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INTRODUCTION
 

Classical techniques for analysis and design of dynamic
 

systems are largely restricted to cases in which only one para­

meter of the system is adjustable. As a consequence complex
 

systems cannot be treated adequately with classical techniques.
 
* 

Algebraic methods, as developed in NASA CR-617 are capable of
 

treating systems in which two parameters.are adjustable, and
 

thus permit analysis and synthesis of systems which are too
 

complex for treatment with cflassical methods.
 

The treatment of algebraic methods presented in CR-617
 

develops the fundamental theoretical basis for the coafficient
 

plane and parameter plane methods. It also applies these
 

methods to basic problems such as stability-analysis, cascade
 

compensation of systems, and related topics. The applications
 

indicated in CR-617 are rather elementary, i.e., the problems
 

considered illustrated the procedures to be used but were not
 

very complexs roblem. This report is bas5d on the findings of
 

CR-617, and extends the application nf 1-he alabrain ieijfincds to
 

problems of a mbre dorplexhature.
 

When cascade comnensation is used in a feedback control
 

system, more than one filter section may be required to achieve
 

desired performance. Frequency response methods involving trial
 

and,error are often used, but parameter plane methods permit
 

analysis and design without trial and error if it is permissible
 

* 
Algebraic Methods for Dynamic Systems by G., J.. Thaler, D. D.
 
Siljak and R. C. Dorf, Nasa Contractor Report NASA CR-617,
 
Nov., 1966.
 



to use two identical filter sections. This problem is treated
 

in Chapter I of this report. The applicable parameter plane
 

equations are derived and a digital computer program based on
 

these equations is presented. The program is,used to study the
 

effects of compensation on several systems.
 

Chapters II and III are concerned with nonlinear systems.
 

Conventional methods such as frequency domain analysis of sys-.
 

tems with the Describing function have proven useful when the
 

system contains only one nonlinearity (or several nonlinearities
 

conveniently located so that they can be incorporated in one de­

scribing function). These techniques can define stability and
 

estimate relative stability for fairly complex systems as long
 

as the contditons of nbnlinearity are not'tbo complex. Such
 

cases are/easily treated using algebraic methods, the effect of
 

the nonlinearit§ being represented as a movement-of the operating
 
% • T , 4, 5 ,t 

point on the parameter jlane', which'in'turn represents a varia­

tion of the characteristic, roots as a function of signal ampli­

tude. The algebraic methods are capable of extending such analy­

sis to systems containing two distinct nonlinear components, and­

can be used to predict the transient response of the system
 

rather accurately. Techniques for such problems are developed
 

in Chapter II.
 

Chapter III is concerned with a much more difficult non­

linear problem, that of asymmetrical nonlinear oscillations.
 

These are oscillations consisting of a limit cycle superimposed
 

on another signal. The problems studied on the parameter plane
 



involve steady-state operating conditions (rather than transient
 

conditions), and permit analysis of the existence of oscil­

lations as well as their dependence on parameter values &nd in­

put signal values. Extension to linearization with either
 

signals is included, as well as some design considerations.
 

It is felt that the results presented here indicate the
 

capabilities of the algebraic methods in dealing with complex
 

linear and nonlinear problems. It is also felt that the re­

sults presented here will be directly applicable to a number of
 

practical problems, and will point out avenues of approach to
 

still additional problems.
 



I 

SOLUTION OF EQUATIONS WITH COEFFICIENTS 
THAT ARE QUADRATIC IN Y and 8 

1.1 INTRODUCTION
 

It has been shown that the characteristic equation can be 

solved for a = a(C,w ) and 8 = O((C ) whdn the coefficients of 

the characteristic equation are of the forms: 

a) ak= b k0!+ cikR+dk
 

b) ak =b jkBY+M+hoB"+d7 k (1) 

) % =bk2 
2 + bak1 + hb B + ck1 + ck22 + k 

d) ak =,bknan + bk(n-i)an-i + . ." (n- 1 ) n-18 + 

8n-i n+d 
k (n-l) kn 

In addition practical solutions have been obtained for the first
 

two of these coefficient forms, i.e., computer programs have been
 

written for them and successfully applled. 'The development to
 

be presented here is a particular solution for case 1-ic, parti­

cularly in the sense that a computer program has been obtained
 

which solves the equations of a third order system for which the
 

coefficients are quadratic in a and 8, but which do not contain
 

all of the a and B ,combinations indicated. At the same time the
 

solution is a general solution in the sense that the projram ca
 

be modified to solve the equations of an n th order sy,stem, an(
 

can also be modified to accept all of the a and 8 forms indi­

cated in
 

bk2a 2 2\ = + bkl + h'Y +ckl8 + c 2 + c 

The modifications to be made in the program are discussed, but
 

the necessary programming has not been done.
 

I
 



1.2 	 THE PROBLEM: Cascade Compensation with two identical
 

filter sections.
 

In the design of feedback control systems it is common to
 

use compensators which are filters placed in cascade with the
 

main transmission path. Frequently two sections of filter are
 

needed, and if identical sections are used with an isolation
 

amplifier so that their transfer functions can be multiplied.
 

then manipulation of the transfer function equation provides a
 

characteristic equation in which the coefficients are quadratic
 

in z and p, the zero and pole of the compensators. For example
 

let:
 

K (1-2)
 
s3+Xs2+ys
 

(1-3)
G (.s+z2 - s 2+2zs+z2 

2
a s+p 2 213

S2,+2ps+p 

-! '2 
l+G G= jK( +2zs+z2yt0=1+c+-3G2 1 2' 2 (1-4)

0(s +Xs +Ys)"(s 2ps+p 

from which the characterlistic equation is 

2s + (X+2p)s (p2+2Xp+Y)s +(Xp 2+2Yp + K)s + 

+ (Yp2 + 2Kz)s + Kz2 0 	 (i-5) 

AA
 
Letting p = a and z 8 it is noted that all of the forms speci­

fied in the quadratic case definition of ak do appear in at leas4 

some of the coefficients except that there is no a8 product term. 

The formulation just given does not conform to normal con­

trol system practice, however, in that an important restriction
 

on the design of the compensator is the usual requirement that
 

steady state accuracy must be maintained by keeping the error
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coefficient unchanged. To do thisthe physical adjustment is to
 

alter the gain of the amplifier, but in the mathematical analysis
 

it is more convenient to include this restriction in the transfer
 

function of the compenisator by defining (for this case)
 
G = (1)2 (s+z) (1-6) 

c z s--p" 16 

This alters the algebraic form of the characteristic equation
 

which becomes:
 

K() 2 (s2+2zs+z 
2)
 

0=1+z

0 1+ 3 z2 2 2
(S +Xs +Ys) s +2ps+p 

(s3 +Xs 2+Ys)Ss2 +2ps+p 2)+K Z s2+2zs+z 2) 

z2 
3 2 3p 2 22 

= s +(X+2p)s4 + (p)2-Xp+Y)s +2Yp+K( )"s' 

z 

+ (Y2+2K)s + K82 (1-8) 

In equation 1-8 the coefficients are quadratic in a and 8,
 

but there is no term of the form bkl0, and the program as written
 

does not make provision for such a term, though modification of
 

the program to include it is not difficult. The problem to be
 

studied, then is that of a third order system compensated with
 

two cascaded identical sections of filter, and with the added
 

requirement that the error coefficient be maintained constant
 

at a predetermined value.
 



1.3 DERIVATION OF THE GENERAL THIRD ORDER SYSTEM 

RELATIONSHIPS
 

The general third order system is defined by the transfer
 

function
 

K (G(s) = (s+A) (s+B) (s+C) 

which is a Type Zero system, but which can be changed to Type
 

1, 2, or 3 by setting one or more of the poles to zero. The
 

compensator transfer function, including the-gain multiplier
 

which maintains the error coefficient is
 
(p 2 s+z 2 p2 (s2 +2zs+z2) 
G (;) _- 2 (1-10)c z s+p = ('s2+2ps+p2 

From 1-9 and 1-10 the characteristic equation is
 

Is 3 + (A+B+C)s2 + (AB+BC+AC)s + ABC](s2+2ps+p2)+ 

+ ls+z-- 2 = 0 (1-11)
2 

This expands to. 

5 + (A+B+C+p)s4+ FAB+BC Ac+2p(A+Bc)+p 2 ]s 3 

± BC+2p(AB+BC+CA) + p (A+B+C) + K 
z 

+ [2pABC+p2 (AB+BC+AC) + 2Kp (P)]sp2 (ABC+2K) 0 
A
 

A a
Let p -- z 

A+B+C £ r i = sum of roots (poles) 

=AB+BC+AC, i = sum of root products taken 2 at a time 

Fr sum of root products taken n at a timeKr,
n 3-

ABC A r. products of the roots
 
- 1 poduct 



Then equation 1-12 becomes: 

, + ( i + 20)-s4 + nI r. + 2jr.,+I3)s 3 + 
2 

2(U ri+2x 	fl r. + riP 2 + Ka 2 )s + (1-13) 
2 

2(211 r i + TI r i 2 + 2Ka )s + (U r.+2x) = 0
2 

Collecting like terms in a and 3: 

C2,(Ks2) + uP(2Ks) + 02(s 3+ Zris 2 + r.sr + r.+K) + 
2 1 

2+ P (2s4 + 23r s3 + 21 . r s + 2 Th. s) 

+ (s5 + Iris4 + f s 3 + n 1 s 2 ) = 0 (1-14) 
2
 

Using the basic parameter plane relationships:
 
n 

(1-15)
S(-1) ,k akOk kC_lC) = 0 

k=0
 

n,

(1T)k a/w Uk(C) = (1-16) 

k=0 

and defining: 

B21 =W 1 (f) (1-17) 

B2 2 K2 (.0 (1-18) 

22 = -2KWU (C), (1-19) 

n2 =-2KWU 1C(0 1-20) 

2 

* 211 -2yr WU(C) + 2x n ri 2 U12u,4(C) 
2 

- 211 ri WUo(,) 1-21) 

E1 2 =2W
4U4 (C) -23iu (C) + 2X 

2
U rJ.W2 U2 (C) 

1)
-217 riWUl 	 i-22) 

5 



~27~~~,+ Z2~h? -0 .W 

+(fl r +K) _ ) (1-23) 

Er-(w2u (r) -N r.WU1 (V) 
F 2 2 qu a23f-)+ 

+ ( Pr+K)U(C) 	 (1-24) 

* _5wu4()+ 1rwU(Criw4u3(c) -S112 r iW32U2 (C)= i) 

+ 	 r iw 2ul (U) (1-25) 

W5 ? W3
* = -W U (C) + £J 44I.-i -L 2' r.Wu<?3 

+1 r W2 U2 () (1-26) 

P1 OD1 (1-27) 

P2 = D2 (1-28) 

+ +Q1 = PE 1 1 F 2 1 G1 (1-29) 

Q2 = E12 + 02F22 + G2 (1-30) 

This results in 

Q2B21 + aPI + Q1 =0 (1-31) 

Y2B22 + aP2 + Q2 = 0 (1-32) 

which are two non-linear algebraic equations completely general­

ized in terms of the uncompensated system poles and root locus
 

gain, (',w and the first kind of Chebyshev Functions. These
 

must be solved simultaneously for the correct values of a and
 

P. To do this, the method with the best chance of success
 

appears- to be Sylvester's Method in which we form a set of four
 

equations by taking the original Equations (1-31) and (1-32) and
 

forming two more by a multiplication with Q!giving:
 

+
!2B21 + UP 1 Q1 = 0 (1-33)
 

aB22 + UP2 + Q2 = 0 (1-34)
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a3B21 + 0!2 P1 t 'Q, 0 (1-35) 

32 222a 3 B2 2 + a P+ aQ O (1-36) 

Now placing these equations in matrix form: 

o B P Q 

21 1 12 

0 ­ 1B2 2 P 22' 2 

B21 P1 }2,Q1 K 0 - 0 (2-37) 

1
P2 Q2' 0B22 

!'s are not' ero then: t f ,
If the 


0 B21 P1 Q1
 

0 B22 P2 Q2
 

(1-38)
*21 P1 Q1 0 


B2 2  P2 Q2 0
 

Expanding this determinant
 

-B 2 
 2 2 B
 
2102 + B2 1 B2 2 Q1 Q2 + PIP 2B 2 1 Q2 - PIQ 2 2 2 + '2B21B22 

22 2 
-QI22 - QIP2B21 + QIPIP2B22 =0 (1-39)1 22 0 2 2 II 2
 

Substituting equations (1-27) through (1-30) in equation (1-39)­

2
 

provides a fourth order equation in 0:
 

4 2 2 2
 
(-F22B21 + 2F21F22B21B22 + D1D2F22B21 -
F22D1B22
 

22 2
 
F21 22 21 2 21 
 1 2 2 1B2 2) + 

3 2(-2E 1 2F 2 2B 2 1 + 2ElF 2 2B 2 1B 2 2 +2F 2 1 E 1 2B 21 B 2 2 + 

2 ,2 
F
D DE B -D 2E B - 2E B2
 

1D2E12B21 1 12B22 11 21B22
 
2 

D2!E B + D1D2ElB +2 11 21 1 2 11 22~ 

2 22 2
 
-221 2F2 2 G2 B2 1 + 2EIEI 2 B2 1 B2 2 +2F 2 1G 2B 2 1 B 2 2 + 

7 



2 2 2
 
2F B B D D-2lGB -B2 B22G1F22B21B22 + DGB1 2G2B21 - 12B22 11 22
 

2 2
2F GB 2-_D2G B +D'D Gl +F21 122 - 2G1 21 + 2 J22) + 

0(-2E G B2+2E G B B + 2GB B B 2E G2 + 
12 2 21 11 2 21 22 12C12 21B22- 211GB22 

.22 22 
<(G2B2 + 2GIG2B B - G22B ) =,O (1-40)S2 21 1 221 22 1 22
 

from which the coefficients may be determined by a substitution
 

of (1-17) througt' (1-26)'and'thevaluYesof the first kind of
 

Chebyshev functions in terms of- and w. Since the solution of
 

a fourth order equation is at best difficult, it is at this
 

point a digital computer'beoies a'necessity.
 

The major problem is not the actual solution of the quartic
 

itself, but rather the proper choice of one of the four solutions.
 

There are two marked characteristics, however, which help in the
 

selection. These are:
 

a) Complex answers to the quartic have no physical signifi­

cance and may therefore be discarded as erroneous. 

b) The definition of a requires that a and P be of the 

same sign so that p and z will be of identical sign. 

Using this information and that available from the Ross-Warren
2 

method as to compensator pole and zero location, it is found that 

the solution to the P quartic is the largest, positive, rea 

value. 

Now enteringequation (1-27) with this value, and evaluating 

the other coefficients 

! = r-/B21 (1-41) 

for in the third order case P, is always identically zero.
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Thus, with the programming of the appropriate equations,
 

the digital computer could give all of the values and plot the
 

constant zeta and constant omega loci on the Parameter Plane for
 

any desired values.
 

1.4 	 SOME APPLICATIONS OF THE PROGRAM
 

Several third order systems were investigated by the appli­

cation of the generalized equations and the Parameter Plane
 

curves, Figures 1-1 through 1-8 were plotted. Of these, the
 

K/s3 fam ll appears the most interesting. Further investigation
 

of three of the curves in this family, Figures 1-1, 1-2 and 1-3
 

shows that there is a relationship between K, the root locus
 

gain, a and P.
 

These relations are:
 

a) Choose a point on the 1/s3 P-plane. 

b) Zeta reads directly. 

c) Determine the actual omega at that point by multiplying 

the value read by the cube root of the uncompensated 

system gain. 

d) Read the value of a directly from the point chosen. 

e) Read the value of 0 from the point chosen. 

f) Obtain the true value of 0 by multiplying this value 

by the cube root of the uncompensated system gain. 

By this method, the values of a'and 0 may be determined for
 

all !3 systems from one universal curve.
 
s 

1.5 	 BANDWIDTH CURVES ON THE Q!-0 Plane
 

In many instances, there is also a bandwidth criterion
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imposed on the engineer as well as an optimal operating point for
 

the plant under consideration. With this in mind, equations for
 

the plotting of constant bandwidth curves on the Q-P plane are
 

developed. For the purpose of this development a constant band­

width curve will be defined as:
 

A constant bandwidth curve for G(j) = M is a curve drawn
 

upon the parameter plane which specifies the relation between
 

the parameters necessary if the transfer function G(s), which
 

is a function of the parameters, is to have magnitude M at
 

the real frequency Ub.
 

Once these curves are obtained they may be superimposed on the
 

parameter plane thus indicating what values of the parameters are
 

necessary in order to meet the specifications.
 

Taking the rational transfer function and defining it:
 

Q (s') Pm M M1 n -1+ i s +P 
qnS + qmnl + ... ql + qo( 

where the Pm'S and qn's are of the form:
 

2
Pu =ga + hua + iup + ju + ku2 + lu
 

u = 0,1,2,...,m (1-43) 

a b,+Cv d P +:ej2 + f
V V' v v> v 

V = 0,1,2,,. .,n (1-44) 

Therefore p s 

G,(s) ' '.= o," (1-45) 

v=d IU 



Employing Equation 1-45 in the parameterized form the generalized
 

compensated third order transfer function is:
 

G(S P (S) 
Q(s), (1-46)
 

where:
 

P(s) = a2Ks2 + 2oSKs + 2K (1-47)
 

and: Q(S) = 2[s3 + I r 2 + J r s + ri
[) 2Ir1 ,2 i 3 i 2s 

2s4 30 + 2 7 nr.s + 2 Xn ris2 + 2 Z ris + 
1 2 3 

[ s 5 + X 1TI r.s 4 + 12I r.s 3'- + I3 r s2] (1-48) 

Making the definitions:
 
n 

A = (-1)vWa; etc. for BCDE ,F (1-49-) 

v=0
 
even
 

n 

Ai = x (-1) Cv)av; etc. for Bi.,Ci.,Di,Ei,FI (1-50) 

v=O

Odd 

m ~-2 
r = (-1)- 0 gu; etc. for H r Jr,Kr,Lr (1-51) 

u=O
 
even
 

m 

Gi = I (-l) (u-1)gu; etc. for Hi,I.ji,Ki,L i (1-52) 

u=O
 
odd
 

and substituting in Equation 1-46,
 

G(jWb) = 2 r r + 2 (1-53) 
(P2 Dr + Er + F ) + j(02Di + PEi + Fi ) 



Setting the magnitude of G(j%) = M: 

( 2Gr + Kr)2 + (aIi)2 
M2 IG j ) 1= .!2. .), D1%( 1. 

,( D, + PE + F ), (p2 D + OE + i)2 
r r r 

(1-54) 

Manipulatinq Euation(1-54)alqebraically 

(Y, - M2 E(T, ) = 0 (1-55) 

where 41 2 2 2 2 2 2 
('y = aG + 2a Kr Gr + K +r ! 1 (1-56) 

= 4,)D2 + 203D E + 202D F + p2E2 
r rr rr r 

20E F + F2+ 0 D.2 + 0 E.2 + F.2 
rr r 1 1 1 

20 E.D. + 20' D.F. + B E.2 + F.
11 11 1 1 

203E.D.i + 2p2D.F. + 2PEiFi (1-57) 

Substituting Equations- (1-56) and (1-57) in Equation (I55) and 

defining: 

P 1 rr 
++ 'D21 (1-58) 

Q= 2DrE + 2E.D. (1--59) 

2
R =2DrF + E + 2flF.+ (1-60),1 rr r 1 . 

2 I2
R2= a (1-61)
 

V1 2ErFr + 2E.F. (1-62) 

W
11 
=F 2 + F (1-63) 

W2 = 04G2 + 2,2K G + K2 (1-64)
r rr r
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It follows that
 

4,  -
2 2 3 + (M2R4- R2) 2 M2V +
 

(M2W 1 - W 2 )'= (1-65)2 .
 

Since the Parameter Plane for compensation purposes has already
 

been determined it is now a matter of taking the computed a
 

values and substituting them along with a constant value of
 

omega and M into Equation (1-65) and then solving the 0 quartic.
 

This has as its solution the largest, real and positive value of
 

the four roots as before.
 

1.5 EXTENSIONS TO HIGHER ORDER SYSTEMS
 

Although the work presented to this point has been limited
 

to third order systems and the program written for this specific
 

case, investigation shows that generalized equations may be
 

written whch will allow the extension of:'the program to higher
 

th
 
ordered systems. It can be shown for a given n order system
 

with no zeros to be compensated with two identical sections of
 

cascade compensation, that the characteristic equation of the
 

system may be generally written as:
 
n+2 n+l 2 n 2 2 2)
 
s + 2ps + p s + (z s + 2pzs + pK +
 

j=n j=n
 
-,k=O
k=1 


22p -3.ri sk + l T ri)sk + 
k=n k=n- j 

j=l
j=l 


k=2
 
k=n
 

II risk = 0 (1-66) 
3k=n+l 


j=l
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where for n=4 the equation would be written:
 
6 5 24 22
 

s +2ps +ps + (zs 2 + 2pzs + p2)K + 

2p.(7 r.S +4 11'r.2 +" i r.s2 + r.s) 
1 ' 2 i"3 4 

2 n .rs+ 3 ris2 + r + Tr,) 

1, 1+ 

( r 5r.+ r.s4 + , ..s3 + r s 2) --o& 
3' 41 2 

(1-67)
 

It may be further shown that the parameters defined by Equations
 

(1-17) through (1-26) may be written:
 

B2 1 = KW2 Uj (1-68) 

B22 = Kw2U2 (1-69)
 

DI = -2KwU () (1-70)
 

D2 = -2KwU1 () (1-71)

j=n 

k=l
 
1
11 - 2(-1)n+l+( u (4) + 2 X [-(-1_k)"kuk- ( . ri)] -(1-72) 

3k=n 

j=l 

j=n 
k=l
 

B1 2  2(-1- "nlw kT r -73)n-n+l -+ 2 z[-1)k;A ] 


k=n 
j=l 

j=n
k=0 

*21 = (-l)n (4n-l+ X [(_l)kwku(l)Q( n ri)j + K_1EY 
k=n-1
 
j=l (1-74)
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j=n
 
k=O 

F2 2 =(-1) 'XJun(C) + x [(-1)ko ckc c3I ri] + KtJ(C (1-75> 

k=n-i 
j=l
 

j=n
 
k=2 

= 4- n+2l 4) + [-kuI (1-76)+ 2 -lCCZr!r)] (.L 
k=n+l 
j-l
 
j=n
 
k=2 

02 --- l n2 nU+2 ) * P-1)kWkUkcC1.ri] (1-77)U 2 

k=n+l ­

j-i 

These then are the recursive equations required for the complete
 
th
 

generalization to a n order system. By employing the above
 

equations and replacing in PROGRAM PROJECT cards 100 through 150
 

and 300 through 540 with the appropriate programming, the program
 
th
 

may be used for any given n order system.
 

In like manner by generally defining:
 

P(s) = C2Ks2 + + (1-78)
2s (2K 


=i
and: 


Q(s) = sn+2 + 2Psn+l + P2sn + 2 ( 1 ri)sk + 

k=n 
j l 

j =nj =n 
k=0 k=2
 
2 ri)sk + ri)sk (1-79)
 

k=n-i 3 k=n+l 3
 
j l j=l
 

and using Equations (1-49)through (1-52) we may replace in the
 

program cards 2860 and 2880 through 2920, thus adapting this
 

part of the program to a general nth order application
 

15
 

http:P-1)kWkUkcC1.ri


1.6 COMMENTS
 

Throughout this development of the Parameter Plane quadratic
 

extension,tnecCk's'in the genera±ized coefficient form:
 
n 

' _ f (1-80),( - +ck + k+ %P + + g = 0 
k=0 

have been identically zero. IThis at first appearance might seem
 

to detract from the generalization. The inclusion of this para­

meter does not however introduce any great difficulty in the
 

solution. The change in the development would be to the value
 

of P1 and P2 which would become:
 
+
P1 = C1 OD1 (1-81) 

P2 = C2 + OD2 (1-82)
 

and the final solution for a which would change to:
 

F 22
L2l1QI
+a2 2Bl (1-83)
 

For this case, new selection rules for acceptable values of a
 

would be used, and would be much like those presented for P.
 

Though the extension of the Parameter Plane to include the
 

a- quadratic case makes this tool even more useful, further
 

work is still to be done in this field. Not only must the
 

equations for the solutions of the Parameter Plane curves for
 

such cases as:
 

ak=bka20 + cckU2A dk 2 + k2 + 2+
 

gka + h c ++ + [5] (1-84) 
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and higher ordered combinatlons of the parameters be developed,
 

but more efficient programming techniques must be developed.
 

In the use of PROGRAM PROJECT, for instance, as the location of
 

the system poles on the a axis of the S-plane move to the left,
 

the computational time becomes excessive due to present pro­

gramming technique and computer speed.
 

Another maj6r problem in further extensions of these tech­

niques, and indeed even other applications of the curves from the 

proceeding development, will be interpretation. In this case, 

the initial substitution of variables immediately allowed inter­

pretation of the curves sight unseen. Here then, will be most 

likely the one single drawback to further extension, for as the 

parameters a and P are used as representations of other variables 

itcontrol systems, each application will have its own unique 

interpretation. 
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APPENDIX I
 

PROGRAM PROJECT is designed to solve the ' auadratic and P
 

quartic. The proqram is divided into two main sections, the first
 

for the computation of the a-0 points and the second for the band­

width points.
 

The first section computes an 80 by 80 matrix of the a and
 

points corresponding to set values of C and w. The computational
 

part is followed by two distinct graphing sections, one for lag
 

and the other for lead compensation.
 

The lag graphing section is set up so that during the plotting
 

of the curves each value of a is tested to determine if its value
 

7
is 10- u 1-.001. If no points are found within this range
 

then a print out is made:
 

NO LAG COMPENSATION POSSIBLE
 

For the lead,section graphs, a is again tested by the criter­

ion 1.0001 a (X-graph scale) (X graph width). Again if there
 

are no values of a within this region the statement:
 

NO LEAD COMPENSATION POSSIBLE
 

is printed. In this case however a study of the printed values
 

of a must be made to insure that the points are indeed non-existant
 

or rather just lie outside the range of the graph.
 

The secbnd main section'of the program computes the value of
 

0 for a given value of a is determined by the X graph scale. Here
 

the plotting routine is set up so as to not plot zero points and
 

to stop the curve when either the a or 0 value exceeds the range
 

of the graph.
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PROGRAM PROJECT 000000
 
C THIS PROGRAM COMPUTES THE VALUES OF BETA(POLE LOCATION) AND ALFA(POLE
 
C -ZERO RATIO) BASED ON PARAMETER PLANE TECHNIQUES o THE COMPUTED
 
C ALFA AND BETA VALUES ARE THOSE REQUIRED TO PLACE THE ROOTS OF ANY
 
C THIRD ORDER SYSTEM9 TYPE 09I92 OR 3o AT A DESIRED ZETA AND OMEGA
 
C LOCATION WHILE MAINTAINING A CONSTANT VELOCITY COEFFICIENT, AFTER
 
C COMPUTING THE VALUES IT WILL PLOT THE PARAMETER PLANE CONSTANT ZETA
 
C CURVES FROM OcO TO 0o9 AND THE CONSTANT OMEGA CURVES FOR EVEY ONE
 
C TENTH OF THE VALUE OF THE MAXIMUM VALUE OF OMEGA USED0 A 9 BY 15
 
C INCH GRAPH IS OUTPUT BY THE ROUTINE0 THIS IS DONE
 
C ON TWO SEPARATE GRAPHS, ONE FOR POSSIBLE LAG COMPENSATION AND ONE
 
C FOR LEAD COMPENSATION. THE PROGRAM THEN HAS THE ADDITIONAL FEATURE
 
C OF COMPUTING AND PLOTTING THE CONSTANT BANDWIDTH CURVES.
 
C THE FOLLOWING FEATURES ARE AVAILABLE WITH THE PROPER USE OF THE DATA
 
C CARDSo
 
C I THE ALFA-BETA COMPUTATIONS MAY OR MAY NOT BE DONE0
 
C 2o LAG COMPENSATION MAY OR MAY NOT BE PLOTTEDa
 
C_ 3o LEAD COMPENSATION'MAY OR MAY NOT BE PLOTTED0
 
C 4o BANDWIDTH COMPUTATIONS MAY OR MAY NOT BE COMPLETED0
 
C 5o BANDWIDTH CURVES MAY OR MAY NOT BE PLOTTEDo (AVAILABLE ONLY IF-
C THE BANDWIDTH COMPUTATIONS HAVE BEEN MADE), 
C THE FOLLOWING DATA CARDS ARE REQUIREDo 
C***CARD ONE - AoBoCG - TEN COLUMNS PER NUMBER IN FLOAT,,, rVSNrIC 
C , THESE ARE THE LOCATIONS OF THE UNCOMPENSATED POLES AND THE. 
C UNCOMPENSATED ROOT LOCUS GAIN. 
C***CARD TWO - WFIN - TEN COLUMNS IN FLOATING POINT. 
C THIS IS THE MAXIMUM VALUE OF OMEGA TO BE USEDo 
C***CARD THREE - IABCMP - COLUMN ONE IN FIXED POINT 
C 0 - THE ALFA-BETA COMPUTATIONS WILL BE DONE 
C I THE ALFA-BETA COMPUTATIONS WILL NOT BE DONE 

C IF IABCMP=1 CARDS FOUR THROUGH THIRTEEN ARE OMITTED
 
C
 
C***CARD FOUR - ILGPLT - COLUMN ONE IN FIXED POINT
 
C 0 - THE LAG ZONE CURVES WILL BE PLOTTCD
 



C I - THE LAG ZONE CURVES WILL NOT BE PLOTTED
 

C -IF ILGPLT=1 THE NEXT FOUR CARDS ARE OMITTED
 
C " -

C***CARD FIVE -IT(1)-IT(6) - COLUMNS 1-48 IN ALFANUMERIC CHARACTERS 
C THIS IS THE FIRST LINE OF THE LAG GRAPH TITLE 
C***CARD SIX - IT(7)-IT(12) - COLUMNS 1-48 IN ALFANUMERIC CHARACTERS 
C THIS'IS THE SECOND LINE OF THE LAG GRAPH TITLE,

C***CARD SEVEN - LBL(11)-LBL(20) - FOUR COLUMNS PER LABEL 
(TEN LABELS IN
 
C CONSECUTIVE COLUMNS) IN ALFANUMERIC CHARACTERS0
 
C THESE ARE THE LABELS.TO BE PUT ON THE CONSTANT OMEGA CURVES* 
 TO
 
C DETERMINE WHICH VALUES WILL BE PLOTTED9 DIVIDE WFIN BY 10 o THIS
 
C VALUE AND INTEGER MULTIPLES OF IT TO 10 WILL BE PLOTTEDo
 
C***CARD EIGHT 
- XLGZ 9YLGZ - TEN COLUMNS PER NUMBER IN EXPONENTIAL OR 
C FLOATING POINT0
C THESE ARE THE X AND Y SCALES FOR THE LAG GRAPHo ONLY ONE SIGNI 
c FICANT NUMBER IS. TO BE USED* 
C***CARD NINE.- ILDPLT - COLUMN ONE IN FIXED POINT
 
C 0 - THE LEAD CURVES WILL BE PLOTTED
 
o I - THE LEAD CURVES WILL NOT BE PLOTTED 

C IF ILDPLT=1 THE NEXT FOUR CARDS ARE OMITTED
 
>. 	C 

C***CARD TEN - THE SAME AS CARD FIVE EXCEPT FOR I1M LLAD GRAPH 
C***CARD ELEVEN - THE SAME AS CARD SIX EXCEPT FOR THE LEAD GRAPH
 
C***CARD TWELVE -
THE SAME AS CARD EIGHT EXCEPT FOR THE LEAD'GRAPH
 
C***CARD THIRTEEN - A***DUPLICATE***,OF CARD SEVEN
 
C***CARD FOURTEEN - IBWCMP - COLUMN ONE FIXED POINT­
c 0 - BANDWIDTH COMPUTATIONS AND GRAPHING WILL NOT BE DONEo
 
C 1 - BANDWIDTH COMPUTATIONS WILL BE DONE,
 
C 
 .
 
C IF IBWCMP=O THE REMAINING CARDS ARE OMITTE
 
C
 
C***CARD FIFTEEN - BWX9BWY -
THE 	SAME AS CARD 'EIGHT EXCEPT FOR THE
 
C BANDWIDTH CURVES0
 
C BWY IS ALSO USED TO DETERMINE WHICH VALUES OF ALFA WILL BE USED 
IN
 

http:LABELS.TO


THE BANDWIDTH COMPUTATIONS&
 
***CARD SIXTEEN - WEND - TEN COLUMNS IN FLOATING POINT
 

THIS IS THE MAXIMUM VALUE OF OMEGA FOR WHICH THE BANDWIDTH
 
COMPUTATIONS WILL BE DONE
 

***CARD SEVENTEEN - IBWPLT - COLUMN ONE IN FIXED POINT
 

0 - THE BANDWIDTH CURVES WILL BE PLOTTED
 
I - THE BANDWIDTH CURVES WILL NOT BE PLOTTED
 

IF IBWPLT1I THE REMAINING CARDS ARE.OMITTED
 

***CARD EIGHTEEN - THE SAME AS CARD FIVE EXCEPT FOR THE BANDWIDTH CURVES
 
***CARD NINETEEN - THE SAME AS CARD SIX EXCEPT FOR THE BANDWIDTH CURVES
 
***CARD TWENTY - BANDWIDTH CURVE LABELS
 

BY 10 &TO DETERMINE WHICH CURVES WILL BE PLOTTED 9 DIVIDE WEND 

THE PROGRAM PLOTS THIS CURVE AND INTEGER MULTIPLES OF IT UP TO 10
 

IT IS RECOMMENDED THAT FOR THE INITIAL RUN THE FOLLOWING DATA CARDS
 
BE USED*
 

CARDS 19293(IABCMP=O)94(ILGPLT=1),9(ILDPLT=1),14(IBWCMP=O)
 

THESE DATA CARDS WILL ALLOW ONLY THE ALFA-BETA COMPUTAIlUN iv m
 
COMPLETEDo A PRINT OUT OF THE VALUES WILL BE OUTPUT WHICH WILL ALLOW
 
YOU TO CHOOSE THE PROPER CURVES AND SCALESo CAREFUL SELECTION
 

OF CURVE SCALES IS IMPORTANTo FOR THE PROGRAM WILL NOT ALLOW POINTS
 
2UTSIDE THE AXIX LIMITS TO BE PLOTTEDo
 

DIMENSION AFIN(80 8O),BFIN(8080)oXAZ(8O)9YBZ(80)oXAW(80) 000010
 
1 YBW(80) IT(12) 9LBL(20)OBCOFI(5),ROOTR(4)gROOTI(4)oACOFI(3)9 000020
 
2 U(IO)hAROOTI(4)oACOFR(3),iBCOFR(5),WLAB(80)ZLAB(80)AROOTR(4) 000030
 
COMMON BCOFRBCOFI 9ROOTRROOTILBFINALIFLAGAFIMNBFIN 	 000040
 

000050
9999 PRINT 140 

140 FORMAT (iH1) 000060
 

DO 60 JK=1*6400 
 000070
 
AFINCJK) =0o0 000080
 

60 BFIN(JK) = OoO 000090
 



READ 1,AqB*CqG 

1 FORMAT(4F10O) 


PROD = A*B*C 

SUM = A+B+C 

z.APRD = A*B + A*C +'B*C 

PRDGN = PROD + G 

ZETA = OoO 

READ 2DWFIN 


2 FORMAT (FlOoO) 
READ 9o IABCMP 

9 FORMAT (I1) 
IF(IABCMP-1)23g24*24 

23 STP = WFIN/800 
DO 12 L = li8O 
J = 80*(L-1) 
W = STP 

30 	U(1)=-I1 

U(2)=0o 

U(3)=lo 

DO 10 N=2,6 

U(N+2)=2o*ZETA*U(N+1)-U(N) 

Do 	11 J=1980 

LJ 	= LJ.+ 1 

W2=W*W 

W =W2*W 

V4=W2*W2 

W5=W2*W3 

CONN = G*W2 

CON = -20 *G*W 

CONI = 20*W4 

CON2 = -20*SUM*W3 

CON3 = 20*St4PRD*W2 

CON4 = -2o*PROD*W 

CON5 = SUM*W2 

CON6 =*-SMPRD*W 

CON7 = SUM*W4 


000100
 
000110
 
000120
 
000130
 
000140
 
000150
 
000160
 
000170
 
000180
 
000182
 
000185
 
000188
 
000190
 
000200
 
0002'10
 
000220
 
000230
 
000240
 
000250
 
000260
 
000270
 
000280
 
000290
 
000300
 
000310
 
000320
 
000330
 
000340
 
000350
 
000360
 
000370
 
000380
 
000390
 
000400
 
000410
 
000420
 



000430
CON8 = -SMPRD*W3 000440
CON9 = PROD*W2 

000450
B21 = CONN*U(3) 

000460
B22 = CONN*U(4) 

000470
D1 = CON*t(2) 

000480
D2 = COM*U(3) 


..Ell = CONI*U(5) + CON2*U(4) + CON3*U(3) + CN4 U(Z) 	 000490
 
000500
E12 = CONI*U(6) + CON2*UC5) + CON3*U(4) + CON4*U(3) 


F21 = -WS*U(-4) + CON5*U(3) + CON6*U(2) + PRDGN*U(1) 	 000510
 
000520
-F22 = -W3*U(5) + CON5*U(4) + CON 6*U(3) + PRDGN*U(2) 

GI = -W5*U(6) + CON7*U(5) + CONS*W(4) + CON9*U(3) 000530 

G2 = -W5*U(7) + CON7*U(6) + CON8*U(5) + CON9*U(4) 000540 
21) 000550
COF1 = B21*F22*(2o*F21*B22-F22*B21}-F21*(F21*B22*B22+D2*D2wB


-	 (F21* B 2 000560
COF2 = E11(2o*B22*(F22*B21-F21*B22) D2 
D2*B 21)+2o* E12* B 21*
 

300570
12-F22*821) 
 2+F21  
*E1*E	 )00580
COF3: B2 1*(-B 21*(E1 2*E12+2o*F22*G2}-D2*D2*G+2o*822
.


ll+2	 )00590
I G2+Gl*F22))-B22*B22*(Ell*E 
,*F21*G1) 2 3-Fli*R2 2 ) 	 00060
COF4=2o*G2*B21*CE1,B22E12*B21)+2o*B22*Gl*(El2*B
 

000610
COF5= -(G2*B21-Gl*B92)*(G2*B21-GI*B221 

000620
DO 50 1 =1o5 

000630
50 SCOFICI) = 0.0 


-BCOFR(1) = Io 	 000640
 
000650
BCOFR(2) = COF2/COF1 

000660
BCOFR() = COF3/COF1 

000670
.BCOFR(4) = COF4/COF1 

000680
BCOFR(5) = COFS/COF1 

000690
CALL ABETART 

000700
IFLAG = 0 

000710
CALL SORT 

000720
IF (IFLAG-1)300911o11 

000730
00 BFIN(LJ) = BFINAL 

000740
Q1 = BFIN(LJ)*(Ell+BFIN(LJ}*F21)+Gl 

000750
ACOFR(1)=loO 

0C0760
ACOFR(2)=OO 

000770
ACOFR(3) = Q1/B21 

000780
ALFASQ = ABSF(ACOFR(3)) 




AFIN(LJ) = SQRTF(ALFASQ)

11 k- = W+I4STP 

12 ZETA = ZETA + o0125 


LBL(1) = 4HZ=oO 

LBL(2) = 4FIZ=ol 

LBL(3) = 4HZ=o2 

LBL(4) = 4HZ=o3 

LBL(5) ='4HZ=o4 

LBL(6) = 4HZ=0 5 

LBL(7) = 4HZ=o6 

LBL(8) = 4HZ=o7 

LBL(9) = 4HZ=0 8 

LBL(10) = 4HZ=.9 

READ 71 ILGPLT 


7 FORMAT (11) 

IF(ILGPLT-1)86'79 67 


8 READ,3" (IT(t)91=1 9 12) 

3 FORMAT (6A8) 

READ 6o (LBL(I)gI=II20)'-


6 FORMAT (IOA4) 

READ 49'XLGZPYLGZ 


4 FORMAT (2EI0 0 ) 

XLGLM = 9**XLGZ 

YLGLM ="15o*YLGZ 

MODE = 1 

IL = 0 

DO 62 K=g8ug 

LL = 1 

KJ = (K-1)*80 

DO 61 J=*80" 

KJ = KJI 

IF(AFtN(KJ)- 0 O000001)619 6110 9 6110 


6110 IF(AFIN(KJ-1o 001)6113961s61 

6113 IF(AFIN(KJ) - XLGLM)6114 961961 


CARDS 1120 - 1130 ARE MISSING
 
6114 XAZ(LL) = AFIN(KJ) 


000790
 
000800
 
000810
 
000820
 
000830
 
000840
 
000850
 
000860
 
000870
 
000880
 
000890
 
000900
 
000910
 
000920
 
000930
 
000940
 
000950
 
000960
 
000970
 
000980
 
000990
 
'001000
 
boioio
 
001020
 
001030
 
001040
 
001050
 
001060
 
001070
 
001080
 
001090
 
001095
 
001100
 
001110
 

001140
 



IF(BFIN(KJ) - YLGLM)6112961 61 001150
 
CARDS 1160 - 1170 ARE MISSING
 

6112 YBZ(LL) ='BFIN(KJ) o011 0
 
LL = LL +-1 001190
 

61 	CONTINUE 001200
 
JJ = LL - 1 001210
 
IL= IL + 1 001220
 
IF(JJ-1262962o6116 001230
 

6116 LAL = LBL(IL) 001240
 
CALL DRAI(JJXAZYBZWAODE,0LALglT9XLGZ9YLGZ9OO9OO99*15,0,LAST) 001250
 

6111 MODE = 2 001260
 
62 CONTINUE 001270
 

IF(MODE-1)65s6596120 001280
 
6120 DO 66 K=898098 001290
 

LL = 1 001300
 
DO 63 J=1.o8O 001310
 
JK = (J-l)*80 + K b01320
 
IF(AFIN(JK)-oO000001)63 96127 6127 001325
 

6127 IF(AFIN(JK)-1oO001)6123v63q63 001330
 
6123 IF(AFIN(JK) - XLGLM)6124t63 963 001340
 

C CARDS 1350 - 1360 ARE MISSING 
6124 XAW(LL) = AFIN(JK) 001370 

IF(BFIN(JK) - YLGLM)61229639 o3 001380 
C CARDS 1390 - 1400 ARE MISSING 
6122 YBW(LL) = BFIN(JK)- 001410 

LL 	= LL + 1 001420 
63 	CONTINUE 001430
 

JJ = LL - 1 001440 
IL = IL + 1 001450 
IF(JJ-1)6121*6l2lg612 001460 

6121 IF(K-80)66o61259 6125 001470 
6125 MODE = 3 001480 

LAL = 4H 001490 
JJ = 2 001500 
XAW(1) = XLGLM 001510 
XAW(2) = XLGLM 001520 



YBW(1) =0O 
 001530
 
YBW(2) = YLGZ 001540 
GO TO 2000 001540 

6126 LAL = LBL(IL) 001560 
2000 CALL DRAW(JJQXAUYBWMODE,0LAL IT XLGZ9 YLGZ 9O9OO9o1590,LAST) 001570
MODE = 2 001580 

IF(K-7 66964,64 
64 MODE = 3 
66 CONTINUE 

GO TO 67 
65 PRINT 130 
.30 FORMAT (1X933H NO LAG COMPENSATION IS POSSIBLE 
67 READ 209 ILDPLT 
20 FORMAT (11) 

IF(ILDPLT-1)68o0uugLUUU 
68 READ 59 (IT(I)dl=1912) 
5 FORMAT (6A8)

READ 219 XLDZgYLDZ
21 FORMAT (2E10o0 ) 

READ 22, (LBL(I)hI=1120 
22 FORMAT (10A4) 

s///) 

001590 
001600 
001610 
001620 
001630 
001640 
001650 
001660 
001670 
001680 
001690 
001700 
001710 
001713 
001716 

XLDLM = 9*XLDZ 
YLDLM = 15o*YLDZ 
IL 0 
MODE = 1 
DO 72 K = 198098 
KJ = (K-I)*80 

001720 
001730 
001740 
001750 
061760 
001770 

KK = 1DO 71 J = 1980 
KJ = KJ + 1IF(AFIN(KJ)-7oO111)71971119711I 

001780001790 
001780000180 

7111 IF(AFIN(KJ) XLDLM)7117,71971
C CARDS 1830 - 1840 ARE MISSING 

001820 

7117 XAZ(KK) = AFIN(KJ) 
F(BFIN(KJ) - YLDLM)71187719 71 

001850 
001860 

ARDS 1870 - 1880 ARE MISSING 



7118 YBZ(KK) = BFIN(KJ) 
KK = KK + 1 

001890 
001900 

71 CONTINUE 001910 
MM = KK-1 001920 
IL = IL + 1 001930 
IF(MM-l)7297297119, 001940 

7119 LAL = LBL(IL) 0,01950 
CALL DRAW(MMpXA7oY 7tmODE9O LALolT XLDZgYLDZvOOOO09915POgLAST) 001960 

7110 MODE = 2 001970 
72 CONTINUE 001980 

IF(MODE"1)7097078 001990 
'8 DO 76 K=898098 002000 

KK = 1 002010 
DO 73 J = 1980 002020 
JK = (J-1*80 + 002030 
IF(AFIN(JK)-loO001)73q7121q7121 002040 

7121 IF(AFIN(JK) - XLDLM)7127973973 002050 
CARDS 2060 - 2070 ARE MISSING 

7127 XAW(KKL,= AFIN(JK) 002080 
IF(BFIN(JK) - YLDLM)7128973973 002090 
CARDS-2100 - 2110 ARE MISSING 

7128 YBW(KK) = BFXN(JK) 002,120 
KK = KK + 3 002130 

73 CONTINUE 002140 
MM = KK-'I 002150 
IL ='IL + 1 002160 
IF(MM-I)712uom vZu*712Q 002170 

7120 IF(K-80)769712297122 002180 
7122 MODE = 3 002190 

LAL = 4H 002200 
• M14 = 2 002210 

XAW(1) ='XLDLM 002220 
XAW(2) = XLDLM 002230 
YBW(1)'= 000 002240 
YBW(2)-='YLDZ 002250 
GO TO 2001 002260 



002270
 
7129 LAL ='LBL(IL) 
 90995OoLAST) 002280
 
2001 CALL DRAW(MM0XAWoYBVMODEqOqLALoT XLDZ YLDZ 9090 

002290
 
MODE = 2 
 002300
 
IF(K-72)76t75975 
 002310
 

75 MODE = 3 
 002320
 
76 CONTINUE 
 002330
 

GO TO 1000 
 002340
 
70 PRINT 131 


9///) 002350
 
131 FORMAT (1Xo34H NO LEAD COMPENSATION IS POSSIBLE 


002360
 
1000 CONTINUE 
 002370
 

ZLAB(1) = Co0 002380
 
DO 81 I=2910 
 002390
 

81-ZLAB(I),= ZLAB(I-1) + 
 002400
 
WLAB(8) = 8o*STP 
 002410
 
DO 82 N=1698098 
 002420
 

32 WLAB(N) = WLAB(N-8) + WLAB(8) 
 002430
 
PRINT 100 
 002440
 

100 FORMAT (IHi) 
 002450
 
PRINT 101. 
 002460
t u'',101 FORMAT(2X92OH THE ALA VALUL t 
 002470
 
PRINT' 1029 (ZLAB(I) =1910) 


002480
 
102 FORMAT (1X96H ZETA DJ.0F11o6) 


l=1 = 002490
IN(JI) 9 97398)J Utu)
PRINT 1039 (WLAB(J)s(,.' 
 002500
 
103 FORMAT (/9l1XF6o2q10EI1o5) 
 002510
 

PRINT 111 
 002520
 
Ill 'FORMAT (/////2Xo20H THE BEIA VALUL txKr 

002530
 
PRINT 112,(ZLAB(I) 1=110) 
 002540
 

114 FORMAT (IX96H ZETA '10FIIo6) 

002550
I=l,7 3 98)J

= 89809 8
PRINT 113o (WLAB(J)h(BFIN(J91) 9
 002560
 
113 FORMAT (/o1X9F6'29lOE.o5) 
 002570
 
24 PRINT 114 
 002580
 

114 FORMAT (1H1) 
 002590
 
READ 2189 IBWCMP 
 002600
 

218 FORMAT (II) 
 002610

IF(IBWCMP-1)1O02q2192l' 
 002620
 

219 READ 2179 BWX9BWY 


http:o1X9F6'29lOE.o5


217 	FORMAT (2ElOoO) 

READ 223P WEND 


223 	FORMAT (FlOoO) 
YBWLM =15o*BWY 
XLM = 9o*BlX 
AM2=o5 
STEP = WEND/20o 

W = STEP 

ALFASP = XLM/20o 

XAW(1) = ALFASP 

DO 200 K=2920 


200 	XAVW(K) = XAW(K-1) + XAW(1) 
DO 203 N=1920 
ALFA = ALFASP 
DO 210'M=1920 
XAZ(M) = *oO 

210 	YBZ(M) = 00 
DO 207 1=1*20 
YBW(N)' = W 
W2=VW*W 
W3=W*W2 

W4=W2*W2 

W5=W2*W 3 

AGR '-W2w-

AKR 	= G 

ADR=2o*W4-2 0*W2*SMPRD 

AII = 20 *G*W 

AER=-W2*SOM + PROD 

AFR=W4&SUM - W2*PROD 
ADI=-2o*W3*SUM + 2o*W*PROD 

AEI = -W3 + W*SMPRD 

AFI = W5 - W3*SMPRD 

PI = ADR4ADR+ADI*ADI 

01 = 2o*ADR*AER + 2o*AEI*ADI 
Ri = 2o*ADR*AFR + AER*AER + AEI*AEI + 
"1 = 2o*AER*AFR + 20*AEI*AFI 

002630
 
002633
 
002636
 
002640
 
002650
 
002660
 
002670
 
002680
 
002690
 
602700
 
002710
 
002720
 
002730
 
002740
 
002750
 
002760
 
002770
 
002780
 
002790
 
002800
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002890
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002910.
 
002920
 
002930
 
002940
 

2o*ADI*AFI 	 002950
 
002960
 



W1 = AFR*AFR + AFI*AFt 

A2 = ALFA*ALFA 

A4 = A2*A2 

R2 = A2*AII*AI 
WW2 = A4*AGR*AGR +.2*A2*AKR*AGR + 
DO 51 M = 195 

51 	BCOFI(M)g= 0=0 

BCOFR(1) = 100 

BCOFR(2) = Qi/P1 

BCOFRC3) = (AM2*R1AR2)/(AM2*P1) 

BCOFRC4) = VI/P1 

BCOFR(5) = (AM2*W1-WW2)/(AM2*P1) 

CALL ABETART 

IFLAG = 0 

CALL SORT 

IF(IFLAG-1)9002 206P206 


206 	BFIN(NoI)= 0oO 

GO TO,207 


900 BFIN(Nq1) = BFINAL 

207 ALFA = ALFA + ALFASP 

203 I =.W + STEP 


READ 2169 IBWPLT 

216 FORMAT (11) 


F(IBWPLT-1)21491001q1001 

214 MODE = 1 


READ 2029(CIT(K)*K=112) 

202 FORMAT (6A8) 


READ'2019 (LBL(N)dN=2v20,2) 

201 	FORMAT (10A4) 


DO 211 N=2o20*2 

KK'= 1 


IF(N-20)204 2059205
K 	 = 3205 MODE 

204 CONTINUE 


DO 212 1=1920 

IF(BFIN(No1) o000001)2129212o209 
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 003010
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003110
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003260
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003300
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003330
209 IF(BFIN(N*I) - YBWLM)905 906o9O6 

003340
905 YBZ(KK) = BFIN(NqI) 
 003350
XAZ(KK) = XAW(i-) 


CARD 3360 IS MISSSING
 
003370
KK = KK + 1 

003380
212 CONTINUE 

003390
906 JJ = KK - 1 
003400
IF(JJ-1)221,221qztu 

003410
221 IF(N-20)211%225g225. 

003415
225 IF(MODE-1)2249224D21S 

003420
15 MODE =-3 

003430
LAL= 41H 

003440
XAZ(1) = 0o0 

003450
XAZ(2) = OoO 

003460
YBZ(1) = 0o0 

003470
YBZ(2) = BWY 

003480
JJ = 2 

003490
GO T0"2002 

003500
220 LAL = LBL(N) 


2002 CALL DRAW (JJoXAZ9YBZMODEOLAL ITBWXBWYO,9OOO99 9 15POPLAST) 003510
 
003520
222 IF(N-20)208o'211,211 

003.530
208 MODE = 2 

003540
211 CONTINUE 

003541
GO TO 1001 

603542
224 PRINT 226 


226 FORMAT (1H11X976HTHERE ARE-NO POSSIBLE BANDWId[TH CURVES FOR THE F 	 003543
 
003544
IINAL VALUE 'OF OMEGA STATED 

003545
GO TO 1002 

003550
1001 PRINT 120 

003560
120 FORMAT (lHlo20X938H VALUES OF BETA FOR CONSTANT BANDWIDTH 

003570
.-PRINT 1229 (YBW(K)oK=292092) 

003580
122 FORMAT (/99Xo1OFllo6) 


= 2 92 0
 PRINT 121 (XAW(K),(BFIN(JoK)oJ 2 )hK1, 2 0 ) 	 003590
 
003600
121 FORMAT (/2 1XF6o2 9 2XolOEllo6) 

003610
1002 CONTINUE 

003615
GO TO 999S 




END 


SUBROUTINE ABETART 

DIMENSION A(5)hYIMAG(5JU(4)V(4gH(50)B(50)C(O0)DD(50)sE(50) 

1 aCONV(50) 

DIMENSION AFIN(80980) 9BFIN(80,80) 

COMMON A9YIMAG U9 V4 DUMMY19DUMMY29AFIN98F'IN 

N = 	4

'=1000 


.=25 

ER=O 

,F(N) 54P54952 


54 IER=l 

52 NP3=N+3 


100 	B(2)=OoO 

B(l)=00O 

C(2)=00 

C(I)=0op 

D(2)=OoO 

E(2)=OoO 

H(2)=Oo,O 

DO 101 J=3NP3 


101 H(J)=A(J-2) 

T=1o0 

SK=1OoO**F 


150 IF(H(NP3)) 2009151o200 

15 I(NP3)=OoO 


e(NP3)=OoO 

CONV(NP3)=SK
NP3=NP3-l 


IF(NP3)15291521!50 

152 IER=I"
200 	IF(NP3-3)2059519201
205 	IER=I 


201 	PS=OoO 
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00003760
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00003790
 
00003800
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00003820
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00003840
 
00003850
 
00003860
 
00003870
 
00003880
 
00003890
 
00003900
 
00003910
 
00003920
 
00003930
 
00003940
00003950
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00003970
 



QS=OoO 00003980
 
PT=0 0 00003990
 
QT=0 00 00004000
 
S=OoO 00004010
 
REV=loO 00004020
 
SK=10 00**F 00004030
 
IF(NP3-4)206*202 203 00004040
 

206 IER=1 00004050
 
202 R=-FI(4)/H(3) 00004060
 

.GO 	TO 500 
 00004070
 
203 DO 207 J=39NP3 00004080
 

IF(H(J))20492075204 	 00004090
 
204 	S=S+LOGF(ABSF(H(J)')) 00004100
 
207 	CONTINUE 00004110
 

FPNI=N+I 00004120
 
S=EXPF(S/FPii 00004130
 
DO 208 J=3oNP3 00004140
 

208 H(J)=H(J)/S 00004150
 
210 IF(ABSFHC4)/H(3)}-ABSF(H(NP3-1)/H(NP3)))2509252o252 00004160
 
250 T=-T 00004170
 

M=(NP3-4)/2 + 3 00004180
 
DO 251 J=39M 00004190
 
S=H(J) 00004200
 
JJ=NP3-J+3 00004210
 
H(J)=H(JJ) 00004220
 

251 H(JJ)=S 00004230
 
252 IF(QS) 2539254*253 00004240
 

%253 P=PS 00004250 
Q=QS 0000260 
GO TO 300 00004270 

254 HH2=H(NP3-2) 00004280 
IF(HH2) 25692559256 00004290 

255 	OloO 00004300
 
P=-2oO 00004310
 
GO TO 257 00004320
 

256 	Q=N(NP3)/HH2 00004330
 



P=(H (NP3-1)-Q*H(NP3-3))/HH2 
257 IF(NP3-5)258o5509258 
258 R=OO 

300 DO 490 I=19L 

350 00 351 J=3NP3 


B(J)=h(J)-P*B(J-1)-Q*B(J-2) 

351 C(J)=B(J)-P*C(J-1)-Q*C(J-2) 


IF(H(NPS-1))352v '00*352 

352 IF(B(NP3-1))35394009353 

353 AVHBI=ABSF(H(NP3-1)/B(NP3-1)) 

356 IF(AVHB1-SK)4509354q354 

354 B(NP3)=H(NP3)-Q*B(NP3-2) 

400 IF(B(NPS))40195509401 

401 AVHB2=ABSF(H(NP3)/8(NP3)2 

403 IF(SK-AVHB2)55094509450 

450 DO 451 J=3 9NP3 


D(J)=H(J)+R*D(J-1) 

451 E(J)=D(J)+R*E(J-1) 


IF(D(NP3))45295009452 

452 AVHD3=ABSF(H(NP3)/D(NP3)) 

460 IF(SK-AVHD3)50094539453 

453 CC2=C(NP3-2) 


CC3=C(NP3-3) 

C(NP3-1)=-P*CC2-Q*CC3 

CC1=C(NP3-1) 

S=CC2*CC2-CC1*CC3 

IF(S)455o4549455 


454 P=P-2o0" 

Q=Q*(Q4-1O) 

GO TO 456 


455 P=P+(B(NP3-1)*CC2-B(NP3)*CC3)/S 

Q=Q+(-B(NP3-1)*CCI+B(NP3)*CC2)/S 


456 IF(E(NP3-1))45894579458 

457 R=R-loO 


GO TO 490 

458 R=R-D(NP3)/E(NP3-li 
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490 	CONTINUE 

PS=PT 

QS=QT 

PT=p 

QT=Q 

IF(REV)49194929492 


491 SK=SK/10,0 

492 REV=-REV 


GO TO 250 

500 IF(T)501s502502 

501 R=lIoO/R 

502 NP=NP3-3 


U(NP)=R' 

V(NP)=OoO 

CONV(NP)=SK 

NP3=NPS-1 

DO 503 J=3 9NP3 


503 H(J)=D(J) 

IF(NP3-3)300951q300 


550 IF(T)55105529552 

551 P=P/Q 


Q=10O/Q 

552 PP2=P/2oO 


QMPSQ=Q-PP2*PP2 

560 IF(QM4PSO)55455549553 

553 	NP=NP3"3 


U(NP)=-PP2 

U(NP-1)=-PP2 

S=SQRTF(QMPSQ) 

CNP)=S 


V(NP-1)=-S 

GO TO 561 


.,554 5=SQRTF(-QM4PSQ) 

NP=NP3--3 

IF(P)55595569556 


555 U(NP)=-PP2+S 
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GO TO 557 

356 U(NP)=-PP2-S 

357 U(NP-1)=O/U(NP) 


V(NP)=OoO 

V(NP-1)=OoO 


561 	CONV(NP)=SK 

CONV(NP-i)=SK 

NP3=NP3-2 

DO 558 J=3oNP3 


::8 H(J)=B(J) 

GO TO 200 


51' RETURN 

-END 


SUBROUTINE SORT'. 

DIMENSION RR(4)qRI(4)pREAL(5)qYIMAG(5) 

DIMENSION AFIN(80,80)98FIN(80 980) 

COMMON REAL9 YIMAG9 RRoRIBFIFLAGAFINgBFIN 

B = 000 

DO 800 I=194 

IF(ABSF(RI(I))-loE-7)8019800 800 


801 B = MAXIF(8 9 RR(I)) 

800 CbNTINUE 


IF(B) 80298029803 

802 PRINT 804. 

804 FORMAT (341-1 THERE ARE NO PublIIvL KLAL NVuIui 


IFLAG = 1 

RETURN 


803 BF = B 

RETURN 


END 


KxS 
END 
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TRANSIENT RESPONSE OF NONLINEAR SYSTEMS
 

2.1 INTRODUCTION
 

When a system has one nonlinear element that is single val­

ued and non-frequency dependent, analysis of the system is con­

veniently accomplished using the parameter plane methods. The
 

nonlinear element is represented by a describing function, which
 

is a function of signal amplitude only. The describing function
 

is designated as one of the parameters, a or P. This designation
 

removes the nonlinear parameter from the functions that determine
 

the parameter plane curves so that these may be plotted on the
 

U-9 plane. The M-point is located on the t-9 plane in the usual
 

way, but for the case of one nonlinear element one coordinate of
 

the M-point is the numerical value of the describing function of
 

the nonlinear parameter. gor linear systems the M-point is sta­

tionary on the U-9 plane, but for a nonlinear system the M-point
 

moves because the numerical value of the describing function is
 

a function of signal amplitude. For a system with one single
 

valued nonlinearity, N, where N is designated as P,the locus
 

followed by the M-point is a straight line parallel to the P-axis.
 

This locus of M-point motion can be said to start at the value of
 

P corresponding to very small (zero) signal amplitude into the
 

nonlinear element. The displacement of the M-point along this
 

locus is determined by the way in which 9 varies as a function
 

of signal amplitude, and this is determined by using the
 

Constant -C and constant -W curves, or constant -9 and constant
 
- curves. n
 



the describing function of the nonlinear element.
 

Previous work has shown how to predict limit cycles using
 

M-point locus on the parameter plane. If this locus crosses the
 

stability boundary (C=O curve or a=0 curve) the intersection of
 

these curves defines the frequency of the limit cycle. If an
 

amplitude scale can be determined for the location of the M-point
 

on the M-locus, then this scale is used to define the amplitude of
 

the limit cycle.
 

The concept of a moving M-point on the parameter plane can
 

be used to calculate the transient response of nonlinear systems.
 

As the M-point moves along the M-locus, each point defines both
 

signal amplitude and all roots of the characteristic equation.
 

This information can be used to determine the amplitude vs time
 

relationship which is the transient response. Computations are
 

based on Siljak's extension of some basic work by Krylov and
 

Bogoliubov, and details are given in the following paragraphs.
 
* 

Assume that the system is second order, and that the non­

linear element is represented by its describing function. Then
 

for an initial signal amplitude A0 , the transient response is de­

fined by
 

X(t) = A0 CtCos(ct + 0) (2-1) 

where a and W are both functions of the signal amplitude. 

*These assumptions restrict use of this method to systems in which
 
a pair of complex roots dominate the transient response, and these
 
systems must have low pass filter characteristics to justify use
 
of a describing function.
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a a(A)
 
A(2-2) 

The parameter plane curves are prepared, the M-locus is super­

imposed on them, and the describing function is used to associate
 

an amplitude scale with the M-locus. Then the values of o(A)
 

and W(A) may be read from the parameter plane for any X.
 

The transient response of the system from any initial dis­

placement, A0 , is determined in two steps, the first of which is
 

to calculate the envelope of the transient. Assuming that
 

(in eqn. 2-1) is zero, the envelope is defined by
 

X(t) = A Ea(A)t (2-3)o 

which may be approximated over a short time interval by a straight
 

line tangent to the exponential curve. Thus at t = 0, X=A and
o 

from the parameter plane G(A )=Y° is evaluated. Then X(t)=A E(Ot
 

is approximated by a short straight line segment on the X vs t
 
plane. This straight line is terminated at t = t1 and at t a
 

new amplitude A1 is read from the curve. Entering the M-locus on
 

the parameter plane with A1 values are obtained for aI and ."
 

The envelope of the transient is extended from t1 to t2 with
 

t .
another straight line segment defined by X = A1Ea This pro­

cedure is repeated until the envelope is defined over an accept­

able time interval.
 

As a by-product of this procedure, W has been determined
 

quantitatively as a function of amplitude and also as a function
 

of time. Using the definition
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€= tJ (A) dt (2-4) 

0
 

the phase can be determined at any t by graphical integration
 

(i.e., evaluation of the area under the W(A) vs t curve). If 0 

in eqn. 2-1 is zero, then X(t) = 0 for ( = (2n-l) (i/2). Values 

of t corresponding to (D= 900, 2700, 4500, etc., are determined by 

graphical integration, are marked on the axis of the X vs t plane, 

and the transient response is drawn tangent to the envelope and 

intersecting the X= 0 axis at the indicated values of t. 

The above procedures are readily applied to systems with one
 

nonlinearity, and correlation with simulation results is excel­

lent. Since such applications are elementary no illustrations
 

are given here, and the study is extended to systems with two
 

single valued nonlinear elements. In general no other methods
 

exist for predicting the transient response of systems with two
 

nonlinear elements, so the results obtained here represent a
 

significant advance in the state of the art.
 

2.2 CLASSIFICATION OF SYSTEMS WITH TWO NONLINEARITIES
 

- When a system contains two nonlinear elements, N1 and N2,
 

that are single valued and are not frequency dependent, parameter
 

plane representation may be used but both a and 9 become functions
 

of N1 and N2. Computation of the parameter plane curves presents
 

no difficulty, but determination of the M-locus may be difficult.
 

As a result it is convenient to classify nonlinear systems accord­

ing to the structural conditions which complicate the evaluation
 

of the M-locus. The foilowing classes are proposed:
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CLASS 1. Identical signal excitation to both nonlinear
 

elements.
 

In Fig. 2-la, the signal X is the input to both nonlinear
 

elements N1 and N2 'For every value of X corresponding values
 

of N1 and N2 are uniquely defined and are independent of fre­

quency so evaluation of the M-locus is easy.
 

CLASS 2. The input signals to the two nonlinear elements
 
are related by a linear differential equation.
 

In Fig. 2-lb the signal X is the input to N2, but the
 

input to N1 is X G_l(s). Thus the input to N2 is a function of
 

amplitude only, but the input to N1 is a function of both ampli­

tude and frequency. For a given amplitude of the signal X, the
 

describing function for N2 provides one unique value, but for
 

each amplitude of X the describing function for N1 has an in­

finite number of possible values, one for each possible value of
 

frequency. As-a result the evaluation of the M-locus is consid­

erably more difficult than for Class 1.
 

CLASS 3. The input signals to the two nonlinear elements
 
are related by a nonlinear differential equation.
 

Fig. 2-1c illustrates this class of nonlinear systems. The
 

signal X is the input to NI, but the input to N2 is XfN1H[G 2 (s))
 

where the brackets are intended to represent some functional re­

lationship rather than a multiplication. Evaluation of the M­

locus can be very difficult for such systems.
 

2.3 EVALUATION OF THE M-LOCUS. TE DYNAMIC DESCRIBING FUNCTION.
 

When a system with one single valued nonlinear element is
 

represented on the parameter plane the M-locus is clearly a
 



straight line parallel to one of the coordinate axes. Thus the
 

M-locus itself is readily found but the amplitude scale asso­

ciated with this locus must be evaluated.. For systems with two
 

nonlinearities (especially Class 2 or 3) the path of the M-point
 

on the parameter plane cannot be predicted by inspection. It
 

can be calculated, however, using the ordinary describing function
 

to define the amplitude relationships.
 

To justify the choice of the describing function as a tool,
 

consider the fact that parameter plane predictions of limit cycles
 

are defined on the basis of a single point where the M-locus in­

terests the stability boundary. This single point defines both
 

the fundamental frequency of the oscillation and also the ampli­

tude of this fundamental component. It is clear that the loca­

tion of the M-point represents some sort of average value of ampli­

tude, since the instantaneous value of amplitude varies cyclically
 

during a limit cycle. The describing function of a nonlinear
 

element effectively averages the response of the element to a
 

sinusoidal input over one cycle of operation. Thus its use is
 

clearly justified when system operation is periodic and lightly
 

dmped. While not so clearly justified for other operating con­

ditions it has given surprisingly accurate results and therefore
 

will be used until a better technique becomes available.
 

Using the describing functions of the two nonlinearities in
 

a system, a family of decribing function curves are computed and
 

plotted on the U-9 parameter plane. When these curves are super­

imposed on the regular parameter plane curves, the M-locus can
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be determined. The M-locus represents the curve along which the
 

M-point moves when the system is in dynamic operation, and it
 

consists of the locus of all points at which the describing func­

tion curves and the parameter plane curves have common frequency
 

intersections. We choose to call this curve the "Dynamic De­

scribing Function Locus". The procedure and also a justification
 

is as follows:
 

a) Assume a constant amplitude, constant W signal at X, the
 

input to one nonlinear element. Using the describing
 

function compute the equivalent gain of that element;
 

also compute the signal amplitude at the input to the
 

second nonlinear element, and the equivalent gain of
 

this second element.
 

b.) 	 The two equivalent gains evaluated in (a) determine one 

point on a describing function curve on the a-a plane. 

Repetition using the same value of W but different 

amplitudes at X determines a describing function curve 

for a constant W signal. 

c) 	Repetition of a) and b) for other values of W provides
 

a family of describing function curves, each curve being
 

for a designated value of W.
 

d) These curves are then superimposed on the usual* para­

meter plane curves. The constant -W describing function
 

-Curves for constant -a and constant W are most convenient, but
 
constant -C and constant W curves can be used if it is noted that
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curves will intersect the constant -W parameter plane curves, 

and those intersections for which the W is the same. Define the 

Dynamic Describing Function locus. 

The nonlinear system is described by one nonlinear dif­

ferential equation. The procedures used here effectively parti­

tion this equation into two parts, a linear part represented by
 

the parameter plane curves, and a nonlinear part represented by
 

the describing function curves. Then parts are "coupled" by the
 

parameters U and A which are the coordinates of both plots. If
 

the system is in steady state periodic motion at a given fre­

quency the nonlinear differential equation of the system must be
 

satisfied, so the linear and nonlinear partitions must be satis­

fied at that frequency. This condition can exist only at the
 

intersection of the common frequency curves. The points thus
 

defined on the "Dynamic Describing Function Locus" are deter­

-mined on the basis of steady state sinusoidal operation (unforced).
 

Under transient conditions the M-point moves along some locus on
 

the parameter plane, and we assume that the points on The Dynamic
 

Describing Function locus apply to transient operation -although
 

they are determined by means of steady state sinusoidal concepts.
 

Experimental results indicate that this is a good assumption.
 

2.4 CALCULATED AND EXPERIMENTAL RESULTS
 

In order to verify the correctness and the applicability of
 

the dynamic describing function and the graphical transient re­

sponse calculations, specific examples of each of the three gener­

al cases of Fig. 2-1 were investigated. The details of some of
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these examples, and the corresponding calculated results are pre­

sented here. Simulation of the systems provided experimental re­

sults which are also presented to permit comparison between theory
 

and experiment.
 

.System 1. Two nonlinear elements with identical excitation:
 

The block diagram is given in Fig. 2-2. The characteristic
 

equation is
 

s + 10s2 + (10N 1 + 10N2 )s + 100N1 = 0 (2-5) 

and it is convenient to let N1 = a, N2 = 9. Fig. 2-3 gives the
 

parameter plane plot (in a- and W- curves). Since the two non­

linear elements have identical excitation a single dynamic de­

scribing function curve is obtained which is independent of fre­

quency. However, the dynamic describing function is dependent on
 

the specific numerical characteristics of the nonlinearities, and
 

Fig. 2-3 contains three dynamic describing function curves (dotted)
 

for three different sets of characteristics in N1 and N2. These
 

three curves were chosen to illustrate different root variations.
 

For curve 1 a real root becomes dominant early in the transient,
 

for curves 2 and 3 complex roots are dominant, the system being
 

moderately damped for curve 2 but going to a stable limit cycle
 

for curve 3.
 

Calculated and analog computer results are given on Figs. 2-4,
 

5,6. It is seen from Fig. 2-4 that the dominant real root condi­

tion cannot be handled accurately with the graphical computations.
 

It is not known whether the discrepancy lies solely in the graphical
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method which is based on complex roots, or whether the dynamic
 

describing function also contributes to the errors. Research on
 

this point is continuing. For the cases of Fig. 2-5 and 2-6 the
 

calculated results compare well with the computer results.
 

System 2. Two nonlinear elements related to a common signal by
 

a linear differential equation.
 

The block diagram is given in Fig. 2-7, and the parameter
 

plane curves with dynamic describing function curve shown dotted
 

are given on Fig. 2-8. Fig. 2-9 gives the describing function
 

grid needed to obtain the dynamic describing function curve. To
 

on Fig. 2-7 was chosen,
obtain the grid of Fig. 2-9 the point A 


as a reference point, and at each value of W the amplitude of the
 

(assumed) sinusoidal signal at A was varied to obtain the N1 vs
 

N2 values for a constant W curve on Fig. 2-9. The dynamic des­

cribing function curve on Fig. 2-8 is obtained by superimposing
 

the parameter plane curves of Fig. 2-8 on the describing function
 

net of Fig. 2-9 and locating intersections of constant W curves
 

of the same ( value.
 

Limit cycle predictions of the dynamic describing function
 

curve on the parameter plane agree with analog computer simulation
 

results. In addition Figs. 2-10, 11,12 compare predicted transient
 

response with simulation results.
 

Additional checks were run using different values for the
 

deadzone and saturation limits in the two nonlinearities, but
 

the detailed data is not given here. In general the predicted
 

and simulated results were in good agreement except when a real
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root became dominant during the transient response, in which case
 

the frequency of the oscillatory component was usually predicted
 

with reasonable accuracy, but amplitudes were not, nor was the
 

total response time due to the influence of this real root.
 

The calculations and simulations were also repeated with the
 

nonlinearities interchanged (i.e., in Fig. 2-7, N1 becomes a
 

saturated element and N2 a dead zone element). Using the same
 

techniques the results obtained were always in agreement with
 

about the same degree of accuracy and with the shortcomings as
 

previously noted.
 

System 3. Two nonlinear elements related to a common signal by
 

nonlinear differential equation.
 

The classification described as System 3 can contain a wide
 

variety of combinations of linear and nonlinear elements, of
 

which the parameter plane method may be applicable to only a
 

small subset. A specific system which belongs in this class is
 

shown in Fig. 2-13. The characteristic equation of this system
 

is
 

s3+ 3s7 + 2s + 40KN1 (Na + jNb) (2-6) 

A
where N2 = Na + jNb for the hysteretic nonlinearity, and we define 

a= N1 Na; NINb.1= The parameter plane equations are still appli­

cable and the parameter plane curves can be computed. For the
 

purposes of this study only C = 0 curve was calculated, and only
 

the limit cycle predictions were checked. The describing function
 

net is required, and in this case relates the NINa and NINb pairs
 

to the common signal at A on Fig. 2-13. The results of these
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computations are given on Fig. 2-14, which shows the C = 0 curve
 

from the parameter plane equations and the describing function
 

net for the case where K = 0.15. Only one point is defined on
 

the dynamic describing function curve, and this is marked on
 

the C = 0 curve at the point where the W value on the C = 0 curve 

is the same as the value of the constant W describing function curve 

passing through that point. This defines the frequency and ampli­

tude of the limit cycle, and the results agree with simulation
 

results.
 

Note that a change in the value of K changes the differential
 

equation of the system, thus requiring a new set of curves. Re­

sults were obtained with other values of K and again the predic­

tions agreed with simulation results.
 

2.5 COMMENTS
 

The results obtained thus far indicate that the parameter 

plane is a useful tool in predicting the stability and response 

of nonlinear systems. The accuracy available is only fair, but 

is more than adequate for many engineering applications. The 

transient response predictions - in particular for systems con­

taining two nonlinearities, - are better than are available with 

any other method. 

The graphical presentation of the dynamic describing function
 

curve on the parameter plane is potentially a valuable design
 

tool. It indicates at a glance the range of variations of the
 

roots, and thus permits prediction of a desired location of the
 

describing function curve, which in turn implicitly defines the
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required characteristics of the nonlinear element. Further
 

reseaich is required in this area.
 

The technique becomes inaccurate when the transient re­

sponse is influenced by more than two complex roots. Again more
 

research is required to evaluate this situation.
 

It is too early to assess the true value of studying non­

linear systems on the parameter plane. Without question it does
 

make possible many types of analyses that are not readily avail­

able otherwise. However, the limitations of the technique are
 

not clearly defined, and it obviously is important to know under
 

what conditions the methods are not applicable, or should be
 

applied with care.
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CHAPTER III 

ASYMMETRICAL NONLINEAR OSCILLATIONS
 



3.1 Introduction.
 

In certain classes of nonlinear systems, oscillations may
 

consist of a limit cycle superimposed on a constant or slow-varying
 

signal. These oscillations are referred to as asymmetrical oscil­

lations since the center of the limit cycle is shifted according
 

to the corresponding value of the constant or slow-varying signal.
 

In general, asymmetrical oscillations may occur when the input­

output characteristic of the nonlinearity in the system is not
 

symmetrical about the origin, or when the system is subject to
 

forcing signals. When the nonlinear characteristic is asymmetric,
 

the output of the nonlinearity may contain a constant term even
 

though the corresponding input is a single sinusoidal wave. If
 

the nonlinear characteristic is symmetric, asymmetrical oscil­

lations can arise whenever the system is subject to forcing input
 

signals. Evidently these oscillations may take place at certain
 

points of the system if both conditions are present. Before the
 

analysis of asymmetrical oscillations in the parameter plane is
 

presented, the previous work and results in considering these
 

oscillations and related problems are reviewed.
 

It has been shown first by MacColl [3.1] that the introduc­

tion of an external sinusoidal signal at the input to an on-off
 

servomechanism yields a system that behaves like a linear one for
 

small inputs superimposedon the,%sinusoidal,%signal. This pheno­

mena has been later investigated under various names, such as
 

"dither effect",, Isgnat'stabilization, etc.' Asymmetrical non­

linear'oscillations has been found by a majority of authors as
 

the most appropriate term for the mentioned phenomena.
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In analyzing a carrier-controlled relay servo, Lozier [3.2]
 

has introduced an idea to accomplish the linearization of the re­

lay by a limit cycle existing in the system and without an ex­

ternal signal. This idea has been further developed by several
 

authors [3.3-3.9] and a detailed treatment of the problem hts been
 

given by Popov and Palitov [3.81. On the other hand, the external
 

signal application has been developed by Loeb [3.9] and Oldenburger
 

with his associates [3.10-3.12]. The latter introduced the name
 

"signal stabilization" to indicate that the nonlinear system is
 

stabilized in the state of sustained oscillations with suffici­

ently high frequency. The stabilization is actually a consequence
 

of the linearizing effect discovered by MacColl. The concept of
 

signal stabilization has been extended by Sridhar [3.13-3.14] to
 

the case of a nonlinear system which has one single-valued non­

linearity in the loop, and the stabilizing signal is a stationary
 

random process with a Gaussian'distribution and'obeys the ergodic
 

hypothesis.
 

The above defined problem can be treated by dual-input de­

scribing function, as proposed by West [3.151. This approach has
 

been significantly simplified by Boyer [3.16] as outlined by
 

Gibson [3.17]. A similar approach is used by Gelb and Van der Veld
 

[3.18], and significant results have been obtained by Atherton and
 

others [3.19-3.20] who made a comparison of the utilized concept
 

with the Tsypkin method [3.21].
 

The study of asymmetrical nonlinear oscillations has been
 

extensively performed in the analysis and design of a large class 4/
 

of plant adaptive control systems. This class of system is
 

http:3.19-3.20
http:3.13-3.14
http:3.10-3.12
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sometimes called the limit cycling adaptive systems because of
 

the fact that the existing limit cycle is used as an identifi­

cation signal. Some of the references on this subject are listed
 

here [3.22-3.261. A majority of the authors proposed an external
 

sinusoidal signal for identification. More recently, Gelb and
 

Van der Velde [3.18) have examined to a limited extent and in
 

a quantitative manner the properties of self-oscillating adaptive
 

systems which have several advantages over the external adapta­

tion, such as simplicity, cost, reliability, etc. The following
 

analysis of asymmetrical nonlinear oscillations in the parameter
 

plan& can be applied-directly to self-oscillating adaptive sys­

tems.
 

in the following developments, the asymmetrical nonlinear
 

oscillations are analyzed in the parameter plane [3.27]. The
 

control systems with asymmetrical nonlinear characteristics are
 

considered to determine stability and sustained oscillations.
 

The same type of oscillations is investigated in nonlinear con­

trol systems subject to constant reference and perturbing input
 

signals. The procedure is further extended to the analysis of
 

systems with slow-varying input signals.' In this case, it is
 

shown how a nonlinear characteristic can be modified for the
 

slow-varying signals. The presented analysis is performed with
 

respect to both input signals and the values of adjustable sys­

tem parameters. The analysis procedure is illustrated by examples
 

in which multiloop feedback structures with several adjustable
 

parameters are considered. In addition, various nonlinear
 

characteristics are used in either the forward or the feedback
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path. The obtained results are checked by computer simulations
 

which indicate a sufficient accuracy of the presented prodedure.
 

3.2 Basic Developments
 

Consider a nonlinear system described by the nonlinear dif­

ferential equation
 

B(s)x + C(s) F(x, sx) = H(s) f, s = d (3.1)
dt 

where B(s), C(s), and H(s) are polynomials in s and the degree of 

the polynomial B(s) is greater than the degree of the polynomials 

0(s) and H(s). The function F(x,sx) describes the nonlinearity. 

Function f = f(t) is a forcing signal, which may be either a 

reference input or a perturbing signal, and it is assumed to be 

a constant or a slowly-varying function of time. 

As a first approximation, the steady-state, solution x = x(t) 

of equation 3.1 which represents the input to ,the nonlinearity, 

is assumed to be 

x=x +X (3.2)
 

where x = x°(t) is either a slowly-varying function of time or 

is constant, and xt, which is 

x A sin b, =Ot + , (3.3) 

represents the periodic component of the solution x(t). Since 

6 in (3.3):merely corresponds to a shift in t, one can put 6 0 

and use x = A sin 2t. 

The forcing function f(t) is considered as a slowly-varying
 

function of time if it can be assumed approximately as constant
 

over any cycle of the periodic component x ; i.e.,
 

If(t+T) - f(t) I < < f (t)1 (3.4) 
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where the period T = 21/2. In the frequency domain, equation 3.4
 

means that the frequency Q of the periodic component x is much
 

greater (practically ten times or more) than the highest frequency
 

°
of the slowly-varying component x . In this case, no harmonic
 

0
relation between the components x and x nonlinear system sub­

ject to forcing signals, such as jump-resonance," generation of
 

subharmonics, etc., cannot take place. The forced nonlinear os­

cillations for which the condition (3.4) is not satisfied neces­

sarily, are considered in other works.
 

Under the condition (3.4), the values of x , A, and Q, which 

appear in'the solution x = x + A sin 0t are slowly-varying 

quantities in time. This enables the extension of the conven­

tional harmonic linearization in which the describing function 

is defined for the signal x = x + x as an input to the non­

linear element. Thus .the 'non'linear fun..ion.f(Asx) is'approxi­

mately expressed by the first terms of the Fourier series as 

•,.*' N2 * 

F(x,sx) =F + x s+sx (3.5) 

where
 
1 [21 

F o = jJ F(x O + A sin 0, A12 cos 0).'d (3.6a) 
0
 

0)sin 0 .N1 21F(xo + A sin 0, A(2 cos d (3.6b) 
0
 

N2N = _iA 2-o F(xO + A sin 0, A(Q cos 0)cos -:0 ,d (3.6c) 

and = at. 

As can be seen from equations 3.5 and 3.6a, the component 

F of the output of the nonlinearity F(x,sx) is not considered­
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zero as was the case in the analysis of symmetrical nonlinear
 

oscillations presented in the previous chapter. This results
 

from the fact that either the nonlinear function F(x,sx) is not
 

symmetric or the system is subject to an external input signal,
 

or that both facts are present in the system.
 

According to equations 3.6, all coefficients F°, Ni, and N2
 
are generally functions of x0°, A, and Q., i.e.,
 

F0+F°(x°,A,Q2, N1 = N1 (x ,A,(4, N = N2(x°,A,D (3.7) 

For amajority of the nonlinear functions F(R;sx) encountered in
 

practical applications, the above functions (3-.7) are obtained
 

once and for all.
 

By applying the linearization of the function F(x,sx) given
 

in equation 3.5, the solution x = x + x of (3.1) can be ob­

tained by considering the following linearized differential
 

equation
 

B(s) (x°+x * +0C(s) (F H sx ) H(s)f (3.8)+NIx +2 

instead of equation 3.1. If x°, A, and C are slowly-varying
 

functions of time as a consequence of the same property associated
 

with the forcing function f, equation 3.8 can be rewritten as two
 

simultaneous equations corresponding to the slowly-varying sig­

nal x- and the periodic signal x as follows:
 

B(s)x + C(s)F = H:(s)f (3.9a) 

3 s-) x + C( S) (N x + N--2 sx ) =0 (.3. 9b).
W As'
 

Equations 3.9, however, cannot be solved independently since they
 

are related to each other by'the nonlifxdar equations "37. This 
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fact indicates that the applied linearization preserves the
 

essential feature of nonlinear systems and that the superposi­

tion principle from linear analysis is not valid.
 

An analytical solution of equations 3.9 is difficult to 

obtain since F° in(3.9a) 'is usually a trancendental function 

with respect to x 0 A graphical procedure is presented for 

solving equations 3.9 in the parameter plane. A necessary con­

dition for equation 3.1 to have a solution x(t) close to 3•2 is, 

that the characteristic equation 

N 
B Cs) + C(s) (1 ' #s) .0 (3.10) 

corresponding to the linearized differential equation 3.9b, have 

a pure imaginary root s = jO. 

By using the parameter plane approach, equation 3.10 can be 

solved for a and P as 

& ('3. 11)
 

where a and are N1 and N2 or some other system adjustable 

parameter. tquatioha 3.11 represent th L = 0 (or C = 0) curve 

for which s = jO. The D = 0 curve determines the stable region
 

in the a plane in the usual manner. After the stable region is
 

found, the loci of points M(a,O) are plotted according to the
 

variations of U and/or 9 representing N1 and/or N2. The M loci
 

incorporates the additional variable x0, and a family of the
 

°
loci should be constructed for different values of x Then the
 

stability of the nonlinear system is determined by the relative
 

location of the E curve and the M loci and the limit cycles are
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found at their intersections. The stability of the limit cycles
 

is determined in the usual manner. 
This part of the solution
 

process will be best described by the examples that follow.
 

The presence of a limit cycle in the system can modify the
 

nonlinear characteristic for the slowly-varying input signal. 

In order to determine the modified characteristic, the intersec­

tions of the = 0 curve and the M loci are considered to evalu­

ate the amplitude A and the frequency ( of the limit cycle as.
 

functions of the slowly-Varying component x ; i.e.,
 

A = A(x°), 0 = ((x O) (3.12) 

These functions, when -substitutedinto the function FO~x0AQ
 

yield the modified nonlinear characteristic for the slowly­

varying signal
 

°F = I'x) (3.13) 

The function O(x ) is contlnuous' n a limited range of N-, which
 

indicates the smoothing effect due to the presence of the limit
 

cycle.
 

Substitutioh of equation 3.13 into equation 33.9a giyes
 

° 
B(s)x + C(s) 4(x e ) = H(s)f (3.14) 

Equation 3.14 is a nonlinear differential equation in x° , which
 

can be solved graphically for x0 after the function O(x0 ) is
 

obtaiied. This, in turn, yields'the related values of the
 

functions A(k ) and Q(x ) of equations 3.12, and the solution
 
0
x = x + A sin Qt is thereby determined. 
 4,
 

The function 6(x0 ) is a continuous function of x0 and it can
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°
be assumed approximately linear for small variations of x . Then
 

the stability problem related to equation 3.14 can be solved by
 

known linear methods. If it is regarded as a nonlinear function
 
0
 

of x , it can be linearized by harmonic linearization and the
 

results of the previous chapter can be applied.
 

It should be noted here that the same parameter plane pro­

cedure can be used when the right side of equation 3.1 has more
 

than one forcing function; i.e., the right-hand side is expressed
 
r 

by H The solution x, however, must be found by con­a.(s.)f..

i=l1 1 

sidering all existing inputs simultaneously since the super­

position principle of linear analysis is not valid. Further­

more, if the polynomial H(s) of equation 3-1 can be factored in 

the form sH1 (s), the procedure applied to the case in which the 

rate sf of the function f is considered as a slowly-varying sig­

nal; i.e.', Isf(t+T) - sf(t)I. 

The presented graphical procedure can be extended to non­

linear control systems with two nonlinear functions F1 (s) and 

F2_Cx), whereby the following nonlinear differential equation is 

investigated: 

B(s)x + C(s) F1 (x) + D(s) F2 (x) = H(s)f. (3.15) 

In this case, a procedure similar to that given in Section
 

can be extended to determine the solution x = x + x
 

The general procedure outlined in this section is modified
 

depending on the actual problem involved. These problemsmay be
 

divided into three major groups: asymmetrical nonlinearities;
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constant forcing signals; and slow-varying signals. In the
 

following, each group is considered separately.
 

3.3 Asymmetrical Nonlinearities.
 

In an autonomous nonlinear system, which is described by the
 

differential equation 3.1 and where f - 0, the asymmetrical os­

cillations may occur whenever the function F(x,sx) is not sym­

metrical to the origin. Then, under the conditi6ns discussed in
 

the previous section, the system may be described by equations
 

3.9 which has the form
 

x ° °B(Q) + C(o)F = 0 (3.16a) 

N 2
 
J--s =[B(s) + C(s) (N1 + x '0 (3.16b) 

In equation 3..16a, which corresponds to equation 3.9a, there is 

no forcing slowly-varying function (f E 0), and in the steady­

state solution x = x0 + x , the x is constant and hence s is 

replaced by zero in B(s) and C(s). 

In practical situations, B(6) or C(6). can be zero. Also,
 

the nonlinearity in the system is often describedby a single­

valued function F(x) and N2 =0. Thus, an adjustable parameter
 

appearing in B(s) or C(s) can be chosen as one of the axes in
 

the parameter ag plane, while the other axes is related to the
 

describing function coefficient N Some of these situations are
 

discussed in the following examples.
 

Consider a feedback control -systemwith the block diagram
 

of Fig. 3.1 in which the transfer functions are 7-

K
1G2s)GlS=" ss+l)' G3= sK+2"3 G-I (s)=K-IS. (3. 17) 6 



Fig.' '3'.- SYst~mrntIock diagram 
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The nonlinearity n has the form shown in the upper left corner
 

of Fig. 3.2'. 

Equations 3.16, for the system under ihvestigation, have 

the form 

F= 0 (3.18a) 

ts(s+1)(s+2) + [K2 1s(s+2) + KI1 K2 K3 IN1 3x* = 0 (3.18b) 

where, according to the function F(x) of Fig. 3.2 and equations
 

3.6, one has
 

*O (1-m)c + (1+m)c - xO	 .92 + acs 	 (3o19a)
2(1-m)&J 	 _jf/lx 22x 

NA 1 'x 2-A 	 (3.19b)
 

*2 -0 	 (3.19c)
 

and x = x(t) is the input signal to the nonlinearity n as indicated 

in Fig. 3.1. 

The characteristic equati:on of equation 3.18b is 

s (s+l) (s#2) + [K2KS (s+2) + KIK21K3IN = 0 (3.20) 

By denoting K2 1 1N1 = U and KIK2KN = P,the C = 0 curve is 

obtained as 

1 - 2) 	 (3.21) 

= .&(l~+4) 

and the stable region is determined in the ap plane in the usual 

fashion as shown in Fig. 3.2. 

From equations 3.18a and 3.19a, one obtains
 

x0 =,A cos 	-- (3.22)
 
1+m
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and N1 of equation 6.19b becomes
 

N1 2(+mc sin (3.23)
A l~m
 

By using equation 3.23 and the expressions U = K2K 1 Ni,
 

= K1K2K3NI, three M loci (a), (b)., and (c), are drawn in Fig.
 

3.2. They correspond to the parameter values m = 0.5, c = 1,
 

K2 = 1 and (a) KI1K3, K_1 = 0.125; (b) KIK3 = 8.39, KI = 0.28;
 

(c) KIK 3 26, KI = 1.75. The stable asymmetrical oscillations 

are found at the point M1 and M2 where the M loci (a) and (b) 

intersect the = 0 curve. The amplitudes of the oscilldtions are 

approximately A1 0.85 and A2 = 0.8, which is read from the 

M loci (a) and (b) at the intersections M1 and M2. The corres­

ponding frequencies a = 1.5 and 2 = 1.6 are indicated on the 
± 2
 

= 0 curve. The related values of x in the solution x=x+± sin Qt 

is calculated for each poinH M1 and M2 using equation 3.22, namely,
 

0 
X = -0.42 and x2 = -0.39., 

In Fig. 3.3, the solution x1 = 0.42 + p.85 sin 1.5t for the 

case (a) is shown as,obtained by a digital'tomputer simulation. 

The calculated results are sufficiently close to that obtained 

by the simulation. From Fig. 3.3, it can be seen that an initial 

condition X1 (o) = 4.25 is used and the variable x1 (t) approached 

a stable limit cycle. That the limit cycle is stable and will be 

reached by x1 (t) starting from x1 (6) = 4.25 can be concluded from
 

the relative location of the C = 0 curve and the M locus (a), as
 

explained in the preceding chapter on the symmetrical oscilla­

0
tions. The additional component x of the solution x(t) does
 

not alter the stability analysis of the oscillations.
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An analog computer simulation of the case (b) gives the
 

solutionx 2 '='-039 ..8-sn-l.6t as shown in Fig. 3.4. A suf­

ficient accuracy is indiqated. The initial condition x (o) = 0
 

and x2(t) reached a limit cycle. This could be concluded from
 

Fig. 3.2 as previously noted.
 

It is of particular interest to consider the case (c) of 

Fig. 3.2,. The M locus (c) is tangent to the = 0 curve and cor­

responds to the ratio q/9 = X1K3/KI = 14.8. If this ratio is 

higher than 14.8, then there is a limit cycle as shown by cases 

(a) and (b). On the other hand, if this ratio is less than 14.8,
 

the entire M locus is situated in the stable region and the cor­

responding system is always stable. The tangent case (c):
 

m= 0.5, d = 1, K2 = 1, K1K3 = 26, K1 = 1.75, is simulated on 

a digital computer and the obtained .solutionx3'(t), is shown in
 

Fig. 3.2which indicates that the system is stable.
 

3.4 Constant Forcing Signals
 

When the forcing signal at certain points of a nonlinear
 

system is constant, the solution x = x + A sin Ct(if it exists)
 

will have x , A, and 6 as constant values. To determine these
 

values, note that the equations to solve in the presence of a
 

constant forcing signal fo have the form
 

B,(o)x + C(o-)F O = H(o)f° (-. 24a) 
[B(s) + C(s)N1 + - 22 s * 0 (3.24b) 

In general B(o), C(o),, and H(o) are constants different
 

from zero, and the solution procedure is somewhat more compli­

cated to perform than in the previous section where the right
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side of equation 3.24a was zero..
 

To illustrate the solution procedure, consider a nonlinear
 

feedback system with the block diagram of Fig. 3.6 and the trans­

fer functions
 

-- K.s+l)
I
 
Gl(S) 2

2 
G2(s) = 0.2slI G-I= _0.2s +0.8s+l s+ _ T 1 s+l
 

(3.25)
 

The nonlinearity n is given in Fig. 3.7a. The input to the system
 

is a perturbation signal f = f(t) which is-related to the signal
 

x = x(t) and c = c(t) of Fig. 3.6 as
 

(0.2s+l)c = 0.5(s+l)x-f (3.26)
 

If the perturbation signal is f(t) = f = const., equations 3.24 

have the form 

x + 0= (3.27a) 

(O.04s +4 O.36s3 + 2s + 2s;T_'+().4s+2)K ,N1 + 

+'0.4+ 3 i0.36s2 + 2s + 2 = 0 (3.27b)
 

where equation 327b represents'the charaateristic equation of the 

linearized equation 3.24b. By substituting T_1 and KIN = 9, 

the parameter plane diagram is plotted in Fig. 3-7b according to 

the parameter plane equations 

0,.64C + 3.2
 

0.0160' - 0.08& -4
 

60.0160 - 0.03& + 2.56r? + 4 (3.28) 

0.016E1 - o.o8C? - 4 
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The variation of the M point due to the function N1 = N 0(x , A) 

given as 

N =k 
k 

- f(arc sin 
D-x ° 
A + arc sin 

D+x ° 
A. 

0 D+x0 0
+ A-D-x2f-x-cA(7 2 -D+x 2 toi+ A l -A-) ,A +iI 

(3.29)
 

is plotted in Fig. 3.7c. (The expression (3.29), corresponds to
 

the h6nlinearity of Fig. 3.7a). In order to find a solution
 

x = x0 + x of equations 3.27, the parameter k is assumed equal
 

to one, and the function F (x , A) is plotted in Fig. 3.7d by 

using 
° -- + kx + 

A - arc sin Dx 
+ [D(arc sin 

x
- x0 (arc sin D-x + arc sin D+x°] A>D + j o j 

(3.30-) 

For T 1 = 0"04,' the point M. (O0.Q4,i14.3) corresponds to a 

solution x =x + x which will have -= 12 rad/sec as indicated 

on the curve C 0. If K1 =,20, from M1 it follows that 

N1 = A/K_1 = 0.715. This value of N1 determines the relation­

ship between the values of x and A for a possible solution x. 

This relationship, expressed'as a function A = A(x0 ), can be 

graphically obtained from the diagram N1 = N1 (x , A) by plotting 

the straight line P1P2 corresponding to the value N1 = 0.715. 

The function A = A(x0 ) represents the solution of equation
 

3.27b only. The pair of values (x ° , A) __hfenfeie 

actual solution of equation 3.27, is replotted on the diagram
 



Fig.3.8-System block diagram
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,
FQ = F (x A) of Fig.. 3.7d into the curve P'P'. Suppose that 

the constant perturbing signal has a value of fo 11.75, then 

equation 3.27a determines the straight line fo = 11.75 plotted 

in the diagram F0 = F (x , A) of Fig. 37d. The intersection R 

°
 of that straight line and the curve P{P gives the pair (x , A) 

of the solution x(t) which satisfies ,equation 3.27 simultaneously. 

At this point R, the values are x°/D = 1.35 and A/D = 1. The 

same values are obtained at the point Q on the diagram N1 = N l(x°,A) 

and the solution x = x 0 - A sin at'of equations 3.27 is found. 

If D = 1, it is x = l.a5 + sin,12t.' Note ,that the same solution 

is obtained if the point M2 of Fig. 3.7b is considered save that 

the frequency 0 isibwerjapproximately Q 6.5 rad/sec). 

Simpler situations may occur if one of the values B(o) or
 

C(o) is zero. To illustrate, consider the nonlinear system of
 

Fig. 3.8. The transfer functions are
 
K2 K 3
 

G 1 (s) = Kl, G2 (s) = s(sl)' G3 (s) = s+-2" Gl(s) = K_is 

(3.3!1) 

and the nonlinearity n in the system is given by the function
 

F(x) of Fig. 3.9. The input to the system is the reference con­
0
= r .
stant input signal r(t) 


The nonlinear differential equation describing the above
 

system is
 

Es(s+l) (s+2)+K K2K3x+ K1s(s+2)F(x) = K 2 (s+2)r O
 

(3.32)
 

which may be rewritten according to equations 3..24 as
 

°
 KIK2K3x = 2r' (3.33a)
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= [s(s+l)(s+2) + KIK2K3 + K2sK_S(s+2)N 1 Jx * 0 (3.33b) 

The characteristic equation of the equation 3.33b is evidently
 

s(s+l),(s+2) + KliK2K3 + K2 s(s+2)N1 = 0. (3.34) 

By denoting 

S= N1 

= K3 

the parameter plane diagram is plotted in Fig. 3.10 in the usual
 

fashion. The function N1 = NI(A,xO ), which appears as a varia­

tion of a in the point M(a; 9) is plotted in Fig. 3.11 by using
 

general formula 3.6b.
 

From equation 3.33a, one can derive the following relationship
 

0 0between the input r , the constant term x -,and the parameter
 

= 2r 0 (3.36)
 

x°/S
 

where S is the parametr-of the non-linearityF(x) of Fig. 3.9. The
 

function So given in (3.36) is plotted in Fig. 3.10.
 

Now, by using Fig.;3.10 and 3.11, it is possible to determine
 

the sustained oscillations and their stability for various values
 

0
of system parameters KI, 2, K 3, K_l , S, k, and the input r . For
 

example, if K1 = 1, K2 = 10, K= 1.76, Kl = 1, S = 1, k = 1, and 

= 1.1, then the solution of equation 3.33 is determined by the 

values x = 1.2, A = 0.3, and 2 = 2.1 rad/sec to be approximately 

x = 1.2 + 0.3 sin 2.lt (3.37) 

0

For a given value of = K3 = 1.75, r = 1.1, and S = 1, the value 

of x= 1.2 is read from the left part of Fig. 3.10. Then the
 

http:Fig.;3.10
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value of K1K2P = 17.5 determines the point M(l.2; 17.5) on the 

= 0 curve where C =-2.1 rad/se,! VAt this point, ]hK>I = 1.2 

which gives N a = 0.12 Fig. 3.11 is used ,t evaluate the 

amplitude A,= 0.3 from the curve x /S = 1.2. The value A = 0.3 
is read directly from the diagram fl (A, x ) ,f rig 3, i1, since 

K = S = 1 are the parameters of the given nonlinearity in Fig.
 

3.9.
 

Th& solution (3.37) is stable since an increase in the 

amplitude A causes the point M to move into the stable region.; 

while a decrease in the amplitude A places the point M inside 

the unstable region of the parameter plane (Fig. 3.10). It is 

of interest'to note that if the produce K1K2 9where P = K3 is 

such that it is less than 6.4, the system is always stable since 

there isno intersections of the variation of the.M,point and the 

S= 	 0 curve. 

The above solution (3.37) is checked by computer simulation 

to obtain the curve on Fig. 3.12. The accuracy of the calculated 
0 

solution is sufficiently high and, for calculated values of x , A, 

and Ck, is approximately 10%. On the other hand, the computer 

solution indicates a distortion of the assumed solution 

x = x + A sin Ct which is due to the higher harmonics present 

in the actual solution. 

,3.5 Slowly-varying Signals 

In this section, the problem of linearizing a nonlinear 

system by a high-frequency limit cycle is considered in more 

detail. The objective is to determine the conditions under which 6" 



\Fig.. 3.13 - System block dio.gram 
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such a linearization is possible and then to construct the 

linearized characteristic of the nonlinearity. This lineari­

zation has several practical aspects discussed in Section 3.1, 

which are based upon a general property of the linearized system 

that, for a limited magnitude of the reference signal, behaves 

like a linear system. Therefore, results of the nonlinearities, 

such as dead-zone, hysteresis, backlash, etc., are eliminated. 

The procedure to achieve this will be best illustrated in the 

following examples. 

Consider the system on Fig. 3.13 with the transfer functions 
K2 K 3 

GI(s) = K, G2 (s) 2 Gs(s+l) G-I(S) = 
2(s) s2~+0. Bs+l 3(s= 

(3.38) 

and the nonlinearity n as shown in Fig.. 3.14. The input to the
 

system is a slowly-varying reference signal r = r(t).
 

The equation which describes the system is
 

s(s+l) (s 2+0.8s+l)+ K2 sK_s(S+l)Jx + K1K2K3F(x) = K1K2s(s+l)r 

(3.39) 

where the signal x = x(t)'"i the'"npdt~tth6 ionlinearity. Equa­

tion 3.39 can be rewritten in terms of equations 3.9 as 

(s +O.8sIl)2K'Ks2s+ K K K F = KK 2 S(s+l)r[s(s+)(s2 0.8s+l)+K S ) l 

[s(s+l) 2 tO.Ssl)±K2K_18(s+I)]+K1 K2K3N1 x = 0 (3.40) 

The characteristic equation of the second equation 3.40 is
 

s(s+l) (s 2+0.8s+l)+K 2Kis(s+l) + K K2K3N 1 = 0 (3.41) 

Substituting K2K_l = U, K1 K2 K3 N1 = P, and s = j'Q into equation / 

3.41, one 'obtains the parameter plane equations of the = 0 curve 
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as 

S= 1.8 ­
(3.42) 

= 0.8s + 1). (.2 

The curve C = 0 is plotted in Fig. 3.14.w The variations 

of the M point are plotted also in Fig. 3.14 according to 

N 2, A jx°I (3.43) 

The system parameters K1 1, K2 = 12.5, K3 = 10, K_ = 1 

result in the point MI(12.5; 45). If c = 1, this point M1 gives 

N1 = P/KIK 2 K3 = 0.36, and the straight line P1P2 is plotted on
 

the diagram of function N1 = Nl(x°, A). After the diagram
 

01 0 0

FO = F (x , A) is plotted in Fig. 3.15 using,
 

(3.44)
o 2c A 1x° 

=- arc sin-, ,x 

the replotting of the straight line P P2 on the diagram F 0 (x0 , A)
 

yields the function (x ) of Fig. 3.15. The replotting procedure
 

is the same as that used in 'the/previous section; i.e., for each
 

pair of values (xrA)read on the straight line P P, the cor­

00
responding pair exists in the diagram F (x , A), which determines
 

one point on the curve (x°0
 

Function Z(x° ) of Fig. 3.15 is smooth and represents the non­

e
linearity for the slowly-varying signal x00 
. The shape of *(xO)
 

explains the smoothing effect of the high frequency limit cycle
 

which has a slowly-varying amplitude, the value of which is
 

located between the points Q1 and Q2 on the A axis of Fig. 3.14.
 

The frequency 2 is approximately constant and has the value
 

01 2.7 rad/sec. According to O(x0 ), the smoothing effect of the
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limit cycle is present under the condition that Ix"I 2;.25.. For 

Osmall values of x , it is possible to consider C(xO) = xO where 

K = const. Then the stability of the system with respect to 

slowly-varying signal§ may be investigated by we ll knovin linear 

methods outlined inChapter II,., In the specific ex mple, the 

equation of interest is 

s(s+l) (s +0.Ss+l)'+ Kfs(s+l) K'K'K 3 0 (3.45) 

Finally, it is to be noted that for the smoothing effect to take
 

place, the amplitude A should be A : Ix01, as stated in equations
 

3.43 	and 3.44.
 

The results of the above analysis are checked by simulating
 

the system on an analog computer. Three cases &re considered.
 

O
In Fig. 3.16, the input to the nonlinearity k = x + A sin Ct
 

and the system output x = x(t) are shown when the input signal
 

is r= sin 0.1t. The obtained computer solution agrees with the
 

prediction. 'The output c(t) exhibits a smaller amplitude limit
 

cycle with the same frequency. When the input amplitude is in­

creased five times, the diagram of Fig. 3.17 is obtained. This
 

change increased x0 , but the amplitude A remained almost the
 

same. The frequency 0 did not change. Similar results occurred
 

when the input amplitude increased ten times except that the
 

amplitude A became slightly smaller, which agrees with the dia­

gram 	of Fig. 3.14. The third case is given in Fig. 3.18. It
 

should be noted from these computer solutions that the output
 

signal c(t) represents the input signal r(t) except for the
 

superimposed limit cycle. It can be eliminated by introducing A
 



0 Dx.O.8 
200 

4 

A/fl 

0O 

0 

0 , 

02.4 

A2 

. 

-

unstable 

-3 

145i ) 

" 

gtabl" 

4. .,- .- ... " - . o . _. 4o . 

Fi._319 L,.Paamterplane"diagram." 



o3 2 -­

64 

Liner zd .r
 
-0.5 

Fg 3.20 -. '' t-erA ecattristic 



r-­

_pF._3.21 - System block diagram
 

.J­

http:pF._3.21


3-43
 

sufficient filtering in the block G3 (s) of the system of Fig. 3.13,
 

or by readjusting the system parameters to obtain a higher fre­

quency limit cycle.
 

If the values of the system parameters are chosen so that the
 

operating point is M2 (21.2 120#)of Fig. 3.14, the frequency of
 

the limit cycle becomes higher. However, the corresponding range
 

of variations of x is decreased to Ix01 < 0.7, together with the
 

range of the amplitude A which is between Q3 and Q4 " This indi­

cates that the pre-ented procedure is convenient to apply when
 

the system parameters ane operating conditions are changed.
 

If the nonlinearity h is changed in the system of Fig. 3.13
 

by introducing a considerable dead',zoneAD.1 a diagtam of Fig. 3.19
 

is obtained. The variation of the M point is calculated by using
 

equation 3.6b for the given nonlinearity of Fig. 3.19. Two cases
 

should be considered separately; i.e.,
 

N1 2[-x°+D j2 +xOA+ x -D 2 ,AA +D (3.46a)1
 

= 
 AAOl
N1 2-- x -D 2, -D A 1x' +D (3.46b) 

and the diagram N1 (x°, A) is shown in Fig. 3.19. By using equa­

tion 3.6a, the corresponding diagram,F,(x A) of Fig. 3.20 is 

plotted according to 
Fo cc . arinX°+D D) 

F =- (arc sin + sin x0Ix'i + D (3-47a)~1?A -A 

S c _- , 0j-D 0 

F = (- +'arc sinA )sin x , Ix?!-Ds-A 1x°1+D 

1, 0(3.47b) 
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s~~)s2) + KI(K jai) (N, + H2 0(3.50) TS 


If~~~ ~ ~ 0K 0 

44 

(3.51) 

ans= Qone obtains th 0 crea 

_4_0 (.52)
 

Thecure i plotted in Fig. 3$.22. On the same plot, the varia­

toof the poinit M(l N2 i~s constructed according to
 

1 A+, Ax
A~ 


and the nolnaiyFx f Fig.32fowhc c D 1. Fro 

th ntesetions oftha cu~rve and the variation1 of the M 444 

poiton candetemine th amltude A and th frequency 

as fiucton of oie. 
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the family of constant amplitude A, the function o(x0 ) is
 

obtained as shown in Fig. 3.23. The function O(x°) as a single­

valued function of x', which is linear in the range o Ix01 2.4.
 

For an input r(t) = 5 sin 0.5t, the computer solution is
 

shown in Fig. 3.24. The amplitude A and the frequency &2 of the
 

limit cycle are slowly-varying quantities according to equations
 

°
3.54 and the slowly-varying variable x Their average values,
 

however, are close to that which can be predicted from the parameter
 

plane diagram of Fig. 3.22; i.e., A = 2.8 and D'{2"4.5 rad/sec.
 

This can be concluded from the diagram (a) of Fig. 3.24. On
 

the diagram (b), the output signal c(t) is shown whereby the
 

limit cycle is largely attenuated by the block G1 (s) of Fig. 3.21.
 

The low-frequency component in the signal c(t) represents the
 

input r(t) = 5 sin 0.5t at the output of the system.
 

Of course, if the input r(t) is not present, the system,
 

will exhibit a limit cycle which can be determined from the inter­

° 
section of the M locus x 0 and the,C = 0 curve on Fig. 3.22 

as x = A sin t, A = 2.6, 2 = 4.8. This is checked by the analog 

computer simulation and the obtained solution is shown on Fig. 3.25. 

3. 6 Conclusion
 

The parameter planemethod has been used to indicate ex­

istence of asymmetrical oscillations'in nonlinear control systems.
 

A procedure has been develo~edto deterMinejtheo~c'illations for
 

different values of system parameters -and input.sigals. It has
 

been shown how a limit cycle'-can modify the hoAlinear character­

istic for slowly-varying signals. This modification may be of
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importance when a high-accuracy control system has to be de­

signed in the presence of nonlinearities with excessive dead
 

zone, hysteresis, backlash, etc. The design technique can be
 

directly applied to a large class of plant-adaptive control sys­

tems where a sinusoidal signal is used as an identification sig­

nal.
 

In a future study, the technique may be extended to the in­

vestigation of transient asymmetrical oscillations. Thus, to
 

study how these oscillations are established after certain ampli­

tude perturbation, this study should be largely based upon the
 

material presented in the following chapter.
 

It may also be shown [16, 17] that the presented analysis can
 

be extended to the case when the signal superimposed on a sinusoid
 

is not only a constant or slowly-varying sinusoid, but also when
 

the additional signal is described as a Gaussian process, pro­

vided that the amplitude or standard deviation of the additional
 

signal is of no consequence in the- analysis. This further gener­

ates the idea of applying the dual-input describing function
 

[15,17J along with the parameter plane method, and investigates
 

the case when the input to a nonlinearity of the system is a
 

combination of two similar sinusoidal signals.
 

/</
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INTRODUCTION
 

3-13 classical techniques for analysis and design of dynamic
 

3-30 systems are largely restricted to cases in which only one para- .
 

3-49 meter of the system is adjustable. As a consequence complex
 

3-51 systems cannot be treated adequately with classical techniques.
 

*
 
Algebraic methods, as developed in NASA CR-617 , are capable of
 

treating systems in which two parameters are adjustable, and
 

thus permit analysis and synthesis of systems which are too
 

complex for treatment with classical methods.
 

The treatment of algebraic methods presented in CR-617 

develops the fundamental theoretical basis for the coefficient 

plane and parameter plane methods. It also applies these 

methods to basic problems such as stability analysis, cascade 

compensation of..systems, and related-topics. The applications 

indicated in CR-617 are rather elementary, i.e., the problems
 

considered illustrated the procedures to be used but were not
 

very complex problems. This report is based on the findings of
 

CR-617, and extends the applications of the algebraic methods to
 

problems of a more complex nature.
 

When cascade compensation is used in a feedback control
 

system, more than one filter section may be required to achieve
 

desired performance. Frequency response methods involving trial
 

and error are often used, but parameter plane methods permit
 

analysis and design without trial and error if it is permissible
 

Algebraic methods for Dynamic Systems by G. J. Thaler, D. D. 
Sll~ak and R. C. Dorf, Nasa Contractor Report NASA CR-617,
 
Nov., 1966.
 



to use two identical filter sections. This problem is treated 


in Chapter I of this report. The applicable parameter plane 


equations are derived and a di4ital computer program based on 


these equations is presented. The program is used to study the 


effects of compensation on several systems. 


Chapters II and III are concerned with nonlinear systems. 


Conventional methods such as frequency domain analysis of sys-


tems with the Describing function have proven useful when the 


system contains only one nonlinearity (or several nonlinearities 


conveniently located so that they can be incorporated in one de-


scribing function). These techniques can define stability and 

estimate relatLve stability for fairly complex systems as long
 

as the conditions of nonlinearity are not too complex. Such
 

cases are'easzly treated using algebraic methods, the effect of
 

the nonlinearity being represented as a movement of the operating
 

point on the parameter plane, which in turn represents a varia­

tion of the characteristic roots as a function of signal ampli­

tude. The algebraic methods are capable of extending such analy­

sis to systems containing two distinct nonlinear components, and
 

can be used to predict the transient response of the system 

rather accurately. Techniques for such problems are developed
 

in Chapter 1I.
 

Chapter III is concerned with a much more difficult non­

linear problem, that of asymmetrical nonlinear oscillations.
 

These are oscillations consisting of a limit cycle superimposed
 

oi, another signal. The problems studied on the parameter plane
 

involve steady-state operating conditions (rather than transient
 

conditions), and permit analysis of the existence of oscil­

latons as well as their dependence on parameter values and in­

put signal values. Extension to linearization with either
 

signals is included, as well as some design considerations.
 

it is felt that the results presented here indicate the
 

capabilities of the algebraic methods in dealing with complex
 

linear and nonlinear problems. It is also felt that the re­

sults presented here will be directly applicable to a number of
 

practical problems, and will point out avenues of approach to
 

still additional problems. 



I 

SOLUTION OF EQUATIONS WITH COEFFICIENTS 1.2 THE PROBLEM: Cascade Compensation with two identical
 
THAT ARE QUADRATIC IN a and / filter sections.
 

1.I INTRODUCTION' In the design of feedback control systems it is common to
 

It has been shown that the characteristic equation can be use compensators which are filters placed in cascade with the 

solved for a = a(twn) and A = B(Cwn) when the coefficients of main transmission path. Frequently two sections of filter are 

the characteristic equation are of the forms: needed, and if identical sections are used with an isolation 

a) ak = Va + ckq + a . amplifier so that their transfer functions can be multiplied, 

b) ak = bka + + hYaS + dk (1) then manipulation of the transfer function equation provides a 
2 2c) ak = bk2 a + bkla + h28 + ck1 + ck20 + dk characteristic equation in which the coefficients are quadratic 

d) ak = bk a + • - *kh a 8+. . in z and p, the zero and pole of the compensators. For example 

nCk(n -) 'n-1 + ckn + ak let: 

In addition practical solutions have'been obtained for the first G (1-2) 

2s2+2zs+z
two of these coefficient forms, i.e., computer programs have been 
 c s+p 22 (1-3)
2
s + p+p

written for them and successfully applied. The development to 


be presented here is a particular solution for case l-lc, parti- 1+GcG = 0 = 1. + K(s 2 +2zs+z2 (1-4) 
(s3+Xs2+Ys) (s2+2p+p2

cularly in the sense that a computer program has been obtained 


which solves the equations of a thitd order system for which the from which the characteristic equation is
 

5 2
coefficients are quadratic in a and 8, but which do not contain s + (X+2p)s4 + (p2+xp+Y)s3 + (Xp2+2Yp + K)s + 

all of the a and A combinations indicated. At the same time the + (Yp 2 + 2Kz)s + Xz2 = 0 (1-5) 
solution is a general solution in the sense that theprogram can Letting p J a and z 8 it is noted that all of the forms speci­

th 
be modified to solve the equations of an n order system, and fied in the quadratic case definition of ak do appear in at least
 

can also be modified to accept all of the a and R forms indi- some of the coefficients except that there is no as product tem. 

cated in, 2The formulation just given does not.conform to normal con­
2
ak bk2a + bkla + hbk& + cklR + ck2 8 + d k trol system practice, however, in that an important restriction
 

The modifications to be made in the program are discussed, I on the design of the compensator is the usual requirement that
 

the necessary programing has not been done. steady state accuracy must be maintained by keeping the error
 

2 



coeffzcrent unchanged. To do t h i s  the physical adJustment is t o  

a l t e r  the galn of the  ampl~f l e r .  bu t  i n  the  mathematical analysls 

~t is  more convenient t o  include t h i s  r e s t r i c t r o n  i n  the  t ransfer  

functron of the  compensator by defining ( for  this case) 

(1-6) 

'Thrs a l t e r s  the algebraic £om of the  characteristic equatlon 

which becomes: 

~ ( 2 )  (s2+2zs+z2) 
0 = 1 + 2 (s3+xsZ+ys) (s2+2ps+p ) 

5 4 2 = s +(x+2p) s + (p tzXp+Y) s3+ [xp2+2yp+~(:) 2]s2 

+[yp2+2Kp (E) 1s + KP' (1-7) 

A 
Choosing p = R and 2 0 t h l s  becomes 

In  equation 1-8 the c o e f f ~ c ~ e n t s  are quadratic i n  o. and 8, 

bu t  there is no term of the  form 4cle, and the  program as wri t ten  

does not make provision f o r  such a'term, though mod~facatron of 

t h e  program t o  include it i s  not d i f f ~ c u l t .  The problem t o  be 

studled,  then is t hx t  of a th i rd  order system compensated wzth 

two cascaded iden t i ca l  sectlons of f ~ l t e r ,  and Gith the  added 

requzrement t h a t  the  error coef i lcrent  be maintained constant 

a t  a predetermined value. 

3 

1.3 DERIVATION OF THE GENERAL THIRD ORDER SYSTW 
RELATIONSHIPS 

The general t h l r d  order system is defined by the t r ans fe r  

f u n c t ~ o n  

G(s) = K 
(s+Al (s+B) (s4C) (1-9) 

which is  a Type Zero system, butwhlch can be changed t o  Type 

1, 2, or  3 by s e t t i n g  one o r  more of the poles t o  zero. The 

compensator t r ans fe r  funchon, ~nc lud ing  the  gain mul t ip l ier  

which maintams the e r r o r  coeffrcient  is 

2 2 = p2 (s2+2zs+z ) 
2 ' (1-10) 

z~(s2+2ps+p ) 

From 1-9 and 1-10 the charac te r i s t i c  equation 1s 

[s3 + (A+WC)s2 + (AB+BC+AC) s + ~ B C ] ( s ~ + 2 ~ s + p ~ ) +  

2 2 + K ~ ( s 2 + 2 z s + z  ) = 0 (1-11) 
Z 

Thxs expands t o  

s5 + (A+BiC+Zp) $ + [AB+BC+AC+Z~ (A+B+C) +p2]s3 

2 
+ [ABC+Z~ (AB+BCXA) + p2 (A+B<) + K %Is2 + 

Z 

A+BK 4 ri = sum of roots (poles) 

L? AB+BC+AC = 1 pi = s& of root products taken 2 a t  a tlme 

pi b sum of root  products taken n a t  a tlme 

L? ABC . . b nri = products of the  roots 

4 



Then equation 1-12 becomes: 221 W<02(?) + w2up(-r ) 

s+ i+r2Ps + n~1r, + 2Zr~l~) 
2 	 +(n r +K)Ul() (1-23) 

3
Y 	 p2 -e ir Z TI rwu1 (t)(ip 31rr + Zrip2+K&s (1-13) 	 = 03 (r) + 1w2(r) 

2 	 2 
(211 rI + 37 ri + 2Ka)s + (n ri+2K)0 = 01+ (TT +K)Uc) (1-24) 

Collecting 'nke terms in aand 2G 1 - L4U3 + (: )w++ = 5 u 4 () 2 r1-U2(5) 

2 (Ks2) + aP(2Ks) + 0 2 3i+ r s +s I n-r. i + (i+(1-25)(r

22 = _wUS(C) + 4 (C) -5 rwUr. 3( 

" (2s4 + 2 trS3 + 21nT. 2~ + 211ris) +r r.W2 (1-26)
1 2 1 	 ( 

+ 	 (gs + 1 is 4 + I frs 3 + Iri 2 ) = 0 (1-14) p1 = (1-2) 
P2 D2 (1-2)= 

2

Using the basic parameter plane relationships: '1 = PE11 + R F2 1 + G1 (1-29) 

2 G2 (1-30)
Z (-)k akd k_ (c)= 0 (1-15) 2= + F22 + 


k=0 
 This results in
 
n
 

+ Q = 0 	 (1-31)

Z (-1)k e kUj) = 0 (1-16) a21 + ap1 

k=0 (2B aP 2 + Q2 = 0 (1-32)2 2 + 

and defining:
 

B21 = deinig:) (1-17) 
 which arb two non-linear zlgebraic equations completely general­

ized in terms of the uncompensated system poles and root locus
 2 2 
gain, r,w and the first kind of chebysbev Functions. These
 

D =-2KWVO(C) (1-19) must be solved simultaneously for the correct values of a and
 

To do this, the method with the best chance of success
D = -22K1(0) (1-20) P. 


2

E = 2-4U3(C) -2Xr 1W3U2 (C) + 2Z 11 r U ) -	 appears to be Sylvester's Method in which we form a set of four 

equations by taking the original Equations (1-31) and (1-32) and
 
2TJ riwUo(r) (1-21),
 

forming two more by a multiplication with a giving: 

= 2w u4 (C) -2LrW-U(C) + 21 r ri'2U2(C) a2B21 + °F1 + 01 = (1-33)E1 2 


= 
0 	 (1-34)
-2! ri U( ) (1-22) Y2B22 + UP2 + 02 

5 



c3BZ1 + u2pl + eQ1 = 0 
2 e3BZ2 + u P2 + eQ2 = 0 

Now placing these equations in rnatrrx form: 

2 2 
2G1F22B21B22 + D1D2G2B21 - ~ : ~ 2 ~ 2 2  - E11B22 - 
~ F ~ ~ G ~ B : ~  - D:G~B~~ + D1D2G1Bz2) + 

2 
0 L - ~ E ~ ~ G ~ B ~ ~  + 2E11G2B21B2Z * 2G1El2BZ1BZ2 - 2EllG1B22) + 

2 2 2 2 
(lG2B21 + 2G1G2Bz1Bz2 - G1BZ2) = 0 (1-40) 

from which the coefficients may be determined by a substitution 

of tl-17) through (1-26) and the values of the first kind of 

If the 0's are not zero then: Chebyshev functzons in terms of Z and m. Since the solution of 

a fourth order equatlon is at best diff~cult, it 1 s  at this 

polnt a dlgxtal computer becomes a necessity. 

The major problem is not the actual solutlon of the quartic 

itself, but rather the proper choice of one of the four solutions. 

There are two marked charactenstics, however, whlch help in the 

selection. These are: 

a) Complex answers to the qiartic have no physical signifi- 

O B21 Q1 

O B22 P2 Q2 

B21 P1 Q1 O 

B22 P2 Q2 O 

cance and may therefore be discarded as erroneous. 

b) The definltxon of u requires that u and B be of the 

= 0 

same slgn so that p and z w ~ l l  be of ident~cal slgn. 

uslng this information and that available from the Ross-Warren 2 

method as to compensator pole and zero location, it is found that 

the soiutlon to the B quartxc is the largest, positive. real 

value. 

Expanding this determinant 
2 2 2 

-B21Q2 + B21B22QlQ2,f. P1P2B21Q2 - P1Q2B22 + Q l Q ~ ~ 2 1 ~ 2 2  
2 2 2 

-Q1BZ2 - Q1P2BZ1 + QlP1P2BZ2 = 0 (1-39) 

Substrtuting equatrons (1-27) through (1-30) in equatlon (1-39) 

prov~des a fourth order equation in B :  
4 2 2  2 
(-F2zB21 + 2F21F22Bz1B22 + D1D2=22B21 - .=22"lB22 - 

~:1~:2 - ~ 2 1 ~ 3 2 1  + D1D2F21B22) + 
3 

B (-2~lz"zz~;l ~ ' 2 ~ 1 1 ~ 2 2 ~ 2 1 ~ 2 2  + 2F21E12B21B22 + 

D1D2El2BZI - D:E12BZ2 - 2E F B2 - 
11 21 22' 

~ : ~ l l ~ 2 1  + DlDzEllB22) + 

2 2 
p2 (-E1zB21 - 2~22~2~;l + 2EllE12B21B22 + 2F21G2B21B22 

Now enteringquation (1-27) with this value, and evaluating 

the other coefficients 

= C - Q ~ / B ~ ~ J  % (1-41) 

for in the third order case P1 is always ident~cally zero. 

8 



Thus, with the programing of-the appropriate equations, 


the digital computer could give all of the values and plot the 


constant ieta and constant omega loci on the Parameter Plane for 


any desired values, 


1.4 	 SOME APPLIqATIONS OF THE PROGRAM 


Several third order systems were investigated by the appli-


cation of the generalized equations and the Parameter Plane 


curves, Figures 1-1 through 1-8 were plotted. Of these, the 


K/s3 family appears the most interesting. Further investigation 


of three of the curves in this family, Figures 1-1, 1-2 and 1-3 

shows that there is a relationship between K, the root locus 


gain, a and P. 


These relations are: 


a) choose a point on the i/s
3 a- plane. 


b) Zeta reads directly. 


c) Determine the actual omega at that point by multiplying 


the value read by the cube root of the uncompensated 


system gain. 


d) Read the ",-Iue of a directly from the point chosen.
 

e) 
Read the value of P from the point chosen. 


f) Obtain the true value of 0 by multiplying this value 


by the cube root of the uncompensated system gain. 


By this method, the values of v and 0 may be determined for 


systems from one universal 
curve.
 

all K 
s 

1.5 	 BANDWIDTH CURVES ON THE U-0 Plane 


In many instances, there is also a bandwidth criterion 

9v 


imposed on the engineer as well as an optimal operating point for
 

the plant under consideration. With this in mind, equations for
 

the plotting of constanc bandwidth curves on the a-P plane are
 

developed. For the purpose of this development a constant band­

width curve will be defined as:
 

A constant bandwidth curve for G(4) = M is a curve drawn
 

upon the parameter plane which specifies the relation between
 

the parameters necessary if the transfer function G(S), which
 

is a function of the parameters, is to have magnitude M at
 

the real frequency I%­

once these curves are obtained they may be superimposed on the
 

parameter plane thus indicating what values of the parameters are
 

necessary in order to meet the specifications.
 

Taking the rational transferfunction and defining it:
 

G _) == Pmm + P m- " P 
G =-s (s) Pmn M1n~l+ l+Re(-2 

s q l s +
0sq)n + qn-S + qo
 

where the Pm'S and q%'s are of the form:
 

= 2 + + 2 +

Pu gua huv + iuap + ju k u lu
 

u = O,1,2. m (1-43) 

= 2 	 + 

q, av + bva + cva0 + drP ev2 + fv
 

v = 0,1,2,...,n (1-44)
 

mTherefore PS 

G(s) u=O (1-45) 

0(svsn 
v i0
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Setting the magnitude of G(O%) = M:
 

Employing Equation 1-45 in the parameterized form the generalized 2G + r2 + i2
 
2 
= G(j%21 r r 

compensated third order transfer function is: 	 2IG(0 2 E ' + (P2D +.)i+Fi
 
+ ir-rD 

(1-46)
G (s ) 	 = 
Q(s)
 

Manipulating Equation(1-54)algebraically
 
where:
 

O(',P) - M28(ap) = 0 	 (1-55)
p(s) = 2KS2 + 2aRKs + 02x (1-47) 

0 23 rV 1where fr2 22 2 22(-6 

and: Q(s) 2[ + 2 +)s 1 r a + U1ril +wee Oap 6 
+.1 	 r1s

2 2 ~ +~ = a r + 2a2KG. +-K2+ a 0 1 (1-56) 
r r-2x 3 


r rx rr r 
++22r3 	 1
 r rr I I
srss 	+ 1 rr
5 	 24D2 F + 23+Dr4 + 22'? + +E[o6so3s r's + ±3nris]R ](1-48)42..Lr ris3 + r -48) 	 22 

+ B 22E+
+ 1?
3 D + 202Di 

i + B H + I 

Making the definitions: 

n 203ED + 2$2 DiFi + 20E.F (1-57) 

A = I (-l)yvoav; etc. for BrCrfDEr,F (1-49) i i M 
v=0 	 Substituting Equations (1-56) and (1-57) in Equation (1255) and
 

even
 
defining:
 

2
 
n 


Ai - %av; etc. for Bi,C.,DiEiF i (i-50) 1 r 


v=0
 
oAd 

= 2DrEr + 2ED 1 	 (1-59)

m u1 


G = C-)>U~gu; etc. for H2irJrKtLr (1-51)
u=0 	 R1 = 2DrBr + E r + E + 2DiF i (1-60) 

even
 
(1-61)
= 2i
R2
im 


G = 	 , (-l)k ( u - l Wbug etc. for HI ,J 1 ,K.,Li (1-52) 
1b 

= 2E F + 2EFP (1-62)u=0 	 V1 r 

odd
 

2 	 2 (-3
'1" 	r6
 

and substituting in Equation 1-46, 


4G 2 (-4
42 2 
(V2Gr + Kr) + )(Vol) (1-53) W2 =a r + 2a2KG, + (1-64)2 	 K r 


G(DO 	) + E -+F ) + j(P2D, + PE + F) 

7R +Rr r i z , 

12
 
ii
 



2  

it follows that where for n=4 the equation would be written:
 

2 6 2 6 2

M2P1 4 + M2Q1 3 + (M2R1 - R2)0 + M2V10 + s + ps + p2s4 + (z2, + 2pzs + p2)K +
 

4 3
(M2 W1 W2) =0 (1-65) 2p(Z ir~s + L ris + n r i s 2 + Z" riS + 

1 2 3 -4 

Since the Parameter plane for compensation purposes has already 2 3 + n . n ris + r 
2 3 2+Zr + r +Tr) + 

been determined it is now a matter of taking the computed a n 
1 2 3 4 

values and substituting them along with a constant value of 
s 4 3 

and M into Equation (1-65) and then solving the 0 quartic. (X ris5 + I r + I3rs + TIris 2 ) = 
omega 

1 2 3 4 
This has as its solution the largest, real and positive value of (1-67)
 

It may be further shown that the parameters defined by Equations
the four roots as before. 


(1-17) through (1-26) may be written:
1.5" EXTENSIONS TO HIGHER ORDER SYSTEMS 


Although the work presented to this point has been limited B21 = (1-68) 

2 
to third order systems and the program written for this specific 


case, investigation shows that generalized 
equations may be
 

D 1 -2K5Jo(4) 
 (1-70)

written which will allow the extension of the program to higher 


ordered systems. It can be shown for a given nth order system D2 = -2KtU 1 (3) (1-71) 

with no zeros to be compensated with two identical sections of k=l
 

= 2(-1)n+ln+lun( ) + 2 Z [ (-l)kdcLkl(g)(j n r1)] (1-72) 
cascade compensation, that the characteristic equation of the Ell k=n 3 

j=l
system nay be generally written as: 

jnn+2 n+l 2n 22 2 

s +2ps +ps + (z s + 2pzs + p2)K + k=l 

j=n J=n E = 2-1)n+In+lU + 2k=n [(-l)k U'$ ) ri) ] (1-73) 
k=l k0O2= c 12 n L
 

2pL (t r sk + P2 ( rs k + j= n j= 
k=n 3 ' n- J 

j=l j=l k=0 
k=2 F21 = (-1)nOn-(o 4 ) E(-lk -l() (2 P rUj + 

n knl 

k=n

7 iris k - 0 (1-66) =l (1-74) 

k=n+l 
3=l 
 14 
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These then a r e  t h e  recursive equations requlred f o r  the  complete 

generalization t o  a nth order system. By employ~ng the  above 

equations and replacing i n  PROGRAM PROJECT cards 100 through 150 

and 300 through 540 wlth the  approprrate progranmung, t h e  program 

may be uied f o r  any glven nth order system. 

In  l i k e  manner by generally de f~n ing :  

j-n 
and: X=1 

k 
~ ( s )  = sn+' + 2psn+l  + 8's" + 2 1 (1 c r l ) s  + 

and uslng Equations (1-49) through (1-52) we may replace i n  the  

program cards 2860 and 2880 through 2920, thus adaptxng thls 

p a r t  of the  program t o  a general nth order a p p l ~ c a t i o n .  

15 

1.6 COMMENTS 

Throughout t h i s  development of t h e  Parameter Plane quadratic 

extension, t h e  %'s  i n  the  generalized coeff ic ient  form: , 

(%e2 + + + %B + f k B Z  + gk) = 0 (1-80) 
k=O 

have been iden t i ca l ly  zero. T h ~ s  a t  f l r s t  appearance might seem 

t o  de t r ac t  from the  generalization. The inclusion of this para- 

meter does not  however introduce any g r e a t  d i f fzcul ty  i n  the  

solution.  The change i n  the  development would be t o  the  value 

of P1 a i d  P2 whrch would become: 

P = C 1  +BD1 1 (1-81) 

P, = C2 + OD2 (1-82) 

and the  f i n a l  so lut ion for  u which would change to: 

For t h i s  case, new se lec t ion r u l e s  f o r  acceptable values of $ 

would be used, and would be much lxke those presented f o r  B. 

Though t h e  extension of the'parameter Plane t o  include the 

o - B quadratic case makes t h i s  too l  even more useful, fur ther  

work i s  s t i l l  t o  be  done i n  t h i s  f i e ld .  Not only must the 

equations f o r  the  solutions of t h e  Parameter Plane curves f o r  

such cases as: 

a, = %u2a2 + cku B .I $up2 + + %p2 + 

gk@ + %a + %s + 5 C51 (1-84) 

16 



and higher ordered combinations of the parameters be developed, 	 REFERENCES
 

but more efficient programming techniques must be developed. 1. 	Mitrovic, D., Graphical Analysis and Synthesis of Feedback
 
Control Systems, AIME Transactions, Pt. 2, Applications and
 

In the use of PROGRAM PROJECT, for instance, as the location of 	 Industry, Vol. 77, 1958, pp 476-496,
 

the system poles on the a axis of the S-plane move to the left, 2. 	Ross, E. R., Warren, T.C., Thaler, G. J., Design of Servo
 
Compensation Based on the Root Locus Approach, Paper 60-779,


the computational time becomes excessive due to present pro-	 presented at the AIEE Summer General Meetina, Atlantic City, 
N. J., June 19-24, 1960.
 

gramuing technique and computer speed. 
3. Pollak, C.D., Thaler, G. J., S-Plane Design of Compensators


Another major problem in further extensions of these tech-	 for Feedback Systems, IRE Transactions on Automatic Control, 
Vol. AC-6, Number 3, Sept. 1961, pp 333-340. 

niques, and indeed even other applications of the curves from the, 
4. Siljak, D.D., Analysis and Synthesis of Feedback Control
 

proceeding development, will be interpretation. In this case, Systems in the Parameter Plane, Part I, Linear Continuous
 
Systems, IEEE Transactions on Applications and Industry,


the initial substitution of variables immediately allowed inter-	 Nov. 1964, pp 449-458.
 

pretation of the curves sight unseen. Here then, will be most 5. Hollister, F. H., Network Analysis and Design by Parameter 

likely the one single drawback to further extension, for as the Plane Techniques, Thesis, U.S. Naval Postgraduate School, 1965. 

6. Nutting, R.M., Parameter Plane Techniques for Feedback Control
 
parameters a and 0 are used as representations of other variables 	 Systems, Thesis, U.S. Naval Postgraduate School, 1965. 

i control-systems, each application will have its own unique
 

interpretation.
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APPENDIX I
 

PROGRAM PROJECT is designed to solve the a quadratic and 0
 

quartic. The program is divided into two main sections, the firsto
 

for the computation of the a-0 points and the second for the band­

width points. 


The first section computes an 80 by 80 matrix of the a and 

0 points corresponding to set values of C and w. The computational 

part is followed by two distinct graphing sections, one for lag 

and the other for lead compensation. 

The lag graphing section is set up so that during the plotting 

of the curves each value of a is tested to determine if its value 

is10ZO7 	 this rangeis 10 a S 1.0001. If no points are found within 

then a print out is made: 

NO LAG COMPENSATION POSSIBLE 

For the lead section graphs, a is again tested by the criter-

I-graph scale) (XCgraph width), Again if thereio ~oO1sa ion 

are no values of a within this region the statement: 


NO LEAD COMPENSATION POSSIBLE 

study the printed values
is printed. In this case however a of 

must be made to insure that the points are indeed non-existantof a 

or rather just lie outside the range of the graph. 

The second main section of the program computes the value of 

8 for a given value of a is determined by the X graph scale, Here 


to not plot zero points and
the plotting routine is set up so as 


to stop the curve when either the v or 8 value exceeds the range 


of the graph.
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C 1 - THE LAG ZONE CURVES WILL NOT BE PLOTTED 
C 
C IF ILGPLT-l ieiiNEXT FOUR CARDS ARE OMITTED 
C-

Ck -- CARD FIVE -IT(1)-IT{6) - COLUMNS 1-48 IN-ALFA4UNERIC CIIARACTERS 
C THIS IS TIIE FIRST LINE OF THE LAG GRAPH TITLE 
C-,kCARD SIX - IT(7)-IT(121 - COLUMNS 1-48 IN ALFANUIIERIC CHARACTERS 
C THISIS TIE SECOND LINE OF THE LAG GRAPH TITLE. 
C4X*CARD SEVEN - LBL(14)-LBL(20) - FOUR COLUMNS PER LABEL (TEN LABELS. IN 
C CONSECUTIVE COLUMNS) IN ALFANUMERIC CHARACTERS. 

C THESE ARE TIlE LABELS TO BE PUT ON THE CONSTANT OMEGA CURVES. TO 
WFIN BY. 10 . THIS 

C - .VALUE AND INTEGER' MULTIPLES OF IT TO 10 HILL BE PLOTTED. 
C* CARD EIGHT - XLGZYLGZ'- TEN COLUMNS PER NUMBER IN EXPONENTIAL OR 
C FLOATING POINT. -

C THESE ARE THE X AND Y SCALES FOR THE'LAG-GRAPH. ONLY ONE SIGNI-

C FICANT NUMBER IS TO BE USED. 

C **CARD NINE - ILDPLT - COLUMN ONE IN FIXED POINT 
C 0 - THE-LEAD CURVES WILL BE PLOTTED 
C 1 - THE LEAD CURVES WILL NOT BE PLOTTED 

C DETERMINE WHICH VALUES WILL BE PLOTTED, DIVIDE 

C
 
C IF ILDPLT= TIE NEXT FOUR CARDS ARE OMITTED 
C
 
Ct**CARD TEN - THE SAME AS CARDFIVE EXCEPT FOR THE LEAD GRAPH 
C* *CARD ELEVEN - THE SAME AS CARD SIX EXCEPT FOR THE LEAD GRAPH 
C *CARD TWELVE - THE SAME AS CARD EIGHT EXCEPT FOR THE LEAD GRAPH 
C'< CARD THIRTEEN - AM DUPLICATE*n OF CARD SEVEN 
C* CARD FOURTEEN - IBWCMP - COLUMN ONE FIXED- POINT 
C 0' - BANDWIDTH COMPUTATIONS AND GRAPHING WILL NOT BE DONE..-
C I - BANDWIDTH COMPUTATIONS WILL BE DONE -

C
 
C IF IBI'CMP=O THE REMAINING CARDS ARE OMITTED 

IC 

C*lCARD FIFTEEN - 'BWXBIIY THE SAME'AS CARD EIGHT-EXCEPT FOR'THE 
C - BANDWIDTH CURVES. -
C BWY IS ALSO USED. TO DETERMINE WHICH VALUES OF ALFA WILL BE USED IN 

C THE BANUIDTH COMPUTATIONS.
 
C*- ,CARD SIXTEEN - VEND - TEN COLUMNS IN FLOATING POINT
 

C TIllS IS THE MAXIMUM VALUE OF OMEGA FOR IWiICH THE BANDWIDTH 

C COMUTATIONS WILL BE DONE 
C''-CARD SEVENTEEN - IBWPLT - COLUMN ONE IN FIXED POINT 
C 0'- THE BANDWIDTH CURVES WILL BE PLOTTED 
C I - THE BANDWIDTH CURVES HILL NOT BE PLOTTED 

C " IF IBWPLT=1 THE REMAINING CARDS ARE OMITTED 
C-

EXCEPT FOR THE BANDUIDTH CURVqSCt-.CARD EIGHTEEN - THE SAME AS CARD FIVE 
C-,CARD NINETEEN - THE SAME AS CARD SIX EXCEPT FOR THE BANDWIDTH CURVES 
C* nCARD TIENTY - BANDWIDTH CURVE LABELS 
C TO DETERMINE WHICH CURVES WILL BE PLOTTED, DIVIDE WEND BY 10 

THE PROGRAM PLOTS THIS CURVE AND INTEGER MULTIPLES OF IT UP TO 10.
C 

C 
C 

THE FOLLOWING ODATA CARDSC IT IS RECOMMENDED THAT FOR THE INITIAL RUN 

C BE USED.
 
C CARDS l,2 ,9(IABCMP=O),4(ILGPLT=I),9(ILDPLT=1),14(IBWCMP=OI
 
C 

THESE DATA CARDS WILL ALLOW ONLY THE ALFA-BETA COMPUTATIONS TO BEC 
THE VALUES WILL BE OUTPUT WHICH WILL ALLOWC COMPLETED. A PRINT OUT OF 

YOU TO CHOOSE THE PROPER CURVES AND SCALES. CAREFUL SELECTION
C 
WILL NOT-ALLOV POINTS 

C OUTSIDE THE AXIX LIMITS TO BE PLOTTED. 
C OF CURVE SCALES IS IMPORTANT, FOR THE PROGRAM 

C 
000010
DIMENSION AFIIIBO,80 ,BFIN(80,80}hXAZI8O),YBZ(8Q 9XAJ(0O),


B 5 1 I )

1 YBW(80)IT(12) ,LBL(

20
O
) 

COrI ROOTR(4),ROOTI( .ACOFI(3), 000020
 

2 U(10) ,AROOTI (4 ACOFR(3) ,BCOFR(5) ,ULAB(O),ZLABIOO) ,AROOTRC4) 000030
 
000040
COMMON BCOrRBCOFIROOTR,ROOTI,BFINAL,IFL'AGAFINBFIN 

000050
9999 PRINT 10 

000060
140 FORMAT IillI)' 
000070
DO 60 JK=l,6400 

000080
AFIN(JK) =0.0 

000090
60 BFIN(JKI) = 00 



000100
READ I,A,D3,C,6 

O0' 310
1 fORMAT(,10,0) 

00fl 20
PROD = ABC 

000130
'Ii = A1B+C 
000140
PRO = AB + AC + 8 C 

000150
HRDGI PROD + G 
000160
ZETA = 0.0 

000170
READ 2.-WFIN 

000180
2 FORMAT (FIO.0) 

000182
READ 9, IABCMP 

000185
9 FORMIAT (11) 

000188
IFIABCNP-1)23,24,24


= 000190
23 STP WFIN/80. 

000200
DO 12 L = 1,30 

000210
LJ = 80t(L-1) 

000220
Wt STP 

000230
30 U(1)=-1. 

000240
U(2)=O* 

000250
U(3)=. 

000260
DO 10 N=2,6 

000270
10 U(N+2)=2.SZETA U(N+1)-UN) 
 000280
DO 11 J=1,80 


-000290
LJ = LJ + 1 

000300
W2=tl*W 

000310
113=W2*VI 
000320
14=112 V2 

000330
W5=W2*VW3 

000340
CONN = GCW2 
000350
CON = -2oaG*W 

000360
CONI = 2.*114 

000370
CON2 = -2*SUM4113 
000380CONS = 2.*ShPRDMW2 
000390
C0N4 = -2.PRODIW 
000400
CONS = SUIIW2 
00010
CON6 = -5tiPR0W 

000420
CON7 = tUIii4 

000/30
C0r 8 = -t';RD,113 
 00040

C0119 PRODtI12 

000450
B21 = CCIRRIU(3 
000460
B22 CONN U(4) 
000470
Dl = COtJ'IU() 
000430


D2 = COlWU(3) 

Ell = CON1I-U(5) + CON2MU(4) + CONS'U(31 + CON4U(2) 000490 

COIIU(6) + CON2UI5) + CONS'1U(4) + CON4CU(3) 000500
E1Z = 


-t3 Ui4) + CON5U(S) + CON6*U(21 + PRDGNU(1) 000510
F21 = 
 O
 
F22 = -',WU(5) + CON5 U(4) 4 C 6 U(3) 4 PRDGN1U(2) 000520 

000530
G1 = -l!5 U(6) + C0N7U(5) 4 CONS*U(4) + CON9JU(3) 

-W5*U(7) + CON7* (6) 4 CONBU(5
) + CON9U(4) 00054062 = 02 1 )- F2 1 (F2 1 0 2 2 0 2 2 D 2 0 21 ) 


, 2 D 000550
COF1 = B21 F22*(2o*F21¢gE2-F22I
 
E12 B21 (F21*82 000560
COF2 = EIl (2. B22*(F22-B21-F21 B22)-D2 D2 621)+2° 


1, 000570

12-F22 B21) E 1 1 "2 1 2+ F 2 1


02.( * 000580
 = 021 {-821 E1E12+2o¢F22 62)-D2 D2 G1+2°
COF3 + 2
 000590

1 G2qG1 F22))-B 22 *B22 (E11*E11 .cF21 -G1l 


{EI2 021-E11*022I 000600

COF4:2.*62.021*(ElI{022_22821)42. B22 Gl 


000610

COF5= -(G2*821-61 022)*(G2'2B21G-1*22) 
 000620

DO 50 1 =1#5 


000630

50 BCOFI) = 0.0 

000640
BCOFR(1) = 1.0 
 000650
BCOFR(2) = COF2/COF1 
 000660

BCOFR(S) = COPF/COFI 


000670

BCOFR4) = COF4/COF1 


000680
BCOrR(5) = COtS/COFl 
 000690
CALL ABCTART 
 000700

IFLAG = 0 
 000710
CALL SORT 


000720

IF IFLAG-1)30011,11 


000730

300 BFIMI1LJ) = DFINAL 
 )+ G I 
 0007.0


01 = BFIII(LJ)(EII+BFIN(LJ)}F21
 
0'0750
PCOFRt1)=l.O 

(, 7(-0


ACOFR(2)O.0 
 0,C0170

ACOFRI3) = 01/821 


000780
ALFASO = ABSF(ACOFR(3)) 




AFIN(LJ) - SORTF(ALFASO) 000790 
11 it= II+STP 000000 
12 ZETA = ZETA + .0125 000010 

LL1) 4HlZ,.O 000820 
LOL(2) = 411Z=o1 000830 
LL() = 41;Z=.2 000040 

LBL(4) = 4HZ.=3 000850 
LBL(5) = 4,HZ=4 000860 
LBL(6) 4:Z=,5 000870 
LBL(T) 'ZIZ=.6 000880 
LBL8) = 4HZ=,7 000890 
LBL(9) = 4HZ=0 8 000900 
LBL(IO) = 4Z=.9 000910 
READ 7, ILGPLT 000920 

7 FORNAT (11) 000930 
IF(ILGPLT-1)8,67,67 000940 

8 READ 3" (IT(I),I=1,121 000950 
3 FORMAT (6A8) 000960 
READ 61 (LBL(I),1=11,20) 000970 

6 FORMAT (IOA4) 000980 
READ 4. XLGZYLGZ 000990 

4 FORMAT (2E10o0) 001000 
XLGLM = 9.*XLGZ 001010 
YLGLM = 15,*YLGZ 001020 
MODE = 1 001030 
IL = 0 001040 
DO 62 K=1,80,8 001050 
LL = 1 001060 
KJ = (K-1)}80 001070 
DO 61 Jl,80 001080 
KJ = KJ+1 001090 
IF(AFINI(KJ)-.O000001)61,6110,6110' 001095 

6110 IF(AFIN(KJ)-10001)6113,61,61 001100
 
6113 IF(AFIII(KJ) - XLGLM)6114,61,61 001110
 

C CARDS 1120 - 1130 ARE MISSING
 
6114 XAZ(LL) = ArIN(KJ) 001140
 

IF(8FIN(KJ) - YLGLM)6112,61,61 001150 
C CARDS 1160 - 11.0 ARE MISSING 
6112 YBZ(LL) = DFIN(KJ) 001100 

= 
 001190
 
61 CONTINUE 001200
 

LL LL + 1 


JJ - LL - 1 00 1210
 
IL = IL + 1 001220
 
IF(JJ-1)62,62,6116 001230
 

6116 LAL = LBL(IL) 001240
 
CALL DRAU(JJXAZYBZ,MODEOLAL,IT,XLGZ,YLGZ,0,0,0,0,9,150,LAST) 001250
 

6111 MODE = 2 
 001260
 
62 CONTINUE 001270
 

IFItODC-1)65.65,6120 001280
 
6120 DO 66 K=I0,808 001290
 

= 
LL 1 001300
 
DO 63 J=1,80 001310
 
JK = (J-i1rO0 + K 001320
 
IF(AFIN(JK)-.0000001)63,6127,6127 001325
 

6127 IF(AFIII(JK-1.0001I6123,63163 001330
 
6123 IF(AFINIJK) - XLGLM)6124,63,63 001340
 

C CARDS 1350 - 1360 ARE MISSING
 
6124 XAI!(LL) = AFIN(JK) 001370
 

IF(OFIN(JKI - YLGLM)61?2,63,63 001380
 
C CARDS 1390 - 1400 ARE MISSING
 
6122 YBII(LL) = OFIN(JK) 001410
 

LL = LL + 1 001420 
63 CONTINUE 001430 

JJ = LL - 1 001440 
IL = IL + 1 001410 
IF(JJ-1)6121,6121,6126 001'60 

6121 IFCK-8O0)66,6125s61?5 001470 
6125 MODE 3 001400 

lL = 41 001490 
JJ 2 001500 
XAVI(1) = XLGLM 001510 
XAW(2) = XLGLM 0015201 



Yol;(l)
YBIP) 

= 
= 

0.0,
YI.GZ 001530

001540 
GO TO 2000 

6126 LAL = LB(IL)' 
001550001560 

2000 CALL DRZ, (-JIoXAII 
MODE 2 
IF K--' 56,64,64 

64 MODE 
66 CONTILUF 

.YD ODEOLAL,IT,XIG,YLG?,0,OOO, 9 ,1 5 ,O,IA t) 001570 
.001580"00190 
001600 
001610 

GO TO 67 
65 PRINT 130 
130 FOl.PIT C1X,3311 NO LAG COMPENSATION IS POSSIBLE 
67 READ 20, ILOPLT 

,/I) 

061620 
001630 
001640 
001650 

20 FORMAT (11) 001660 
IF(ILDPLT-1)68,1000,1000 001670 

68 READ 5, (IT(I1 ,I-12)
5 FORMAT (SAS) 
. READ 21, XLDZYLDZ 

001680 
001690 
001700 

21 FORIAT ('2E1000) 
READ 22, (LBL(I),I=11,20) 

001710 
001713 

22 FORIAT {IOA4) 001716 
XLDLM n 
YLDL4 = 

9,XLDZ 
15,*YLDZ 

001720 
001730 

IL = 0 001740 
MODE = 1 001750 
DO 72 K = 1,80,8 061760 
KJ " (K-I)*80 001770 
KK K 1 001700 
'DO 71 J 11,89 001790 
KJ - KJ + 1 
IF(AFIN (KJ)-1,0001 )71,7111 ,7111 

7111 IF(AFIIKJ1 - XLDLM)7117,71,71 
C CARDS 1830 - 1040 ARE MISSING 

001800 
001010 

- 001820 

7117 XAZ(KK) = AFIN(KJ)
IF(8FIN(KJ) - YLDLM)7118,71,71 

001050 
001860 

C CARDS 1870 - 1880 ARE HISSING 

7110 	 Y7(KK) ' OFIIIIRJ) 001690 
KK = KK + 1 001900
 

71' COlITIUE 001910
 
121= KK-1 001920
 
IL = 	IL F 1 001936 
IFCMl-1) 72,72,7119 001940 

7119 LAL = LBLUIL) - 001950 
CALL DRAI!{(IXAZ.Y8Z ,iWODE, O.LAL, ITXLDZYLDZt0,0,0,0,9,15,0, LAST) 001960 

7110 	MODE = 2 
 001970
 
72 	CONTINUE 
 00190
IFCMODE-1.70,70,78 
 001990.
 
78 	DO 76 K=8,80,8 1.102000 

KK = 1 002010 
DO 73 J n 1,80 002020 
JK = (J--l) 80 + K 002030 
IF(AFIti(JK)-1cO001 )73,7121 .7121 002040 

7121 IF(AFIN(JKI - XLDLI-)7127,73,73 002050 
C CARDS 2060 - 2070 AgE MISSING 
7127 XAII(KKJ = AFIN(JK) 002080 

IF(BF!NCJK) - YLDLII)7128.73,73 002090 
C CARDS 2100 - 2110 ARE MISSING' 
7128 YBWI(KK) = BFIN(JK) 002120 

KK = KK + 1 002130
 
73 CONTINUE 
 002140 

MM = KK-1 002150 
IL = 	 IL'+ 1 002160
 
IF(iM-1I)7120,7120,71 29 002170
 

7120 IF(K-80176,7122,7122 002180
 
7122 4ODE - 3 002190
 

LAL 	 4H 
 002200
 
W! 	 2 002210 
XAW(I) = XLDLM 002220 
XAII(2) = XLDLM 002220 
YBW(l) - 0.0 002240 
YBWl(2I = YLDZ 002250 
GO TO 2001 002260 
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1 0 0 0  COi<TIAIIE 

Z L A R [ l I  = 0.0 
DO 0 1  1=2.10 

' 0 1  2 ~ A s l . l  = Z L A R l I - 1 1  c .I. 
11CARl01 = O C ~ S T P  
DS 8 2  t t = l 6 ~ B O , R  

G Z  I:LAB(II~ = IILE.DII~-01 c v l L h D l 8 )  
Pi:/IlT 100 

1 0 0  F0Ri:hT lllli) 
F3RII:T 1 0 1  

1 0 1  ~ o ~ i i , ~ l l  2X120H T l lE  ALFA VALUES ARE 9 / / )  ' 

PRI I IT  1 0 2 ,  l Z l . A . ~ l I I  ' 1 = 1 ~ 1 0 1  
1 0 2  rO31:hT l l X r 6 H  ZETA ' O F l l r 6 )  

PR I I {T  lo;+ ( l ' L A B ( J l r 1  .!11l~11)~I~l,73r8)J=818o~~~ 
1 0 3  F0RI:AT l / ~ I X ~ F 6 r 2 , 1 O L ! J r 5 1  

PR INT  111 
111 FOS;:AT 1 / / / / / 2X ,ZOI I  T l l E  OFTA VALUCS ARE ,//I 

PRINT  112 .  I Z L A D l I i  I = l r 1 0 )  
1 1 2  TO::IlI~T 11XeG l l  ZETA r l O F 1 1 ~ 6 1  

PR INT  1 1 3 ~  ~ ~ I L A B I J I ~ ~ D F I I I I J ~ ~ I ~ I ~ - ~ ~ ~ ~ ~ ~ ~ J J ~ ~ ~ ~ ~ ~ ~  
113 FORMAT l / r l X 1 F 6 o 2 ~ 1 0 E l l e 5 1  
-4 P R I N T  1 1 4  

J IZ, ro:ti:f,i- 1 l t 11  I 
READ 2 1 0 7  IBI'C1,lP 

2 1 8  FORIIAT 1 1 1 1  
IF{ IB I !C I4P -111002 ,217~219  

2 1 7  READ 2 1 7 1  BL:X$BI!Y 

Y! = STEP 
ALFASP = ::Lll/200 
XAI!I 1 1  - ALFASP 
DO 2 0 0  K-2.20 

2 0 0  XAI:~KI = x m ~ t s - ! I  + xm!clr 
DO - 9 3  !!=l,ZO 
AL :, = ALFASP . 

. h::R = G. 
AD?.=20*!1~~-2~SV2~S!~iPR0 
A I I  = 2.:G*U 
A E R = - \ ~ ~ : S W I ~  + PROD 
bFRsl!':..SUi.l - 112:1IlOD 
ADI =-Z.i:13;Slli~l 4 Z.rrll~P11OD 
A C I  = 4 1 3  + !I:Sl:l'l?O 
A r I  = 115 .- I!>--.Sf:PIID 
P I  = ADRZADR:,'.DI*ADI . 
01 = 2,3ADR+:ALR Z U X A C l * A D I  
R I  = .ZeKADR+AFR + r\ClI iACR + AE 
V 1  = Zo lAER%AFR + ? , i A E I ) A F I  



Ill 	 = ArRfAI-R + AFI Ar. 
A2 = ALFAKLFA 

Ali - A?2A2 

R2 A24'AIl' A!" 

M.112= A6AGRIAGR + 2,*A2AKRCAGR + AKRXAKR' 
DO-51 ii 1,5 

51 	BCOFI(IM) 0.0 

BCOFR(I) 1100 

BCOFR(2) = QI/P1 

BCOR( (A.2RI-R2/(Al2XPI) 
BCOER() VI/PIt 
BCOFR(5) =. AtI2qII-WII2)/(AM2 P1) 
CALL ABETART 
IFLAG = 0 
CALL SORT . 
IF(IFLAG-1)900,206,206. 

206 SFIN(NtI) =0.0 
GO TO 207 

900 BFINI1oI) = BFINAL 
207 ALFA = ALFA + ALFASP 

'203 U = 'W + STEP 
READ 	216, .IBIIPLT 

216 	 FORMAT (I1) 
1F 	IB(IPLT-I)214,1001,101 


214 	 MODE = 1" 
READ 	202, (.IT(K),K=II12) 


202 	FORIAT (6A8) 
READ 	201, (LDL(MqhN"2,20,2J 


201 	FORMAT (IOA4) 
0 211 N=z2,20,2 

KK 	= 1 
IF 	N-20)204,205 ,20! 


205 	 MODE = 3 
204 CONTINUE 


0 212 !=1,20 

IF(BFIN(Nt) - 000001)212,212.209 


':05 	.Y$ZUK) DIH(N,1)
XZIKKI 'XAI:;I) 
CARD 	3360 JC 

KK = KK + 1 

Z12 CONTINUE 

906 JJ = KK- 1 


IF(JJ-1)221,221,220 

221 IF(l-20)211,225,2 2 5 


225 IF(lODE-1 3224224,215 

215 MODE-= 3 


LAL ='4H 

XAZ(1 0.0 


=
XAZ(2) 0.0
X {) 0o0 

YBZ12) = 0.0
YBZ(21 = WY 

JJ = 2 

GO TO 2002 


220 	LAL = LBL(N0 Y 1O r	 O , 	 0090 0 ,9,9,S*OLAST)
2002 	CALL [RAI (JJXAZYBZM" - DE LALITBIx 
222 	IFUl'-20)208,211 ,211 

'33 MODE = 2 

31i CONTINUE 


GO TO 1001 

224 PRINT 226
 

POSSIBLE BANDWIDTH CURVES FOR THE F 
226 FORHAT C I1,IX,76HITH'VRE ARE NO 

IINAL VALUE" OF ONEGA STALED 

GO TO 1002 
1001 PRINT 120 

FOR 	 CONSTANT BANDWIDTH
120 	FORMAT (IHl20X,383I VALUES Of' BETA 


PRINT 122, (fYBl(K),K-2,20,2) 

122 	FORNAI (/,9XIOF11o63 2 0
 

PRINf 121, f\yd(K),(D:'I(J,K)hJ2,202,K=1.
 ) 


121 	FORIIAT (/,I, -6,2,2XIO11"6) 
1002 	CONTINUC 


60 TO 9999 
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0000',390
 
00004100
J)"L "0 )":'B
0 )L E( J- "2)

3.91 	C(J)-(J)I:C(J-)Q.CCJ2) 0000410 
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4,01 AVIIP2=ABSF{I(1P3)/f(lNP3))

4 5 0 4
'03 IF, ,',-A"fH'32)550, , O 	 00004490 
,30 C3 451 J-23,03 	 00004400 

00004500
D{J )-II(J)+2"*DJ-) 
,.3,1-(J}-=D(JI)"E (J-1) 00004510 

IFD{0IP3} '52,500,452 00004520 
0004530
452 AVHD3=bSFI(1HP3)/D(P3)
45  
 0004540
-0 IF(SK-.Vi:D3) 500 4 s
 
0000'550',33 CC2"C('IP3-21 

CC3 -C I:P3~) 00096560 
CilP3-1) *-P. CC2-O XC( 000/.)570 
CCI=CUP5-1) nr .5900 

14590S-CC2.CC2-CCVCC3 
64610
ir S)45 1,4546455 

004620454 P-P -2o0 
,00.6000-0:: (0 1. 0) 
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2 
TRANSIENT RESPONSE OF NONLINEAR SYSTEMS 

2.1 INTRODUCTION 

28 When a system has one nonlinear element that is single val­

ued and non-frequency dependent, analysis'of the-system is con­

veniently accomplished using the parameter plane methods. The 

nonlinear element is represented by a describing function, which 

/3=p is a function of signal amplitude only. The describing function 

is designated as one of the parameters, a or P. This designation 

20 removes,the nonlinear parameter from the functions that determine 

the parameter plane curves* so that these may be plotted on the 

a-9 plane. The M-point is located on'the a-0 plane in the usual 

16 way, but for the case of one nonlinear element one coordinate of 

the M-point is the numerical value of the describing function of 

4 the nonlinear parameter. For linear systems the N-point is sta­

12 tionary on the U-0 plane, but for a nonlinear system the M-point 

moves because the numerical value of the describing function is 

a function of signal amplitude. For a system with one single 

valued nonlinearity, N, where N is designated as g, the locus 

followed by the M-point is a straight line parallel to the f-axns. 

This locus of M-point motion can be said to start at the value of 

/ P corresponding to very small (zero) signal amplitude into the 

Iq nonlinear element. The displacement of the M-point along this 

locus is determined by the way in which P varies as a function 

3 /Z of signal amplitude, and this is determined by using the 
constant -C and constant -W curves, or constant -a and constant 
-W curves. 

Fig. 1-8. Double Lea'dcompensation of Plant with 

with G(s) = 25 
(s+5)2(d+10) 



the describing function of the nonlinear element. 


Previous work has shown how to predict limit cycles using 

M-point locus on the parameter plane. If this locus crosses the 

stability boundary (C=0 curve or a=O curve) the intersection of 

these curves defines the frequency of the limit cycle. If an 

amplitude-scale can be determined for the location of the M-point 

on the M-locus, then this scale is used to define the amplitude of 

the limit cycle. 

The concept of a moving M-point on the parameter plane can 

be used to calculate the transient response of nonlinear systems. 

As the M-point moves along the M-locus, each point defines both 

signal amplitude and all roots of the characteristic equation.
 

This information can be used to determine the amplitude vs time 

relationship which is the transient response. Computations are
 

based on Siljah's extension of some basic work by Krylov and 


Bogoliubov, and details are given in the following paragraphs. 


Assume- that the system is second order, and that the non­

linear element is represented by its describing function. Then 

for an initial signal amplitude A0, the transient response is de-

fined by 


fined by at 

0t Acedure 


where a and w are both functions of the signal amplitude, 

*These assumptions restrict use of this method to systems in which 

a pair of complex roots dominate the transient response, and these
 
systems must have low pass,filter characteristics to justify use 

of a describing function.
 

23 

a = U(A) (2-2) 

A -(A)
 

The parameter plane curves are prepared, the M-locus is super­

imposed on them, and the describing function is used to associate
 

an amplitude scale with the M-locus. Then the values of a(A)
 

and W(A) may be read from the parameter plane for any X.
 

The transient response of the system from any initial dis­

placement, A is determined in two steps, the first of which is
 , 


to calculate the envelope of the transient. Assuming that 0
 

(in eqn. 2-1) is zero, the envelope is defined by
 

(A )t
 X(t) = A. - (2-3) 

which may be approximated over a short time interval by a straight
 

line tangent to the exponential curve. Thus at t = 0, X=A0 and
 
° 

from the parameter plane a(Ao)=a is evaluated. Then X(t)=AoCa t
 
0
 

is approximated by a short straight line segment on the X vs t 

plane. This straight line is terminated at t = t1 and at a 

Entering the M-locus on
 new amplitude A1 is read from the curve. 


the parameter plane with A1 values are obtained for a1 and W1 . 

the eelopote tit is e ne omtnd o t Wi 
The envelope of the transient is extended from tI to t2 with 

another straight line segment defined by x = A1Clt. This pro­

is repeated until the envelope is defined over an accept­

able time interval.
 

As a by-product of this procedure, w has been determined
 

quantitatively as a function of amplitude and also as a function
 

of time. using the definition
 



W(A) 	dt (2-4) 

o 


the phase can be determined at any t by graphical integration 


(i.e., evaluation of the area under the W(A) vs t curve). If 


in eqn. 2-1 is zero, then X(t) = 0 for '= (2n-l)(Ir/2). Values 


of t corresponding to D = go0, 270 , 450 , etc., are determined by 


graphical integration, are marked on the axis of the X vs t plane, 


-and the transient response is drawn tangent to the envelope and
 

intersecting the X= 0 axis at the indicated values of t. 


The above procedures are readily applied to systems with one 


nonlinearity, and dorrelation with simulation results is excel-


lent. Since such applications are elementary no illustrations
 

are given here, and the study is extended to systems with two 


single'valued nonlinear elements. In general no other methods
 

exist for predicting the transient response of systems with two
 

nonlinear elements, so the results obtained here represent a
 

significant advance in the state of the art. 


2.2 	CLASSIFICATION OF SYSTEMS WITH TWO NONLINEaRITIES 

When a system contains two nonlinear elements, N1 and N2, 

that are single valued and'are not frequency dependent, parameter 

plane representation may be used but both a and P become functions 

of N1 and N2 . Computation of the parameter plane curves presents 

no difficulty, but determination of the M-locus may be difficult, 

As a result it is convenient to classify nonlinear systems accord-

ing to the structural conditions which complicate the evaluation 


of the M-locus. The following classes are proposed: 


4 

CLASS 1. Identical signal excitation to both nonlinear
 
elements.
 

In Fig. 2-la, the signal X is the input to both nonlinear
 

elements N1 and N2. For every value of X corresponding values
 

of N1 and N2 are uniquely defined and are independent of fre­

quency so evaluation of the M-locus is easy.
 

CLASS 2. The input signals to the two nonlinear elements
 
are related by a linear differential equation.
 

i Fig. 2-b the signal Xis the input to N2 , but the
 

input to N1 is N ~~) hsteigtt 2 i uclno
 
i Thus the input to N2 is a function of
 

amplitude only, but the input to N1 is a function of both ampli­

tude and frequency. For a given amplitude of the signal X, the
 

describing function for N2 provides one unique value, but for
 

each 	amplitude of X the describing function for N1 has an in­

finite number of possible values, one for each possible value of
 
frequency. As a result the evaluation of the N-locus is consid­

erably more difficult than for Class 1.
 

CLASS 3. The input signals to the two nonlinear elements
 
are related by a nonlinear differential equation.
 

Fig. 2-lc illustrates this class of nonlinear systems. The
 

signal X is the input to N l, but the input to N2 is X(N1 3CG2 (s)3
 

where the brackets are intended to represent some functional re­

lationship rather than a multiplication. Evaluation of the M­

locus can be very difficult for such systems.
 

2.3 	 EVALUATION OF THE M-LOCUS. TIE DYNAMIC DESCRIBING FUNCTION.
 

When a system with one single valued nonlinear element is
 

represented on the parameter plane the M-locus is clearly a
 

5 



straight line parallel to one of the coordinate axes. Thus the 


M-locus itself is readily found but the amplitude scale asso-


ciated with this locus must be evaluated. For systems with two 


nonlinearities (especially Class 2 or 3) the path of the M-point 

on the parameter plane cannot be predicted by inspection. It 

can be calculated, however, using the ordinary describing function 


to define the amplitude relationships. 


To justify the choice of the describing function as a tool, 


consider the fact that parameter plane predictions of limit cycles 


are defined on the basis of a single point where the M-locus in-


terests the stability boundary. This single point defines both 


the fundamental frequency of the oscillation and also the ampli-


tude of this fundamental component. It is clear that the loca-


tion of the M-point represents some sort of average value of ampli-


tude, since the instantaneous value of amplitude varies cyclically 


during a limit cycle. The describing function of a nonlinear 


element effectively averages the response of the element to a 


sinusoidal input over one cycle of operation. Thus its use is 


clearly justified when system operation is periodic and lightly 


damped. While not so clearly justified for other operating con-


ditions it has given surprisingly accurate results and therefore 


will be used until a better technique becomes available. 


Using the describing functions of the two nonlinearities in 


a system, a family of decribing function curves are computed and 


plotted on the a-P parameter plane. When these curves are super-


imposed on the regular parameter plane curves, the M-locus can 


6 

be determined. The M-locus represents the curve along which the 

M-point moves when the system is in dynamic operation, and it 

consists of the locus of all points at which -the describing func­

tion curves and the parameter plane curves have common frequency 

intersections. We choose to call this curve the "Dynamic De­

scribing Function Locus". The procedure and also a justification 

is as follows:
 

a) 	Assume a constant amplitude, constant W signal at X, the
 

input to one nonlinear element. Using the describing
 

function compute the equivalent gain of that element;
 

also compute the signal amplitude at the input to the
 

second nonlinear element, and the equivalent gain of
 

this second element.
 

b) 	The two equivalent gains evaluated in (a) determine one
 

point on a describing function curve on the a-P plane.
 

Repetition using the same value of W but different
 

amplitudes at X determines S describing function curve
 

for 	a constant W signal.
 

c) 	Repetition of a) and b) for other values of W provides
 

a family of describing function curves, each curve being
 

for a designated value of P.
 

d) These curves are then superimposed on the usual* para­

meter plane curves. The constant -W describing function
 

ICurves for constant -9 and constant W are most convenient, but
 
constant -C and constant Wn curves can be used if it is noted that
 2W= 	Wnl . 

n
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curves will intersect the constant -W parameter plane curves, 


and those intersections for which the W is the same. Define the 


Dynamic Describing Function locus, 


The nonlinear system is described by one nonlinear dif-


ferential equation. The procedures used here effectively parti-


tion this equation into two parts, a linear part represented by 


the parameter plane curves, and a nonlinear part represented by 


the describing function curves. Then parts are "coupled" by the 


parameters a and P which are the coordinates of both plots. If 

the system is in steady state periodic motion at a given fre-


quency the-nonlinear differential equation of the system must be 


satisfied, so the linear and nonlinear partitions must be satis-

- fied at that frequency. This condition can exist only at the 

intersection of the common frequency curves. The points thus 


defined oh the -Dynamic Describing Function Locus" are deter-


mined on the basis of steady state sinusoidal operation (unforced). 


Under transient conditions the M-point moves along some locus on 


the parameter plane, and we assume that the points on The Dynamic 


Describing Function locus apply to transient operation although 


they are determined by means of steady state sinusoldal concepts. 


Experimental results indicate that this is a good assumption, 


2.4 CALCULATED AND EXPERIMENTAL RESULTS 


In order to verify the correctness and the applicability of 


the dynamic describing function and the graphical transient re-


sponse calculations, specific examples of each of the three gener-


al cases of Pig. 2-1 were investigated. The details of some of 
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these examples, and the corresponding calculated results are pre­

sented here. Simulation of the systems provided experimental re­

sults which are also presented to permit comparison between theory
 

and experiment.
 

System 1. Two nonlinear elements with identical excitation:
 

The block diagram is given in Pig. 2-2. The characteristic
 

equation is
 

53 + los2 + (ION I + ION 2 )s + lOON 1 = 0 (2-5) 

and it is convenient to let HI = a, N2 = P. Fig. 2-3 gives the 

parameter plane plot (in a- and w- curves). Since the two non­

linear elements have identical excitation a single dynamic de­

scribing function curve is obtained which'is independent of fre­

quency. However, the dynamic describing function is dependent on
 

the specific numerical characteristics of the nonlinearities, and
 

Fig. 2-3 contains three dynamic describing function curves (dotted]
 

for three different sets of characteristics in N1 and N2 . These
 

three curves were chosen to illustrate different root variations.
 

For curve 1 a real root becomes dominant early in the transient,
 

for curves 2 and 3 complex roots are dominant, the system being
 

moderately damped for curve 2 but going to a stable limit cycle
 

for curve 3.
 

Calculated and analog computer results are given on Figs. 2-4,
 

5,6. It is seen from Fig. 2-4 that the dominant real root condi­

tion cannot be handled accurately with the graphical computations.
 

It is not known whether the discrepancy lies solely in the graphical
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method which is based on complex roots, or whether the dynamic root became dominant during the transient response, in which case 

describing function also contributes to the errors. Research on the frequency of the oscillatory component was usually predicted 

this point is continuing. For the cases of Fig. 2-5 and 2-6 the with reasonable accuracy, but amplitudes were not, nor was the 

calculated"results compare well with the computer results, total response time due to the influence of this real root. 

System 2. Two nonlinear elements related to a common signal by The calculations and simulations were also repeated with the 

a linear differential equation. nonlxnearities interchanged (i.e., in Fig. 2-7, N1 becomes a 

The block diagram is given in Fig. 2-7, and the parameter saturated element and N2 a dead zone element). Using the same 

plane curves with dynamic describing function curve shown dotted techniques the results obtained were always in agreement with 

are given on Fig. 2-8. Fig. 2-9 gives the describing function about the same degree of accuracy and with the shortcomings as 

grid needed to obtain the dynamic describing function curve. To previously noted. 

obtain the grid of Fig. 2-9 the point A on Fig. 2-7 was chosen System 3. Two nonlinear elements related to a common signal by 

as a reference point, and at each value of W the amplitude of the nonlinear differential equation. 

(assumed) sinusoidal signal at A was varied to obtain the N1 vs The classification described as System 3 can contain a wide 

N2 values for a constant W curve on Fig. 2-9. The dynamic des- variety of combinations of linear and nonlinear elements, of 

cribing function curve on Fig. 2-8 is obtained by superimposing which the parameter plane method my he applicable to only a 

the parameter plane curves of Fig. 2-8 on the describing function small subset. A specific system which belongs in this class is 

net of Fig. 2-9 and locating intersections of constant W curves shown in Fig. 2-13. The characteristic equation of this system 

of the same W value. is 

Limit cycle predictions of the dynamic describing function s 3 + 3s7 + 2s + 40KN1 (Na + j%) (2-6) 

curve on the parameter plane agree with analog computer simulation where N2 4 Na + j b for the hysteretic nonlinearity, and we define 

results. In addition Figs. 2-10, 11,12 compare predicted transient a = NINa; 9 = NINb . The parameter plane equations are still appli­

response with simulation results, cable and the parameter plane curves can be computed. For the 

Additional checks were run using different values for the purposes of this study only C = 0 curve was calculated, and only 

deadzone and saturation limits in the two nonlinearities,'but the limit cycle predictions were checked. The describing function 

the detailed data is not given here. In general the predicted net is required, and in this case relates the N1 Na and NIbt pairs 

and simulated results were in good agreement except when a real to the common signal at A on Fig. 2-13. The results of these 
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computations are given on Fig. 2-14, which shows the C = 0 curve 

from the parameter plane equations and the describing function 


net for the case where K = 0.15. Only one point is defined on 


the dynamic describingfunction curve, and this is marked on 

the 'C = 0 curve at the point where the w value on the C = 0 curve 

is the same as the value of the constant W describing function curve 

passing through that point. This defines the frequency and hmpli-

tude of the limit cycle, and the results agree with simulation 


results. 


Note that a change in the value of K chahges the differential 


equation of the system, thus requiring a new set of curves. Ie-

sults were obtained with other values of K and again the predic-


tions agreed with simulation results.
 

2.5 COMMEITS
 

The results obtained thus far indicate that the parameter
 

plane is a useful tool in predicting the stability and response
 

of nonlinear systems. The accuracy available is only fair, but
 

is more than adequate for many engineering applications. The
 

transient response predictions - in particular for systems con­

taining two nonlinearities, - are better than are available with
 

any other method.
 

The graphical presentation of the dynamic describing function 

curve on tne" parameter plane is potentially a valuable design 

tool. It indicates at a glance the range of variations of the 

roots, and thus permits prediction of a desired location of the 

describing function curve, which in turn implicitly defines the 

12 

required characteristics of the nonlinear element. Further 

research is required in this area.
 

Te technique becomes inaccurate when the transient re­

sponse is influenced by more than two complex roots. Again more
 

research is required to evaluate this situation. 

It is too early to assess the true value of studying non­

linear systems on the parameter plane. Without question it does
 

make possible many types of analyses that are not readily avail­

able otherwise. However, the limitations of the technique are 

not clearly defined, and it obviously is important to know under 

what conditions the methods are not applicable, or should be 

applied with care. 
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3.1 Introduction. 

In certain classes of nonlinear systems, oscillations may 

consist of a limit cycle superimposed on a constant or slow-varying 

signal. These oscillations are referred to as asymmetrical oscil­

lations since the center of the limit cycle is shifted according 

to the corresponding value of the constant or slow-varying signal. 

In general, asymmetrical oscillations may occur when the input­

output characteristic of the nonlinearity in the system is not 

symmetrical about the origin, or when the system is subject to 

forcing signals. When the nonlinear characteristic is asymmetric, 

the output of the nonlinearity may contain a constant term even 

CHAPTER III though the corresponding input is a single sinusoidal wave. If 

ASYMMETRICAL NONLINEAR OSCILLATIONS the nonlinear characteristic is symmetric, asymmetrical oscil­

lations can arise whenever the system is subject to forcing input 

signals. Evidently these oscillations may take place at certain 

points of the system if both conditions are present. Before the 

analysis of asymmetrical oscillations in the parameter plane is 

presented, the previous work and results "inconsidering these 

oscillations and related problems are reviewed. 

It has been shown first by MacColl [3.1J that the introduc­

tion of an external sinusoidal signal at the input to an on-off 

servomechanism yields a system that behaves like a linear one for 

small inputs superimposed on the sinusoidal signal. This pheno­

mena has been later investigated under various names, such as 

"dither effect", "signal stabilization", etc. Asymmetrical non­

linear oscillations has been found by a ma3ority of authors as 

the most appropriate term for the mentioned phenomena. 
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In analyzing a carrier-controlled relay servo, Lozier [3.2) 


has introduced an idea to accomplish the linearization of the re-


lay by a limit cycle existing in the system and without an ex- 


ternal signal. This idea has been further developed by several 


authors [3.3-3.91 and a detailed treatment of the problem has been 


given by Popov and Palitov [3.81. On the other hand, the external 


signal application has been developed by Loeb (3.9) and Oldenburger 


with his associates (3.10-3.12). The latter introduced the name 


"signal stabilization" to indicate that the nonlinear system is 


stabilized in the state of sustained oscillations with suffici-


ently high frequency. The stabilization is actually a consequence 


of the linearizing effect discovered by MacColl. The concept of 


signal stabilization has been extended by Sridhar [3.13-3.143 to 


the case of a nonlinear system which has one single-valued non-


linearity in the loop, and the stabilizing signal is a stationary 


random process with a Gaussian distribution and obeys the ergodic 


hypothesis. 


The above defined problem can be treated by dual-input de-


scribing functions as proposed by West [3.15]. This approach has 


been significantly simplified by Boyer [3.16) as outlined by 


Gibson [3.171. A similar approach is used by Gelb and Van der Velde 


(3.181, and significant results have been obtained by Atherton and 


others [3.19-3.20) who made a comparison of the utilized concept 


with the Tsypkin method [3.21). 


The study of asymmetrical nonlinear oscillations has been 


extensively performed in the analysis and design of a large class 


of plant adaptive control systems. This class of system is 


sometimes called the limit cycling adaptive systems because of 

the fact that the existing limit cycle is used as an identifi­

cation signal. Some of the references on this subject are listed 

here [3.22-3.26). A majority of the authors proposed an external 

sinusoidal signal for identification. More recently, Gelb and 

Van der Velde [3.181 hage examined to a limited extent and in 

a quantitative manner the properties of self-oscillating adaptive 

systems which have several advantages over the external adapta­

tion, such as simplicity, cost, reliability, etc. The following
 

analysis of asymmetrical nonlinear oscillations in the parameter
 

plane can be applied directly to self-oscillating adaptive sys­

tems.
 

In the following developments, the asymmetrical nonlinear
 

oscillations are analyzed in the parameter plane [3.27). The
 

cbntrol systems with asymmetrical nonlinear characteristics are
 

considered to determine stability and sustained oscillations.
 

The same type of oscillations is investigated in nonlinear con­

trol systems subject to constant reference and perturbing input
 

signals. The-procedure is further extended to the analysis of
 

systems with slow-varying input signals. In'this case, it is
 

shown bow a nonlinear characteristic can be- modified for the
 

slow-varying signals. The presented analysis is performed with
 

respect to both input signals and the values of ad3ustable sys­

tem parameters. The analysis procedure is illustrated by examples
 

in which multiloop feedback structures with several adjustable
 

parameters are considered. In addition, various nonlinear
 

characteristics are used in either the forward or the feedback
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path. The obtained results are checked by.computer simulations where the period T = 27t/0. In the frequency domain, equation 3.4
 

which indicate a sufficient accuracy of the presented procedure, means that the frequency V of the periodic component x* is much 
3.2 Basic Developments 
 greater (practically ten times or more) than the highest frequency
 

0
Consider a nonlinear system described by the nonlinear dif- of the slowly-varying component x . In this case, no harmonic
 
ferential equation ° 
relation between the components x and x* nonlinear system sub­

B(s)x + C(s) F(Xsx) = B(s)f, d (3.1) ject to forcing signals, such as jump-resonance, generation of
 
where B(s), C(s), and H(S) are polynomials in s and the degree of subharmonics, etc., cannot take place. The forced nonlinear os­

the polynomial B(s) is greater than the degree of the polynomials 
 cillations for which the condition (3.4) is not satisfied neces­

C(s) and H(s). The function r(xsx) describes the nonlinearity. sarily, are considered in other works.
 
Function f = f(t) is a forcing signal, which may be either a 
 Under the condition (3.4), the values of x0, A, and 0, which
 
reference input or a perturbing signal, and it is assumed to be 
 appear in the solution x = x + A sin Ot, are slowly-varying 

a constant or a slowly-varying function of time. quantities in time. This enables the extension of the conven-

As a first approximation, the steady-state solution x = 
x(t) tional harmonic linearization in which the describin function
 

of equation 3.1 which represents the input to the nonlinearity, is defined for the signal x = x + x* as an input to the non­
is assumed to be 
 linear element. Thus, the nonlinear function F(x,s) is approxi-


O 
x = x + x* 
 (3.2) mately expressed by the first terms of the Fourier series as
 

where x0 = x0 (t) is either a slowly-varying function of time or 0 N2
F(x,sx) = F + NX* + - sx 
 (3.5)
 

is constant, and x*, which is'
 
where
 x t+6,(.)A i 2v 

0
S= A sin 0. 0 = Ct + e, (3.3)' F = J F(x O + A sin 0, A? cos 0)dO (3.6a) 

0
represents the periodic component of the solution x(t). Since 

e in (3.3) merely corresponds to a shift in t, one can put 0= 0 N A I F(x° + A sin 0, A 0 cos 0)sin 0 dO (3.6b) 
A sin lt.xk =and use 

The forcing function f(t) is considered as a slowly-varying = VA F(x + A sin 0, AC? cos O)cos 0 dO (3.6c)N2 
O 


function of time if it can be assumed approximately as constant
 
and 0 C
Ot0
 ovc. any cycle of the periodic component x'; i.e.,
 As can be seen from equations 3.5 and 3.6a, the component

If(t+T) - f(t)j I - If(t)] (3.4) F of the output of the nonlinearity F(x,sx) is not considered
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fact indicates that the applied linearization preserves the
 
zero as was the case in the analysis of symmetrical nonlinear
 

essential feature of nonlinear systems and that the superposi­
oscillations presented in the previous chapter. This results
 

tion principle from linear analysis is not valid.
 
from the fact that either the nonlinear function P(xsx) is not
 

An analytical solution of equations 3.9 is difficult to
 
symmetric or the system is subject to an external input signal, 0
obtain since F in(3.9a) is usually a trancendental function
 
or that both facts are present in the system.
 °
with respect to x
 .
 A graphical procedure is presented for
 

According to eqations 3.6, all coefficients F0 , Niland N2 solving equations 3.9 in the parameter plane. A necessary con­
°
 0 ,
are generally functions of x A, and 0, i.e.,
 

dition for equation 3.1 to have a solution x(t) close to 3.2 is
 

F°+Fp(x°,A,O , N1 = NI ( x O ,A,q , N2 = N2 (x.,A,' (3.7) that the characteristic equation 

For a majority of the nonlinear functions F(x,sx) encountered in B(s) + C(s)(N 1 + N2 ( 

practical applications, the above functions (3.7) are obtained
 

once and for all. corresponding to the linearized differential equation 3.9b, have
 

a pure imaginary root s = jO.
By applying the linearization of the function F(X,SX) given 


° 

in equation 3.5, the solution x = x + x* of (3.1) can be o- By using the parameter plane approach, equation 3.10 can be
 

as
ta-icd by considering the following linearized differential solved for a and 


equation a = a(l (3.11)
 

= 
* 0

B(s)(x +x + C(s)(F +Nix + N2 sx*) = H(s)f (3.8) 0(A
 

0

instead of equation 3.1. If x , A, and £ are slowly-varying where a and 0 are N1 and N2 or some other system ad3ustable 

Equations 3.11 represent the r = 0 (or C = 0) curvefunctions of time as a consequence of the same property associated parameter. 


with the forcing function f, equation 3.8 can be rewritten as two for which s = jO. The B = 0 curve determines the stable region
 

simultaneous equations corresponding to the slowly-varying sig- in the up plane in the usual manner. After the stable region is
 

0 found, the loci of points M(a,g) hre plotted according to the
nal x and the periodic signal x as follows: 

variations of a and/or 0 representing N1 and/or N2 .- The M loci
 

B(S)x O + C(s)F O 
= n(s) f (3.9a) 

B(s)x + (NIx* +N2 *incorporates the additional variable x 
°, and a family of the
 

0
 
+ C(s) + -- sx ) = 0 (3.9b) loci should be constructed for different values of x . Then the 

fquations 3.9, however, cannot be solved independently since they stability of the nonlinear system is determined by the relative
 

are related to each other by the nonlinear equations 3.7. This location of the r curve and the M loci and the limit cycles are
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3-9 found•at their intersections. The stabi1lty ofethe limit cycle3.8 

is determined in the usual manner. This part of the solution s dthe 


process will be best described by the examples that follow.
 

The presence of a limit cycle in the system can modifyI the
 
6
n nlinear characteristic for the slowly-varying input signal.


• ,, 'results, 

In order to determine the modified characteristic, the intersec­

• •' .' . "it 

tions of the E = 0 curve and the M loci are considered to e alu­

."I I 
ate the amplitude A and the frequency f of the limit cycle as* 

*functions of the slowly-varying component x°; i.e., 

° A = A(x°), 0 = C~x ) (3.12) 

These functions, when substituted into the function F°(0,A, 


yield the modified nonlinear characteristic for the slowly-


varying signal 


F= (x0) (3.13) 

0 , 
The function O(xO ) is continuous in a limited range of x which 


indicates the smoothing affe6t due to the presence of the limitThe 


c3cle. 


Substitution of ecuation 3.13 into equation 3.9a gives 


° 
B(s)x + C(s) O(x° ) = H(s)f (3.14).
 

Equation 314 is a nonllnear differental efuation in(xO, which

° 
can be solved graphically for x after the function O(x ) is 


obtained. This, in tuin, yields the related values of e 
obtTned Thlslprc~r
relte 


functions A(k° ) and n(xO ) of equations' 3.12; and'the solution 

O
0 A in t is thereby determined, 


x + fnxsin ( is detinedt
 

The function 4,(x0 ) is a continuouIs function of xo and it can 

be assumed approximately linear for small variations of x 
. Then
 

stability problem related to equation 3.14 can be solved by
 

known linear methods. If it is regarded as a nonlinear function
 
of x° , it can be linearized by harmonic linearization and the
 

r
 of the previ.ous chapter can be applied.
 

shoiuld be noted here that the same parameter plane pro­

cedure can be used when the right side of equation 3.1 has more
tha one forcing function; i.e., the right-hand side is expressed 

r 
by 1 H.(s)f. The solution x, however, must be found by con­

i~l
sidering all existing inputs simultaneously since the super­

position principle of linear analysis is not valid. Further­

more, if the,polynomial H(s) of equation 3-1 can be factored.in
 

the form sHl(s), the procedure applied to the case in which the
 

rate sf of the function f is considered as a slowly-varying sig­
nal; i.e.;' Isf(t+T),- sf(t)l.
 

presented giaphical procedure can be extended to.non­

linear control systems with two .nonlinear functions Fl(s) and
 

F2 (x), whereby the following nonlinear differential equation is
 
investigated:
 

B(s)x +,C(s) F,(x) + D (s) F2 (x) = H(s)f. (3.15) 
t cae a 

In this case, a procedure similar to that given in Section
 

can be extended to determine' the solution x = x0 + x 
oulin inznthisdsecio maodsiofied
 

The general procedure outlined in this section is modified 
depending on the actual problem involved. These problems may be
 

divided into three major grouips: asymmetrical nonlinearities; 
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constant forcing signals; and slow-varying signals. In the 

following, each group is considered separately. 

3.3 Asymmetrical Nonlinearities. 

In an autonomous nonlinear system, which is described by the 

differential equation 3.1 and where f - 0, the asymmetrical os­

cillations may occur whenever the function F(x,sx) is not sym­

metrical to the origin. Then, under the conditions discussed in , 

the previous section, the system may be described by equations 

3.9 which has the form (-5 

° B(6) x + C(O) F = 0 (3.16a) .. 

C8)+ C(s)( 2s)x 
1=U-)I 0 (3.16b) i 

In equation 3.16a, which corresponds to equation 3.9a, there is 

no forcing slowly-varying function (f e 0), and in the steady­

0 
state solution = x + x the x 0 is constant and hence s is q, -

replaced by zero in B(s) and C(s). 

In practical situations, B(o) or C(o) can be zero. Also, 

the nonlinearity,in.the system is often described by a single­

valued function F(x) and N2 =0. .Thus, an adjustable parameter 

appearing in B(s) or C(s) can be chosen as one of the axes in 

the parameter UP plane, while the other axes is related to the 

describing function coefficient N1 . Some of these situations are 

discussed in the following examples. 

Consider a feedback control system with the block diagram 

.of Fig. 3.1 in which the transfer functions are 
K2 K3

0 1 (S)=K1 . G2(s)= s(s+l)' sr+2 G_I(S)K_Is. (3.17) 



The nonlinearity n has the form shown in the upper left corner 


of Fig. 3.2. 
 ., • 

Equations 3.16, for the system under investigation, have
 
the form 


0 (3*18a)
F = 0 


fs(s+l)(s+2) + CK2i'ls(s+2) + K1K2 K3 N1 xt = 0 (3.18b) 


where, according to the function F(x) of Fig. 3.2 and.equations 

3.6,.one has 

F0 arc s - (3.a) 

2 + It sin A 31a 

2(l-m)c ,(3.19b) 
,A 

N2 01 (3.19c) 


and x = x(t) is the input signal to the nonlinearity n as indicated 

in Fig. 3.1. 

The characteristic equation of equation 3.18b 'is 

4=- (3.20)s(s+lY(s+2) + (K21 is (s+2) + KIK2K3]N l, 3.0
 

By denoting K2K IN1 U and KX 2K3N1 P. the C= 0 curve is 

obtaifedas 

2 - 2 (3.21) 

and the stable region is determined in the U9 plane in the usual
 
fashion as shown in Fig. 3.2.
 

Pshom qa ions .aand.2. oneotiexplained
i 3 

From equations 3.18a and 3.19a, one obtains'
 

'x = A COS IT 3.22),
x+m 


and N1 of equation 6.19b becomes 

- 2(l+m)c ssin l-m(3.23)
AA -

By usi-ng equatidn 3.23 and the expressions a =K N1,
 
' (a), (b), and (c), are drawn in Fig. 

3.'2. They coirespond to the parameter values m = 0.5, c I,
 
= 1 and (a) II = 0.l25 (bYKiK b2 


= KK 2K 3 N , three M loci 

8.39, K = 0.28;1 3 , K 1 3 1 


(c) TC = 26, 1.75. The stable asy etrical oscillations2 3 K 1 

are found at the poifit'M1 and M2 where the M loci (a) and (b). 

intersect the ,= 0 curve. The amplitudes of the.oscillations are 

approximately A1 = .85 and A2 = 08, which is read from th 

M 16Cx (a) nd,'()i at the--intersections Mand M2. The corr&s 

ponding ±requencies 0 ='l.5'and 02 = 1.6 are indicated on the' 

0 2 
= 0 curve. The related-values of x in the solution x= +a'sin rt 

is calculated for each point M1 and M2 using equation 3.22, namely, 

x -0.42 andx0 = -6.39. 

In Fig. 3.3,'the solution x1 = 0.42 + 0.85sin'l.5t for the 

1case (a) 'is shown as obeained by d digital computer'simulation. 

The calculated results arb eufficiently close to that obtained. 

by the simulation., From Fig. 3.3, it can be seen that an initial
 

condition xl(o) = 4.25 is used and the variable x1 (t) approached
 

a stable limit cycle. That the limit cycle ig stable and will be
 

reached by xl(t) starting from xl(o) = 4.25 can be concluded from
 

the relative location of the C = 0 cuive and the M locus (a), as
 

in the preceding chapter on the symmetrical oscilla­

tions. The additional comp6nent xO of the solution x(t) does
 .
 
not alter the stability analys;s of the oscillations.
 

http:0.85sin'l.5t


V: I- :.s o 

cy.. ,4t.0 
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An analog computer simulation 6f the case (b) gives the' 

solution x2 = -0.39 + 0.8 sin 1.0t as shown in Fig. 3.4. A su#' 

ficient accuracy is indicated. The initial condition x2 (o) = 0 

and x2 (t) reached a limit cycle. This could be concluded from 

Fig. 3.2 as previously noted. 

It is of particular interest to consider the case (c) of 

Fig. 3.2. The M locus (c) is tangent to the = 0 curve and cor-, 

responds to the ratio 0/g = XIK3iK i = 14.8. If this ratio is 

higher than 14.8, then there is a limit cycle as shown by cases
 

(a) and (b). On the other hand, if this ratio is less than 14.8, 


the entire M locus is situated in the'stable region and'the cor­

responding system is always stable. The tangent case (c): 

m = 0.5, c = 1.,2 = 1, KK= 26, _(1= 1.75, is simulated on* 

a digital computer and the obtained solution xi(t) is shown in 

Fig. 3.5, which indicates that the system is stable. 

3.4 Constant Forcing Siqnals 

When the forcing signal at certain points of a nonlinear 

system is constant, the solution x = x + A sin Ct(if it exists) 

will have x°
, A, and Q as constant values. To determine these 

values, note that the equations to solve in the presence of a 

constant forcing signal f
0 have the form
 

O

B(o)X0 + C(o)F O = H(o)f (a.24a) 

B(S) +.C(S)N 1 + s)]x* = 0 (3.24b) 

In general B(o), C(o), and H(o) are constants different
 

from zero, and the solution procedure is somewhat more compli­

cated to perform than in the prev'-'--...-.. ' '^ " 
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side of equation 3.24a was zei' 

To illustrate the solution procedure, consider a nonlinear 

feedback system with the block,diagram of Fig. 3.6 and the trans. 

fer functions 

, 

G,.() 2 
l 0.2s2+0.8s+1 

G 
G2 (S)-

O.'5(sql) 
0.2s+l ' 

G _ ____ 

1= T 1 s+l," 

(3.2;) 

-: . , 

'" 

1) The nonlinearity n is given in Fig. 3.7a. The input to the system 

s a perturbation signal f = f(t) which is related to the signal 

X = x(t) and c = c(t) of Fig. 3.6 as 

(0.2s~lc = 0.(3.26)­

(c)W 

S0 

-- o. ci f the perturbation signal is f(t) 

have the form 

=+ K F = f 

= f= const., equations 3.24' 

(3.27a)­

ta, 

(5> .--

' Y. 

,~ . 

(0.04s4 + 0.36s + 2s . +2s)T 1 +0.4s+2)X _N1 + 
. + 0.04s 3 + 0.36s2 + 2s + 2 =0 (3.27b) 

where equation 3.27b represents the characteristic equation of the 

",...-.. . _the 

linearized equation 3.24b. By substituting T 1 = a and KN 1 =, 

parameter plane diagram is plotted in Fig. 3-7b according to 

the parameter plane equations 

0.64ff +'3.2 
0.016& - 0 .0 8Cf -4 

I = 0. 0 16& - 0.03& + 2 .5 6 
O-M.o0 - o.o8f -

? + 4 (3.28) 
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-

give. e. 
The variteOn of the point due to the function N1 01(00. A)
 

N, . k (arc sin I arceh 01+ ­

2 
+ ,--1 ' 

(3.29)
 

in Fig. 3.7c. (The expression (3.29), ccrresponds to
 

the nonlinearity c Fig. .7a). In order to find a solution
 

is plotted 

O 

x x + x* 
of equations 3.27, the parameter k is assumed equal
 

0
 

to one, and the function F (xo, A) is plotted in Fig. 
2.7d by
 

using
 
Ao k .. 

Fk[D(arc sin -- 0 - arc sin A 

- 00(err sin :2 + arc sin +O),Alt) + 1001 
(3.30) 


For T_, 0.04, the point MI(0.04; 14.3) corresponds to ai
 

O 

12 rad/sec as indicated
solution x - x + x* which will have 0 = 

,, 

from M, it follows that
 

N1 a- fKI = 0.715. 


on the curve C - 0. If K_l 2 

This value Of N1 determines the relation-


O 


ship between the values of x
 and A for a possible solution 
a.
 

This relationship, expressed as a function A = A(x°), 
can be 

graphically obtained from the diagram N1 = Nl(X0, 
A) by platting 

the straight line P P2 corresponding 
to the value N1 = 0.715. 

1

O ) 


The function A = A(x represents the solution of equation
 

O , 
A) which enter into the
3.271,only. 
 The pair of values (X
 

act"ul solution of equation 3.27, is replotted 
on the diagram
 

4 

0x 

( 
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3-25 

F 
° 

= F°(X 
t 
, A) of Fig. 3.7d into the curve PiP . Suppose it 

the constant perturbing signal has a value of fo = 11.75 then 

equation 3.27a determines the straight line fo - 11.75 plotted 

in the diagram F = F°(X 
O , 

A) of Fig. 3.7d. The intersection R 
o 

of that straight line and the curve PIP gives the pair (X , A) 

of the solution x(t) which satisfies equation 3.27 simultan sly. 

At this point R, the values are a !D ­ 1.35 and A/D = 1. The 

same values are obtained at the point 0 on the diagram N1 
= N1 (xsA) 

and the solution X = xO+ A sin (It of equations 3.27 is found. 

If D = 1, it is x = 1.35 + sin 12t. Note that the same solution 

is obtained if the point M2 of Fig. 3.7b is considered save 
that 

the frequency 1 is lower (approximately I - 5.5 tad/sea). 

Simpler situations may occur if one of the values B(o) or 

C(o) is zero. To illustrate, consider the nonlinear system of 

Fig. 3.8. The transfer functions are 

Cl(s) = , = 
K
2 
l , )(s) 

K3
al' -1 (S) K-I 

s 

(3.31) 

and the nonlinearity n in the system is given by the function 

F(X) a, Fig. 3.9. The input to the system is the reference con­

° 
stant input Signal r(t) = t . 

Pe._..3. - sell~e~e~~b-n t-sertna, The nonlinear differential equation describing the above 

system is 

[e(sol) (s+r2) K~~2KX3 K
2
KnS(n+2)F(z) = KiX2(r+2)r° 

(3.32) 

whc], may be ewritt-r -­ - 1j to equations .-24 an 

iKKx 
0 

=2r" (3.33a) 



I f 
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[S(S+l)(s+2) + KlK K + K K_Is(s+2)N J]*= 0 (3.33b)

2 3 2 1


The characteristic equation of the equation 3.33b is evidently
 

2
 
.(a+l)(.+2) + KIK 2

K
3 
+ K2K-Is(s+ )N1 = 0. (3.34)
 

By denoting
 

0 (3.35)
1 

Y'=
3 


the parameter plane diagram is plotted in Fig. 3.10 in the usual
 

fashion. The function N, = N,(Ax°), which appeers as a vari-

tion of & in the point M(a: ) is plotted in Fig. 3.11 by using
 

general formula 3.6b. 


From equation 3.33a, one can derive the following relationship
 
o , O
 

between the input r the constant term x , and the parameter
 

2 r 

So= (3.36)
 

where S is the parameter of the nonlinearity F(X) of Fig. 3.9. The
 

function SO given in (3.36) is plotted in Fig. 3.10.
 

Now, by using Fig. 3.10 and 3.11, it is possible to determine
 

the sustained oscillations and their stability for various values
 
0
 

of syete parmctrs K K K3 K S, k, and the input r . For

I , 2 , 


example, if K = 1, K = 10. K3 = 1.75, K = 1, S - 1, k = 1, and 
1 2 1 


o = I.]. thte tb -olution of quati- 3.33 is determined by the 


values . 0.3, = 2.2 rad/e to be approaimately
 ]2, A = ono o 

x = 1.2 4 0.3 sic 2.1t (3.37)

O 


For a give. value of 9 = K = 1.75, r = 1.1, and S =, the value
 

O
 
of = 1.2 is read from the left part of Fig. 3.10. Then the
 

"4 !
 

+ 

L.
 

0 
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value of KiK20 = 17.5 determines the point M(1.2; 17.5) on the 

C = curve where C = 2.1 rad/sec. At this point, K2Kla 1.2 

which qives N, U - 0.12. Fig. 3.11 is used to evaluate the 
U 

amplitude A = 0.3 from the curve x°/S = 1.2. The value A = 0.3 

is read directly from the diagram NI(A, xO) of Fig. 3.11, since 

K = S - 1 are the parameters of the given nonlinearity in Fig. 

3.9. 

The solution (7.37) i stable since an increase in the 

amplitude A causes the point M to move into the stable region; 

while a decrease in the amplitude 
A places the point M inside 

the unstable region of the parameter plane (Fig. 3.10). it is 

of interest to note that if the produce KIK2P where 9 = X3 is H 

such that it is less than 6.4, the system is always stable since 

there isn intersections of the variation of the M point and the .I 

0=0curve. 

The above solution (3.37) is checked by computer simulation 

to obtain the curve on Fig. 3.12. The accuracy of the calculated 

solution is sufficiently high and, for calculated values of xo 
, 
A. + 

and C, is approximately 10%. On the other hand, the computer 

solution ndicates a distortion of the assumed solution 
U 

x = 00 r A sin Of which is due to the higher harmonics present 

in the actual 
solution. 

3.5 Slswly-var/inq Signals 

in this section, the problem of linearizing a nonlinear 

system by a high-frequency limit cycle is considered in more 

detail. The objective is to determine the conditions under which 
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such a linearization is possible and then to construct the 

linearized characteristic of the nonlinearity. This lineari­

zation has several practical aspects discussed in Section 3.1, 

which are based upon a general property of the 1in rized system 

that, for a limited magnitude of the reference so 1, behaves 

like a lineur syste. Therefore, results of the .onlinearities, 

such as dead-zone, hysteresis, backlash, etc., are eliminated. 

The procedure to achieve this will he heel illustrated in the 

toilowing easoples. 

Consider the system on Fig. 3.13 with the transfer functions 

GI(S= K, G
2 (s) 

K22 
+o.+i G

3(S)= s 
K3 i a 

G('I(.) K­

(3.38) 

and the noli..arity n as shown in Fig. 3.14. The input to the 

system is a slowly-varying reference signal r = r(t). 

The equation which describes the system is 

[s(n-,-l)(s2tl.tt -(0+314 1
s(otl) a 1 1K2K 3

F( ( 1i12 (n+l)r 

. . (3.39) 

fip. 3-11,- Parameter dlane ilacs. 
where the signal x x (t) in the input to the nonlinearity. Equa­

tion 3.39 can be rewritten in terms of equations 3.0 a)
O 

• [ loot) (s2ut).ll iS)-_is 
1 

(i -i) F -°K23KI 2 nn+1(r 

"[o(.tol((s2+0~.S +l+2K1is(sel( +iK2K
3
N' = 0 (3.40) 

The hartarer ic eqution ,f till acoed equation '.40 is 

:( 1{) ( +0.0s1)(1 •)< [!(na) +KIK2K31 0 (3.41) 

Sabto i"t" 2qi a, 022K-11 n 3, and = j iat. equation 

3.41, u.obtans the pa.unet., plane equation. of the 1 atOae 
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E~~~~.-)(-.. . . , 

C.1 ~The 
S.result 

g" 

* - 0F 

" 4 r 

./ 

SFunction 

S.The 

(3.42)
( + 1). 

The curve 00 is plotted in Fig. 3.14. The variations 

of the M point are plotted also in Fig. 3.14 according to
 

(3.43)A Ii2Ix'IoA /1 

systee parameters K,1, K2 12.5. 1(3= 10' Xi-1 

in the point Hi(12.5; 45). if c - 1. this point M, gives 

= PIKN K 0.36, and the straight line P is plotted on/I P

1 2 3 1 2 


o , 
the diagram of function N1 N (x A). After the diagram 

O , 

F = F°(XO A) is plotted in Fig. 3.15 using
 

0 

arc in X' , A - 1n

0
1 (3.) 

, 


the replotting of the straight line PIP2 
on the diagram P°(x A)
 

O
 

yields the function (x ) of Pig. 3.15. The replotting procedure 

is the same as that used in the previous section; i.e., for each 

pair of values (xA) read on the straight line PIP . the cor­
2


0
 

responding pair exists in the diagram P°(.
 , A). which determines
 

one point on the curve O~xo). 
O
 

)(X ) of Fig. 3.15 is smooth and represents the non-


O 

linearity for the slowly-varying signal x . The shape of 6(x ) 

explains the smoothing effect of the high frequency limit 
cycle 

which has a slowly-varying amplitude, the value of which is 

axis of Fig. 3.14. 

O
 

located between the points Q, and 02 on the A 

frequency 0 is approximately constant and has the value 

- ,z 2.7 ra/.. According to (xo), the smoothing effect of the 
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limit cycle is present under the' condition that Ixu'I 2.25. For 

small values of x 
O 
, it is possible to consider 6() =Kx where 

- =usesv~.i K - const. Then the stability of the system with respect to 

- i~NORLI 'AR i slowly-varying signals may be investigated by well-known linear 

I methods outlined in Chapter Il. In the specific example, the 

equation of interest is 

_- s(s+) (s2+0.8s+l) + K2K1is(+) + K KIK 2
K
3 
= 0 (3.45) 

1 unit 
Finally, it is to be noted that for the smoothing effect to take 

place, the amplitude A should be A i IxI, as stated in equations 

-3.43 and 3.44. 

---- -I, 'The results of the above analysis are checked by simulating 

II I K the system on an analog computer. Three cases are considered. 
° 

t A I 3 C •6, "/" In rig. 3.16, the input to the nonlinearity x - x + A sin (k 

STEM)OUTPUT-, e(t 
and the system output x x(t) are shown when the input signal 

is r = sin 0.1t. The obtained computer solution agrees with the 

I prediction. The output r(t) exhibits a smaller amplitude limit 

n4cycle with the name frequency. When the input amplitude is in­

creased five times, the diagram of Fig. 3.17 is obtained. This 

change increesed i, ot the amplitude A remained almost the 

________"__" _same. Th- frequency n did not change. Similar results occurred 

whe" t'c nput umplitud, increased ten times except that the 

amplirtude A became slightly smaller, which agrees with the dia­

. . .gram cf Fig. 3.14. The third case is given in Fig. 3.18. It 

r(t)' should be noted from these computer solutions that the output 

signal c(t) represents the input signal r(t) except for the 

superimposed lumit cycle. It can be eliminated by introducing 

~ yj q?5 C.Puteie laties 
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3 hO 

athe 

\If 

Fis 
Iequation 

C 

< 

sufficient filtering in the block G (s) of the system of Fig. 3.13,

3 

or by readjusting the system parameters to obtain a higher fre­

quency limit cycle. 

If the values of the system parameters are chosen so that the 

operating point is M2(21.2; 120) of Fig. 3.14, the frequency of 

the limit cycle becoes higher. However, the corresponding range 

O 
of variations of x is decreased to lxO? 0 0.7, together with the 

range of the amplitude A which is between 03 and 04. This indi­

cates that the presented procedure is convenient to apply when 

system parameters an, operating conditions are changed. 

the nonlinearity a is changed in the system of Fig. 3.13 

by introducing a considerable dead zone D, a diagram of Fig. 3.19 

obtained. The variation of the M point is calculated by using 

3.6b for the given nonlinearity of Fig. 3.19. Two cases 

should be considered separately; i.e.,
 

0 
1 -[A-2 + A 1. 1+D (3.46a) 

I a0 , *°[-D s A 01x01+V (3.46b)-(----n) 2N1 2c 1.01 (34b 

O , 

and the diagram N (X A) is shown in Fig. 3.19. By using equa­

1
 
O , 


tion 3.6a, the corresponding diagram F(X A) of Fig. 3.2C is
 

plotted according to
 

= (arc -- sin AD A 01J1 +- 1D (3.47a)sin +- arc 

0 ' C= +ar i )~I.. anlD A A I loO?+D"" 1X.
FA 

(3.47b) 



__ 
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If the points M and 2 are chosen in Fig. 3.19 as operating 

'-points, the replotting of the st- ight lines PIP and P P results
2 3 4 

0!-o'2 V. T:i S!iU. j the two linearized characteristics a and I of Fig. 3.20. re­

-- 0 4 i ~ilt.~L spectively. They are co trunted for the values of nonlinear 

parameters c = D = 1. As can be seen from Fig. 3.20 the dead 

I } ~ cane is eliminated as far as the slowly-verying signals are 
, . concerned. For this to take place, it is necessary to choose 

_____ T c22operating conditions such that equation 3.47a is valid. This 
2 1142- 7means that the amplitude A of the limit cycle must be greater 

than I 01° . Otherwise the linearized characteristic L)x0) does 

O 

not go to zero when xO = 0 since F does not go to zero for
 

xo= 0. This is indicated in Fig. 3.20 whereby Fo = 0 for X = 0
 
.. . .... and the dead zone is eliminated.
 

By the outlined technique, it is possible to elieinate the 

hysteresis and backlash in systems with multi-valued nonlineari-

S5ties. The linearization yields a single-valued function i (x) 

" <I)which is linear in a certain limited range of values of the vari­
2L~ ~ ~ _ A 2. z able eoshoout the origin. To illustrate this, consider a non­

linear system with the block diagram of Fig. 3.21 and the trans­

____s fer functions 

0,1 "i(s) c=n~ ~-en) G s) (.48)3s
1 

-i 
The nonlinear function F(x) of the nonlinearity n is given in 

_ __ _ Fig. 3.22.
 

. -- i The equation describing the system is
 

I r~t~l) ( + )n tfc 0 (1.49)1 

- +tI~AttIc harmncineratiton of 3.49. the corresponding 

Fil. 3.22 Parameter plas 4diqem 



characteristic equation is 

+N2 
s(s+l)c(+2) + KI(KS+I)(N 

1 
+6-s) 0 
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(3.50) 4 1 .. 

If K, 50, K1 I 

=N 
1 

(3.51) 

= N2 

and = JO, one obtains the 0= curve as 

25. (3.52) 

The curve is plotted in Fig. 3.22. On the same plot, the varia- TI 1 

tion of the point M(NI; N 2
) is constructed acording to 

N, 2c / )
2 

+ D+ .j 
~ .tf~(~N~))AD 1x0 

4CD 

N2 =- 40 "2K (3.53)­ --J ~ ~ ~ 
and the nonlinearity F(X) of Fig. 3.22 for which c = = 1. From 

the intersections of the C = n curve and the variation of the M 

point, one can determine the amplitude A and the frequency 

as function of x; i.e., 

A A(n 
0 
) 

D = (x 
O 
) (3.54) 

5 

Sti(1 V 

-

Then, by using the expression 
c 0+x0 

F 
o 
- c(arc sin 

D-ar 
ac sin , A >D +eel (3.55) 

for c = D 5, a family of curves with contiot amplitude A is 

plotted on Fig. 3.23, if the first equation 3.54 is mapped onto '-

_ 

I o-i 
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FU;. 3-25 - Copute o tin x 2 sin 4.
 

(b) 

Fif. 3.21 Coopoter solution 
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0
 
family of constant amplitude A, the function *1x ) is -	 importance when a hi4h-accuracy control system has to be de­the 


obtained as shown in Fig. 3.23. The function 0(x
0 ) as a single- signed in the presence of nonlinearities with excessive dead
 

valued function of x
° 
, which is linear irnthe range O Ix 0 It,2.4. 	 zone, hysteresis, backlash, etc. The design technique can be 

directly applied to a large class of plant-adaptive control dyFor an input r(t) = 5 sin 0.St, the computer solution is 


? of the 	 tems where a sinusoidal signal is used as an identification sig­shown in Fig. 3.24. The amplitude A and the frequency 

limit cycle are slowly-varying quantities according to equatiohs nal.
 

In a future study, the technique may be extended to the in­3.54 and the slowly-varying variable xc.. Their average valles, 

however, are close to that which cah be predicted from the parameter vestigation of transient asymmetrical oscillations. Thus,, to
 

plane diagram of Fig. 3.22, i~e., A = 2.8 and 4.5 rad/sec. 	 study how these oscillations are established after~certaih ampli 

tude perturbation, this study should be largely based upon the
'This can be concluded from the diagram (a) o Fig. 3.24. On 


the diagram (b), the output signalc(t) is shown Whdreby the material presented in the following chapter.
 

that the presented anilysis,can
limit cycle is largely attenuated by the block-Gl (s) of Fig. 3.F.. It may also'be shown [16, 17) 


be extended to the case when the signal superimposed on a sinusoid
The low-frequency component in the signal c(t) represents the' 


5 sin 0.St at the output of the system. is notonly a constant or slowly-varying sinusoid, but also when
input r(t)-
= 


Of course, if the input r(t) is not present, the system 	 the additional signal is described as a Gau'sian process, pro­

vided that the amplitude or standard devIation of the additional
 
will exhibit a limit cycle which can be determined from the inter-


0
 signal is of no consequence in the Enalysis. This further gener­section ofth& M locus x 0 and the C = ,0 curve on Fig. 3.22 

as x = A sin t, A =.2.6, 0 4.8. This is checked by the analog 	 ates the idea of applying the dual-input describing function.
 

(15.17) along with the pirametei plane method,,and igvestigates
computer simulation and the obtained solution is shown on Fig. 3.25. 


the case when the input to a nonlinearity of the system'is a
3. 6 Conclusion 


The parameter plane method has been used to indicate ex- combination of two similar sinusoidal signals.
 

istence of asymmetrical oscillations in nonlinear control systems.
 

A procedure has been developed to determine the oscillations for
 

different values of system parameters and input signals. It has
 

been shown how a limit cycle can modify the nonlinear character­

istic for slowly-varying signals. This modification may be of
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