cr'Dr'Er'Fr (1-49)
v=0
even
n
— L(v-1) ~v_~ ]
A, = E:(—l) Ya,r ete. for B;,C,,D;,E,,F; (1-50)
v=0
oad
2oL m
e A B S, U . _
Gr = Z (-1). Uébgu, etc., for Hr’Ir'Jr'Kr'Lr (1-51)
u=0
even
° i
=V o yElu=l)y m
G, = Z;( 1) Wpd,; ete. for Hy,I.,J,,K,, L, (1-52)
u=0
odd

and substituting in Equation 1-46,

2
(¢G_ + K ) + j(oBI.)
c(iw) = — For s —L (1-53)
(B D, + BEr + F ) + J(B D, + BEi + Fi)




Setting the magnitude of G(jwb) = Mz

2 2 2
(&‘Gr + Kr) + (aBIi)

2 2
M- =1a(ie) = :
s AB%D, + BE_ + F )% 4 (B%D, + BE, + F,)°

(1-54).
Manipulating Equation(1-54) algebraically
¢(2,8) - M°8(2,B) = 0 (1-55)
where
o2 2 2 2.2.2
¢(a;B) = oG+ 2o KrGr -+ Kr + B Ii (1-56)
) 42 3 2 2_2
6(x,B) = B Dy + 2B DE_+ 2B D_F_ + B E,
2BE F._ + Fz + B4D? + BZE% + F?
rr r i i i
ZB3E.D. + ZHZD.F. + BgE? + F%
i 1 1 1 1 L
3 2
28 EiDi + 2B DiFi + 2BEiFi (1-57)

Substituting Equations- (1-56) and (1-57) in Equation (I-55) and

definings:
Pl = Di +‘D§ (1-58)
Q, = 2D_E_ + 2E,D, (1-59)
R, = 2D _F_ + E- + E> + 2D,F. (1-60)
1 rxr r 1 iTi
k, = 12 (1-61)
Vv, = 2E_F_+ 2EF, | (1-62)
W, = Fg + Fi (1-63)
W, = a4si + 2a2KrGr + Ki (1-64)

12



It follows that

2 4

M°p, B z

o+ M?Q.I-BP’ + (MzR.; ‘- R2)82 + MV B+

2

L= (1-65)
Since the Pérameter Plane for compensation purposes has already
been determined it is now a matter of ﬁaking the computed o
values and substituting them along with a constant value of
omega and M into Eguation (1-65) And then solving the B guartic.
This has as its solution the largest, real and positive value of
the four roots as before.
1.5 EXTENSIONS TO HIGHER QORDER SYSTEMS

Although the work presented to this point has been limited
to third order systems and the program written for this specific
case, investigation shows that generalized equations may be
written whiich will allow the extension of:‘the program to higher
ordered systems. It can be éhown for a given nth order system
with no zeros to be compensated with two identical sections of
cascade compensation, that the characteristic eguation of the
system may be generally written as:

sn+2 + 2psn+l + pzsn + (2252 + 2pzs + pz)K +

j=n j—n
k=1 -

ZPZ(ZHI)S +p Z (ZUr)s
k=n nml
J=1
k=2
k=n .

Z (Z Ir)s® =0 (1-66)
k=n+l -
5=1

13



where for n=4 the equation would be written:

s6 +n2p55 + p254 + szs2 + 2Z2pzs + p?)K +

. A T 3N o
2p(§lf1r.s + E,H r.s” +7) Mr.s" + E:H r.s)
1 X 2 ‘_'L 213 1 4 1

2( Ir.sd + It r.32 + ) Tx.s + MTr.,) +
P i i i i
. 1 * P 2\‘ ) v 3 4

O Mgt o S+ Des® + et =0

(1-67)
It may be further shown that the parameteis defined by Egquations

(1-17) through {1-26) may be written:

o
BZl = Kuw Ul(g')" \(1—68)
2
322 = KW Uz(g) (1_69)
D; = -2KUJUO(£) (1-70)
D, = —2KwWU. (£) (1-71)
2 1 Sen
ko) .
B =200y (6 42 ) [-0FFo Q@ ne) | a-m
k=n J
4=1
j=n
| el L
B, = 20PNy e+ 2 ) [CoFFu e () Tey ] 73
) k=n J
3=1
j=n
k=0 _
Fyy = (--1)nann_l(g) + Z [(-1)kwkUk_l(€)' (L Dr) |+ KU_; (8
k=n-1 .
3=1

(1-74)

14



j=n
k=0

Fyy = (-LPPU_(8) + ) [ (1% (6) (z Ux,) |+ ®U (£  (1-75)

k=n-1
J=1

j=n
k_

6, = (LR (g + ) [0EFu_ (B T I, Ol a-e)
k=n+1
3=1

J=n
k=2

6, = (-2 (6 +) [nFdu (8 (Zn r.) | (1-77)

k=n+1
J-1

These then are the recursive equations required for the complete
generalization to a nth order system. By employing the above
equations and replacing in PROGRAM PROJECT cards 100 through 150
and 300 through 540 with the appropriate programming, the program
may be used for any given nth order system,

In like manner by generally defining:

p(s) = ¢’Ks® + oBKs + 8% (1-78)
and: %:E
Q(s) = P2 4 ope™Hl 4 p2gR 4 E:(E:Q'ri)ék
k=n B
j=1
= 2
2Z(Zﬂr)s +Z(an)s (1~79)
k=n-1 k=n+1
g=1 J=1

and using Equations (1-49) through ({(1-52) we may replace in the
program cards 2860 and 2880 through 2920, thus adapting this
part of the program toc a general nth order application

15
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1.6 COMMENTS
Throughout this development of the Parameter Plane guadratic

extension‘, cthe, Ck'S ‘An, the generalized coefficient form:
n

2 . g N 2 — - 1
D (b o? ticra + aap b eB +£6% v g) =0  (1-80)
k=0

have beén idénticall§‘zero. 'This at first appearance might seem
to detract from the generxalization. The inclusion of this para~
meter does not however introduce any great difficulty in the

solution. The change in the development would be to the value

of Pl and PZ‘Which'would become:
Pl = Cl + BDI (1-81)
P, = C, + BD, ) (1-82)

and the final solution for ¢ which would change to:
5 ¥
P - 2B..0
@ = ol g 1(‘2211, (1-83)
21 4B“21

For this case, new selection rules for acceptable values of ¢
would be used, and would be much like those presented for B.

Though the extension of the Parameter Plane to include the
@ - B quadratic case makes this tool even more useful, further
work is still to be done in this field. Not only must the
eqgquations for the solutions of the Parameter Plane curves for
such cases as:

&, = bkazﬁz + ckdzﬁ + dkasz + ekaz + fksz +
g8 + o+ g B+ [5] (1-84)

i6



and higher ordered combinations of the parameters be developed,
but more efficient programming techniques mgst be developed.

In the use of PROGRAM PROJECT, for instance, as the location of
the system poles on the ¢ axis of the S-pdane move to the left,
the computational time becomes excessive due to present pro-
gramming technique and computer speed.

Another major problem in' further extensions of these tech-
nigues, and indeed even other applications of the curves from the
proceeding development, will be interpretation. In this case,
the initial substitution of variables immediately allowed inter-
pretation of the curves sight unseen. Here then, will be most
likely the one single drawback to further extension, for as the
parameters ¢ and B are used as representations of other variables
in-~control systems, each application will have its own unigue

interpretation.

17
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APPENDIX I

PROGRAM PROJECT .is -designed to solve the @ quadratic and B
quaxrtic. The program is divided inte two,main sections, the first
for the computatién of the o-B points and the second for the band-
width points,

The first section computes an 80 by 80 matrix of the @ and
B points corresponding to set values of ¢ and ®. The computational
part is followed by two distinct graphing sections, one for lag
and the other for lead compensation.

The lag graphing section is set up so that during the plotting
of the curves each value of @ is tested to determine if its value
is 10—7 < @ < 1.,0001. If no points are found within this range
then a print out is made:

NO LAG COMPENSATION FPOSSIBLE

For the lead section graphs, @ is again tested by the criter-
ion 1,000l < o =< (X-graph scale) (X graph width). Again if there
are no values of @ within this region the statement:

NO LEAD COMPENSATION POSSIBLE
is printed. 1In this case however a study of the pirinted values
of o must be made to insure that the points are indeed nén-existant
or rather just lie outside the range of the graph.

v

The secend main section of the program computes the value of
B for a given value of ¢ is determined by the X graph scale. Here
the plotting routine is set up so as to not plot zero points and

to stop the curve when either the @ or B value exceeds the range

of the graph.
19
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aNeYalaXaXaka ke XalaNaalaNaaRakaNaiaEaNa!

PROGRAM PROJECT Goo000
THI1IS PROGRAM COMPUTES THE VALUES OF BETA(POLE LOCATION) AND ALFA{(POLE
~ZERC RATIC) BASED ON PARAMETER PLANE TECHRIQUES. THE COMPUTED
ALFA AND BETA VALUES ARE THOSE REQUIRED TO PLACE THE ROOTS OF ANY
THIRD ORDER SYSTEMs TYPE 0,192 OR 3, AT A DESIRED ZETA AND OMEGA
LOCATION WHILE MAINTAINING A CONSTANT VELOCITY COEFFICTIENTe AFTER
COMPUTING THE VALUES IT WILL PLOT THE PARAMETER PLANE CONSTANT ZETA
CURVES FROM 0,0 T0 0,9 AND THE CONSTANT OMEGA CURVES FOR EVEY ONE
TENTH OF THE VALUE OF THE MAXIMUM VALUE OF OMEGA USED. A 9 BY 15
INCH GRAPH IS QUTPUT BY THE ROUTINE. THIS IS DONE
ON TWO SEPARATE GRAPHSs ONE FOR POSSIBLE LAG COMPENSATION AND ONE
FOR LEAD COMPENSATION. THE PROGRAM THEN HAS THE ADDITIONAL FEATURE
OF COMPUTING AND PLOTTING THE CONSTANT BANDWIDTH CURVES.
THE FOLLOWING FEATURES ARE AVAILABLE WITH THE PROPER USE OF THE DATA
CARDS, : :
le THE ALFA-BETA COMPUTATIONS MAY OR MAY NOT BE DONE.
2o LAG COMPENSATION MAY OR MAY NOT BE PLOTTED.
3o LEAD COMPENSATION 'MAY OR MAY NOT BE PLOTTED.
4o, BANDWIDTH COMPUTATIONS MAY OR MAY NOT BE COMPLETED.
5. BANDWIDTH CURVES MAY OR MAY NOT BE PLOTTED. (AVAILABLE ONLY IF
- - THE BANDWIDTH COMPUTATIONS HAVE BEEN MADE) .
THE FOLLOWING DATA CARDS ARE REQUIRED.
Cx#%CARD ONE ~ AsByCyG ~ TEN COLUMNS PER NUMBER IN FLOAT.nwu ruinie
C THESE ARE THE LOCATIONS OF THE UNCOMPENSATED POLES AND THE.
C UNCOMPENSATED ROOT LOCUS GAIN.
Cx%%CARD TWO -~ WFIN ~ TEN COLUMNS IN FLOATING POINT,
C THIS IS THE MAXIMUM VALUE OF OMEGA TO BE USED.
Cx#%#CARD THREE - IABCMP —~ COLUMN ONE IN FIXED POINT
0 =~ THE ALFA-BETA COMPUTATIONS WILL BE DONE
1 - THE ALFA-BETA COMPUTATIONS wILL NOT BE DONE
D
IF IABCMP=)1 CARDS FOUR THROUGH THIRTEEN ARE OMITTED
: : : P
#EECARD FOUR =~ ILGPLT - COLUMN ONE N FIXED, POINT
0 - THE LAG ZONE CURVES WILL BE PLOTTéb

!
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/C

1 — THE LAG ZONE CURVES WILL NOT BE PLOTTED
FHRHEFR

IF ILGPLT 1 THE NEXT FOUR CARDS ARE OMITTED
. Fi %
*%¥%CARD FIVE HIT(I)ﬂIT(é) ~ COLUMNS 1-~48 IN ALFANUMERIC CHARACTERS
THIS IS THE FIRST LINE OF THE LLAG GRAPH TITLE
®CARD SIX = IT(7)=-1T{12) - COLUMNS 1-48 IN ALFANUMERIC CHARACTERS
THIS IS THE SECOND LINE OF THE LAG GRAPH TITLE,

***CARD SEVEN - LBL{11)-LBL(20) - FOUR COLUMNS PER LABEL (TEN LABELS IN
CONSECUTIVE COLUMNS) IN ALFANUMERIC CHARACTERS.

THESE ARE THE LABELS .TO BE PUT ON THE CONSTANT OMEGA CURVES. 170
DETERMINE WHICH VALUES WILL BE PLOTTEDs DIVIDE WFIN BY 10 o THIS
VALUE AND INTEGER MULTIPLES OF IT TO 10 WILL BE PLOTTED.

®¥%RCARD EIGHT ~ XLGZoYLGZ -~ TEN COLUMNS PER NUMBER IN EXPONENTIAL OR
FLOATING POINT,

THESE ARE THE X AND Y SCALES FOR THE LAG GRAPHo ONLY ONE SIGNI~

FICANT NUMBER IS. TO BE USED,

¥¥%CARD NINE .- ILDPLT -~ COLUMN ONE IN FIXED POINT

0 - THE LEAD CURVES WILL BE PLOTTED
1 - THE LEAD CURVES WILL NOT BE PLOTTED
E ST
IF ILDPLT 1 THE NEXY FOUR CARDS ARE OMITTED
FHERRERE

Cx*%CARD TEN - THE SAME AS CARD FIVE EXCEPT FOR JHE LEAD GRAPH

CH##CARD ELEVEN - THE SAME AS CARD SIX EXCEPT FOR THE LEAD GRAPH

Cx#*CARD TWELVE ~ THE SAME AS CARD EIGHT EXCEPT FOR THE LEAD "GRAPH

CREEZCARD THIRTEEN - A®%¥DUPLICATE®#x.0OF CARD SEVEN

Cr*%CARD FOURTEEN - IBWCMP — COLUMN ONE FIXED POINT -

:}c

ﬁ(\ﬂﬂﬁﬁﬂﬁﬁﬁ(\ﬂ(\ﬁﬁ'ﬂﬁﬁﬁﬂﬁﬁh

G 0 — BANDWIDTH COMPUTATIONS AND GRAPHING WILL NOT BE DONEo

C 1 — BANDWIDTH COMPUTATIONS WILL BE DONE

C HEER M

C ifF IBWCMP=0 THE REMAINING CARDS ARE OMITTE

C HHUR S

C¥%%CARD FIFTEEN -~ BWXoBNY - THE SAME AS CARD EIGHT EXCEPT FOR THE

C BANDWIDTH CURVES.

C BWY 1S ALSO USED TO DETERMINE WHICH VALUES OF ALFA WILL BE USED IN


http:LABELS.TO

THE BANDWIDTH COMPUTATIONS,.
#%%CARD SIXTEEN — WEND — TEN COLUMNS IN FLOATING POINT
THIS 1S THE MAXIMUM VALUE OF OMEGA FOR HHICH THE BANDWIDTH
COMPUTATIONS WILL BE DONE
¥#%CARD SEVENTEEN — IBWPLT ~ COLUMN ONE IN FIXED POINT
0 ~ THE BANDWIDTH CURVES WILL BE PLOTTED
1 ~ THE BANDWIDTH CURVES WILL NOT BE PLOTTED
R
IF IBWPLT=1 THE REMAINING CARDS ARE. O%ITTED

S SERE I

#CARD EIGHTEEN ~ THE SAME AS CARD FIVE EXCEPT FOR THE BANDWIDTH CURVES
*%CARD NINETEEN ~ THE SAME AS CARD SIX EXCEPT FOR THE BANDWIDTH CURVES
#%%CARD TWENTY ~ BANDWIDTH CURVE LABELS

TO DETERMINE WHICH CURVES WILL BE PLOTTEDs DIVIDE WEND BY 10 o
THE PROGRAM PLOTS THIS CURVE AND INTEGER MULTIPLES OF IT UP TO 10

IT IS RECOMMENDED THAT FOR THE INITIAL RUN THE FOLLOWING DATA CARDS
BE USEDe
CARDS 19293(1ABCMP= 0)s £ {ILGPLT= 1)99(ILDPLT 1) 514 ( IBWCMP=0)

THESE DATA CARDS WILL ALLOW ONLY THE ALFA-BETA COMPUTATIUNS 10 Bk

COMPLETEDo A PRINT OUT OF THE VALUES WILL BE OUTPUT WHICH WILL ALLOY

YOU TO CHOOSE THE PROPER CURVES AND SCALESo CAREFUL SELECTION
OF CURVE SCALES IS IMPORTANT» FOR THE PROGRAM WILL NOT ALLOW POINTS
JUTSIDE THE AXIX LIMITS TO BE PLOTTEDe.

DIMENSION AFIN(80580)sBFIN{80,80)9XAZ(80)sYBZ(80)sXAW(BO)s
1 YBW(B0)+1T(12)s1.BL{20)sBCOFI{5)sROOTR(4)sROOTI(4)5ACOFI(3)5
2 U(10)sAR0OOTI(4)sACOFR({3)sBCOFR(5) »MLABI8B0)sZLAB(80])AROOTR(4)
COMMON BCOFRsBCOFISROOTRsROOTI sBFINAL IFLAGSAFINSBFIN
9999 PRINT 140

140 FORMAT (1H1)
DO 60 JK=1,6400
AFINUIJK) =0.0

60 BFIN(JK) = 0.0

000010
©00020
000030
000040
000050
600060
Q00070
000080
000090



2

o

23

30

READ 1:AsBsCsG
FORMAT{4F10.0)

PROD = A%®B*C

SUM = A+B4C

LMPRD = A®B 4+ A%C 4+ B#C
PRDGN = PROD + G
2ETA = 0.0

READ ZoVWFIN

FORMAT (F10,0)

READ 94 IABCMP
FORMAT (11} '
IF{IABCMP~1)23:244¢2%
STP = WFIN/B0o

DO 12 L = 1:80

LJ = 80#{L-1)

W = STP

U{l}==~1as

Ui21=0,

U{3i=1s

DO 10 N=2496

UIN+2) =20 %ZETA%U{N+1)~U(N)

DO 11 J=1,80

tJ = LJ. + 1

W2 =W

W3=W2EY

Wa=\2%Y 2

WS=W233

CONN = Giy2

CON = —20%G*Y
CONL = 20%W4

CON2 = =2,%SUMtW3
CON3 = 2,%SMPRD%Y2
CON& = —2,%PROD*Y
CONB = SUM¥W2
CONG =" ~SMPRD#Y
CONT = SUM¥*W4

600100
006110
006120
000130
000140
000150
000160
000170
600180
000182
000185
000188
000190
000200
000210
600220
000230
0600240
000250
000260
000270
000280
000290
000300
000310
000320
000330
000340
000350
000360
000370
000380
000390
000400
000410
000420



%
N

50

300

CON8 = -SMPRD¥*W3

CON9 = PROD¥*W2

B21 = CONN®U{3)

B22 = CONN¥U{4)

D1 = CON®U(2)

D2 = COR#U{3)

~“E1L = CON1#U(5) + CON2*Ul4) + CON3®U(3) + CONAFULZ)
£12 = CONL¥U(6) + CON2%U(5) + CON3#U(4) + CONGFU(3)
CF21 = —W3asU(4) + CONG%U(3) + CONG®U(2) + PRDGN¥U(1)
-F22 = =W3¥U(5) + CONBXU(4) + CONG*U(3) + PRDGN¥U(2)

G2

Gl = ~W5%¥UL6) + CONT*U(5) + CON8®U(4) + CONO®UIL3)
= ~W5%U(7) + CONT®U(6) + CONBH#U(5) + CON9*U(4)

COFl = BZl*FZZ*(2o*F21*822*F22*821)"le*(F21*822%822+D2*DZ*821]
COF2 = E11%(2.%B22%(F22%B21~F21%B22)-~D2%D2%B2L)+2,%EL12¥B21*(F21%*B2
N . M * -4

12~-F22%B21)

COF3 = B21%{=B21%(E12%E12+2.¥F22%G2)-D2%D2¥*G1+
1 G2+G1%#F22))~B22%B22% (E11¥E1L42,%F21%G1)

7/

2o%B22% (EL1#E124F 21¥

COF4=2 o 2G2#B21% (EL1#B22-~E12%B21)+2,%¥B22¥G1% (E12%¥B21 ~F11%R22)

- COFB= ~{G2%B21-G1¥B?221%{G2#B21~-G1%B22)

DO 50 1 =195

BCOFI(1) = 0,0
"BCOFR({1) = 1,0
BCOFR(2Z) = COF2/COF1
BCOFR({3} = COF3/COF1
BCOFR(4) = COF4/COF]
BCOFR(5) = COF5/COF1
CALL ABETART

IFLAG = 0

CALL SORT

IF (IFLAG-1)300s11511

BFIN(LJ) = BFINAL

Ql = BFIN{(LJ)*(ELL4BFIN(LII#F21)+G]
ACOFR{1Y=1.,0

ACOFR{21=000

ACOFR{3) = Q1/B21

ALFASQ = ABSF(ACOFR(3))

000430
000440
000450
000460
000470
000480
000490
000500
000510
000520
000530
000540
000550
000560
00570
00580
300590
200600
000610
000620
000630
000640,
000650
000660
000670
000680
000690
000700
000710
000720
000730
000740
000750
20760
G600 770
000780



AFIN(LJ) = SQRTF({ALFASQ} 000790

11 W = W+STP 000800
12 ZETA = ZETA + 0125 000810
LBL(1) = 4HZ=,0 000820
LBL(2) = 4HZ=o1 000830
LBL(3) = &4HZ=,2 000840
LBL(4) = 4HZ=,3 000850
LBL(5) = &4HZ=o4 000860
LBL(6) = 4HZ=45 000870
LBL(T7Y) = &4HZ=06 000880
LBL(8) = 4HZ=o7 000890
LBL(9) = &4HZ=,8 000900
LBL(10) = 4HZ=49 000910
READ 75 ILGPLT 000920

7 FORMAT (11) 000530
IF(ILGPLT=1)8567567 000940

8 READ 35" {IT(I)sI=1512} 000950
3 FORMAT (6A8) , 000960
READ 65 (LBL{I)s1=11,20} 000970

6 FORMAT (10A4) 000980
READ 45° XLGZsYLGZ 000990

4 FORMAT (2E1000) 001000
XLGLM = 9,%XLGZ 001010
YLGLM = 15.%YLGZ 001020
MODE = 1 001030

IL =0 001040

DO 62 K=158058 001050

LL = 1 001060

KJ = (K~1)%80 001070

PO 61 J=1,80" 001080

KJ = KJ+1 001090
IF(AFIN(KJ)~20000001)615611056110 001095
6110 IF(AFIN(KJ}=1,0001)6113561561 001100
6113 IF(AFIN(KJ) = XLGLM)6114961,6] 001110

CARDS 1120 ~ 1130 ARE MISSING
6114 XAZ(LL) = AFIN{(KJ) 001140



6112
61

6116

6111
62

6120

6127
6123

6124

6122

63

6121
6125

IF(BEIN(KJ) ~ YLGLMI6112+561561
CARDS 1160 ~ 1170 ARE MISSING

YBZ(LL) = BFIN(KJ} :

LL = LL +1

CONTINUE

JJo= LL -~ 1

L= fL + 1

IF(JJ~1162562+6116

LAL = LBLUIL)

CALL DRAW(JJoXAZsYBZ sMODE s Qo LALsITsXLGZsYLGZ505050905951550sLAST}

MODE = 2
CONTINUE

IF{HODE~1165:6556120

DO 66 K=898058

LL =1 .
DO 63 J=1s80

JK = {(J-1)1#80 4+ K
IF(AFINIJK)Y~o0000001)163,612756127
IF(AFIN(JKY=~1.0001)6123563:63
IF(AFINIJRKY ~ XLGLMIB6124963+:63
CARDS 1350 - 1360 ARE MISSING

XAWLLL)Y = AFIN{JK)

IFIBFIN{JKY ~ YLGLMYE1224+635063

: CARDS 1390 - 1400 ARE‘MISSING
YBW{LL)Y = BFIN{JK):

LL = LL 4+ 1

CONTINUE

JJ = LL -~ 1

IL=IL 4+ 1

IF{JJ-1)6121561214612:
IF{K-8016606125456125
MODE = 3

LAL = 4H

JJ o= 2
XAW (1)
XAW (2}

XLGLM
XLGLM

nou

001150

G01180
001190
001200
001210
001220
001230
001240
001250
001260
001270
001280
001290
001300
001310
001320
001325
001330
001340

001370
001380

001410
001420
001430
001440
001450
001460
001470
001480
001490
001500
001510
001520



/

C

6126
2000

64
66
65
.30

67
20

21
22

7111

H

YBW(1) 0.0
YBW{(2) YLGZ
GO TO 2000

LAL = LBL({IL)

CALL DRAH(JJoXAH;YBW9MODE909LAL9ITaXLGZoYLGZ9090909099915909LAST)

MODE = 2
IF{K-TT 166564964
MODE = 3
CONTINUE
GO TO 67
PRINT 130

FORMAT (1X»33H NO LAG COMPENSATION IS POSSIBLE

READ 20s ILDPLT

FORMAT (I1)
IF{ILDPLT~1)685,10uus 10U
READ 59 (IT(I)sI=1512)
FORMAT (6A8)

READ 215 XLDZsYLDZ
FORMAT (2E10,0)

READ 22, (LBL(1)sI=11520

FORMAT (10A&)
XLDLM = 9,%*XLDZ
YLDLM = 15.%YLDZ
L =0

MODE = 1 :

DO 72 K = 158058
KJ = (K~1)%80

KK = 1

DO 71 J = 1,80
K = KJ + 1

IF{AFIN(K )=10001)7197111,7211
IF{AFTN(KJ) = XLDEM)T7117,71571
CARDS 1830 —~ 1840 ARE MISSING

7117 XAZ (KK} = AFIN(KD)

TFABFIN(KJ) ~ YLDLM}T118571571
ARDS 1870 ~ 1880 ARE MISSING

001530

001540
001550
001560
001570
¢01580
001590
001500
001610
001620
001630
001640
G01650
001660
g0lse70
001680
001690
Go1700
001710
001713
001716
Gol1720
001730
001740
0901750
001760
001770
001780
601790
001800
001810
001820

¢01850
601860



qo

7118
71

7119

7110
72

i
7121
7127
7128

73

1120
7122

YBZ (KK) = BFIN{KJ)
1

KK = KK +
CONTINUE
MM = KK~1
IL = IL 4+ 1

IF(MM~1YT72072,7119"
LAL = LBL{IL)

CALL DRAV(FMsXAZ aYR7 «MODE»OsLALoIT o XLDZsYLDZ509090505991550:LAST)

MODE = 2

CONTINUE

IF(MODE-11T70570278

DO 76 K=8580,8

KK = 1

PO 73 J = 1,80

JK = (J-11%80 +
IFLAFIN(JIK)-160001)7397121,7221
IFCAFINGJK) ~ XLDLMITL127573,573
CARDS 2060 ~ 2070 ARE MISSING
XAW{KK) ., = AFIN(JK)

IF(BFIN{JKY -~ YLDLM)T128973573
CARDS -2100 - 2110 ARE MISSING

YBWIKK) = BFIN(JK}

KK = KK + 1
CONTINUE
MM = KK=1
L =1L + 1

IF(MM~-2)72209 r12057129
IF(K-80)76457122,7122

MODE = 3

LAL = 4H

M4 = 2

XAW(1) = XLDLHM
XKAWL{2) = XLDLM
YBWILl) = 000
YBW(Z2)- = "YLDZ

GO TO 2001

001890
001900
001910
001920
001930
001940
001950
001960
001970
001980
001990
002000
002010
002020
002030
002040
002050

002080
002090

002120
002130
002140
002150
002160
002170
002180
002190
002200
002210
002220
002230
002240
002250
002260



7129
2001

75
16
70

121
1000

81

32
100
101
102
103
111
Lic

113
24
114

ZO

D -218

4

219

LAL = LBL{IL}

CALL DRAW(MM»XAW»YBW9MODE9OoLALoIT9§LDZpYLD29090909099915QOQLAST}

MODE = 2

IF{K=T2)T6:75+75

MODE = 3

CONTINUE

GO TO 1000

PRINT 131

FORMAT (1Xe34H NO LEAD COMPENSATION IS POSSIBLE o///})
CONTINUE o
ZLAB(1) = 0,0

DO B8l I=2,10

-ZLAB(1) = ZLAB(I-1) +

WLAB(BY = 8,%STP°

DO 82 N=16980:8

WLAB(NY = WLAB({N~-8) + WLAB(8)

PRINT 100

FORMAT (1H1)

PRINT 101.

FORMAT(2Xs20H THE ALFA VALUED ARE 977}
PRINT 102y (ZLAB(I) I=1510)

FORMAT (1Xs6H ZETA 5 L0F1lob}

PRINT 1035 (WLAB(J) s {ATFIN(Js1)pI=157398)J=8s8UsT1
FORMAT (/01X9F662510E1165)

PRINT 111

FORMAT (/7//7/2X+20H THE BETA VALULD ARC

PRINT 112, ,¢ZLAB(TI} I=1510)

FORMAT (1Xo6H ZETA '910F11le6) .

PRINT 11329 (WLAB(J)s (BFIN(Js1)oI=1973981J=858098
FORMAT (/31XsF602510E1205)

PRINT 114

FORMAT (1H1)

READ 2185 IBWCMP

FORMAT (1I1)

IFtIBWCMP~1110025219521%

READ 2175 BWXoBWY

002270
002280
002290
002300
002310
002320
002330
002340
002350
002260
002370
002380
002390
002400
002410
002420
002430
002440
002450
002460
002470

002480

002490
002500
002510
002520
002530
002540
002550
002560
002570
002580
002590
002600
002610
002620
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217
223

200

210

FORMAT (2E104:0)
READ 223¢ VEND
FORMAT (F10.0)
YBUWLM =" 15, %BWY
XLM = 9e%*BUX
AM2=55

STEP = WEND/20.

W = STEP

ALFASP = XLM/20o
XAW(L1}Y = ALFASP
DO 200 K=2420
RAWIKY = XAW(K-1) 4 XAW(1)
DO 203 N=1:20 .
ALFA = ALFASP

DO 210 M=1520

XAZ (M) = 0,00
YBZ (MY = 0.0
PO 207 1=1520
YBUW{N) = W
W2=W¥kY
W3=wy2
Wg=W2%*W2
WE=W2HW 3
AGR = «WZzwy

AKR = G
ADR=2o %#Wh—~2 o #W2HSMPRD

AIT = 2o%GH*Y

AER=~Y2%SUM + PROD
AFR=W44SUM ~ W24#PROD
ADI=~2o%#UW3%SUM 4 2o¥WHPROD
AEI = =3 + W*SMPRD

AFI = W5 - W3%SMPRD

P1 = ADRXADR+ADI®ADI

Q1 = 20%ADR¥AER 4 2, %AEI%*ADI

R1 = 2.%ADR%AFR + AER¥*AER + AEIXAEI + Z2.*ADIXAF1
V] = 24%AER¥AFR 4 Z2.%AEI®AFI

002630
002633
002636
002640
002650
002660
002670
002680
002690
602700
002710
002720
002730
00274
002750
002760
002770
002780
002790
002800
002810
002820
002830
002840
002850
002860
002870
002880
002890
002900
002910,
002920
002930
002940
002950
002960



b

/.

51

206
900
207
203
216
214
202

201

205
204

W1 = AFR¥AFR + AFIXAFI

A2 = ALFA%ALFA
Ak = A2#A2
R2 = A2¥ATIWAI

W2 = A4FAGR¥AGR + 20 #A2*AKR*AGR + AKR¥AKR

DO 51 M = 1;5
BCOFI(M) = Q.0

4

BCOFR({1) = 1.0

BCOFR{2) = Ql/P1

BCOFR(3) = (AM2#R1-R2)}/(AM2%P1)
BCOFR(&Y = V1/P1

BCOFR{5) = (AM2%W1~-WW2)/(AM2%P1)
CALL ABETART

IFLAG = O

CALL SORT

IF{IFLAG=1)90052065206
BFIN(NsI} = 000

GO TO 207

BFIN(Ns1) = BFINAL

ALFA = ALFA + ALFASP

W o=\ 4+ STEP

READ 2165 IBWPLT

FORMAT (I1) _
TF(IBWPLT~1)21451001,1001
MODE = 1 _

READ 2025 (IT(K)sK=1,12)
FORMAT (6A8)

READ 201s (LBL(N)sN=252052)
FORMAT (10A4)

DO 211 N=2,202

KK' = 1

IF (N—20)2045205,205

MODE = 3

CONTINUE

DO 212 I=1,20 ‘
IF(BFIN(NGT)  +000001121252125209

002970
002980
0602990
003000
003010
003020
003030
003040
003050
003060
003070
0603080
003090
003100
003110
003120
0031390
003140
003150
003160
003170
603180
003190
003200
003210
003220
003230
003240
0032590
003260
003270
003280
003290
003300
003310
003320



Q

209
905

212
906

221
225
15

220
2002
222
208
211

224
226
1001
120
122

121
1002

IF(BFIN(NSI} ~ YBWLM)O05:9065906
YBZ{KK) = BFIN{NsI)

XAZ (KK) = XAW(I)

CARD 3360 1S MISSSING

KK = KK + 1

CONTINUE

JJ = KK = 1

IF{JJ-11221922154cv
IF(N~20)21152255225.

TE(MODE~1)22449224521F
MODE =--3

LAL = 4H

XAZ (1) = 0.0

XAZ(2) = (.0

¥BZ(1) = 000

YBZ{2) = BWY

JJ = 2

G0 7072002

LAL = LBL(N}

CALL DRAW (JJ9XAZ¢YBZDMODE909LAL9ITgBUXoBWY9090909099915909LAST)

IF(N-2032085,211+211
MODE = 2

CONTINUE

GO TO 1001

PRINT 226

FORMAT (1H151Xs76HTHERE ARE.NO POSSIBLE BANDWIDTH CURVES FOR THE F

1INAL VALUE OF OMEGA STATED
GO TO 1002
PRINT 120

FORMAT (1H1,20X,38H VALUES OF BETA FOR CONSTANT BANDWIDTH

SPRINT 1229 (YBW(K)sK=202052)
FORMAT (/s9X910F1106)

PRIMT 1215 {XAW(K)s{BFIN(JsK)sJ= 292092)9K*1920)

FORMAT (/31XsF60252X310E1166)
CONTINUE
GO TO 999¢

003330
003340
003350

003370
003380

. 003390

003400
003410
003415
003420
003430
003440
003450
003460
003470
003480
003490
003500
003510
003520
003530
003540
003541
003542
003543
003544
003545
003550
003560
003570
003580
003590
003600
003610
003615



END 003620

cs

00363
00364

SUBROUTINE ABETART 003650
DIMENSION A(5)sYIMAGIS)sUlG)sV(4)oH{50)sB{50)5CI50)5D{50)EI50) 003660

1 ¢CONVI(50) ' 003670
DIMENSION AFIN{80s80)sBFIN{80,580) 003680
COMMON AsYIMAGsUsY s DUMMY 15 DUMMY2 s AFINsBFIN 003690

Moo= 4 003700
'=1000 00003710

=25 00003720
ER=0 00003730
JFUNY 54956552 00003740

54 TER=1 00003750
52 NP3=N+3 00003760
100 B(2)=000 00003770
B{1}=0,0 00GD3780
C(21=000 00003790
CL1y=0,0 00003800
Dt21=0,0 00003810
E(21=0,0 00003820
H({21=000 00003830

DO 101 J=3:NP3 00003840

101 H{J}=A{J=2) 00003850
T=100 00003860
SK=1000%%F 00003870

150 IF(H{NP3)4 2005151200 00003880
15  HNP3}=000 00003890
HP3}=000 00003900
CONV (NP 3) =5K 00003910
NP3=NP3~1 00003920
TFINP3)15251525150 00003930

152 1ER=1 00003940
200 IF(NP3-3)2055515201 00003950
205 IER=1 00003960
201 P$=000 00003970



206
202

203

204
207

208
210
250

251
252
253
254

255

Y

256

Q5=0.0

PT=000

QAT=0.0

55000

REV=1.0

SK=10,0%%F
IF{NP3-43206,202:203
TER=1

R=~FH{4)/H{3) -

GO TO 500

DO 207 J=3,NP3
FLH{JY 20442070204
S=S-+LOGF(ABSF(H{JY))
CONTINUE

FPN1=N-+1
S=EXPF(S/FPNL;

DO 208 J=30NP3
H{J)=H{J} /3

IF{ABSF{H{4)/H{3) ) -ABSF(HINP3~1)/HINP3)}1250+252+252

T=-T

M={NP3~-4)/2 + 3

DO 251 J=3sM
S=H({J)

JJ=NP3-J+5
H{J)=H{J1d)

H{JJ)=S

IFLQS) 25342544+253
P=PS

G=Q5

GO TO 300
HH2=H{NP3-2)
IFIHH2) 256:2554256
Q=10

P==—2s0

GO TO 257
Q=H{NP3}/HM2

00003980
00003990
00004000
00004010
00004020
00004030
00004040
00004050
00004060
00004070
00004080
00004090
00004100
00004110
00004120
000604130
00004140
00004150
00004160
00004170
00004180
00004190
00004200
00004210
00004220
00004230
00004240
00004250
00004 260
0004270
00004280
00004290
00004300
00004310
00004320
00004330



257
258
300
350

351

352
353
356
354
400
4017
403
450

451
452

460
453

454

455

456
457

458

P={H(RNP3~1)—-Q#H{NP3~3}))/HH2
IF(NP3-5)258:550,258

R=0,0

bO 490 I=1,.L

DO 351 J=3,NP3
B(JY=H({J}-P#B{J-1}-Q¥B(J~2)
ClIY=BlJ)Y~-Px*C{J=1)~-Q*C({J=2)
IF(H{NP3-1)1352,400,352
IF{BINP3~13)353,400,353
AVHBL=ABSF{H{NP3~-1)/8(NP3~1)}
IF(AVHB1=~SK)45003545354
BINP3)=H(NP3)-Q*B(NP3-2)
IF(B{NP3)1401+5509401
AVHB2=ABSF{H(NP3)/B(NP3])"
IF{SK~AVHB2155004509450

DO 451 J=3,NP3
DiJY=H{JI+R*D (I~}
E(JY=D{J¥+R*E(I~-1)
IF(D(NP3)}452+5000452
AVHD3=ABSF{H{NP3)Y/D{NP3})
IF{SK~-AVHD31500:4534453
CC2=C{NP3~2}

CC3=C{NP3~3)
C{NP3~1}=~PxCC2-@%CC3
CCLl=C{NP3~1)
S=CC2#CC2-CCL1*CC3
IF(S)14550454,455

P=P=2,0 -

Q=Q%{Q+1,0)

GO TO 456
P=P+(B{NP3-1)%CC2~B{NP3)*C3)/5
Q=Q4+-{~B(NP3~1)1%CCL+B{NP3)*CC2}/S
IF(E(NP3~1))4585457458
R=R—-1:0

GO TO 490 _
R=R=D{NP3)/E{NP3~1)

00004340

00004350

00004360
0o004370
00004330
30004390
00004400
00004410
00004420
00004430
00004440
00004450
00004460
00004470
00004480
00004490
00004500
00004510
GQoeoLs520
00004530
00004540
00004550
00004560
000D04570
00004580
0C204590
2404600.
004610
goo04520
00004630
00004640
00004650
DO004LG60
00004670
00004680
00004690
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490

491
492

500

501
502

503

550
551

552

560
553

554

555

CONTINUE

PS=PT

Q5=QT

PT=P

QT=Q
IF{REVY&91,492,492
SK=SK/10.0
REV=-REV

GO TO 250
IF(TIS01:5025502
R=1ap/R

NP=NP3-3
U{NP)=R
Y{NP)I=0,0
CONV{NP)=5K .
NP3=NP3-1

DO 503 J=3,NP3
H{J)y=D{J)
IF{NP3~3)300+s51,300
IF{T)551,552+552
P=p/Q

Q=1,0/Q
PP2=P/2,0
AMPSQ=Q~-PP2XPP2
IF{QMPSQY5544+5544553
NP=NP3=-3
UINP)=-PP2
U(NP~1}=~PP2
S=SQARTF(QMPSQ])
VINP)=S
V{NP—~1)==5

GO TO 561
$=SQRTF {~QHPSQ)
NP=NP3-3
1F{P155505569556
UtNP }=~PP2+S

00004700
00004710
00004720
00004730
00004740
00004750
00004760
00004770
00004780
00004790
00004500
00004810
00004820
00004830
00034840
00004850
00004860
00094870
06004880
00004590
60004960
00004910
00004920
00004930
00004940
00004950
00004960
00004970
00004980
00004990
00005000
00005010
00005020
00005030
00005040
00005050



56
357

L%
[y
—

(53]
o)

51

801
800

802
804

803

/e

GO TO 557
UINP)=~PP2-5
U(NP~1)=Q/U (NP)
V{NP)=0,0
VINP=1}=000
CONV (NP )=SK
CONV (NP~1)=5K
NP 3=NP 32

DO 558 J=34NP3
H{J)=B{J)

GO TO 200
RETURN

- END

SUBROUTINE SORT' .

DIMENSION RR(4)sRI(4)sREALIB)sYIMAG(S5)
DIMENSION AFIN(80s80)+sBFIN(80,80)

COMMON REAL sYIMAGoRRSRIsBF s IFLAGsAFINSBFIN

B = 0,0
DO 800 I=ls4

IF(ABSF(RI(1))~10,E~7)801+800,800
B = MAXLIF(BsRR(I))

CONTINUE

IF(BY 80248025803

PRINT 804

FORMAT (34 THERE ARE NO FuUSLIIVE REAL RUUID

IFLAG = 1
RETURN
BF = B
RETURN
END

END

00005060
00005070
00005080
00005090
00005100
00005110

- 00005120

00005130
60005140
00005150
00005160
00005170
00005180
00519
00520
005210
005220
005230
005 240
005250
005260
005270
005280
005290
005300
005310
005320
005330
005340
005350
005360
005370
005380
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TRANSIENT RESPONSE OF NOWLINEAR SYSTEMS

2.1 INTRODUCTION

When a system has one nonlinear element that is single val-
ued and non-frequency dependent, analysis of the system is con-
veniently accomplished using the parameter plane methods. The
nonlinear element is represented by a describing function, which
is a function of signal amplitude only. The describing function
is designated as one of the parameters, & or B. This designation
removes the nonlinear parameter from the functions that determine
the parameter plane curves® so that these may be plotted on the
-8 plane. The M-point is located on the a-B plane in the usual
way, but for the case of one nonlinear element one coordinate of
the M-point is the numerical wvalue of the describing function of
the nonlinear parameter. Fox linear systems the M-point is sta-
tionar? on the 0-f8 plane, but for a nonlinear system the M-point
moves because the numerical value of the describing function is
a function of signal amplitude. For a system with one single
valued nonlinearity, N, where N is designated as B, the locus
followed by the M-point is a straight line parallel to the B-axis.
This locus of M-point motion can be said to start at the wvalue of
B corresponding to very small (zero) signal amplitude into the
nonlinear element. The displacement of the M-point along this
locus is determined by the way in which B varies as a function

of signal amplitude, and this is determined by using the

*
Constant - and constant —ah curves, or constant -0 and constant

- curves., ;



the describing function of the nonlinear element.

Previous work has shown how to predict limit cycles using
M-poinﬁ locus on the parameter plane. If this locus crosses the
stabiiity boundary (=0 curve or ¢0=0 curve) the intersection of
these curves defines the frequency of the liﬁit cycle, TIf an
amplitude scale can be determined for the location of the M-point

on the M—locﬁé) then this scale is used to define the amplitude of

e L

the limit cycle.

The concept of a moving M-point on the parameter plane can
be used to calculate the transient response of nonlinear systems.
As the M-point moves along the M-locus, each point defines both
signal amplitude and all roots of the characteristic equation.
This information can be used to determine the amplitude vs time
relationship which is the transient response. Computations are
based on Siljak's extension of some basic work by Krylov and
Bogolitbev, and details are given in the following paragraphs.

Assume* that the system is second order, and that the non-
linear element is represented by its describing function. Then
for an initial signal amplitude Ao’ the transient response is de-
fined by

ot

X(t) = AO € cos(wt + @) (2-1)

where 0 and W are both functions of the signal amplitude.

*These assumptions restrict use of this method to systems in which
a pair of complex roots dominate the transient response, and these
systems must have low pass filter characteristics to justify use

of a describing function.
2 A



o 2 o (A)

(2-2)
w= w(Ah)

The parameter plane curxrves are prepared, the M-locus is super-
imposed on them, and the describing function is used to associate
an amplitude scale with the M-locus. Then the values of ¢(A)

and w(A) may be read from the parameter plane for any X.

The transient response of the system from any initial dis-
placement, AO, is determined in two steps, the first of which is
to calculate the envelope of the transient., Assuming that ¢
{(in egn. 2-1) is zero, the envelope is defined by

x(e) = a BT

o (2-3)

which may be approximated over a short time interval by a straight

line tangent to the exponential curve. Thus at t = 0, X=Ao and

from the parameter plane U(AO)=GO is evaluated. ‘'Then X(t)=AO€GOt

is approximated by a short straight line segment on the X vs t

plane, This straight line is terminated at t = t, and at €, a

1 L

new amplitude Ry is read from the curve. Entering the M-locus on

the parameter plane with Al values are obtained for oy and w .

1 to t2 with

another straight line segment defined by X = Aleolt. This pro-

cedure is repeated until the envelope is defined ever an accept-

The envelope of the transient is extended from t

able time interwval.
As a by-product of this procedure, w has been determined

guantitatively as a function of amplitude and also as a function

of time. TUsing the definition j?;i;/7/’



t
&= I w(n) dt (2-4)
. ,

the phase can be determined at any t by graphical integration
(i.e., evaluation of the area under the w{a) vs t curve). If ¢

in egqn. 2-1 is zero, then X(t) = 0 for @ = (2n-1) (7/2). Values

of t corresponding to @ = 900, 2700, 4500, etc., are determined by
graphical integration, are marked on the axis of the X vs t plane,
and the transient response is drawn tangent to the envelope and
intersecting the X= 0 axis at the indicated wvalues of t.

The above procedures are readily applied to systems with one
nonlinearity, and correlation with simulation results is excel-
lent. Since such applications are elementary no illustrations
are given here, and the study is extended to systems with two
single valued nonlinear elements. In general no other methods
exist for predicting the transient response of systems with two
nonlinear elements, so the results obtained here represent a
significant advance in the state of the art.

2.2 CLASSIFICATION OF SYSTEMS WITH TWCO NONLINEARITIES

" When a system containsg two nonlinear elements, Nl and N2,
that are single valued and are not frequency dependent, parameter
plane representation may be used but both ¢« and B become‘functions
of Nl and N,. Computation of the parameter plane curves presents
no difficﬁlty, but determination of the M-locus may be difficult.
As a vesult it is convenient to classify nonlinear systems accord-

ing to the structural conditions which complicate the evaluation

of the M-locus. The folldwing classes are proposed: ; f;??
4



CLASS 1. Identical signal excitation to both nonlinear
elements,

In Fig. 2-la, the signal X is the input to both nonlinear
elements N, and N,. For every value of X corresponding values
of Nl and N, are uniquely defined and are independent of fre-
guency so evaluation of the M-locus is easy.

CIASS 2., The input signals to the two ndnlinear elements
are related by a linear differential eguation.

In Fig. 2~1b the gignal X is the input to Nz, but the
input to Nl is X G_l(s). Thus the input to N2 is a function of
amplitude only, but the input to Ny is a function of both ampli-
tude and frequency. For a given amplitude of the signal X, the
describing function for N2 provides one uniéue value, but for
each amplitude of X the describing function for Nl has an in-
finite number of possible values, one for each possible value of
frequency. As-a result the evaluation of the M-locus is consid-

erably more difficult than for Class 1.

CLASS 3. The input signals to the two nonlinear elements
are related by a nonlinear differential equation.

Fig. 2-1lc illustrates this class of nonlinear systems. The
signal X is the input to N

but the inmput to N, is x{y, He,(s)}

1’ 2
where the brackets are intended to represent some functional re-
lationship rather than a multiplication. Evaluation of the M-
locus can be very difficult for such systems.

2.3 EVALUATION OF THE M-LOCUS., THE DYNAMIC DESCRIBING FUNCTION.

When a system with one single valued nonlinear element is

represented on the parameter plane the M-locus is clearly a

: oY/



straight line parallel to one of the coordinate axes. 'Thus the
M-locus itself is readily found but the amplitude scale asso-
ciated with this locus must be evaluated. For systems with two
nonlinearities (especially Class 2 or 3) the path of the M-point
on the parameter plane cannot be predicted by inspection. It

can be calculated, however, using the ordinary describing function

.-

to define the amplitude relationships.

To justify the choice of the describing function as a tool,
consider the fact that parameter plane predictions of limit cycles
are defined on the basis of a single point where the M-locus in-
terests the stability boundary. This single point defines both
the fundamental frequency of the oscillation and also the émpli—
tude of this fundamental component. Tt is clear that the loca-
tion of the M-point represents some sort of average value of ampli-
tude, since the instantaneous value of amplitude varies cyclically
during a limit cycle. The describing function of a nonlinear
element effectively averages the response of the element to a
sinusoidal input over one cycle of operation. Thus its use is
clearly justified when system operation is periodic and lightly
damped. While not so clearly justified for other operating con-
ditions it has given surprisingly accurate results and therefore
will be used until a better technique becomes available.

Using the describing funections of the two nonlinearities in
a system, a family of decribing function curves are computed and
plotted on the @-f8 parameter plane. When these curves are super-

imposed on the regular parameter plane curves, the M-locus can

“" &/



be determined. The M-locus represents the curve along which the
M-point moves when the system is in dynamic operation, and it
consists of the locus of all points at which the describing func-
tion curves and the parameter plane curves have common frequency

intersections. We choose to call this curve the "Dynamic De-

e
-

scribing Function Locus". The procedure and alsc a justification
is as follows:

a) Assume a constant amplitude, constant ® signal at X, the
input to one nonlinear element. Using the describing
function cempute the equivalent gain of that element;
also compute the signal amplitude at the input to the
second nenlinear element, and the equivalent gain of
this second element.

b} The two equivalent gains evaluated in (a) determine one
point on a describing function curve on the o-B plane.
Repetition using the same value of @ but different
amplitudes at X determines a describing function curve
for a constant w signal.

¢) Repetition of a) and b) for other values of W provides
a family of describing function curves, each curve being
for a desgignated value of .,

d)} These curves are then superimposed on the usual* para-

meter plane curves. The constant ~® describing function

-fCurves for constant -0 and constant W are most convenient, but
constant - and censtant a£ curves can be used if it is noted that

. ath-Ez. \_,fgizz,//



curves will intersect the constant - parameter plane curves,
and those intersections for which the ® is the same. Define the
Dynamic Describing Function locus.

The nonlinear system is described by one nonlinear dif-
ferential equation. The procedures used here effectively parti-
tion this equation into two parts, a linear part represented by
the parameter plane curves, and a nonlinear part represented by
the describing function curves. Then parts are "coupled" by the
parameters @ and B which are the coordinates of both plots. If
the system is in steady state periodic motion at a given fre-
gquency the nonlinear differential equatien of the system must be
satisfied, so the linear and nonlinear partitions must be satis-
fied at that frequency. This condition can exist only at the
intersection of the common freguency curves. The points thus
defined on the "Dynamic Describing Function Locus" are deter-
‘mined on the basis of steady state sinusoidal operation {unforced).
Under transient conditions the M-point moves along some locus on
the parameter plane, and we assume that the points on The Dynamic
Describing Function locus apply to transient operation -although
they are determined by means of steady state sinusoidal concepts.
Experimental results indicate that this is a good assumption.

2.4 CAILCULATED AND EXPERIMENTAL RESULTS

In order to verify the correctness and the applicability of
the dynamic describing function and the graphical transient re-
sponse calculations, specific examples of each of the three gener-

al cases of Fig. 2-1 were investigated. The details of some of
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these examples, and the corresponding calculated results are pre-
sented here. Simulation of the systems provided experimental re-
sults which are also presented to permit comparison between theory
and experiment.
- System 1., Two nonlinear elements with identical excitation:

The block diagram is given in Fig. 2-2. The characteristic
equation is

3

s” + 10s2 + (10w, + 10N2)s + 100N, = O (2-5)

1 1
and it is convenient to let N; = @, N, = B. Fig. 2-3 gives the

1

parameter plane plot (in 0- and W curvesg). Since the two non-
linear elements have identical excitation a single dynamic de-
scribing function curve is oebtained which is independent of fre-
quency. However, the dynamic describing function is dependent on
the specific numerical characteristics of the nonlinearities, and
Fig. 2-3 contains three dynamic describing function curves (dotted)
for three different sets of characteristics in Ny and N, . These
three curves wexe chosen to illustrate different root variations.
For curve 1 a real root becomes deminant early in the transient,
for curves 2 and 3 complex roots are dominant, the system being
moderately damped for curve 2 but going to a stable limit cycle
for curve 3.

Calculated and analog computer results are given on Figs. 2-4,
5,6. It is seen from Fig. 2-4 that the dominant real root condi-

tion cannot be handled accurately with the graphical computations.

It is not known whether the discrepancy lies selely in the graphical

: 5



method which is based on complex roots, or whether the dynamic
describing functien also contributes to the errors. Research on
this point is continuing. For the cases of Fig. 2-5 and 2-6 the
calculated results compare well with the computer results.
System 2, Two nonlinear elements related to a common signal by
a linear differential equation.

The block diagram is given in Fig. 2-7, and the parameter
plane curves with dynamic describing function curve shown dotted
are given on Fig. 2-8. Fig. 2-9 gives the describing functioen
grid needed to obtain the dynamic describing function curve, To
obtain the grid of Fig;-2—9 the point Ao on Fig, 2-7 was chosen’
as a reference point, and at each value of W the amplitude of the
{(assumed) sinusoidal signal at AO was varied to obtain the Nl vs
N2 values foxr a constant @ curve on Fig. 2-9. The dynamic des-
cribing function curve on Fig. 2-8 is obtained by superimposing
the parameter plane curves of Fig. 2-8 on the describing function
net of Fig. 2-9 and locating intersections of constant @ curves
of the same W value.

Limit cycle predictions of the dynamic describing function
curve on the parameter plane agree with analog computer simulation
results., In addition Figs. 2-10, 11,12 compare predicted transient
response with simulation results.

Additional checks were run using different values for the
deadzone and saturation limits in the two nonlinearities, but
the detailed data is not given here., 1In general the predicted

and simulated results were in good agreement except when a real’

w 25




root became dominant during the transient response, in which case
the frequency of the oscillatory component was usually predicted
with reasonable accuracy, but amplitudes were not, nor was the
total response time due to the influence of this real root.

The calculations and simulations were also repeated with the
nonlinearities interchanged (i.e., in Fig. 2-7, Nl becomes a
saturated element and N2 a dead zone element). Using the same
techniques the resulis obtained were always in agreement with
about the same degree of accuracy and with the shortcomings as
previously noted.

System 3. Two nenlinear elements related to a common signal by
noniinear differential equation.

The classification described as System 3 can contain a wide
variety of combinations of linear and nonlinear elements, of
which the parameter plane method may be applicable to only a
small subset. A specific system which belongs in this class is
shown ‘in Fig. 2-13. The characteristic equation of this system
is

s + 3s’ + 25 + 40KN, (N_ + M) (2-6)
a b
where N, £LNa + ij for the hysteretic nonlinearity, and we define
o = NlNa; B = Nle. The parameter plane equations are still appli-
cable and the parameter plane curves can be computed. For the
purposes of this study only £ = 0 curve was calculated, and only
the limit c¢ycle predictions were checked. The describing function

net is required, and in this case relates the N Na and N.N, pairs

1 1"b
to the common signal at A on Fig. 2-13. The results of these.
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computations are given on Fig. 2-14, which shows the { = 0 curve
from the parameter plane equations and the describing function

net for the case where K = 0.15, Only one point is defined on

the dynamic describing function curve, and this is marked on

the £ = 0 curve at the point where the & value on the { = 0 curve

is the zame as the value of the constant « describing function cuzve
passing through that point. This defines the frequency and ampli-
tude of the limit cycle, and the results agree with simulation
results;

Note that a change in the value of K changes the differential
equation of the system, thus requiring a new set ef curves. Re-
sults were obtained with other values of K and again the predic-
tions agreed with simulation regults.

2.5 COMMENTS

The results obtained thus far indicate that the parameter
plane is a useful toel in predicting the stability and response
of nonlinear systems. The accuracy available is only faixr, but
is more than adequate for many engineering applications. The
transient response predictions - in particular for systems con-
taining two nonlinearities, - are better than are available with
’any other method. '

The graphical presentation of the dynamic describing function
curve on the parameter plane is potentiaily a valuable design
tool. It indicates at a glance the range of variations of the

o
roots, and thus permits prediction of a desired location of the

describing function curve, which in turn implicitly defines the

: 57



reguired characteristics of the nonlinear element. Further
research is required in this area.

The technigque becomes inaccurate when the transient re-
sponse is influenced by more than two éomplex roots. Again more
research is required to evaluate this situation.

It is too early to assess the true value of studying non-
linear systems on the parameter plane, Without question it does
make possible many types of analyses that are not readily avail-
able otherwise., However, the limitations of the technigque are
not clearly defined, and it obviously is important to know under
what conditions the. methods are not applicable, or should be

applied with care.

. 14
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CHAPTER III

ASYMMETRTCAYL, NONLINEAR OSCILLATIONS

7



3.1 Introduction.

In certain classes of nonlinear systems, oscillations may
consist of a limit cycle superimposed on a constant or slow-varying

signal. These oscillations are referred to as asymmetrical oscil-—

lations since the center of the limit cycle is shifted according
to the corresponding vélue of the constant or slow-varying signal.
In general,‘asymmetrical oscillatiens may occﬁr when the input-
output characteristic of the nonlinearity in the system is not
symmetricél aboﬁt the origin, or when the system is subject to
forcing signals. When the nonlinear characteristic is asymmetric,
the output of the nonlinearity may ¢ontain a constant term even
though the corresponéing input is a single sinusoidal wave. If
the nonlinear characteristic is symmetric, asymmetrical oscil-
latiens can arise whenever éhe system is subject to forecing inpuk
signals. Evidently these oscillations may take place at certain
points of the syéfem if both conditions are present. Before the
-analysis of asymmetrical oscillations in the parameter plane is
presented,‘the previous WOfk and results in conéidéfing these
osciilations and related problems are reviewed.
It has been shown first by MacColl [3.1] that the introduc-

tion of an external sinusoidal signal at the input to an on-off .
servomechanism yields a system that behaves like a linear one for
small inputs qupgximpqsed;onAthgfsinqsoiaaiféignal, This pheno-
mena has been léter investigated under various names, such as
"dither effect"{:Tsignql“s?abilizationf, etec. Asymmetrical non-
linear oscillations has been found by.a majority of authors as /;;22?7

the most appropriate term for the mentioned phenomena.
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In analyzing a carrier-controlled relay servo, Lozier [3.2]
has introduced an idea to accomplish the linearization of the re;
lay by a limit cycle existing in the system and without an ex-
ternal signal. This idea has been further developéd by several
authors [3.3-3.9) and a detailed treatment of the problem has been
given by Popov and Palitov [3.81. on the other hand, the external
signal application has been developed by Loeb [3.9] and oldenburger
with his associates [3.10-3.12]. The latter introduced the name
"signal stabilization” to indicate that the nonlinear system is
stabilized in the state of sustained oscillations with suffici-
ently high frequency. The stabilization is actually a conseguence
of the linearizing effect discovered by MacColl. The concept of
signal stabilization has been extended by Sridhar [3.13-3.14] to
the case of a nonlinear system.which has one single-valued non-
linearity in the loop, and the stabilizing signal is a stationary
random process w%%h a ééqssian:distributianagq*obeys the exrgodic
hypothesis.

The above défined préblém:canrbé treated by dual-input de-
scribing functions as propesed by West [3.,15]. This approach has
been significantly simplified by Bover [3.16] as outlined b§
Gibson [3.17]. A similaxr approach is used by Gelb and Van der Veld
[3.18], and significant results have been obtained by Atherton and
others [3.19-3.20] who made a comparison of the utilized concept
with the Tsypkin method [3.211,

The study of asymmetrical nonlinear oscillations has been

extensively performed in the aﬁalysis and design of a large class ;;iigf

of plant adaptive control systems. This class of system is


http:3.19-3.20
http:3.13-3.14
http:3.10-3.12
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sometimes called the limit cycling adaptive systems because of

the fact that the existing limit cycle is used as an identifi-
cation signal. Some of the references on this subject are listed
here [3.22-3.26]. & majority of the authors proposed an externgl
Sinusgidal signal for identification. More recently, Gelb and
Van der Velde [3.18] have examined to a limited extent and in

a quantitative manner the properties of self-oscillating adaptive
systgms which have several advantages over the external adapta-
tion, such as gsimplicity, cost, reliability, etc. Tﬂe following
analysis of asymmetrical nonlinear oscillations in the parameter
plané can be applied directly to self-oscillating adaptive svs-
tems,

In the following developments, the asymmetrical nonlinear
oscillations are analyzed in the parameter plane [3.27]. The
control systems with asymmetrical nonlinear characteristics éré
considered to determine stability and sustained oscillations.

The same type of oscillations is investigaped iﬁ nonlinear con-
trol systems éubjeqt to constant reference and perturbing input
signals. The procedure is further extended to the analysis of
systems Witﬁ slow-varying input signals.’ In this case, it is
shown how a nonlinear characteristic can.be-modified for the
slow-varying signals.. The presented analysis is performed with
respect to both input signals and the valqes of adjustable sys-
tem parameters. The analysis procedure is illustrated by examples
in which mulﬁiloop feedback structures with several adjustable
parameters are considered. In addition, various nonlinear

characteristics are used in either the forward or the feedback

77
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path., The obtained results are checked by computer simulations
which indicate a sufficient accuxracy of the presented procedure.

3.2 Basic Developments

Consider a nonlinear system described by the nonlinear dif-—

ferential equation

4
dt
where B(s), C(sg), and H(s) are polynomials in s and the degree of

B(s)x + C{s) F(x,sx) = H(s)Tf, g = (3.1)
the polynomial B(s) is greater than the degree of the polynomials
C{s) and H(s}. The function F(x,sx) describes the nonlinearity.
Function £ = £(t) is a forcing signal, which may be either a
reference input or a perturbing signal; and it is assumed to be
a cdnstant or a slowly-varying function of time.

As a first approximation, ‘the steady-state selution x = x (&)
of equation 3.1 which 'represents the input to ‘the nonlinearity,

i& assumed to be
x =x° +x J (3.2)

where x° = xo(t) is either a slowly-varying function of time or
is constant, and x*, which is

%% = A sin ¢, = $k + 8, (3.3)

represents the periodic compSnent\of the solution x(t). Since
6 in (3.3) merely corresponds to a shift in t, one can put 9 =0
and use x° = A sin Ot
The forcing function £(t) is considefed as a slewly-varying
function of time if it caﬁ be assumed approximately as constané
over any cycle of the periodic component x%: i.e., //;77

[£(t+T) - £(8) | < < |£¢0) | (3.4)
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where the period T = 27/§., 1In the frequency domain, equation 3.4

means that the frequency {) of the periodic component x° is much
greater (practically ten times or more) than the highest frequency
of the slowly-varying component XO. In this case, no harmonic
relation between the compeonents %x° and x° nonlinear system sub-
ject to forcing signals, such as jump-resonance, generation of
subharmonics, etc., cannot take place. The forced nonlinear os-
cillations for which the condition (3.4) is not satisfied neces-
sarily, are considered in other works.

Under the condition (3.4), the values of XO, A, and &, which
appear in the solution x = %% + A sin Qt, are slowly-varying
quantities in time. This enables the extension of the conven-
tional harmonic linearization in which the describing function

(&}

*
is defined for the signal x = x° + X as an input to the non-

Py - " il . . . B P e . .
linear element. Thus, .the nonlinear functioniF(%jsx) is approxi-
! P el St
1 .t B L. " _ a

mately expressed by the first terms of the Fourier series as

i ¥ <

L4 ! ' . .;* ? N % .
Pix,sx) = F° + mx + ex (3.5)
where
l 121]. o .
O = 7 F{x  + A sin ¢, AL cos ¢)ad (3.6a)
. o
1R o
N =7 F(x + A sin ¢, AQ cos ¢)sin ¢ a9 (3.6D)
‘o i . i
1 A2 o
N, = TR, F(x~ + A sin ¢, AQ cos ¢)cos=¢ 4P (3.6¢)
Q

and ¢ = Q+t,.

As can be seen from equations 3.5 and 3.6a, the component J4)7E?

F° of the output of the nonlinearity F(x,sx)} is not considered:-
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zero as was the case in the analysis of symmetrical nonlinear
oscillations presented in the previous chapter. This results
from the fact that either the nonlinear function F(x,sx) is not
symmetyric or the system is subject to an external input signal,
oxr that both facts are present in the systeﬁ.

" According to equations 3.6, all coefficients Eo, N and N,

ll
are generally functions of xo, 2, and &, i.e.,

Fo+r° (x°,a, Q) Ny ='Nl(x0,A,§&, N, = Nz(xo,A,Sh (3.7)

For a majority of the nonlinear functions F(x,sx) eﬁcountered in
practical applications, the above functions (3.7) are obtained
once and for all.

By applying the linearization of tﬂe function F(x,sx) given
in equation 3.5, the solution x =‘x0 + x* of (3.1) can be ob-
tained by considering the following linearized differential

equation

N
B(s) (x%+x) +.c(s)(F°+le* *'E% sx) = H(s)f (3.8)

instead of equation 3.1. If XO, A, and Q are slowly—varying
functions of time as a consequence of the same property associated
with the forcing function £, equation 3.8 can be rewritten as two
simaltaneous equations corresponding to:thé slowly-varying sig-

*
nal x° and the periodic signal x as follows:

B(s)x® + c(s)F° = H(s)f (3.9a)
% : C ,Nz“ % £
Bis)x + C(S)CN>X +'T7 SX ) = ( {3.9b)

J . *‘s'
Equations 3.9, however, cannot be solved 1ndependently since theyé;?7gi

are related to each other by ‘the nonllnear equatlons 3 7. This
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fact indicates that thé applied 1inearization“preserves the
essential feature of nonlinear systems and that the superposi—
tion principle from linear analysis is not wvalid.

An analytical éolution of equations 3,9 is difficult to
obtain since F° in(3.9a) 'is usually a trancendental function
with respect to x°. a graphical procedure is presented for
solving equations 3.9 in the parameter plane. A necessary con-
dition for equaﬁion 3.1 to have a solution x(t) close to 3.2 is-
that the characteristic equation |

N2 .
B(s) + C(sﬁ(Nl +~?fs) =0 (3.10)

corresponding to the linearized differential equation 3.9b, have

a pure imaginary root s = j.

By using the parameter plane approach, equation 3.10 can be

solved for « and B as
e .
o= 08y (3.11)
B = B(D

where o and B are Nl

parameter, Eguations

and N, or some other system adjustable
.l T

‘5.1i‘répreéent thé:ﬁ =0 {(or £ = 0) curve
for which s = j&. The Z = 0 curve determines the stable region
in the @f plane in the usual manner. After the stable region is
found, the loci of poeints M(¢, B) are plotted according to the

_and/or N The M loci

I 2°
incorporates the additional variable x°, and a family of the

variations of @ and/or P representing N

loci should be constructed for different values of x°. Then the
stability of the nonlinear system is determined by the relative

location of the Z curve and the M loci and the limit cycles are
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found at their intersections. The stability of the limit cycles

is determined in the usual manner. This part of the solution
process will be best described by the exémples that follow.

The presence of a limit cycle in the system can modify the
nonlinear characteristic for the slowly-varying input.signal.
Tn order to determine the modified characteristic, the intersec-
tions of the Z = 0 curve and the M loci are considered to evalu-
ate the amplitude A and the frequency § of the limit cycle as

functions of the slowly-varying component x2; i.e.,

A =A%, Q= x°) | (3.12)
These functions, when substituted into the funetion FOQXO,A,KB
vield the modified nonlinear characteristic for the slowly-
varying signal

O = §x°) {3.13)
The function ¥ (x°) is contintous’ in a limited rfange of x°.' which
indicates the smoothing effect due to the presence of the limit
cycle.

Substitution of equation 3.13 into equation 3.9a giyes
o o
B(s)}x~ + C(s) $(x) = H(s)f {3.14)

Equation 3.14 is a nonlinear differential equation in x°, which
can be solved graphically for x° after the function ¢(xo) is
obtained. This, in turn, vields'the related values of the
functions A(ko) and.SMxo) of equatiens 3.12, and the soluti@n

x = x° + A sin Qt is thereby determined.

/L

The function w(xo) is a continuous Ffunction of x° and it can (:7;2

L/
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be assumed approximately linear for small variations of x°. Then
the stability problem related to eqguation 3.14 can be solved by
known linear methods. If it is regarded as a nonlinear function
of Xo, it can be linearized by harmonic linearization and the
results of the previous chapter can be applied.

It should be noted here that the same parameter plane pro-
cedure can be used when the right side of equation 3.1 has more
than one forcing functiom; i.e., the right-hand side is expressed
bylga Hi(s)fi. The solution x, however, must be found by con-—
sié;ring all existing inputs simultaneously since the super-
position principle of linear analysis is not valid. Further-
more, if the polynomial H(s) of equation 3-1 can be factored in
the form‘sHl(s), the procgdure applied to the case in which the
rate sf of the function f is considered as a slowly-varying sig-
nal; i.e;, |sf(t+T) - sf(t)|.

The presented graphical procedure can be extended to non-
linear control systems with two nonlinear functions Fl{s) and
F2£x), whereby the following nonlinear differential equation is

investigated:
B{s)x + C(s) Fl(x) + D(s) Fz(x) = H(sff. (3.15)

In this case, a procedure similar to that given in Section
*
can be extended to determine the solution x = xo + X .
The general procedure outlined in this section is modified

depending on the actual problem involved. These problems may be

divided into three major groups: asymmetrical nonlinearities;
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constant forcing signals; and slow—varylng s;gnals In the
following, each group is con31dered separately.

3.3 Asvmmetrical NOnlinearities,

In an awtonomous nonlinear system, which is deseribed by the

differential equation 3.1 and where f = 0, the asymmetrical os-
<¢illations may occur whenever the function F(x,sx) is not sym-
metrical to the origin. Then, under the conditicns discussed'in

the previous section, the system may be-deséribed»by equations

3.9 which has the form

B(®) x° + c(0)F° = o (3.16a)
N, *
[B(s) + C(s)(—N1 + ?Ts)]x =0 (3.16D0)

In equation 3.16a, which corresponds to equation 3.%a, there is
no forcing slowly-varying function (£ = 0), and in the steady-
sta£e solution x = x° + x*, the x° is constant and hence s is
replaced by zero in B(s) and C(s).

In praéﬁical situations, B(6) or C(Q) can be zero. Alse,
the nonlinearity in the sysﬁem is often described by a single-
valued function F(x) and N,=0. Thus, an adjustable parameter
appearing in B(s) or C(s) can be chosen as one of the axes in
ﬁhe parameter &8 plane, while the other axes is related to the
describing function coefficient Nl. Some of these situations are
discussed in the following examples.

Considef a feedback control system with the block diagram

of Fig. 3.1 in which the transfer functions are
%2 X3 y
Gl(s)=Kl’ G, (s)= STy G35~ o35 G_j (s)=K_;s. (3.17) /

s(s+l}’ 3 s+27



X (t)

G4(s)

an 1M e GQ_‘(S> e G3Cs)

¥

Y -
0

Fig. 3,1 ~ Systém block diapram
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The nonlinearity n has the form shown in the upper left corner
of Fig. 3.2.
Eguations 3.16, fdr‘éhevsyétem'ﬁndérgiﬁvéétigaéion, have
the form

FT=20 (3.18a)

{s(s41) (s42) + [K,K_;s(s+2) + KKK Iw Jx = 0 (3.18D)

where, according to the function F(x) of Fig. 3.2 and equations

3.6, one has

o]

o _ (l-m)c (1+m)c _ L X :

o= 5 + = arc sin =5 (3.19a)
e T T

N, = __2_(;.A_m)_c1/ 1 -J,»(EK)Z (3.19b)

Nz = O ‘(3.196')

and x = x(t) is the input signal"to the nonlinearity n as indicated
in Fig, 3.1.

The characteristic equation of equation 3.18b is

s(s+l) (s+2) + [KK_;s(s+2) + KKK IN, =0 (3.20).
By denoeting KzK_lNl = & and K1K2K3Nl = B, the £ = 0 curve iéi
obtained as

@ = %(9,2 - 2) (3.21)

B =~%Q?(G? + 4)

and the stable region is determined in the &f plane in the usual
fashion as shown in Fig. 3.2.

From equations 3.18a and 3.19a, one obtains

(7
%° = A cos —I— (3.22) 47/

1+m
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and Ny of equation 6.19b becomes

. _ 2(l+m)c _. T
Nl i\ sin 37— {(3.23)

By using eguation 3.23 and the expressions « = KZK—lNl'

B = K K K.N,, three M loci (a), (b), and (¢), are drawn in Fig.
3.2. They correspond to the parameter values m = 0.5, ¢ = 1,

K, = 1 and (a) Kq 5
(c) K1K3 = 26, K—l = 1,75. The stable asymmetrical oscillations

RKys K g = 0.125; (b) KKy = 8.39, X_, = 0.28;

are found at the point Ml and M2 where the M loci (a) and (b)
infersect the £ = 0 curve. The amplitudes of the oscillations are
-approximately Al = 0,85 and A, = 0.8, which is read from the

M loci (a) and (b) at the intersections Ml and M2.
ponding frequencies Sﬁ = 1.5 and Gé = 1,6 are indicated on the

The corres-

o . : . r-"d“‘ S .
= 0 curve., The related values of x in the solution X=¥ +0psin Rt

L]
r

is calculated for eéch‘poinﬁ M, ar{d‘M2 using e&udtion 3.22, namely,
o _ _ WO A,
Xl = =0.42 and Ky = -0, 39.

In Fig. 3.3, the solution.x = 0.42 + 9.85 sin 1.5t for the

I

I b 5

case (a) is shown as, obtained by a digital'compu%er simulation.

The calculated results are sufficiently close to that obtained

by the simulation., From Fig. 3.3, it can be seen that an initial
conditionlxl(o) = 4,25 is used and the variable xl(t) approached

a stable limit cycle, That the limit cycle is stable and will be
reached by Xl(t) starting from xl(a) = 4,25 can be, concluded from

the relative location of the £ = 0 curve and the M locus (a), as
explained in the preceding chapter on the symmetrical oscilla-

tions., . The additional component %x° of the solution x{t) does /ﬁ;?:?

not alter the stability analysis of the oscillations.
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An analog computer=simulation of the case (b) gives the
solution x2-=‘—0;39‘¥10,8}sin'1l6f as shown in Fig., 3.4. A suf-
ficient accgrggy.isripdfqated@. Thg‘iniﬁial1gondition xz(o) =0
and xz(t) reached a limit cycle. This colild be concluded £from
Fig. 3.2 as previously noted.

It is of'particular intefest to consider the case (c) of
Fig. 3.2. The M locus (¢} is tangent to the = 0 curve and cor-
responds to the ratio @/f = K,Ky/K_; = 14.8. If this ratio is
higher than 14.8, then there is a limit cycle as shown by cases
{a) and (®». On tﬂe other hand, i1f this ratio is less than 14.8,
the entire M locus is situated in the stéble region and the cor-
responding syséem is always stable. The tangent case (c):

m= 0,5, ¢c =1, K 1, KRR, = 26, K

2 = 173 -1

a digital computer and the obtained solution X3(t) is shown in

= 1,75, is simulated on

Fig. 3.5,) whieh indicates that the system is stable.

3.4 Constant Forcing Signals

When the foécing signal at certain points of a nonlinear
system is constant, the solution x = xo + A sin $t(if it exists)
will have XO, A, and ans constant values. To determine these
values, note that the equations to sqlve in the presence of a
constant forcing signal £° have the form

B{o)x" + C(o)F° = H(o)f° (3.24a)

: N, . ,
(B(s) + c(e)y + 5 8)x” =0 (3.24b)

In general B(o), C(o), and H{(o) are constants different
from zero, and the solution procedure is somewhat more compli- ///// 2

cated to perform than in the previous section where the right
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side of equation 3.24a was zero.
To illustrate the solution procedure, consider a nonlinear
feedback system with the bloeck diagram of Fig. 3.6 and the trans-

fer functiens

K
Gy (s) = 22 » Gyls) = gg'sf--{l P G 17 T -s-—:lL-l
0.2874+0.8s+1 ) ¢ -1
(3.25)

The nonlinearity n is given in Fig. 3.7a. The input to the system
is a perturbation signal £ = f£(t) which is.related to the signal

x = x(t) and ¢ = c¢(t) of Fig. 3.6 as

(0.2s+1)c = 0.5 (s+1)x-F (3.26)

If the perturbation signal is £(t) = £° = const,, equations 3.24

have the form

x° + K_lFo = £° (3.27a)

4

(0.04s% + 0.365° + 28% 4 28) 7 '4().4B42)K N, +

1

"+ 0.04%% 4 0.365% + 25 + 2 = 0 (3.27b)

where -equation 3:%7b representé“ﬁhe Qharactérigfic equation of the
linearized equation 3.24b. By substituting T_1 = & and K_lNl = B,
the parameter plane diagram is plotted in Fig. 3-7b according to

the parameter plane equations

0.645F + 3.2
0.016F ~ 0.08%F -4

g - 0.0166° - 0.03¢f + 2.56%% + 4 - (3.28) 7/

0.0168% — 0082 - 4

N =
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The variation of the M point due to the function N, = Nl(xo, A)

1
given as
.k, . D-x . D+x°
Nl =k w(arc sin = 4+ arc sin =+
D—xo df Duxo D+X Jf D+x 2 o
+A l“(A—'+ 1 - ,A2D+‘|X|

({3.29)
is plotted in Fig. 3.7c. (The expression (3.29), corresponds to
the hénlinearity of Fig. 3.7a). 1In oxrder to find a solution

*
x = x° + x of equations 3.27, the parameter k is assumed equal

to one, and the funetion FOQXO, A} is plotted in Fig. 3.7d by

using ;
Jé - —:5—'2 Jé -~ D;X )2 + kx° +
o o
k . D-x . Dix

+ W[D(arc sin = - arc sin =5~ ) -
o o]

- xo(arc sin gx + arc sin D;X )], AZD + ]XOI

(3.30)
For'Tul = 0;04!‘thé’point‘MI&a,O43'l4.3) corresponds to a

- *
solution x = x° + X which will have £ =12 rad/sec as indicated
' ' ‘- ? {;

on the curve { = D. It K—l =,20," from Ml it follows that

= 5/K_l = 0.715. This value of N; determines the relation-

ship between the values of x° and A for a possible solution x.
This relationship, expressed as a function A = A(x°), can be
graphically obtained from the diagram N, = Nl(xo, A) by plotting

the straight line PP, corresponding to the value‘Nl = 0.715.

The function A = A(XO) represents the solution of eqguation
3.27b only. The pair of values (x°, A)_ﬁﬁ%@iﬁ%ﬁfé?ﬁiﬁﬁg;fﬁéiﬁ ;55397

actual solution of eguation 3.27, is replotted on the diagram
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F° = FOIXO, A) of Pig. 3.7d into the curve PlPé. Suppose that
the constant perturbing signal has a value of £ = 11.75; then
equation 3.27a determines the straight line £ = 11..75 plotted
in the diagram Fo = FO(XO, A) of Fig. 3.7d. The intersection R
of that straight line and the curve PiPé gives_the pair (xo, A)
of the solution x(t) which satisfies -equation 3,27 simultaneousiy.
At this point R; the valﬁes are x°/D = 1.35 and A/D = 1. The
same values are obtained at the point @ en the diégram Nl = Nl(xo,A)
and the solution x = x- +:A sin Ot'of édﬁatiohs %;27 is found.
IfD=1, it is x = ;.55 + sin‘12t;“ ﬁote,that the same soluﬁion
is obtained if the point M, of Fig. 3.7b 1s con51d?red save that
the frequency §leilower (approx1mat;1y SZ— 5,5 raa)sec)

Simpler situations may occur if one of the values B(o) or

C(o) is zero, To dllustrate, consider the nonlinear system of

Fig. 3.8. "The transfer functions are
K K3

Gy (s) =K ET%Ii)' G3(s) = gypr G (8) =K 48

1’ G, (s) =

(3.31)
and the nonlinearity m in the system is given by the function
F(x) of Fig. 3.9. The input to the system is the reference con-—

stant input signal r{t) = r°.

The nonlinear differential equation describing the above
system is

[s(s+1) (s+2) K K Ky Ix+k

2K_ls(s+2XF(x) = K K (s+2)r

(3.32)
which may be rewritten according to equations 3.24 as //QZ 2 .

o _ o
KIK2K3X = 2r (3.332)
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[s(s+1) (s+2) + R. KK, + K K_ls(s+2-)Nle*= 0 (3.33b)

1273 2

The characteristic equation of the eguation 3.33b is evidently

s{s+l) (s+2) + KK, K, + K K_isfs+2)N1 = 0, (3.34)

17273 2
By denoting

¢ =N

1 (3.35)
B =Ky
the parameter plane diagram is plotted in Fig., 3.10 in the usual
fashion, The function N, = ﬁl(A,xo), which appears as a varia-

tion of & in the point M(a; B) is plotted in Fig. 3.11 by using
general formula 3.6Db.

From equation 3.33a, one can derive the following relationship
between the input ro, the constant term XO, and the parameter
B =k,

O
x /S

where S is the parameter‘ef the nonllnearlty F(x) of Fig. 3.9. The
function 8B given in (3 36) is plotted in Flg. 3 10.

Now, by using Flg.13 lO and 3.11, 1t 1s pOSSlble to determine
the sustained oscillations and their stability for various values
of system parameters Kl, K2, K3, K—l’ s, k, and the input ro. Fox
example, if K1 =1, Kz = 10, K3 = 1,75, Kél
= 1.1, then the solution of equation 3.33 is determined by the

=1, 8=1, k =1, and :

o
r
values x° = 1.2, A = 0,3, and & = 2.1 rad/sec to be approximately

% =1,2 + 0.3 sin 2.1t (3.3%7)

For a given value of B8 = K3 = 1.75, P = 1.1, and 8§ = 1, the value

of x° = 1.2 is read from the left part of Fig. 3.10. Then the ,/4Z?f;i§/
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value of KlKZB = 17.5 determines the point M(1.2; 17.5) on the

£ = 0 curve vhere Q =-2.1 rad/sec.'. At this point, KK & = 1.2

which gives Nl = O =,Q.%2; Eig.KB.}l,is used tp evalkuate the
cT \ 1'3‘1". . T

C o X ! e SRR
amplitude A = 0.3 from the curve x°/S = 1.2. The value A = 0.3
is read directly from the dlagram N (A x ) ef Flg. 3 11, since

.'

K =8 =1 are the parameters of the given nonllnearlty in Fig.
3.9.

The solution (3.37) is stable since an increase in the
amplitude A causes the point M to meve into the stable region;
while a decrease in the amplitude A places the point M inside
the unstable region of the parameter plane (Fig. 3.10). It is
3 is
such that it is less than 6.4, thé system is always stable since

of interest to note that if tﬁe‘produde KleﬁWWhere B=x

Ithere:isno intersections of the variation of‘the‘M.point'and the
£ = 0 curve.

The above solutien (3;37) is checked by computer simulation
to obtain the curve on Fig. 3.12., The accuracy of the calculated
gsolution is sufficiently high and, for calculated values of xo, A,
and §, is approximately 10%. On the other hand, the computer
solution indicates a distortion of the assumed solution
x = x° + A sin & which is due to the higher harmonics present
in the actual solution. \

3.5 Slowly-varying Signals

In this section, the problem of linearizing a nonlineaxr
system by a high-frequency limit cycle is considered in more

detail. The objective is to determine the conditions under which /4262;7
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such a linearization is possible and then to construct the
linearized characteristic of the nonlinearity. This lineari-
zation has several practical aspects discussed in Section 3.1,
which are based upon a general property of the linearized system
that, for a limited magnitude of the reference signal, behaves
like a linear system. Therefore, results of the nonlinearities,
such as dead-zone, hysteresis, backlash, etc., are eliminated,
The procedure to achieve this will be best illustrated in the
following examples. |

Consider the system on Fig. 3.13 with the transfer functions

X2 K3

G, (s) =K, G,(8) = —5—"—, G (s)= w5+, G_,(s) = K_
1 2 s2_1_0‘.8S+l 3 s (s+1) 1 1

(3.38)
and the nonlinearity n as shown in Fig. 3.14. The input to the
system is a slowly-varying reference signal r = r(t).

The equation which describes the system is
[s(s+1)(52+O.85+l)+K2Kuls(s+l)]X + K1K2K3F(x) = Kles(s+l)r
‘ - (3.39)

5

» PR : . B ! L ! . .
where the signal x = x(t) 'i% the input.to, the nonlinearity. Equa-
tion 3.39 can be rewritten in terms of equations 3.9 as

P N I- Y o _
[s(s+l)(s +O.8$+l)*K2K_1s(s+lJJx +K1K2K3F = Kles(s+l)r

2 ] *
[s(s+1) (s -1—'0.85+1)+K.2K_ls('s+l)]+K1K2K3Nl x =0 (3.40)

The characteristic equation of the second equation 3.40 is

s(s+1)(sz+0.8s+l)+K2K_ls(s+l) + K.K,K.,N, = 0O (3.41)

1727371
Substituting KK _{ = @&, K K K N, = B, and s = 3Q into equation /427

3.41, one obtains the parameter plane equations of the £ = 0 curve
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as
a=1.8 & -1
(3.42)
B =0.8 QQ+ 1).
The curve { = 0 is plotted in Fig. 3.14. - The variations

of the M point are plotted also in Fig. 3.1l4 accoxrding to

4c 2
Nl = 7B 1- (%) ' A = LXOI (3.43)
The system parameteis Kl = 1, K2 = 12.5, K3 = 10, K_l =1

result in the point—Ml(l2.5; 45). If ¢ = 1, this point My gives
N, = ﬁ/KlK2K3 = 0.36, and the straight line PP, is plotted on
the diagram of function Ny, = Nl(xo, A). After the diagram

O B

F o= Fo(xo, A) is plotted in Fig. 3.15 using

(o)
O 2¢ %
F' = — arc sin = , A =2 |x

°
7 A

(3.44)

the replotting of the straight line P,P, on the diagram FO(XO, a)
yields the function (x°) of Fig. 3.15. The replotting procedure
is the same as that used iq'the‘previbus gsection; i.e., for each

pair of values LXO}A) reaqioq the straight line P;P,, the cor-
3 ," . * o L st

ro

responding pair exists in the diaéram ﬁo(xo, A), which determines
one point on t?e cutve ﬁ{xOY$

Function ¢(xo) of Fig. 3.15 is smooth and represents the non-
linearity for the slowly-varying signal x®. The shape of ¢(xo)
explains the smoothing effect of the high frequency limit cycle
which has a slowly-varying amplitude, the value of which is
located between the points Q1 and Qz on the A axis of Fig. 3.14.

The frequency { is approximately constant and has the value

Q= 2.7 rad/sec. According to $(x°), the smoothing effect of the

S
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limit cycle is present under the condition that |x”|< 2.25. For
small wvalues of xo, it is possible to consider ¢(x9) = ®x° where
K = const. Then the stability of the systeﬁ with respect to
slowly-varying signalé may be imvest%ga@e& by well~known linear
methods outlined'in.chapter iII. , In the specific exémple, the

I
equation of interest is

s(s+1) (s°+0.88+1) '+ KX_ s(s#l) ¥ K'K(RK, = 0 (3.45)

2 17273

Finally, it is to be noted that for the smoothing effecf to take
place, the amplitude A should be A =2 |X°|, as stated in equations .
" 3.43 and 3.44.

fhe results of the above analysis are checked by simulating
the system on an analog computer. Thrée caées are considered,
In Fig. 3.16, the input to the noniiﬁearity ¥ = x° + A sin &
and the system output x = x(t) are shown when the input signal
is r'= sin 0,l1t., The obtained computer solution agrees with the
prediction. 'The output c(t}) exhibits a smaller amplitude limit
cycle with the same frequency. When the input amplitude is in-
creased five times, the diagram of Fig. 3.17 is obtained. This
change increased.xo, but the amplitude A remained almost the
same. The frequency £ did not change. Similar results occurred
when the input amplitude increased ten times except that the
amplitude A became slightly smaller, which agrees with the dia-
gram of Fig. 3.14., The third case is given in Fig. 3.18. It
should be noted from these computer solutions that the output

signal c(t}) represents the input signal r({t) except for the //;)/;

superimposed limit cycle. It can be eliminated by introducing
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sufficient filtering in the block Gacs) of the system of Fig. 3.13,
or by readjusting the system parameters to obtain a higher fre-
gquency limit cycle.

If the values of the system parameters are chosen so that the
operating point is M2(21.2: 120) - of Fig. 3.14, the frequency of
the limit cycle becomes higher, Hoﬁever, the corresponding range
of.vériations of x° is decreased to |xo| < 0.7, together with the
range of the amplitude A which is between Q3 and Q4. This indi-
cates that the presented procedqre;is co@venient to apply when

the system parameters .ang operating conditions are changed.
¢ ' ! H . .

' (RN . .
¢ yoyoR 1 L
.

If the nonlinearity h is changed in the system of Fig. 3.13
by 1ntroduc1ng a con31derable dead;zone,D, a’ dlagram of Fig. 3.19
k
is obtained. The varlatlon of the M p01nt is calculated by using

equation 3.6b for the given nonlinearity of Fig. 3.19. Two cases

should be considered separately; i.e.,

[s] (o] .
N, = %%[A-(%ﬂ)z + 1-C57D)21, a 2]x°]ep (3.46a)

--D

N, = , |x°]-p = a <]x°|+D (3.46Db)

1
and the diagram Ny (xo, A) is shown in Fig. 3.19. By using equa-
tion 3.6a, the corresponding dlagram F(x . A) of Fig. 3.20 is

plotted accordlng to

o-
) =D
o = %‘(arc sin XA+D + arc sin & A ), A 2|Xo1 + D (3.47a)
o)
F° =-% Eg“f“arc sin iz—%zg)sin x°, [x°l-prsa < |%°|+p

/QZ&'“ (3.47b)
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Fig. 3.22 = Parameter plane diagram
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I1f the points Ml and M, are chosen in Fig. 3.19 as operating
points, the replotting of the straight lines P1P2 and P,P, results
in the two linearized characteristics a and b of Fig. 3.20, re-
spectively. They are conztructed for the values of nonlinear
parameters ¢ = D = 1. As can be seen from Fig. 3.20 the dead
zone is eliminated as far as the slowly-varying signals are
concerned. For this to take place, it is necessary to choose
operating conditions such that eguation 3.47a is valid. This
means that the amplitude A of the limit cycle must be greater
than Ix°|+D. Otherwise the linearized characteristic w{xol does
not go to zero when x2 =0 since F° does not go to zero for
x° = 0. fThis is indicated in Fig. 3.20 whereby F = 0 for x° = 0
and the dead zone is eliminated.

By the outlined technique, it is possible to eliminate the
hysteresis and backlash in systems with multi-valued nonlineari-
ties. The linearization yields a single-valued function w(x°>
which is linear in a certain limited range of values of the vari-

able x°

about the origin. To illustrate this, consider a non- .
linear system with the block diagram of Fig. 3.21 and the trans-

fer functions

K
1 -
9LB). Selar) (s72) ., C-1(2) TR 48 g

The nonlinear function F(x) of the nonlinearity n is given in |
Fig. 3c2er
The equation describing the system is

s(s+l) (s+2)s + (K_ls_l}KlF(x} =0 (3.49)

After harmonic linearization of 3,49, the corresponding /{;’&;




characteristic equation is

N
s(s+1) (s+2) + K (K_;s+1) (N, + s) = 0 (3.50)
If K, =50, K, =1
o = Nl
(3.51)
B=n,

and s = j{}, one obtains the { = 0 curve as

Y
Q= 5059
el
B = -2-50. (3.52)

The curve is plotted in Fig. 3.22. On the same plot, the varia-

tion of the point M(Nl: Nz) is constructed according to

o2 D-x", 2 / D+x° 2 ) o
B (/1-(——A e IE (SR S x|
4cD
ek g (3.53)
2 he

and the nonlinearity F(x) of Fig. 3.22 for which ¢ = D =1, From
the intersections of the £ =0 curve and the variation of the M
point, one can determine the amplitude A and the fregquency £
as function of xo: 8oy

A= A(xo)

0= (xo) (3.54)
Then, by using the expression

D+x°
a

o
o _© - -3
Foo= ;(arc sin

- arc sin % ) A 2D % |x°!

A (3.55)

for ¢ = D = 1, a family of curves with constant amplitude A is —

plotted on Fig. 3.23. 1If the first equation 3.54 is mapped onto
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the family of constant amplitude A, the function-¢(xo) is {?4
obtained as shown in Fig. 3.23. The function ¢(xof as a single-
valued function of XQ) which is linear in the range~0$[x0|$ 2.4,

For an input r(t) = 5 sin 0.5%t, the computer solution is
shown in Fig. 3.24. The amplitude A and the frequency {I-of the
limit cyecle are sloﬁly—varying gquantities according to équations
3.54 and the slowly-varying wvariable x°. Their average values,
however, are clese to that which can be predicted from the paraﬁeter
plane diagram of Fig., 3.22; i.e., A = 2.8 and'92$:4.5 rad/sec.
This can be concluded from the diagram (a) of Fig. 3.24. On
the diagram (b), the output signal c(t) is shown whereby the
limit cycle is 1a?gely attenuated by the block Gl(s) of Fig. 3.21.
The low-frequency component in the signal c(t) represents the
input r(t) = 5 sin 0.5t at the output of the system.

Of course, if the input r(t) is not present, the system
will ekhibit a Iimit cycle which can be determined from the inter-

section of the M locus x° 0 and the £ = 0 curve on Fig., 3.22

i

as x = A sin t, A = 2.6, = 4.8, This is checked by the analog
computer simulation and the obtained solution is shown on Fig. 3.25.

3. 6 CGonclusion

The parameter plane method has been used to ind;cate ex-
istence of asymmetrical oscillations in nenlinear control systems.
A procedure has been developed‘to determine;the ‘ofcillations for
different vaiues of system parameters .and input.signals. It has
been shown how a limit cycle'-can modify the nonlinear character-

istic for slowly-varying signals. This modification may be of

/27
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importance when a high~accuracy control system has to be de-
signed in the presence of nonlinearities with excessive dead
zone, hysteresis, backlash, etc., The design technique can be
‘directly applied to a large class of plant-adaptive control sys-
tems where a sinusoidal signal is used as an identification sig-
nal,

In a future study, the technique may be extended to the in-
vestigation of transient.aSYmmetrical oscillations. Thus, to
study how these oscillations are established after certain ampli-
tude perturbation, this study should be largely based upon the
material presented in the following chapter.

It may also be shown {16, 17] that the presented éhalysis can
be extended to the case when the signal superimposed on a sinusoid
is not only a constant or slowly-varying sinﬁsoid, but also when
the additional signal is described as a Gﬁﬁssian process, pro-
vided that the amplitude or standard deviation of the additional
signal is of no consequence in the analysis. This further gener-
ates the idea of applying the duél—input describing function
ElS,l?] along with. the parameter plane method, and investigates
the case when the input to a nonlinearity of the system is a

combination of two similar sinusoidal signals.

/

12F
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INTRODUCTION

Classical technigues for analysis and design of dynamic
systems are largely restricted to cases an which only one para- _
metexr of the system is adjustable. As a conseguence complex
systems cannot be treated adequately with classical techniques.
Algebraic methods, as developed in NASA CR-GIT*. are capable of
treating systems in which two parameters are adjustable, and
thus permit analysis and synthesis of systems which are too
complex for treatment with c¢lassical methods.

The treatment of algebraic methods presented in CR-617
develops the fundamental theoretical kasis for the coefficient
plane and parameter plane methods, It also applies these
metheds to basic problems such as stability analy51s,‘cascade
compansation of.systems, and related-topics. The applications
indiecated in CR-617 are rather elementary, i.e., the problems
considered illustrated the procedures to be used but were not
very complex problems. This report 1s based on the findings of
CR-617, and extends the applications of the algebraic methods to
problems of a more complex nature.

When cascade compensation is used in a feedback control
system, more than one filter section may be required to achieve
desired performance, Frequency response metheds involving trial
and error are often used, but parameter plane methods permit

analysis and design without traal and error if it is permissable

w

Algebraic Methods for Dynamic Systems by G. J. Thalex, D. D.
Siljak and R. C. Dorf, Nasa Contractor Repoxt NASA CR-617,
Nov., 1966,



to use two identical filter sections. Thas problem is treated
in Chapter I of this report. The applicable parameter plane
equations are derived and a digital computer program based on
these equations is presented. The program is used to study the
effects of compensation on several systems.

Chapters II and IIY are concerned with nonlinear systems.
Conventional methods such as frequency domain analysis of sys-
ems with the Describing function have proven useful when the
svstem contains only one nonlinearity (or several nonlinearities
conveniently located so that they can be incorporated in cne de-
scribing function). These te&hniques can define stability and
estimate relative stability for fairly complex systems as long
as the condataons of nonlinearity are not too complex. Such
cases are easily treated using algebraic methods, the effect of
the nonlinearity being represented as a movement of the operating
point on the parameter plane, which in turn represents a varia-
tion of the characteristic roofs as a function of signal émpli-
tude. The algebraic methods are capable of extending such analy-
sis to systems containing two distinct nonlinear components, and
can be used to predict the transient responzse of the system
rather accurately. Techniques for such problems are developed
in Chapter II.

Chapter III is concerned with a much more difficult non-
linear problem, that of asymmetrical nonlinear oscillations.
These are oscillations consisting of a limit cycle superimposed

on enothexr signal. The problems studied on the parameter plane

involve steady-state operating conditions (rather than transient
condxitions}, and permit analysis of the existence of oscil-
lations as well as their dependence on parameter values and in-
put signal values. Extension to linearization with eithex
signals is included, as well as some design considerations.

it is felt that the results presented here indicate the
capabilities of the algebraic methods in dealing with complex
linear and nonlinear problems. It is also felt that the re-
sults presented here will be directly applicable to a number of
practical problems, and will point out avenues of approach to

still additional pxoblems.



I

SOLUTION OF EQUATIONS WITH COEFFICIENTS
TEAT ARE QUADRATIC IN ¢ and B

1.1 INTRODUCTION -

It has been shown that the characteristic equation can be
solved for o = G(C.wn) and 8 = B(E,“a) when the coefficients of
¥he characteristic equation are of the forms:

a} a, = hka + cke + dk .

b) 2 =bo 4o B+ hog g kl)

©) 3y = By Bga F Al + 0B F o8 + g '

Q) a =B by 0Tl 0" TR L

ck(n-llgn-l + ckan + dk
In addition practical solutions have been obtained for the farst
two of these coefficient forms, 1.e., computer programs have been
written for them and successfully applied. The development to
be presented here is a particular solution for case l-lc, parti-
" cularly in the sense that a computer program has been obtained
wh&ch soivas the equations of a third ordex system for which the
coeffacients are quadratic an o and A, but which do not contain
all of the ¢ and 8 combinations aindicated. At the same time the
solution is a general solution in the sense that the:program can
be modified to solve the equations of an nth order system, and
can also be modified to accept all of the « and R forms indi-
cated in
By = Byp0” 4 B MR+ oA+ o 4
The modifications to be madé in the program are discussed, b+

the necessary programming has not been done.

1.2 THE PROBLEM: Cascade Compensation with 'two identical
filter sections.

In the design of feedback control systems it is common to
use compensators which are filters placed in cascade with the
main transmission path. Frequently two sections of filter are
needed, and if identical sections are used with an isolation
amplifier so that their transfer functions can be multaiplied,
then manipulation of the transfer funchion egquation provides a
characteristic equation in which the coefficients are gquadratic

an z and p, the zero and pole of the compensators. For example

let:
K
G & —]j/ {1_2)
§3+xs24vs .
G = (s+z 2 _ 52+225+22. (1~3)
c s+p 52+2ps+p2 A
Kis+2zs+22)
1+GCG =0=1+—3 = i 5 {1-4)
{57 4Xs"+¥s) (s +2ps+p”) .
from which the characteristic equation is
s® 4 (:-_:+2p)s4 + (p2+3Xpiy) s + (Xpo+2¥p + K)s2 4
+ (¥p? + 2Kz)s + KzZ = 0 (1-5)

Letting p 2 @ and z £'8 it 15 noted that all of the forms speci-
£1ed an the gquadratic case definition of 8, do appear in at least
some of the coefficients except that there 1s no @R/ product term.
The formulation just gaven does not conform to normal con-
trol system practice, however, in that an important restriction
on the design of the compensator is the usual reguirement that
steady state accuracy must be maintained by keeping the exrox
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coefficient unchanged. To do this the physacal adjustment 1s to
alter the gain of the amplifier, but in the mathematical analysis
1t is more convenient to include this restriction in the transfex

function of the compensator by defining (for this case)

6, = &7 &h? (1-6)

'Fhas alters the algebraic form of the characteristic equation
which kbecomes:

k()2 (52422542
2

0=1+

(53+Xs +¥s) (52+2ps+pz)

%

2
(s34xs2+¥8) (s2+2ps+p°) +K P—z-(sz+2zs+z
2

so+ (t2p) gt ¢ (pPa2xp+y) s34 [Xp2+2Yp+K(§)2]52

2

+[Yp +2Kp(%)}s + sz {1-7)

. 4 2 b
Choosing p = 8 and el this becomes

0 = 8 +(x+28)s? + (R242XB4¥)s> + (x8242YRHKa?) s>

2

+ (¥B%+2KA%)s + KB (1.-8)

In equation 1-8 the coefficients are quadratac in ¢ and 4,
but there i1s no term of the form bkld’ and the program as written
does not make provision for such a'term, though modification of
the program to include it is not difficult. The problem to be
studied, then 1is that of a third order system compensated with
two cascaded identical sections of filter, and with the added
reguirement that the error coefiicrent be m@antained constant

at a predetermined value.

1.3 DERIVATION OF THE GENERAL THIRD ORDER SYSTEM
RELARTIONSHIPS

The general third order system is defined by the transfer
functaion

G(s) {1-9)

= ToET (B (oY
which is a Type Zerxo system, but which can be changed to Type
1, 2, or 3 by setting one or more of the poles to zero. The
compensator transfer function, including the gain multiplier

which maintains the exxor coefficient is

2,2 2
_ 2 ,8+z,2 p (s +2zs+z ) .
6, = & &E3° = (1-20)
e 2 s z?(sz+2ps+92)

From 1-9 and 1-10 the characteristic equation is
[53 + (A+B+C)52 + (AB+BC+AC)s + ABC](52+2ps+pz)+
2.2 2
+ K —"—2(5 +2z5+2%) = O {1-11)
2

This expands to
s> (n+B+c+29)s4 + [AB+BC+AC+2p(A+B+C)+p2153

2

-

+ | ABC+2p (AB+BC4CA) + P2 (A+BHC) + K P-:ﬂsp' +
z

+ EZPABC-_!-pZ (RBHRCHAC) + 2Kp (-‘zl) ]S-f-pz {(ABC+2K) = 0

Let p f B % £ o
A+B4C L Z r; = sum of roots (poles)
AB+BCH+AC £ E:Eri = sum of rool. products taken 2 at a time
Z Eri A sum of root products taken n at a time
ABC . . 8 Uri £ products of the roots

4



Then equation 1-12 beccmes:
— N 2, .3
s% 4 rg 28)st + %) I, + 2ZriE{+B ys3 4+
2 2, 2
(n rl+zz ;_1 rlB + zrie + Ka®)ys® + {1~13})

. * 2
(@O x 6 + ) n r,B% + 2KeB)s + (Mz;+2K)8% = 0
Collecting 'lake terms in « and B:

o (ks?) + aB(2Ks) + B2 (74 Jr,s? + )} Mxgs+ 0 £ HK)

4 » 3 2
+ B{2s™ + 2 LS + ZZ g x;8 + anis)

¥ (55. ATYAES) T o + Ir;s%) = 0 (1-14)
Using thé basac parameter plane :elatiénships:'
n N
Z (-1 3, T ;@) =0 (1-15)
k=0
n . .
y 0¥ a B0 =0 (1-16)
K=0
and defining:
» 2
By, = R Ul(t) {(1-17)
2
By, = KUV, (¥) {1-18)
B o= -2KwUO(Z;) {1-19}
b, = ~2K4U, (£} . {1-20)

By, = 20%0,(0) 2)r, 0%, (1) + 2) p £, 0% (8) -
- 20 z o0 (D) {1-21)
B, = 20ty (1) -2)x WPU (D) + 2) g x, v, ()

—2D x w0, (£) . ' (1-22)

5

Fpy = —wBUz(t) + }_riwzul(t) -Z;I T, W ()

+{T rL+K)U_l(() {1-23)

Py, = -U(2) + )1, 00 (r) —Zgi x, WU, (7)

+ (T, +IULL) (1-24)
6 = -w5U4(t) + Zriw‘*UB(c‘;) "Z n riw3U2(C) )
+ Tie_w®y, () (1-25)
G, = -wPU (D) + inu:4u4(t) ) I x; 9%, (1)
+T1 2wy, () (1-26)
P, = 8D, (1-27)
B, = 8D, (1-28)
9 = PEyy + BE,, + 6y (1-29)
Q, = BE,, + B°F,, + G, (1-30)
This results ain
o?B,, + apy 4 Q =0 (1-31)
02322 + OB, + 0, =0 {1-32}

which are two non-linear algebraic equations completely general-
ized in terms of thg uncompensated system poles and root locus
gain, U, ¥ and the first kaind of Chebyshev anctions. These
must be solved simultaneously for the coxxect values of ¢ and

8. To do this, the method wath the best chance of success
appears to be Sylvester's Method an which we form a set of four
equa?ions by taking the or;g*nal Equations (1-31) and (1-32) and
forming two nore by a multiplication with o giving:

«2p

gy F ¥R F Oy = 0 {1-33)
2 e -
Y By, + 0Py + Qy = O (1-34)

6



3 2
@By + 7Py + @0y = 0 (1-35)
3

2
o By, 4 @B, + €0, = 0 {1-36)

Now placing these equations in matrax form:

E Bjy Py 9 o

0 By, By @y o?

By, By o o o =0 (1-37}
| P22 P2 @ O 1

If the @'s are not zerc then:

0 By B 4y

0 By By @

By, Py 9, o = 0 {1-38)
Byy P e 0

Expanding this determinant

2 2 2
~B31Q * ByyByy®1Qy f PFpByQy - P1pBnn + 81058, 5,

. &

2.2 2 _ -
~Q1By - Q1F,By; + QP PyByy = 0 (1-39)

Substatuting equations {1~27) through (1-30) in equation (1-39)

provides a fourth order equation an B:

4, 2 2 2
BT {~Fy,By1 + 2F51FpBp1Bap & DyDylppBay = FplpByy -

2 2 2
F31Bap = Fp1D5Bp; + DyDyF, Byyd +
8% (~2E + 2B F

2B

+ 2F,.E,,B,,8

2
12522851 11522821822 218128018y

BZ

~ DJE. B - 2E 99~

2
1E12P22 F

DyD3Ey 285, 1121

2
D3E11Bpy + DyD3EyyByy) +

2, 2 .2 2 '
BU(-Ey By = 2F9G,B5y + 2B;1E)5By1Byy + 2F5185851 800

2 2 2
26 FppBp1Pay + DyDaGyByy = PyGyByy — EpyBoy

2 2
2F5)G1850 = P363Bay + Dy Dy61By5)

2

2
B(-2B1,@)By; + 2E[;G,B,1By, + 26;E,B,,Byy = 2E1;G;B55) +
2.2 22 .
(46385, # 26,G,B,.B,, — G2B2,) = 0 (1~40)

from which the coefficients may be determined by a substitution
of {1~17) through {1-26) and the values of the first kind of
Chebyshev funcktions in terms of L and @. Since the solution of
a fourth order equation is at best difficuli, it xs at this
point a digatal computer becomes a necessity.

The major problem is not the actual solution of the ¢uartic
itself, but rxather the propaer choice of one of the four solutions.
There are two marked characterastics, however, whach help in the
selection., These are:

a) Complex answers to the guartic have no physical signifi-

cance and may therefore be discarded as erronecus.

b) The definition of v requires that « and 8 be of the

same sign so that p and z wall be of identical sign.
Using this information and that available from the Ross-Warren®
methoed as to compensator pole and zero location, it is found that
the solution to the § guartac 15 the largest, positive, real
value.

Now enteringeguation (1-27) with this value, and evaluating
the other coefficients

o = [-91/3211& (1-41)
for an the third order case P, is always identically =zero.

8



Thus, with the programming of-the appropriate equations,
the digital computer could give all of the values and plot the
constant zeta and constant omega loci on the Parameter Plane for
any desired values.

1.4 SOME APPLICATIONS OF THE PROGRAM

Several third order syséems were investigated by the appli-
cation of the generalized eguations and the Parameter Plane
curves, Figures 1-1 through 1-8 were plotted. Of these, the
K/33 family appears the most anteresting, Further investigation
of three of the curves in this fémlly, Figures 1-1, 1-2 and 1-3
shows that theré is a relationship between K, the root loous ‘
gain, ¢ and B,

These relations are:
‘ a). Choose a poant on the 1/53 &~ plane,

b) Zeta reads darectly.

c) Determine the actual cmega at that point by multiplying
the value read by the cube root of the uncompensated
system gain.

dl Read the walue of @ directly from the point chosen.

e} Read the value of B from the point chosen.

£) Obtain the true value of P by multiplying this value
by the cube root of the uncompensated system gain.

By this method, the values of « and P may be determined for
all 53 systems from one unaversal curve.
1.5 SBANDWIDTH CURVES ON THE «-f Plane

In many instances, there is also a bandwidth critexion
9

imposed on the engineer as well as an optamal operating point for
the plant under consideration. With this ain mind, equations for
the plotting of constanc bandwidth curves on the @-P plane are
developed. For the purpose of this development a constant band-
width curve will be defmﬂéd as:
A constant bandwidth curve for G(Jub) = M is a curve drawn
upon the parameter plane which specifies the relation bhetween
the parameters necessary if the transfer function G{s), whach
1s a function of the parameters, 1s to have magnitude M at
the real freguency u%.s
once these curves are obtained they may he superaimposed on the
parameter plane thus indacating what values of the parameters are
necessary 1n order to meet the specifications.

Taking the rational transfed function and definaing it:

-1
pis) pmsm + Pm—lsm + .. Pls + Po
G(s) = = : (1-42)
Q(s) n n-1 +
a.5 + q_3S oo @8 gy
where the pm’s and qn's are of the form:
2 . . 2
= +
Py gua * hua + J‘u‘xE + JuB + kps lu
u=20,12,...,m (1-43)
= a ol 4 ho+cof +4B 4+ e 52 + £
Qy = B v v v v v
v=20,1,2,....n (1-44)
m
therefore Z Pusu
G(s) =22 (1-45)
PN
V= 10



Setting the magnitude of G(jwb) = Ms:
Employing Eguation 1-45 in the parameterized form the generalized N . ,
(@a, + K )" + (¢PIy)

compensated third order transfer function is: M2 = |G(jmb)2!= 5 5 . 5
1z} D, + BEr B Fr) + (B D, + 6Ei * Fi)
ste) = §i5 (1-46) (1-54).
Manipulating Equation(l-54) algebraically
whare: ,
p(s) = o?xs? + 20BKs + BK (1-47) B, 8) - M6(x,B) =0 (1-55)
. where
d: _ a2f 3 2 Z : _ k2 2 2 2,22
an Q(s) =B [5 + Z Mzys™ + Z 1;1 r.e + g‘ri] + 6(@,8) = o'GL + 20°K.G_ + K. + «°B°1] {1-56)
; _. ad.2 3 2 2.2
B [254 4+ 2 Z o rls3 + 2 z g ri52 + 2 Z E ris]+ 9(“.32 =B D, + 2B DB, + 2B°D F_ + BYE_ +
1
2 4.2 2.2 2
. - 2E F_  + F_ + B°D; + B"E; + F; +
[ss + Z 0 ris4 + Z I ris3 + E:H rlSZ] (1-48) rr r i i i
1 2 3 . QBBE.D. + ZBZD.F. + BZEi + Fi +
Making the definitions: iTi 11 i
n 3 2
. : , ,F. + 2BE.F {1~57)
;iv v - 28 ElDl + 28 DJ.F.'L ® B
a_= Z (-1)®ola_; etc. for B,C.,D ,E.LF, (1-49) §
v=0 Substituting Equations (1-56) and {1-57) in Eguation (I~55) and
even
n . defining:
a =) (_1)%(V‘1)w§av; etc. for By,C;,D; By Fy (1-50) p, = o2 + o2 (1-58)
v=0 r i
odd
. % Q) = 2D, + 2ED {1-59)
6 =) (-1).g ; ete. for B, T,J K D (1-51)

r L . u rr " _ 2 2 .
u=0 ) Ry = 2DrFr + Er + By + 2DiFi (1~60)
even
ky %(u-1) R, = &%} : (1-61)

’ u-1) 1 -

6, =) (-1) Wiy s ete. for H, T, K. Iy (1-52) .
u=0 V) = 2E_F_ t 2E;F_ {1-62)
odd R
W, = Fa +oF (1-63)
and substituting in Eqguation 1-46,

£

2 . _ 2 2 2
(G, + K ) + 3(eBI,) W, = e"6, + 20°K. G + K

- {1-64)

G{3 = {(1-53)
(jwb) (anr + BEr + Fr Y o+ j(ﬁzpl + BEl + Fl)

12
11



It follows that
2. o4 2 3 2 2 2
Mpla +MQlﬂ -i-(MRl—Rz)ﬂ +leB+
2 = -
(M L Wz) =0 {165}

Since the Parameter Plane for compensation purposes has already
been determined it 1s now a matter of taking the computed «
values and substituting them along with a constant value of
omega and M into Equation {1-65) and then solving the [ quartac.
Thig has as its solution the largest, real and pesitive value of
the four roots as before.
1.5 - EXTENSIONS TO HIGHER ORDER SYSTEMS

Although the work presented to-this point has been limited
to third order systems and the program written for thas specific
case, investigation shows th;t generalized equations may be
written which will allow the extension of the program fo higher
orderéd systems, It can be shown for a given nth order system
with no zeros to be compensated with two adentical sectrons of
cascade compensation, that the characterastic equation of the

system may be generally written as:

5n+2 + 2psn+l + pzsn + (zzs2 + 2pzs + pz)K +
j=n ' J=n
k=1 k=0
o 3 .
2p Z (Z T rl)ék +p z (Z o rl)s.k +
K= 3 k=n~1 ‘j
=7 Ny
i=1 ’
k=2
k=n _
VREREAEE (1~66)
k=n+l 7
J:

13

where for n=4 the equation would be written:

56 + 2pss + p234 + (2252 + 2pzs + pz)K +

2p(zgris4 +Z£Ix153 +Z§Iris:2 +Z£Iris) +

pz(iry ri53 + Z’? risz + Z 2 s + 2:2 ri) +

" 5 ‘ 4 3 2,
(Z ? r;s” + Z g £.s + z 2 r,s” + Z 2 I8 } =0
{1-67)
It may be further shown that the parameters defined by Equations
{1-17) through (1-26) may be written:

JE— _
By, = Kobu, (&) (1-68)
2 .
By, = KU°U, (£) (1-69)
D, = -2KWU (&) {1-70)
D, = -2KWU; (£} (n ' (1-71)
kf}
By, = 200"y () +2 ] [ (0¥ wQ pe)] -
k=n J
j=1
j=n
& .
By, = 260y () v 2 ) Lok () o x)]  1-73)
k=n J
=
j=n
k=0 )
By = (-1PPU (0 1) [nFFu (6 Q) B ey KU ()
k=n-1 3
3= (1-74)
14



J=n

o]
[}

k=0
L NG I M (ST YY) gxi)] +xU () (2-75)

k=n~-1
5=1
j=n
kf? " .
B N S [ R IR TN r r)] -8
e=n+l
321
j=n
k=2 )
&, = (=M e 5 ) [0 e Q) n x )] (1-77)

k=n+1
7-1

These then are the recursive equations required for the complete

generalization to a nth order system. By employing the above

equations and replacing in PROGRAM PROJECT gards 100 through 150

and 300 through 540 with the appropraate programming, the program
. th

way be used for any given n ordexr system.

In like manner by generally defaining:

p(s) = e?ks? + aPks + B°K (1-78)
and: %:g .
als) = 72 4 2ps™l 4 3% 4 2 Z (z Mx)s® +
k=n 3
J=1
j=n J=n
k=0 k=2
32 S (Z Hx,) F o+ } (Z n ri)sk {1-79)
k=n-1 7 k=n+l
7=1 =1

and using Equations (149) through (1-52) we may replace in the
program cards 2860 and 2880 through 2920, thus adapting thais
part of the program to a general nth order application.

15

1.6 COMMENTS
Throughout this development of the Parameter Plane gquadratic

extension, the ck's in the generalized coefficient forxm:
n

z (bkaz +oo ek akaa + eks + kaZ + gk) =0 {1~280)
k=0

have been identically zero., This at first appearance might seem
to detract from the generalization., The inclusion of this para-
meter does not however introduce any great difficulty in the
solution. The change an the development would be to the value
of By and P, which would become: '

=C

Pl 1 + BDl {1-81)

P

» = C, + BD, (1~82)

and the fimal solution for ¢« which would change to:
p? - 28 Q_,
o = A 21,71

2By — ap?21

(1-83)

For this case, new selection rules for acceptable values of
would ke used, and would be much like those presented for B.
Though the extension of the Parameter Plane to include the
o - B quadratic case makes this tool even more useful, further
work is still to be done in this field. Not only must the
equations for the solutions of the Parameter Plane curves for

such cases as: .
a_ = bka252 * t:kcrzﬁ 4 dkoth + ekotz + 5k32 +
g8 + o+ g B+ [s] (1-84)
16



and higher ordered combinations of the parameters be developed, REFERENCES

but more efficient programming techniques must be developed. 1., Mitrovie, D., Graphical Analysis and Synthesis of Feedback
Control Systems, AIEBE Transactions, Pt. 2, Applications and

In the use of PROGRAM PROJECT, for instance, as the location of Industry, Vol. 77, 1958, pp 476-496,

the system poles on the ¢ axis of the S-plane move to the left, 2, Ress, E., R., Warren, T.C., Thaler, G. J., Design of Servo

Compensation Based on the Root Locus Approach, Paper 60~779,
presented at the ATEE Summer General Meeting, Atlantic Caty,
N. J., June 19-24, 196C.

the computational time becomes excessive due to present pro-

gramming technique and computer speed.,

3. Pollak, C.b., Thaler, G. J., S-Plane Design of Compensators
for Feedback Systems, IRE Transactions on Autematic Control,:
Vol. AC=-6, Number 3, Sept. Ll961, pp 333-340.

Another majér problem in further extensions of these tech- -

ni¢ues, and indeed even other applications of the curves from the.

4. siljak, D.D,, Analysis and Synthesis of Feedback Control
Systems in the Parameter Plane, Paxrt I, Linear Continuous

Systems, IEEE Transactions on Applications and Industry,
the initial substitution of variables immediatel y allowed inter- Nov. 1964, pp 449-458,

proceeding development, will be intexrpretation. In this case,

. pretation of the curves sight unseen. Hexe, then, will be most 5, Hollister, F. H., Network Analysis and Design by Parameter

Plane Technigues, Thesi®, U.S. Naval Postqraduate School, 1965.

1ikéiy the one siggle drawback to further extension, for as the

6. HNutting, R.M., Parameter Plane Technigues for Feedback Control

paxameters « and B are used as representations of gther variables Systems, Thesis, U.S. Naval Postgraduate School, 1965,

in control- systems, each application will have its own unicmue

- interpretation.
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APPENDIX I

000000

PROGRAM PROJECT is designed to solve the ¢ gquadratic and B

The program is divided into two main sections, the fixst

guartic.

0311074 30 T10A SIAHAD 3NOZ O¥7 3HL - 0
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1.0001 s @ 2 (X-graph scale) (X graph width).

If no points are found wathin thus xange

In this case however a study of the printed values
utside the range of the yraph.

NO LEAD COMPENSATION POSSIBLE

The lag graphing section is set up so that during the plotting
NC LAG COMPENSATION POSSIBLE

The first section computes an 80 by 80 matrix of the @ and
For the lead section graphs, @ is again tested by the criter-
The second main section of the program computes the value of

§ for a given value of ¢ 1§ determined by the X graph scale,
to stop the curve when either the ¢ or B value exceeds the range

of & must be made to insure that the points are indeed non-~existant
the plotting routine 15 set up s¢ as to not plot zero,

for the computation of the - pownts and the second for the hand-
of the curves each value of ¢ 1s tested to determine 2f its value

part is followed by two distinct graphing sections, one for lag

are no values of ¢ within this region the statement

B points corresponding to set values of ¢ and w.
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I - THE LAG ZONE CURVLS WILL NOT BE PLOTTED
ERXRHR
IF ILGPLT=1 1:1T NEXT FOUR CARDS ARE OMITTED ¢
HRARAR ~
SCARD FIVE —IT(1)-IT(6) - COLUMNS 1-48& IN-ALFARUMERIC CIARACTERS -
THIS IS THC FIRST LINC OF THE LAG GRAPH TITLE . \
ERCARD SIX — IT{T71-ITtI2) - COLUNNS 1—48 IN ALFANUNERIC CHARACTERS
THIS IS THE SLCOND LINE OF THE LAG GRAPH TITLE,
AECARD SEVEN - LsL{11)-~LBL{20) - FOUR COLUMNS PER LABEL (TEN LABELS-IN
CONSECUTIVE COLUMNS) IMN ALFANUMERIC CHARACTERS.
THESE ARE TIIE LABELS TO BE PUT ON THE CONSTANT OMCGA CURVES. TO
DETERMINE WHICH VALUES WILL BE PLOTTEDRs DIVIDE WFIN BY. 10 » THIS
NALUE AND INTEGER MULTIPLES OF IT TO 10 WILL BE PLOTTED.
RRCARD EIGHT - XLGZsYLGZ ~ TEN COLUMNS PER NUMBER IN EXFONENTIAL OR
FLOATING POINT. . - -
THESE ARE THE X AND Y SCALES FOR THE LAG. GRAPH. ONLY ONE SIGNi-
FICANT NUMBLCR IS TO BE USED. , -
*CARD NINE -~ ILDPLT =~ COLUMN ONE IN FIXED POINT
0 - THE- LEAD CURVES WILL BE PLOTTED .
1 - THE LEAD CURVES WILL NOT BE PLOTTED
KERREE
IF ILDPLT=1 THE NEXT FOUR CARDS ARE OMITTED
FEZREE
Cx##CARD TEN - THE SAME AS CARD FIVE EXCEPT FOR THE LEAD GRAPH
Cx3rCARD ELEVEN — THE SAME AS CARD STX EXCEPT FOR THE LEAD GRAPH
Cx*%CARD TUELVE -~ THE SAME AS CARD EIGHT EXCEPT FOR THE LEAD GRAPH
CE=ZCARD THIRTEEN - ASXXDUPLICATE®¥x OF CARD SEVEN
C*¥XCARD FOURTEEN - IBWCMP — COLUMN ONE FIXED- POINT

P
o

wh

e

£

b
E3

x

faYalaNaYakakakatalataNaakaknkaEaNaRa e Naalal

G 0 — BANDWIDTH CDMPUTATIONS AND GRAPHING WILL NOT BE DONE. -
[ 1 -~ BANDWIDTH COMPUTATIONS WILL{ BE DONE )
C EXEXEE - .

C IF IBWCMP=0 THE REMAINING CARDS ARE OMITTED

C REEPEHE L. - ..
C¥#%CARD FIFTECN - BUXsBUY ™ THE SAME AS CARD EIGHT-EXCEPT FOR: THE
C °  BANDWIDTH CURVES. ) ) -

C BywY IS5 ALSO USED. TO DETEQMINE.HHICH VALUES OF ALFA WILL BE USED IN
C THE BANDUIDTH COMPUTATIONS. |
CuaCARD SIXTEEN — VEND -~ TEN COLUMNS IN FLOATING POINT
C THIS 1S THE MAXIMUM VALUE OF OMEGA FOR \HICH THE BANDUIDTH
C COHPUTATIONS VILL BE BONE
CEFICARD SEVENTEEN — IBWPLT — COLUMM ONE TN FIXED POINT
C 0 -~ THE BANDMIDTH CURVES WILL BE PLOTTED .
C 1 — THE BANDMIDTH CURVES WILL NOT BE PLOTTE
C o AR B .
C - IFf IBWPLT=1 THE RENAINING CARDS ARE OMITTED
C- REnERT .
C2x3CARD EIGHTECH — THE SAME AS CARD FIVE EXCEPT FOR THE BANDUIDTH CURVES
CrxECARD MINETEEN - THE SAME AS CARD SIX EXCEPT FOR THE BANDUIDTH CURVES
CREXCARD TUEHTY -~ BANDWIDTH CURVE LABELS .
C 10 DETLRISINE WHICH CURVES VUILL BE PLOTTED, DIVIDE WEND BY 10
C THE PROGRAM PLOTS THIS CURVE AND INTEGER MULTIPLES OF IT UP TO 0.
c " ) -
C : .
¢ IT 15 RECOMUENDED THAT FOR THE INITIAL RUN THE FOLLOWING 'DATA CARDS
C BE USEDe ° .
C CARDS 112:3[IﬂBCMP:O):#(ILGPLT=1)’9(ILDRLT=11914(IBN§MP=01
C
C THESE DATA CARDS MILL ALLOW ONLY THE ALFA-BETA COMPUTATIONS TO BE
C COMPLETED. A PRINT OUT OF THE VALUES WILL BE OUTPUT VHICH MILlL ALLOW
C YOU TO CHOOSE THE PROPER CURVES AND SCALES. CAREFUL SELECTION
C OF CURVLC SCALES IS IMPORTANTs FOR THE PROGRAM MILL NOT- ALLOU POINTS
C OUTSIDE THE AXIX LIMITS TO BE PLOTTED.
c .

DIMENSTON AFIN{80580)sBFIN{BO,80 9 XAZIG0)»YBZIBQ) sXAWIBO),
1 YBU(B01+1T(12)sLBLL20)+BCOMTt5)+RO0TRIA) SROOTILAISACOFTI3) 5
2 UL10)sARCOTI L4} sACOFR{3) »BCOFRES) sULABLBO0) s 2LABIB0) »AROOTR (4)
COMIMON BCOFRsBCOFI sROOTRSRCOTISBFINAL IFLAGYAFINSOFIN
9999 PRINT 140 .

140 FORDAT {1H1}°
DO 60 JK=1s6400
AFEN{JIKY =0.0

60 BFIN(JKY = 000

000010
000020
000030
Q00040
000050
000060
000070
000080
000090



—

w

READ 11AsDsCHG
[ORMAT{4F1040)
PROD = ASDXRC
“yl = AIB+C

ORD = ARB 4+ ARC + BXC
RDOGH = PRCGD + G
ZETA = 0.0
READ 2+UWFIN
FORMAT (F10.0)
READ 94 IABCMP
FORNAT {11}
TF{TABCMP—1)23+286424

23 STP = WFIN/80..

30

PO 12 L = 1.80
LJ = BOX{L~-1)
W = STP
Uii)r==1.
Ut2)=04
Ui{3i=le

DO 16 N=2+6

10 UIN#E2)1=2XZETARU{NF1 -V N}

50

300

DO 11 J=1,80
Ly = 1J + 1
2=t
us=y2sy
Wa=itg=2
Ws=12%43

CONN = G*y2
CON = ~2.%G=Y

CONL = Ze#4

CONZ = ~2,%SUN¥3
COH3 = 2.%SHPRD*YW2
CoN4 = -2 XPROD¥!
CON5 = sun=v2
CON6 = ~SI{PRD®U
CONT = Sulixug

CORg = —i"WFRDAI3

Coite = PROD*U2

B21 = COHN-UL3)

B22 = CORM~US{&)

Dl = CONTU{2Z)

D2 = CORXU(3) .

E11 = CON1*U(5] + CON2%U(4) + CON3:U(3) + CONARUL2)

E1Z = CONIXU{6) + CONZZULS) + CON3%Y(4) + CONARUL(3}

£21 = ~U3RUL4) + CONS”UI3) + CONGEULZ) + PRDGNAULT)

F22 = ~Y3RU(5) + COMBEU(&) 4 COMHGZU(3) + PRDONYUL2)

Gl = =WBZU[6) + COMTHU(5Y + CONBFU(4) + CONOTU(3)

G2 = ~M5%0(T} + CONTRU(S} + CONB#UIS) + CONS=UL4)

COF1 = BRIXF22¥(2.%F21vB22-F224B21)~F21#(F215022¥822:024D2%621)
COF2 = E112(2.%B22%1F22*B21-F21%B22)-D2¥D25B21)+2,#E127B21% (F21%B2
12-F22%B21) v

COE3 = B213{-B2ifiE12YE1242.5F22%G2)-D2:D2761+2.%B228 (EL1E12+F21%
1 G2iG1IRF22))-B22%B22% (E11¥E11+2.%F214G1)

COF4=2,%G2*B21% (ELIXB22-E12%821142,7B22¥G1¥ {E12¥B21-E11+B22}

COF5= —(G23*B21~G1XB22)#(GR¥YB21-GL*xB22])

DO 50 1 =145

BCOFI(I} = 0,0
BCOFR(1) = 1,0
BCOFR{2) = COF2/COF]
BCOFR{3} = COF3/C0OF1
BCOFR{4) = COFA/COFL
BCOFRI5) = COF5/COF1
CALE ABETART

IFLAG = 0

CALL SORTY

If {IFLAG~1)200511511

GFIH(LY) = DFINAL .

01 = BFIM{LJIR(ELL+BFINILI}F21)+G1
ACOFRI1}=1.0

ACOFR{ 2100

ACCFR{3}) = @l/B21

ALFASQ = ABSFULACOFR(3}}

[

000100
00° 110
0001120
000130
000140
000150
200160
000170
000160
000182
000185
-000188
0060190
000200
000210
000220
000230
400249
000250
000260
000270
000280
000290
000300
600310
000320
000330
000340
000350
000360
000370
600380
000390
000400
000410
000420

000+#30
000440
000450
000460
000470
000430
[elalafetule]
000500
000510
000520
300530
Q00540
000550
aG0560
000570
000580
000590
000600
Q00610
000620
000630
000640
000650
Q00660
000670
000680
000690
000700
¢oovlo
000720
000730
00070
G750
. 10
[0 ¥ i V]
0Gu780



[«

11
12

AFIN{LI) = SORTF{ALFASQ)

U = WsSTP
ZETA = ZETA + .0125
LBLL1) = 41iZ=.0
_LBLI2) = 4HZu.]
LBLIY = AllZ=,2
LBL{G) = 4HZ=.3
LBL{5} = &HZ=o4
LBLIS) = #4l7w,5
LBLATY  AHZ=.6
LBLISY = 4HZ=.7
LBL{9) = #HZ=.5

6110
6113

6114

6112
61

6116

6111
62

5120

6127
6123

6124

5122

63

6l21
6125

LBL(10) = 4HZ=.9

READ 75 ILGPLT

FORIIAT (I1}
IF{ILGPET~118+67367
READ 33 (IT(1)sI=1s12
FORMAT (6A8)

READ 63 (LBLII}sT=11520}
FORHMAT (10A4)

READ 4» XLGZsYLGZ

FORNMAT {2C10.0)
XLGLM = 9.%XLGZ
YLGLM = 15.%¥YLGZ
IQpE = 1

IL =0

DO 62 K=1:80+8
L = 1

KJ = (K-~1)%80

DO 61 J=1:80

KJd = K+l

IF(AFTH{KI)—<0000001161,6L1016110"
IF(AFTR{KJI-1.0001)6113+61,61
IF{AFIIHRAI) ~ ALGLM1611436156)

CARDS 1120 ~ 1130 ARE MISSING
XAZILLY = AFIN{KJ}

IF(BFINIKJ) ~ YLOLMIN112¢61+61
CARDS 1160 - 11.0 ARE MEISSING

YBZILLY = BrIN{KJ)

LL = LL + 1

CONTIHUE

JJ = LL -1

iL = IL + 1

IF(JJ=11062+6216116

LAL = LBL{IL)

CALL DRAVIJJsXAZsYBZ sMODEsOsLALy ITsXLGZ+YLGZ9090205039+15+05LAST)

#0DE = 2

CONTINUE

IF(1OBL~1165+65+6120

DO 66 K=8:50+8

LL =1

DO 63 J=1,80

JK = (J-1¥1780 + K

IF{AFIN(JK} =20000001)63:6127:6127

IF(AFI“(JK!—l.OOOl16123363{63

IE{AFINTJK) = XLGLMY6124+634+63
CARDS 1350 ~ 1360 ARE MISSING

XAU(LLY = AFIN{JK)

IF(BFIN{JIK)Y — YLGLMIG6122563+63

CARDS 1390 -~ 1400 ARE MISSING

YBUILLY = BFIN{JK)
LL = LL + 1
CONTINUE

JJ = tL ~ 1

it = IL + 1

IF{JJS-13612126121496126
IFIK-8016646125:6125
HODE = 3 )

LML = &H

JJ o= 2

YAUL))Y = XLGLM

RAU(2) = XLGLM

000790
000800
000810
000820
000830
oooga0
000850
000860
000870
060880
000890
000900
060910
Q20920
000230
000940
000950
000960
000970
¢00980
000990
001000
o0leolo
001420
001030
001040
001050
001060
001070
001080
001090
091095
001100
eoi110

001140

001150

001180
001190
001200
001210
001220
001230
001240
001250
001260
001270
0012380
001290
001300
001310
001320
001325
001330
001340

001370
001380

001410
001420
001430
001440
001450
001460
001470
001480
901490
001500
001510
001?20



C

C

6126
2000

&4
66
65
130 F

67
20

21
22

YO

YBLW(?)

(1) 0.0

Y1.GZ

[}

GO TO 2000

LAL

CALL DR ”tJlokAUeYUNrPDDE;OyLALoET’XlG?'YLG?s0y0v09050s15909|ASTJ

= LBE{ILY

WOE = 2

IF(K" RUTR-L Y-
MODE = .
CONT INUIE .o
GO TO 67

PRINT 130

ONMAT {1X»33H NO LAG COMPENSATION 1S POSSIBLE

READ 209 TLDPLY

FORMAT (11

IFtILOPLY~ 1)6831000:1000
READ 5y (1T{I)sI=1s12)

FORM

IAT {6A8)

READ 21s XLDZ»YLDZ

FORI

1AT {2E10.0}

READ 22, (LBL{115E=11,20)

FOR!?

IAT {10A4)

XLDLH = 9,%XLDZ
TLOLM = 15.%YLDZ
iL = 0

MODE = 1

PO 72 K = 148098
KJ = [(K--1}%80

KK = 1 B

DO 71 J = 1,80
KJ = XJ + 1

IFCAFTRIKS)=140001171»7111,7111

TI1L IF(AFIRIRJY - XLOLMITILT7s71,71

CARDS 1830 ~ 1840 ARE MISSI{G

TL1T RAZIKKY = AFINIKDN

7110

T

7119

7110
72

78

7121
7127

7128

73

7120
7122

IFIBFINIKI) - YLOLM)T118y715712
CARDS 1870 - 1880 ARE UISSING

b {iTA
KK
Coit
[ 4]
1L
1F(
LAL

CALL DRAV(LH;XAZ;YB?yhODEsO:LALs]T:XLDZ9YlD?5090’09059915,0!LA5T)

HOD
CON
IF¢
Do
KX
Do
JX

IF{AFTN{JK}-1.0000)73,7121:7121
IF(AFIN(JIKY ~ XLDLM}YT127,73,73
CARDS 2060 - 2070 AﬁE_MISSING

(REY = BFLHERIY

® KK + 1

TINUE

= KK-1

= IL r 1

MI-1172:7257119
= LBLITL)

€= 2

TINUE
{ODE--L L0+ 70+78
16 K=8580+8

= 1

73 J = 1:80

= {J-11%80 + K

XAV{KK) = AFIN{JX}

IF(BFENEJEY — YLDLH)7128;73973‘
CARDS 2100 ~ 2110 ARE MISSING *

YBWIRK) = BFIN{JK]

KK

= KK + 1

CONTINUE

MY =

IL
¢
1Ft

KK-1

= L% 1
MNM-117120+7120573129
K=801762T22247122

MODE = 3
LAL = 4H

H

KAL)
XAUL2)
¥84 (1)
Yeui2y

GO

= 2

XLOLH
XLDLM
an
YLDZ
T0 2001

llhll now

2 172)

001530
001540
0ol550

" 001560

001570

. .001580

001590
001600
001610
001620
001630
001640
001650
001660
001670
001680
001690
0o0l700
001710
001713
001716

001720

001730
00L740

' 001750

Q01760
001770
0G1700
001790
001800

001010 |
. 001820

001850
colB60

001690
001900
001910
001920
001930
001940
001950
001560
001970
001980

601990,

02000
$02010
302020
002030
002040
002050

0020890
002090

002120

- 002130

002140
002150
002160
002170
002180
002190
002200
002210
092220
002250
002240
002250
002260



717w
20

TH
16
T0¢

131
1000

61

14
100
101
162
103

112

113
-,fi
&

219

217

223

200

210

LAL = LDL(iE)

CALL DRAU(HN»VAV:YBU;HOHE’O:IALelTyKlD?:YID?sOaﬂ:OsOv?slG;DsLLST}
Mot = 2

ITE=T721 70750715

HobL = 3

LUl INUE

€Y 70 1000

« IHT 131

LORMAT (1X¢ 4H NO LCAD COMPENSATION IS POSSIDLE +///}
COMTINUER

ZLABR{Y) = Q.0

po 8l 1=2,10

ZLABL.} = ZLAB(I-1) + o1,

ULAB[8) = Bo®STP

DI 82 N=16+80:8

ULAB{i) = ULABUN-B) + HWLAB(S)

PRINT 100

FORISAT (1H1)

PRINT 101

FORITATI 2X: 20K THE ALFA VALUES ARE  ¢//}

PRINT 102s (ZLAL(I) "1=1:10)

FORNAT {1Xs6H ZLTA *OFL1l:6)

PRINT 1035 (VLAB{J}+!( _!NlJpI)pI=1,7398)J=8580sS)
FORIAT (/31XsF6c251085)¢5)

PRINT 111

FORVAT (/7/77/72%:208 THE BETA VALULS ARE 2/ /)
PRINT 112 (ZLAB(1} 1=1,10})

FORHAT (1Xe6H ZLTA +10F11:6}

PRINT 113« [ULAB(J}s‘BFIN(JsI)9If1!7393’J=8)80r8)
FORMAT (/21Xx3F602310E1c5})

PRI®Y 114

FORIAT (1HL}

READ 218 IBVCHP

FORMAT (111

IFtIBUCHP-111002,219+219

READ 2175 BUXBUY

FORNAY {2E1060}
READ 222y VERD
FORIAT (F10.0)
TBMLH = 15.%BUY
KLH = 9o%BUX
AM2=e5

STEP = WEND/20s
¥ = STEP

ALFASP = XLIN/20.
XAMI1Y = ALFASP
DO 200 K=2420
XAUIKY = XAU(K-1) <+ XAV}
DO 703 N=ls20
AL\ = ALFASP

DO 210 li=1+20
RAZMY = 040
¥YBZ{H) = 0.0

DO 207 I=1+20
(i) = W
w2=4id

wa=Ux2

§la=2R\2
5283

. ACR = ~42%G
- AR = G

ADR=2, 1442 o KI22SKPRD

AIT & 2,3G¥)

AER=-12:SUl1 + PROD
AFRSUGLSUM ~ U2RTROD
ADEu~Z,7UBISUN 1 2o%USPROD
ACE = ~U3 + YaShPRD

AFT = U5 - \3w=SHPRD

Pl = ADRTADRIADI®ADI

01 = 2,RADRUALR 4 2.%ADDADI

Rl = 2.¥ADR®AFR + AERUALR + ARIRAED 1 2.%ADIZAFT |
V1 = 2.¥AERXAFR 4 P RARIRAFT

pozZ2Tn
Qozzil
0n2z90
0073200
0Ly 310
602320
GG2330
007340
002250
06220
o0zZ370
002380
002390
002400
002110
002420
002430
Q02640
002450
0o2nel
002470
002460
002490
002500
002510
002570
002520
002540
002550
002560
0025710
002560
002590
po2600
002610
002620

002620
002633
002636
002640
002650
00Z660
002670
002680
002690

‘002700

002710
002720
oo27
ooz7.
002750
002760
002770
002730
002790
002800
002510
002820
002830
002840
002850
0020860
002870
002830
0602890
002900
002910
a02920
002930
002940
002950
002960



it

1 ATRFAMR + AFI*AFI

AZ = ALFA¥ALFA
A= AZRAZ
R2 = AZTATISALL

DO-51 M = 145

51 BCOFI() = 0.0

BCOFRIL) = 1.0

SCOFRIZ) = Qlv/P1

BCOTR(2) = (AMZER1I--R2)/{AH2ZP1}
BCORR{%) = V1/P1-

BUOFR(S) = (Ahz+ Ul—UUZ)/IAMZ*Pl)
CALL ABETART

IFLAG = 0 ¢

CALL SORT B ~t

IF{IFLAG~ 1)9009?065206

206 SFININeLY = 0.0

GO TO 207

900 DBFIN({M»1} = BFINAL
207 ALFA = ALFA + ALFASP
203 | =\l + STEP

READ 216y ¥BUPLT

216 FORMAT (iLY

IF¢IBUPLT~ 1)214:1001910

214 NODE = I-

READ 2023 (ITtIK).K=1,12)

202 TORHAT [6AB)

READ 201s (LBL(MN)sHu252052)

201 FORMAT (10A4)

CO 211 N=2:20.2
K = 1
IFIN-20)2065205,20!

405 MODL = 3
204 COMTIHU

zae
vo5s

212
906

221
225
215

220
2602
222
23
711

224
226
1001
120
122

121
1002

co 212 E 1:20
ITEFININ:T) - cOOOGDl]ZI?,212s?09

IFIGETNIN. 1Y —~ YBULM)905,9063906
NBZAIKN) = BIIH{Ns T
XAZ{KK) = 2alil)
CARD 3360 ¢ MISeRIiNG
Ko o= KK + 1
CONTINUE
JJ = KK =1
IF{JJ=11221+221,220
IreN—201211-225225
16 (LODE-1)22%452244215

ODE-= 3

LAL = 4R
XAZ(L) ® 0.0
KAZ(2) = 0.0
¥BZ{1) = 0.0
YBZ{Zv = BMY
JJ = 2

GO TO 2002

LAL = LBL{N}

CALL DRAM (JJsXAZ’YBZ:MODEoO!LAL,IT;BUXoBUY:OoOnO909991)909

IF{4-201208-2119211
HODE = 2 |

CONTLHUE

GO TO 1001

PRINT 226

FORUAT [11j1s1Xs TOHTHERE ARE NO POSSEIBLE BANDUIDTH CURVES FOR THE'F
1IRAL VALUE OF OIEGA STATED A

GO TO 1002
PREMT 120

FORMAT (LH1:20Xs306H VALUES O BETA FOR CONSTANT BANDWIDTH

PRINT 1225 (VBU(K)sK=2520,2)
FORnA] (799%310F116)

RINM 121 [\\J(L)a(tl'E‘J9K3g4~29?0;?!,K 14201

FOQLAT (/35). 622:2X310021.6)
CONT ERUL
GO TO 9999

VN2 = AGTAGR™AGR 4 2o #A2FAKR¥AGR + AKRZAKR -

002970
002980
.002990 -
003000
003010
003020
003030
003040
503050
003060
003070,
003000
. 003090
003100
003110
003120 *
202130
003140
003150
003160
002170
003180
003190
003200
003210
003720
003230
003240
003250
003260
003270
00200
60 .790
003200
003310
003320

003330
003240°
003350

003370
003300
003390
003400
003410
003415
003420
003430
Q03440
003450 -
003450
003470
003480
003690
003500
003510
003520
003530
0063540
003541
003542
003543
003544
003545
003550
003560
003570
003580
003590
002600
003610
003615



1

34
52
100

191

i
= O

152
pavisl
205
201

206
202

203

204
207

208
210
250

Lo

SUBROUTIRE AGETART |

DIMERSION A(B)nYlHAG(5]9U(ﬂ)9V(h)a“(§0)ﬁBt50}sC(SO)sD(EO]eE(SOI

o 80)sSFINIS0; 80}
ELLSTON AFIR{80,801s 9 A

gé?ﬁ%g AfY!”AG9U9vsﬂUﬁHYlsDUHHYZ:AFI”’BFIN
M= 6
r=10-:0
L=2>

1ER=O

1 {tl) 54¢54,52

IER=L.

Hesc Bt

Bl21=0.0

B(11=000

Ci2)1=0,0

C1ir=040

D{Ri70:0

£(27-040

Hi2120:0

£Q 101 J=3.1P3
HiJ1=A{J=2}

15190

§K=106077F

IFUINIP31Y 20051515200
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2
TRANSIENT RESPONSE OF MNONLINEAR SYSTEMS

2.1 INTRODUCTION

When a system has one nonlinear element that is single val—
ned and non-frequency dependent, analysis’ of the-system is con-
veniently accomplished using the parameter plane methods. The
nonlinear element is represented by a describing function, which
is a function of signal amplitude only. The describing function
is designated as one of the parameters, @ or B. This designation
removes the nohlinear parameter from the functions that determine
the parameter plane curves® so that these may be plotted on the
@-p plane. The M:point is located on’ the ®-8 plane in the usual
way, but for the case of one nonlinear element one coordinate of
the Mrpoiné is the numerical value of the describing function of
the nonlinear parameter, For linear systems the M-point is sta-
tionary on the &-§ plane, but for a nonlinear system the M-point
moves because the numerical value of the describing function is
a function of signal amplitude., For a system with one single
valued nonlinearity, N, where N is designated as B, the locus
followed by the M-point is a straight line parallel to the B-axaia.
This locus of M-point motion can ke said to start at the value of
B corresponding to very small (zero) signal amplitude into the

nonlinear element. The displacement of the M-point aleong thas

locus is determined by the way in which B varies as a functacn

of signal amplitude, and this is determined by using the

w N
constant -{ and constant -hh curves, or constant -0 and constant
- curves.,

Fig. 1-8. Double Lead Compensation of Plant with

.
N

with G(s) = g T
{245)“(8+10})



the describang function of the nonlinear element.

Previous work has shown how to prediclt limit cycles using
M-point locus on the parameter plane. If this locus crosses the
stability boundary (L=0 cuxve or 0=0 curve) the intersection of
these curves defines the frequency of the limit cyecle. If an
amplitude-scale can be determined for the location of the M-point
on the M-locus, then this scale is used to define the amplitude of
the limit cycle.

The concept of a moving M-point on the pa.rameter plane can
he used to calculate the transient response of nonlinear systems.
As the M-point moves along the M-locus, ead¢h point defines both
signal amplitude and all roots of the characteristic eguation.
This information can be used to determine the hmplitude vs time
relati;mship vhich is the transient response. Computations are
based on Siljsk's extension of some bagic work by Krylov and
Bogoliubov, and details are given in the following paragraphs.

Assume” that the system is second order, and that the non-
linear element is. represented by its describing function. Then
for. an initial signal amplitude AQ, the transient response 1is de-
fined by

X(t) = A, ¢"E cos(ut + @) (2-1)

where ¢ and @ axe both functions of the signal amplitude.

*These assumptions restrict use of this method to systems in which

a pair of complex roots dominate the transient response, and these

systems must have low pass, filter characteristics to justify use
of a describing function.

¢ = ¢{1)

(2-2)

e g

w= (A)
The parameter plane curves are prepared, the M-locus is super-
imposed on them, and the describing function is used to associate
an amplitude scale with the M-locus. Then the values of ag{p)
and @(A) may be read from the parameter plane for any X.

The transient response of the system from any initial dis-
placement, ho' is determined in two steps, the first of which as
to calculate the envelope of the transient. Assuming that ¢

{in egn. 2-1) is zerc, the envelope is defined by

o(A)t - -

x(t) =4, ¢ (2-3)

which may be approximated over a short time interval by a straight

t

line tangent to the exponential curve. Thus at t = 0, ¥=h, and _

from the parameter plane (r(no)::cro is evaluated. Then x(t):Aoe%
is approximated by a short straight line segment on the X vs ¢
plane. This stralght line is terminated at t = tl and at &; a
new amplitude 1-\1 is read from the curve. Entering the M-logus on
the parameter plane with Aq values are obtained for oy and “.
The envelope of the transient is extended from 'y to t, with
another straight line segme‘r;t defined by X = Alealt. This pro-
cedure is repeated until the envelope is defined over an accept-
able time interval.

As a by-product of this procedure, @ has been determined
quantitatively as & function of amplitude and also as a function

of time, Using the definition



y=
&= j’ w(a) de (2-4)
Q

the phase can be determined at any t by graphical integration
{(i.e., evaluation of the area under the w{A) vs + curve). If ¢

in eqn, 2-1 is zero, then X(t) = 0 for ® = (2n-1) {7/2). vValues

of t corresponding to ¥ = 90°, 270°, 450%, etc., are deiermined by
graphical integration, are marked on the axas of the X vs t plane,
-and the transient response is drawn tangent to the envelope and
intersecting the ¥= 0 axis at the indicated values of t.

The above procedures are readily applied to systems with one
nonlinearity, and correlaticn with simulation results 1s excel-
lent. Since such applications are elementary no illustrations
are glben here, and the study is extended to systems with two
single’ valued nonlinear elements. In general no other methods
exist for predicting the transient response of systems with two
nonlinear elements, so the results obtained here represent a
significant advance in the state of the art.

2,2 CLASSIFICATION OF SYSTEMS WITH TWO NONLINEARITIES

When a system contains two nonlinear elements, Nl and Nz,
that are single valued and 'are not frequency dependent, parametexr
plane representation may he used but‘both a and P become functions
of Ny and N,. Computation of the paxameter plane curves presents
no difficulty, but determination of the M-locus may be difficult.
As 2 result it is convemient to classify nonlinéar systems accord-
ang to the structural conditions whach complicate the evaluation
of the M-locus. The following classcs are proposed:

4

CLASS 1. Identical signal excitation to both nonlineaxr
elements,

In Fig. 2-l1a, the signal X is the input to both nonlinear
elements y and N,. For every value of X corresponding values
of Nl and N, are uniquely defined and are independent of fre-
quency so evaluation of the M-~locus is easy.

CLASS 2. The input signals to the two nonlinear elements
are related by a linear differential egquation.

In Fig. 2-1b the signal X is the input to N,. but the
input to Nl 18 X G_l(s). Thus the input to N2 is a functaicn of
amplitude oﬁly. but the input to Ny is a function of both ampli-
tude and fregquency, For a given amplitude of ‘the signal X, the
describing function for N, provides one unique value, but for
each amplitude of X the describing function for Nl has an in-
finite number of possable values, one %6; each possible value of
fregquency. As a result the evaluation of the M~locus is consid-
erably more diffacult than for Class l.

CLASS 3. The input saignals to the two nonlinear elements
are related by a nonlinear differential equation.

Fig. 2~lc illustrates this class of nonlinear systems, The
signal X is the input to N, but the znput to ¥, is Xle]{G2(5)3
where the brackets are intended to represent some functional re-
lationship rather than a multiplication. Evaluation of the M-
locus can be very difficult for such systems.

2.3 EVALUATION OF THE M-LOCUS, #THE DYNAMIC DESCRIBING FUNCTION.

When a system with one single valﬁed nonlinear element 1s

represented on the parameter plane the M-locus ais clearly a
5



straight line parallel to one of the coordinate axes. Thus the
M-locus itself is readily found but the amplitude scale asso-
ciated with this locus must be evaluated. For systems with two
nonlinearities (especially Class 2 or 3) the path of the M-point
on the parameter plane cannot be predicted by inspection, It

can be calpulated, however, using the ordanary describing function
to define the amplitude relationships.

Po justify the choice of the describaing function as a tool,
consider the fact that parameter plane predicticns of limit cycles
are defined on the basis of a single point where the M-locus in-
terests the stabilaty boundary. This single point defines both
the fundamental frequency of the oscillation and alsc the ampli-

tude of this fundamental component. It is clear that the leoca-

tion of the M-point represents some sort of average value of ampli-

tude, since the instanftanecus value of amplitude varies cyclically
during a limit cycle., The describing function of a nonlinear
element effectively averages the response of the element to a
sinuscidal input over one cycle of operation. Thus its use is
clearly justified when system operation is periodic and lightly
damped, While not so clearly justified for other operating con-
ditions 1t has given surprisingly accurate results and therefore
will be used until a better technique becomes available.

Using the describing functions of the two nonlinearaties in
a system, a family of decribing function curves are computed and
plotted on the ®-8 parameter plane. When these curves are super-

imposed on the regular parameter plane curves, the M-locus can
6

be determined. The M-locus represents the curve alony whach the
M-point moves when the system is in dynamic operation, and it

consists of the locus of all points at which -the describing func--

tion curves and the parameter plane curves have common frequency

antersections. We choose to call this curve the l'-Dynamic: De-
soribing Fuonction Locus". The procedure and also a justification
rs as follows:

a} Assume a constant amplitude, constant ® signal at X, the
input to one nonlinear element. Using the describing
function gompute the equavalent gain of that element;
also compute the signal amplitude at the input to the
second nonlinear element, and the equivalent gain of
this second element.

b) The two eguivalent gains evaluated in (a2) determine one
point on a describing function curve on the ¢-§ plane.
Repetition using the same value of @ but different
amplitudes at X determines & describing function curve
for a constant ® signal.

¢} Repetiticn of a) and b) for other values of W provides
a family of describang function curves, each curve being
for a designated value of W,

d) These curves are then superimposed on the usual* para-—

meter plane curves. ‘The constant ~® describing function

Fourves for constant -0 and constant W are most convenient, but
constant -{ and constant uh curves can be used i1f i1t is noted that

W= wnJl—tz.
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curves wWill intexsect the constant -« parameter plane curves,
and those intersections for which the ® is the same. Define the
Dynamic Descrabing Function locus.

The nonlinear system is deseribed by one nonlinear dif-
ferential equation, ‘The procedures used hgre effectively parti-
tion this eguation into two parts, a linear part represented by
the paramatgr plane curves, and a nonlinear part represented by
the describing function curves. Then parts are "coupled” by the
parameters & and B which are the coordinates of both plots. If
the system 1s in steady state periodic motion at a given fre-
quency the-nonlipear differential eguation of the system must be
satisfied, so the linear and nonlinear partiﬁions must‘be satis-
- fied at that frequency. Thas condition can exist only at the
‘intersection of the common freguency curves. The éoints thus

defined on the “Dynamic Describing Function Locus" are deter-—
mined on the basis of steady state sinusoidal operation (unforced).
Under transient conditions the M-point moves along some locus on
the parameter plane, and we assume that the points on The Dynamic
Describing Funct}on locus apply to transient operation although
they are determined by means of steady state sinusoidal céncepts.
Experimental results indicate that this is a good assumption.
2.4 CALCULATED AND EXPEREMENTAL RESULTS

In order to verify the correctness and the applicability of
the dynamic describing function and the graphical transient re-
sponse caleulations, specific cxamples of each of the three gener—

al cases of Fig., 2-1 were investigated. The details of some of
’ 8

these examples, and the corresponding caleculated results are pre-
sented here. Simulation of the systems provided experimental re-
sults which are also presented to permit comparison between theory
and experiment,
System 1. Two nonlinear elements with identical excitataon:

The block diagram is given in Fig. 2-2. The characteristic
egquation is

s? + 1o0s? + (10N, + 10N,)s + 100N, = 0 (2-5)

and it is convenient to let N, = &, N, = B. Fig. 2-3 gives the
parameter plane plot (in ¢- and &~ curves). Since the two non-
lineax elementé have identical excitation a single dynamic de-
seribing function cuxve is obtained whaich’ as independent of fre-
quency. However, the dynamic describing function is dependent on
the specific numerical characteristics of the nonlinearities, and
Fig. 2-3 contains three dynamic describing function curves (dotted)
for three different sets of characteristics in ¥, and N,. Th;se
three curves were chosen to illustrate differxent root variations.
Fbr curve 1 a real root becomes dominant early in the transient,
for cuxves 2 and 3 complex roots are dominant, the system being
moderately damped for curve 2 but going éb a stable limat cycle
for curve 3.

caleculated and analog computer results are gaven on Figs, 2-4,
5,6. It is seen from Fig. 2~4 that the dominant real root condi-
tion cannot be handled accurately with the graphical computations,
It is not known whether the discrepancy lies solely in the graphical

9



method whaich is based on complex roots, ox whether the dynam:c
describang function also con?ributes to the errors. Research on
this point is continuing. For the cases of Fig. 2-5 and 2~6 the
galeulated results compare well with the computer results.
System 2. Two nonlinear elements related to a common signal by
a linear differential equaticn.

The block diagram is given in Fig. 2-7, and the parameter
plane curves with dynamie describing function curve shown dotted
are given on Fig. 2-8. Fig. 2-8 gives the describing function
grid needed to cbtain the dynamic describing function curve., To
obtainlthe grid of Fig. 2-9 the point Ao on Fig. 2-7 was chosen
as a reference point, and at each value of ® the amplitude of the
(assumed) sinuscidal signal at A, was varied to obtain the Wy vs
ﬁz values for a constant « curve on Fig. 2-9. The dynamic des-
cribing funetion curve on Fig. 2-8 is cobtained by superimposing
the parameter plane curves of Fig. 2-8 on the describing function
net of Fig. 2-9 and locating intersections of congtant @ curves
of the same ® value,

Limit cycle predictions of the dynamic describing functaon
curve on the parameter plane ag}ee with analog computer simulation
results. In addition Figs. 2-10, 11,12 compare predicted transient
response with simulation results.

Additional checks were run using different values for the
deadzone and saturation limits 2n the two nonlinearities, but
the detailed data is not gaven here. 1In genexral the predicted
and simulated results were in good agreement except when a real

10

root became dominant during the transient response, an which case
the frequency of the oscillatory component was usually predicted
with reasonable accuracy, but amplitudes were not, nor was the
total response time due to the influence of thas real root.

The calculations and simulations were also repeated with the
nonlinearities interchanged (i.e., in Fig. 2-7, uy becomes a
saturated element and N, a dead zone element). Using the same
technicues the results obtained were always in agreement with
about the same degree of accuracy and with the shortecomings as
previously noted.

System 3. Two nonlinear elements related to a common signal by
nonlinear differential eguation.

The elassification described as System 3 can contain a wide
variety of combinaticns of linear and nonlinear elements, of
which the parameter plane method may be applicable to only a
small subset. A specific system which belongs in this class is
shown in Fig. 2-13. The characteristic equation of this system
1S .

2 + 387 4 25 4 40KN,) (N, + JN) (2-6)
where N, =ANa + ij for the hysteretic nohl:.nearity, and we define
o= NlNa: 8= NN - The parameter plane eguations are still appli-
cable and the parameter plane curves can be computed. For the
purposes of this study only § = 0 curve was calculated, and only
the limit cycle predictions were checked. The describing function
net is regquired, and in,this case relates the NN and NN palrs

to the common signal at A on Fig. 2-13. The results of these

11



'computations are given on Fig. 2-14, which shows the £ = 0 curve
from the parameter plane eguations and the describing function

net for the cage where K = 0.15. Only one point is defined on

the dynamic describing function curve, and this 1s marked on

the £ = 0 curve at the point where the @ value on the § = 0 curve

is éhe same as the value of the constant ® descraibing function curve
passing through that point. This defines the frequency and ampli-
tude of the limit cycle, and the results agree with simulation
results.

_Wote that a change in the value of X changes the differential
eqpéélon of the system, thus requiring a new set of curves. Re—
sults were obtained with other values of K and again the predic-
tions agreed with simulation results.

2.5 COMMENTS

The results obtained thus far indicate that the parameter
plane is a useful tool in predicting the stability and response
of nonlinear systems. The accuracy available as only fair, but
is more than adéquate for many engineering applications. The
transient response predictions - in particular for systems con-
taining two nonlinearities, -~ are better than are available with
any other method.

The graphical presenﬁation of the dynamic describing function
curve oh tne’ parameter plane is potentially a valuable design
tool, It indicates at a glaﬁce the range of variations of the
roots, and thus permiits prediction of a degired location of the

describing function curve, which in turn implicitly defines the
12

required characteristics of the nonlinear element, Further
research is reguired in this area,

The technique becomes inaccurate when the transient re-—
sponse is influenced by more than two complex roots, Again more
research is required to evaluate this situvation.

it is too early to assess the true value of studying non-
linear systems on the parameter plane. Without guestion it does
make possible many types of analyses that are not readily avail—
able otherwise. However, the limitations of the technique are
not clearly defined, and it obviously is important to know under

what cenditions the methods are not applicable, or should be

applied with care.
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3.1 Introduction.

In certain classes of nonlinear systems, oscillations may
consist of a limit cycle superimposed on a constant or slow-varying

signal. These oscillations are referred to as asymmetrical oscil-

lations since the center of the limit cycle is shifted according
to the corresponding value of the constant or slow-varying signal.
In general, asymmetrical oscillations may occur when the input-
output charactexistic of the nonlinearity in the system is not
symmetrical about the oxigin, or when the system 1s subject to
forcing signals. Whén the nonlinear characteristic is asymmetric,
the output of the nonlinearity may eontain a constant term even
CHAPTER IIT though the corresponding input is a single sinusoidal wavé. if

ASYMMETRICAL NONLINEAR OSCLLIATIONS the nonlinear characteristie 1s symmetric, asymmetrical ocsceil-
lations can arise whenever the system is subject to forcing input
signals. Evidently these oscillations may take place at certain
points of the system if both conditions are present, Before the
analysis of asymmetrical oscillations in the parameter plane is
presented, the previous work and results in considering these
oscillations and related problems are reviewed.

It has been shown first by MacColl [3.1] that the introduc-
tion of an external sinuscidal signal at the 1hput to an on-off
servomechanism yields a system that behaves like a linear one for
small inputs superamposed on the sinusoidal signal. This pheno-
mena has been later investigated under various names, such as
"dither effect™, “signal stabilization", etc. Asymmetrical non-
linear oscillations has heen fcuné by a majority of authors as

the most appropriate term for the mentioned phenomena.
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In analyzing a carrzer-controlled reclay servo, Lozier {3.21
ﬁas introduced an idea to accomplish the lanesaraization of the re-
lay by a limit cycle existing in the system and without an ex-
ternal signal. Thas adea has been further developed by several
authors [3.3-3.9] and a detailed treatment of the problem has been
given by Popov and Palitov [3.8]. on the other hand, the extargai
signal application has been developed by Loeb [3.2] and Oldenburger
with his associates [3.10-3.12]. The latter introduced the name
"signal stabilization" to indicate that the nonlinear system is
stabilized in the state of sustained oscillations with suffici-
ently high freguency. The stabilization is actually a consequence
of the linearizing effect discovered by MacColl. The concept of
signal stabilization has been extended by Sridhar [3.13-3.14] to
the case of a nonlinear system which has one single-valued an—
linearaty ;n the loop, and the stabilizaing saignal is a staticnary
random process with a Gaussian distribution and obeys the eréodlc
hypothesis.

The above defined problem can be treated by dual-input de-
scribing functiogs as proposed by West [3.15]. This app;oach has
been significantly simplified by Boyer [3.16] as outlined by
Gibson [3.17]. A similar approach i1s used by Gelb and Van der Velde
[3.187, and significant results have been obtained by Atherton and
others [3.19-3.20] who made a comparison of the utilized concept
with the Tsypkin methed [3.21],

" The study of asymmetracal nonlinear oscillations has been
extensively performed in the analysis and design of a large class

of plant adaptive control systems. This class of system is

3-3

sometimes called the limat e¢ycling adaptive systems because of

the fact that the existing limit cycle is used as an identafi-~
cation signal. Some of the references on this subject are listed
here [3.22-3.26), A majority’of the authors proposed an external
simisoidal signal for identification. More recently, Gelb and
Van der Velde [3.18] have examined to a limited extent and in

a quanéitative mannexr the properties of self-oscillating adaptive
systems which have several advantages over the external adapta-—
tion, such as simplicity, cost, reliability, etc. The following-
analysis of asymmetrical nonlinear oscillations in the parameter
plane can be applied directly to self-oscillating adaptive sys-—
tems.

In the following developments, the asymmetrical nonlinear
oscillations are analyzed in the parameter plane [3.27]. the
control systems with asymmetrical nonlinear characteristics are
considered to determine stabil@ty and sustained oscillations.

The same type of oscillations is investigated in nonlinear con-
trol systems subject to constant fefqrence and perturbing mnput‘
signals. The-procedure is further extended to the analysis of
systems with slow-varying input signals. In'this case, it is
shown how a nonlinear characteristic can be modified for the
slow=-varying signals. The presented analysis i1s performed with
respect to both input signals and the values of adjustable sys-
tem parameters. The analysis procedure is illustrated by examples
in which multiloop feedback structures yith several adjustable
parameters are considered. In addition, various nonlinear

characteristics are used in exther the forward or the feedback
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path. The obtained resvlts are checked by. computer simulations
which indicate a sufficient accuracy of the presented procedure,

3.2 Basic Developments

Consider a nonlinear system described by the nonlinear dif-

ferential equation

Bls)x + C(s) F(x,sx) = B(s)E, s =& (3.1)
where B(s), C{s), and H(s) are polynomials in s and the degree of
the polyncmial B(s) is greater than the degree of the polynomials
G{s) and H(s). The function F(x,sx) descxibes the nonlinearity.

, Functron £ = £(t) is a forcing signal, which may be either a
refegence input or a perturbing signal, and it 1s assumed to be
a constant or a slowly-varying function of ‘tame.

As a first approximation, the steady-state soluticn x = x({&)
of equation 3.1 which represents the input to the nonlinearity,

is assumed to be

x = x4 %" (3.2}

where x° = xo(t) 1s either a slowly-varying funciion of time or
is constant, and x*, which is'

** = n san b, b= Gt + B, (3.3f

Tepresents the periodic component of the solution x(t). Since
8 in (3.3) merely corresponds to a shift in ¢, one can put & = 0
and use x* = & sin ﬁt

The forcang functaion £(t) is considered as a slowly-varying
Eunction of time if it can be assumed approximately as constant
ovee any cycle of the periodic component x*; i.e.,

lg(em) - g() | <« = |e(e) | (3.4)
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where the period T = 27/§}. In the frequency demain, equation 3.4

means that the fregquency §l of the periodic component x* i= much
greater (practically ten times or more) than the highest frequency
of the slowly-wvarying component x°. 1in this case, no harmonic
relation between the components x° and x* nonlinear system sub-
ject to forcing signals, such as jump-resonance, generation of
subharmonics, etc., cannot take place. The forced nonlinear os-
cillations for which the condition (3.4) is not satisfied neces-
sarily, are considered in other works.

Uﬁder the condition (3.4), the values of x°, &, and &, which
appear in the golution % = x° + A sin 1t, are slowly-varying
quantities in time, This enables the extension of the conven-
tional harmonic linearization in which the describing function
is defined for the signal x = x° + x* as an input to the non-
linear element. Thus, the nonlinear function F{x,s¥) is approxi-

mately expressed by the first terms of the Fourier series as

P{x,sx) = o+ le* + g%sx* (3.5}
where
P =k jzn F(x° + A sin ¢, AQ cos ¢) a¢ (3.6a)
o
i Zﬂh o . .
Nl == Jo P{x" 4+ A sin ¢, A8 cos ¢)sin ¢ a¢ {3.6Db)
27

N, = ﬁj F(x° + A sin ¢, AQ cos dlecos ¢ d¢ {3.6¢)

and ¢ = ¢,

As can be seen from eguations 3.5 and 3.6a, the component

F° of the cutput of the nonlinearity F(x,sx} is not considered
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zero as was the case in the analysis of symmetrical nonlinear_
oserllations presented in the previous chapter. This results
from the fact that either the nenlinear function F{x,sx) 1s not
symmetric or the system is suﬁject to an external :input signal,
ox that both facts are present in the system,

According to equations 3.6, all coefficients Fo, Nl' and N,

, are generally functions of xo, A, and &, 1i.e.,

FO'FFO(XOJIP‘HO)’ Nl = lexo,A,Q), N, = NZ(XO.A.G) {3.7)

2
For a majority of the nonlinear functions F(x,sx) encountered in
practical applications, the above functions (3.7) are obtaiﬁed
once and for all.

By applying the linearization of the function F{x,sx) given
i N X
in eguation 3.5, the solution x = X + x of {3.1} can be ob-
talned by considering the following linearized differential

equation
N
B(s) (%4x™) + o) (FOmuyx” + @ sx) = H{s)E (3.8)

ihstead of eguation 3.1. If 2, a, and £ are slowly-varying

functions of time as a consequence of the same property associated
" with the foreing function f, eguaticon 3.8 can be rewritten as twe

simultaneous equations corresponding to the slowly—varying'sig—

*®
nal x° and the periodic sagnal x as follows:

B(=)x® + c(s)F° = H(s) £ {3.9a)
N
B{s}x" + c{s) (le* +fex’) =0 (3.9b)

Lguations 3.9, however, cannot be solved independently since they

are related to each other by the nonlinear equations 3.7. Thas
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fact indicates that the applied linearization preserves the
esgential feature of nonlinear systems and that the superposi-
tion principle from linear analysis is not valid.

An analétical solution of equations 3.9 is difficult to
obtain since F° in(3.%a) is usually a trancendental function
with respect to x°. a graphical procedure is presented for
sclving equations 3.9 in the parameter plane. A negessary con-
dation for equation 3.1 to have a solution x(t) close to 3.2 is

that the characteristic eguation

N
.Bs) + c{s) (N, + ﬁz-s) = 0. (3.10)

corresponding to the linearized differential equation 3.9b, have
a pure imaginary root s = j€.
By using the parameter plane approach, eguation 3.10 can be

solved for ¢ and £ as

a () {3.11)
By

o

B

it

where & and 8 are Nl and Né oxr some other system adjustable
parameter. Equations 3.11 represent the Z = 0 {(oxr § = 0} curve
for which s = jf}, fthe I = 0 curve determines the stable region
an the «f plane in the hsual manner. After the stable region is
found, the loci of points M{®, B Tare plotted according to the
variations of @ and/or B representing Nl and/ox Nz.-The M loci
incorporates the additional variable %%, and a family of the
locyr should be constructed for diffegent values of x°, Then the

stability of the nonlinear system is determined by the relative

location of the I curve and the M loci and the limit cycles are
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‘£ound at their intersections,_ The stability of-the Limit cycles

15 determined in the usual manner. This part of the solution
pfocess w111 be hest descrlbed by the examples that follow.

The presence of a 11m1t cycle in the system can modyfy the
nonllnear characterlstlc for the slowly-varylng ;nput 51gnal
in order to determlne the modlfled charactermstlc, the 1ntersec—
tmons of Ehe E 0 curve and the M loca are consldered to evalu-
ate the amplltude A ahd the frequency Q of the limit cyale as’

- functions of the elowly-varylng component x°; l.e.,
a=ax, 2= ox% (3“12)

These functlons, when substituted into the functlon r° (x . SD
yleld the modified nonlinear characteristic for the slowly-

varying signal

° = P (x9) (3.13)

'

The function ¢(x°) 1s continuous: in a limited range of xO} whichl
indicates the smoothing éffect due to the béesence of the 1im£t
cyele.

Substitution of eguation 3,13 into equation '3.9a gives

B(s)xo

Equation 3114 is a nonlinear aifferential gquatien in'go, which
can be solved graphmcﬁlly for x° after the %unction w(xo) ;s
dbtaiqed. Thls,’in turn, yields the xelated values of the
fﬁnctions A(ko) and ﬂ(xo) of equations.B iz, end‘?he solution
x = x° + A 31n ﬂt is thereby determlned

The function ¢(x ) is a contlnuous function of x° and it can

+cs) $(x7) = H{s)£ . ' | (3.14),
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be assumed approximately linear for small variations of x?, Theén
the staﬁility problem related to equation 3.14 can be solved by
known linear methods. If it is regarded as a nonlinear function
of xo, 1t can be linearized by harmonic linearization and the
results of the previdus chapter can be applied.
It.sﬂoﬁld be noted here that the same parameter plane pro-

cedure can be used when the right side of eguation 3.1 has more

’than one forcing, functlon- i.e,, the right-hand 51de 1% expressed

by E H (s)f The solution x, however, must be found by con-~
51dei1ng all existing 1nputs sxmultaneously s;nce the super-
position prancaiple of lihear analys;s 1s not valld. Further-
more, if the.polynomial H(s) of equation‘B—l can be factored.in
the form sgi(s), the procedure appleed to the case in which the
rate sf of the:fuﬁEtion f 15 considered as a slowly-varying sig-
nal; i.e.; [sE(e+T).~ s£(t) |,

The presented graphical pxocedure can e extended to non-
llnear ‘control syStems with two nonlinear Ffunctions Fy {s} ana
inx), whereby the following nonllnear dlffe;ent%al eguation mg

investigated:

B(s)x + C(s) FyG0) + Dls) F,() = H(s)E. (3.18)

"In this case, a procedure samilar to that given in Section

*
can be extended to determine the solution x = x° + x .

The genéral pxocédure outlined an this section i1s modifred
dependlng on the actual problem involved., These problems may be

davided lntD three major groudps: asymmetrical nonlinearities;
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constant forcing saignals; and slow-varying signals., In the
following, each group 15 considered separately.

3.3 Asymmetrical Nonlinearities.

In an autonomous nonlinear system, which is described by the
differential equation 3.1 and where £ = 0, the asymmetrical os-
cillations may occur whenever the function F(x,sk) is not sym-
metrical to the origin. Then, under‘the conditions discussed in
éhe previous section, the system may be described by equations

3,92 which has the form

B(d) x° + Clo)F° =0 {3.16a)
N2 -
[B(5) + C{s) (v, + n—s)]x =0 {3.16b)

In egquation 3.16a, which corresponds to equation 3.9a, there is
ne forcing slowly-varying function (£ = 0), and in the steady-
state solution ¥ = x° 3+ x*, the x° is constant and hence s is
replaced by zero in B(s) and C(s).

In practical situations, Bl(o) or C(0) can be zero. Also,
the nonlainearity an.the system 1s often described by a single-
valued function F{x)} and N2=0. «Thus, an adjustable parametgrA
appearing in B{s) or C{s) can be chosen as one of the axes in
the parameter ®f plane, while the other axes as related to tﬁe
describing function coefficient Ny Some of these situations are
discussed in the following examples.

Consider a feedback contrel system with the block diagram
of Fig, 3.1 in whach the trangfer functions are

K2 K3
Gl(s)=Kl. G2(8)= FIFTIR G§= e G_l(s)ﬂK_ls. (3,17}

Synlen Bloel dir oo

TN

Wie,

3~11
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The nonlinearity n has the form shown inuihe-upper left corner
of Flg. 3 2. l ’
Equatlons 3,16," for the system under 1nvest1gat10n, have

jthe form

¥ =0 (3.18a)

fs(s+1) (s+z) + KK ls(s+2) + K1K2K3JNl]x = 0 (3.18b)

where, according £o the functaon F(x) of Flg..3.2 andnequationé

3.6,.0one has

Co { i. f ) ' o
0= lzm‘c + 1+$ € arc sin &

- = _ \ (3.%9a)
. = 2(1-mic X .
=S Vi & 52 (3.190)
N, 20° ) {3.1%c)

and x = x{t) is the input signal to the nonllneafiiy n as indiecated

in Fig. 3.1. .

The characterlstlc equatlon of equatlon 3. 1Bb is

s(s+1:) (s+2) + [xzx 15 (s+2) + le21<31:q1 {3.20)}
By denoting KoK Ny = & and K 1K KNy = ﬁ. the § = 0 curve is,
cbtained. as . R ' ’ .

o= %(92 - 2) T {3.21)

p= 1 + 0y |
and the stable region as determ?ned in éhe af plane in the u;ﬁél
fashlon as shown in Fig., 3.2,
From equations 3.18a 'and 3.19a, one obtains’
'xo = A cos —— i3.2él
L 1+m : '

3=13-
and Nl of equatmén 6.10b becomes
- 2{lim)c T .
Nl . Sln'fﬁﬁ (3:231
By usihg egquation 3.23 and the expressions o = K K_ M),

B = KyK,Kqif, , three M loci {a), (), and {¢), are draim in Fig:
3.2, Tﬁey coirespond to thé parameter values m = 0.5, ¢ = 1,
Ky = 1 and (a) K1K3, K_y = 0.125: (b) K K, = B.39, K., = 0.28;
(<) Kl 3 = 286, K; = 1.75. »The stable asymmetrical oscillations
are found at the p01nt Ml and My .where the M loci {a) and {b)-
intersect the & = 0 curve. The ampiltuﬁqs of the.oscmllatlons are

approxamately Al = 0.85 and A, = 0.8, whicﬁ ig read from the

"M loca (a) and (b) at the—lntersecﬁlons My, and My, The corkés

'pondlng frequencles f& ="1, 5 and SE =1, 6Aare 1ndzcated on the

¢ = 0 curve, The related'values of x” in the solution x= >c+a sin Bt

is caleculated for each point M, and M, using equatlon 3.22, ndmely,
O _ _o a5 s .90 o i ’ ’

x = 0.42 and Xs C.39.

In Fig. 3-?:'the solution Ki = 0.42 + 0.85'sin 1,5t ‘for the .

.case (a} is shown as cbfained by a digital computer ‘simulation,
. The calculated results are suff1c1ently close to that obtamned

by the s;mulatlon. From Flg. 3 3, it can be seen that an 1n1t1al

‘condition xl(o) = 4,25 1s used and Fhe variable xl(t) approached
a stable limit cycle. That the limdt cyele 1é.stable and will be
reachéa by xl(t) staréing from xl(o) = 4,25 can be concluded from
the relétive location of the t = 0 cutve and the M locus (a), as
explained in the prepeding chapter on the symmetyical oscilla-
tions, Tﬂe_addltlonal compénéht go of the solution x&é) does

not alter the stability anélysés of thé oscillations,

1
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Bn analog computer simulation &f the case {b) gives the-
solu;ion Xy = -0.39 + 0.8 sin 1.6t as shown in Fig. 3.4. A §u§;
ficient accuracy is indicated. The initial condition xz(o) =0
and xz(t) reached a lamit cyg;e. This could be concluded from
Fig., 3.2 as previously noted,

It is of particular interest to cons}der the cﬁse {c) of
Fig. 3.2. The M locus (<) ls‘tangent to the = 0 curve and cor-.
responds to the ratio &/f = KyKy/K ) = 14,8, If thig ratio is

haigher than 14.8, then there 1s a limit cycie as shown by casés

(2} and (b). On the other hand, if this ratio is less than 14.8,

the entlre‘M locus 18 situated in the'stable region and’'the cor-
responding system is always stable. The tangent case (¢):

m=0.5 ¢c=1, K, =1, K1K3 = 26, K g = 1.75, is simulated on

2
a digital computer and the obtained solution xi(t) igs shown in

Fig. 3.5, which indicates that the system s atable,

3.4 COnst§nt Forging 51gnals'

Wﬁen the forcing signal at certain points of a nonlinear
system is constant, the solution x = x° + A sin Qt{af it eklsts)
will have x°, A, and  as constant values. To determine these
values, note that the eguations to solve in the presence of a

constant forcing signal £° have the form

Bla)x® + c{o)F° = H(o)£° {3.24a)
N2 %
(B(s) +.cls)N; + 47 s) k" =0 {3, 24b)

Tn general B{o), C{o), and H{o) are constants different
from zero, and the solution procedure is somewhat more compli-

cated to perform than in the prev-~-- mambian whava tha rier
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side of equation 3.24a was zerdy
To 1llustrate the solution procedure, consider a nonlineax
feedback system\with the block. diagram of Fig. 3.6 and the trans-

fer functions

. ' ¥
2 0.5(s41) -1
G (5) = . G (S) = , G = —
1 0.2s%+0.8a41 2 . 0.2s¥l 7 "ol T sl
(3.25)

The nonlinearity n is given in Fig. 3.7a. The input to the system
1s a perturbation signal £ = £(t} which is related to the signal

x = x{t) and ¢ = ¢(t) of Fig. 3.6 as

(0.2s41l)c = 0.5(s+L)x-£ (3.26)

1f the perturbation signzl is f(tfa £° = const., equations 3.24°

have the form

x° + K_;F° = £° {3.27a)-

(0.04s% + 0.365° + 25% + 20) (). 4842)K 1N, +

+ 0.048° + 0.365% + 25 4 2 = 0 (3.27b)

where equation 3.27b represents the characterlstic equation of the
linéarlged equation 3.24b. By substituting T_; = @ and K_;N, = B,
the parameter plané'dlagram is plotted in Fig. 3-7b according to
the parameter plane equations

0.648F + 3.2

&
0.0166% - 0.085F -4

[ _ 0.0166F ~ 0.03¢F 4 2.5667 4 4

(3.28)
o016t - 0.080° - 4
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ation of the M point dus to the fanction Ny = ¥, (%% A)

o o
= k i DX D
% - glarc sin === + are sin =0

"

px® i _ (2252, pex® A= e

e = S > 32, a=p + 12°]

{3.29)

{The expression (3.29). corresponds to

plotted in Fig.

the nonlinearity ¢ Fig. i.7a). In order to find a solution
-
« = x> + x" of equationa 3.27, the parameter k is assumed equal

to one, and the function F?(x°, A) is plotted in Pig. 2.7¢ by

uaing
o kA f _ D= E =]
| i |y 1 + kx4
o o
" %En{arc sin n;x D:x ) -
[} o
- x°(are min ZX- 4+ arc sin 2297, A% + %21
(3.30)

For T y-= 0.04, the point H1t0.04; 14.3) corresponds to a
solution x = %2 4 % which will have 0= 12 rad/sec as indicated
on the curve { =0, If K 4 = 26, from My it follows that

Ny =8k = 0.715. This/velus of Ny determines the relation-

1
ship betweon the values of %% and A for a possible solution x.
This relationship, expressed as a function A = A(x"), can be
graphically obtained from the diagram Hl - Nl!xn, A) by plotting
the strajght line PLFZ corresponding to the value N1 = 0,715.
The function A = A!xD} representn the solution of equation

3,275 pnly. The pair of values {x”, A) which enter into the

actunl solution of equation 3.27, is replotted on the diagram

n

)
(E”igv'

Fip, 3.8 - Bysten block dimsrar
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7 = P?(x°, A) of Pig. 3.7 into the curve P{R}. Suppose tt-c

the constant perturbing sigmal has a value of £ = 11,75: then
equation 3.27a determines the straight line £ = 11,75 plotted
in the diagram P2 = 2(x°, A) of Flg, 3.7d4. The intersection R
of that straight line and the curve 9i’i gives the pair (x°. A)
of the solution %(t) which satisfies equation 3.27 simultanecsely.
At this point R, the values are *%/D = 1,35 and A/D = 1, The
same values are obtained at the point Q on the diagram N, = :Il{xu.ll
and the solution x = x° + A sin Ot of equations 3.27 is found.
If D=1, it is x = 1.35 + min 12t, HNHote that the same solution
is obtained if the point M, of Fig. 3.7b is considered save that
the frequency 0 is lower (approximately O = 5.5 rad/sec).

Simpler situations may occur if one of the values B{o) or
clo) is zero. To illustrate, consider the nonlinear system of

Pig. 1.8, The transfer functions are
K

o ls) = ‘-;—g. G_ (8] =K ;8

52
Gylm) = Ky, G,l8) = oreey, >

(3.31)

and the nonlinearity n in the system im given by the function
F(x) of Pig. 3.9. The input to the system is the reference con-

stant input signal rit) = r°.

The nonlinear differential equation describing the abova
system is
1 Ay 0
[e(a1) (s42) 4K KoK, DO G m(ne2) Fix) = KiK, (242)x
(3.32)
which may ba rewritten according to equationn 3.34 as

. 0 o 5.0
Ky R 2r (3.33a)
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.
[a(s+1) (+2) + KKK, + KoK s(s42)N, Jx = 0 (3.33b)
The characteristic equation of the equation 3,33b is evidently

a{s+l) (s+2) + “1“253 + KZK_JB(B+2)}!1 =0, {3.34)
By denoting

a = N
B (3.35)
f=x

3
the parameter plane diagram is plotted in Fig. 3.10 in the usual
fashion. The function Nl = Hl{j\,xoj, which appears as a varia-
tion of @ in the point M({a; 8) is plotted in Pig. 3,11 by using
general ‘formula 3.6b.

From egquation 3.33a, one can derive the following relationship
between the input r”, the constant term x°, and the parameter
B=xg,

88 = 3-52 (3.36)

% /5

where S is the parameter of the nonlinearity F(x) of Fig. 3.9. The
function 58 given in (23.36) is plotted in Fig. 3.10,

Now, by using Pig. 3.10 and 3.11, it is possible to determine
the sustained oscillations and their stability for various values
of system parametors Ky, K, Ky, K_j. 5, K, and the input 1. For
example, if I-{l -1, F.: = 10, K

3 =175 K4 =1, 8=1, k=1, and

e? = 1.1, then the solution of equation 3,33 ia determined by the
values %" = 1.2, A = 0,3, and 0 = 2.1 rad/sec to be approximately
®'m 1.2 + 0.3 min 2.1t (3.337)

Por a given value of A = Ky = 1.75, 2 = 1,1, and § = 1, the value

of x* = 1,2 in read from the left part of Fig. 3.10. Then the

20~
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value af Kl“z’ = 17.5 detarmines the point M(1.2; 17.5) on the

{ = 0 curve where 1 = 2.1 rad/sec. At this point, KK ,0 = 1.2
which gives N) = @ = 0,12, Pig. 3.11 is veed to evaluate the
amplitude A = 0.3 from the curve %°/8 = 1.2, The value A = 0.3
is read directly from the diagram K, (A, *x%) of Fig. 3.11, since
K = 5 = 1 are the parameters of the given nonlinearity in Pig.
3.9.

qhe solution (7.37) 1: stable since an increase in the
amplitude A causes the point M to move into the stable region:
while a decrease in the amplitude A places the point M inside
the upstable region of the parameter plane (Fig. 3.10). 1t is
of interest to note that if the produce K, K,8 vhere B=k,is
such that it is less than 6.4, the system is always stable since
there isno intersections of the variation of the M point and the
£ = 0 curve,

The above solutien (3.37) is checked by computer simulation
to obtain the curve on Pig. 3.12, The accuracy of the calculated
solution is sufficiently high and, for calculated values of % Ry
and 0, is spproximately 10%. On the other hand, the computer
solution indicates a distortion of the assumed solution
% = %2 + A sin (& which is due to the higher harmonica present
in the actual solution.

3.5 Slowly-varying Signals -

in this section, the problem of linearizing a nonlinear

system by a high-frequency limit eyele is considered in more

detail, The cbjective is to determine the conditions under which

clt)

G3ls)

!T'II

x(t)

Gz(s)

G- (s)

e

Fir. 3.13 = Systenm block dimrran
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such a linearization is possible and then to construct the
linearized characteristic of the nonlinearity. This lineari-
zation has several practical aspects discussed in Section 3.1,
which are based upon a genoral property of the linoarized system
that, for a limited magnitude of the reference signal, behaves
like a linear system, ‘Therefore, results of the nonlinearities,
such as dead-rone, hysteresis, backlash, ete., are eliminated,
The procedure to achieve this will be best illustrated in the
following examples.

Consider the system on Fig. 3.13 with the transfer functiocna

K.
Gy (8) = K, Gy(8) = — + Gyis)= ‘(‘+§]. 6y l8) =%,

2
+0,8s+1
(3.38)
and the nonlinearity n as shown in Pig. 3.14. The input to the
system is o slowly-varying reference signal r = r{t).
The equation which describes the system is
Ts(n+ll[52rﬂ_ﬁum!]&%zx_ln(ﬁ+1}1! ¢ KKK F(x) = K Kye(sel)r
(3.39)
where the mignal x = x(t) is the input to the nonlinearity, Egua-—
tion 3.39 can be rewritten in terms of equations 3.9 as

[n:n4]}{FZAO.RF‘EjtkﬂK_Iu{n41:)x°¢K‘R2K3F” = KyK 8 (0#1)r

in(n+1]In2+ﬂ.ﬁn+ll+ﬂzk_15(3¢i}|+K1H2K3H: x =0 {3.40)

The characteristic equation of the necond equation 3,40 is
2 3 e "
nintl) (= +0.B541) 48, K_ya(s+l) + KKK H) = 0 {3.41)
SubatiLuting NZR-L = a, I-‘IK.,M‘NJ = 8, and & = 10 into eguation

3.41, one obtains the parameter plane equations of the [ = 0 eurve
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as
o= 1.8 i)
{3.42)
B=o0.8 O+ 1),
The curve £ = 0 is plotted in Fig. 3.14. The variations

of the M point are plotted also in Pig. 3.14 according to

w =A@ Az ke {3.43)

-
The system parameters K, = 1, K, = 12.5, K, = 10, By =1

result in the point uluz.s: 45). If c = 1, this point M; gives

H = B/K K, Ky = 0.36, and the straight line PP, is plotted on

the diagram of function K, = Nltxo, A). After the diagram

F® = F®(x%, A) is plotted in Fig. 3.15 using

o
[ 3:— arc sin % A= 132 (3.44)

the replotting of the straight line PP, on the diagram P (x°, A)
yields the function {:c°'.l of Pig. 3.15. The replotting procedurs
is the same as that used in the previous section; i.e., for each
pair of values {x%,A) read on the straight line "192' the cor-
responding pair exists in the diagram Pptxr". A), which determines
one point on the curve o(x%).

Function ttxa} of Pig., 3,15 is smooth and represents the non-
linearity for the slowly-varying signal x°. fThe shape of o lx°]
explains the smoothing effect of the high frequency limit cycle
which has a plowly-varying amplitude, the value of which is
located botween the points Q.l el (;t3 on the A axis of Fig. 3.14.

The frequency 0 is approximately constant and has the value

v 2.7 rad/nee. According to $(x7), the smocthing effect of the
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limit cycle is present under the condition that x|« 2.25. ror
small values of xo, it is possible to connider t{xol - Kxo where
K = const. Then the stability of the system with respect to

slowly-varying signals may be investigated by well-known linear
methods outlined in Chapter II. In the specific example, the

equation of interest is

s(s+1) (8240.8841) + KK_;5(a+l) + K KKKy = 0 (3.45)

Finally, it is to be noted that for the smoothing effect to take
place, the amplitude A should be A = !x"’l. as stated in equations
3.43 and 3.44.

The results of the above analysis are checked by simulating
the system on an analog computer, Three cases are considered.
In Fig. 3.16, the input to the nonlinearity x = %% + A ain O
and the system output x = x(t) are shown when the input signal
is r = sin 0.lt. The cbtained computer solution agrees with the
prediction. The output e(t) exhibits a smaller amplitude limit
When the input amplitude is in-

This

aycle with the same frequency.
erensed five times, the diagram of Fig. 3.17 is obtained.
change increased x°, but the amplitude A remained almost the
same. The frequency 0 did not change. Similar results occurred
when the input amplitude increased ten times except that the

amplitude A bLecame slightly smaller, which agrees with the dia-
gram of Fig., 3.14. The third case is given in Pig. 3.18. It
should be noted from these computer smolutions that the output
signal o(t) represcnts the input signal r(t) except for the

superimposed limit cycle, It can bo eliminated by introducing
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sufficient filtering in the block Gih’! of the system of Pig. 3.13,
or by readjusting the system parameters to obtain a higher fre-
gquency limit cycle.

1f the values of the sy

P ers are ch so that the
operating point is Hzizl.Z: 120) of Fig. 3.14, the Frequency of
the limit cycle becomes higher. However, the corresponding range
of variations of x° is decreaned to |x°] < 0.7, together with the
range of the amplitude A which is between QJ and q‘. This indi-
cates that the presented procedure is convenient to apply when
the system parameters ane operating conditions are changed.

1f the nonlinearity n is changed in the system of Fig. 3.13
by introducing a considerable dead zone D, a diagram of Fig. 3,19
is obtained. The variation of the M point is calculated by using
equation 3,.6b for the given nonlinearity of Fig. 3.19. Two cases

should be considered secparately: i.e.,

LILERT]
Ny = i—:‘rfll-t"l—*niz e e M Pl (3.46a)
N, = %% ,.{_(*_;Eﬁ" 12°]-p = a =]x°|+p {3.46b)

and the diagram Nltxo. A) is shown in Fig. 3.19. By using egua-
tion 3.6a, the corresponding diagram P(xo. A) of Fig. 3.20 i=s

plotted according to

o,
-b
tare sin 522 4 arc sin XT" A #1x®| + D (3.47a)

aln

(g- 4+ arc win )sin xu. ]»Di—l) $A = ]x°|a-D

aln

(3.47b)
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If the points My and My are shosen in Fig. 3.19 as operating
points, the replotting of the stiaight lines Py and PP, results
in the two linearized characteristics a and b of Fig. 3.20, re-
spectively. They are con tructed for the values of nonlinear
parameters c = D = 1, As can be seen from Fig. 3.20 the dead
zone is eliminated as far as the slowly-varying signals are L}
concerned. For this to take place, it is necessary to choose
cperating conditions such that equation 3.47a is valid., fThis
means that the amplitude A of the limit cycle must be greater
than |x°|4-tl. Otherwise the linearized characteristic I'u!x°} doea
not go to zero when %x® = 0 since F° does not go to zero for
This is indicated in Pig. 3.20 whereby F” = 0 for x° = 0
and the dead zone is eliminated.

%% = 0,

By the outlined technigque, it is possible to eliminate the
hysteresis and backlash in systems with multi-valued nonlineari-
ties. The linearization yields a single-valued function B ix%)
which is linear in a certain limited range of values of the vari-
able x° about the origin. To illustrate this, consider a non-
linear system with the block diagram of Fig. 3.21 and the trans-

fer functionn

Glll] "’-‘;ﬂ—x(‘l;ﬂ——. 6, (a) = K 38 3.48)
The nonlinear function P(x) of the nonlinearity n i=s given in
Plg. 3.22]
The equation describing the system is

s(a+l) (842)8 + (K_,8_ K F(x) =0 (2.49)

Aftor harmoniec linearization of 3,49, the corresponding
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characteristic equation is

H.
s(s+1) (542) + Ky (K_ja+d) (§) + #a) =0 (3.50)
TEX) = 50, K_; =1
o= ny
{3.51)
B=n,
and s = §0, one cbtains the { = 0 curve as

o= i

50
8= Lo {3.52)

The curve is plotted in Pig. 3.22. On the same plot, the varia-
tion of the point ntnla n,] is constructed according to

Ny = 2 B2 4 A-BEG T A s s 16

1, = - 30 {3.53)

A
and the nonlinearity F(x) of Pig. 3.22 for whichc = D= 1. From
the intersections of the { = 0 curve and the variation of the M
point, one can determine the amplitude A and the frequency 0
as function of x%; i.e.,

A = A(x9
= (x2 (3.54)

Then, by using the expression -

= %{qrc sin

o o
D;x = arc Ein %h Ao+ %% (3.55)

for ¢ = D =1, a family of curves with constant amplitude A is

plotted on Fig, 3,23, 1f the first equation 3.54 is mapped onto
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the family of constant amplitude A, the funct;on &{x } is ‘
ocbtained as shown in Fig. 3.23. The function ¢(x )} as a 51ngle—
valued funptionlof x°, which is linear in the range Os§x°|$,2.4.

_ For an input x{t) = 5 sin 0.5t, the_computgr solution is.
shown in Fag. 3. 24, The amplitude A and the érequency ! of the
limit cycle are slowly-varying quantltles accordlng to equatlons
3. 54 and the slowly—vaxylng varlable %2, ThE1r average values,
however, are close to that which cah be predlCtEd from the parameter
plane diagram of Fig. 3.22: i.e., A= 2 g and £ 2 4.5 rad/sec
This can be concluded from the diagram {z) of Fig., 3.24. On
the diagram (b}, the output signal, ¢{t) 1s shown whereby “the
lamit cycle is 1arge1y attenuated by the hlock- Gl(s) of Fig. 3. 2%.
The low-frequency component in the signal c(t) represents the .
anput r(t{-= 5 sin 0.5t at the output of thé system. '

Of course, if the input r{t) as not‘present, the system
wall exhibit a l;mlt cycle which can be determlned ‘from the intexr-
section of, thé M locus %% = 0 and the ¢ =0 curve on Fig. 3.22
as x = A sin t, A = 2.6, 1= 4.8. This i1s checked by the analog
computér gimulation and the obtained solution is shown on'Fig. 3.25,
3. 6 GQonclusgich . . . '

' The parameter plane meﬁhod has.been used to aindicate ex-
istence of asymmetrlcal oseallations in nenlinear control systems.
A proceduré has been developed to determine the osc111at10ns for

‘different values of system parameters and input signals. It has
beén shown how a 1limit cycle ¢an modify the nonlinear character-

istic for slowly-varying signals. Thas modification may be of

3-51

importance when a hléhhacéuracy cont;ol system has'to be de-
signed in the presence of nonlinearities with excessive de;d
zéne, hysteresis, back}ash, ete. The design tecpniqﬁa éan be
directly app%iéd to~a large class of plapt~adaptiv; contrql sys
tems where a sinusoidal signal is used ag an 1dentificéé%9n sig-
ngl. I '

In & futPre study, the technique may 'be extended to the an--
véstigation of tramsient asfmmetrical osdillations. Thﬁs,:to
study how these ogcillations are established after*ce}@éih ampi;
tude pérturbation, this study shoﬁ;d be largely based upon the
matexial presented in the following chapter: - ’

It may also'be shown [16, 17] that the presented andlysis.é%n
be extended to the case when the signal superlmposed on ‘a 51nu501d
is not,only a constant or slowly—varymng 51nu501&, but also when
the addlt;onal slgnal is descrlbed as a Gau551an process, pro—
vided that the amplatude or standaré devaiation of ‘the addltlonal ’

SLgnal 15 of no conseguence in the analysis, Thls further gener-

ates the idea of applylng the dual~input descrzbmng functlon

. [15,17] along | w;th the parameter plane method,,and 1nyest1gates

the case when the input to a nonlinearity of the system ig'a *

combination of two similar sinusoidal SLgnalé.
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