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DESCRIPTIVE EXAMPLES OF GRAVITY ASSISTED TRAJECTORIES
by

James B. Eades, Jr.*
Special Projects Branch

ABSTRACT

Two approximate methods for calculating the planetary Swing-By
maneuver are presented. These schemes may be used to determine,
analytically, the path of motion, time of motion, energy and velocity
change as experienced by a satellite prior, during and often after the
encounter,

Also, an examination for the extremals of the energy and velocity
changes is discussed as a part of the overall Swing-By problem.

*NAS-NASA Resident Research Associate, on leave from the Virginia Polytechnic

Institute, Blacksburg, Va.
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DESCRIPTIVE EXAMPLES OF GRAVITY ASSISTED TRAJECTORIES

I. INTRODUCTION

Gravity assisted trajectories, or "swing-by' maneuvers, are produced by
the passage of a satellite (man-made or otherwise) close to a massive celestial
body. As a consequence of this the satellite's flight path is perturbed, significantly,
due to the mass attraction of the larger body. For situations such as these the
flight path develops something akin to a "kink;" the vehicle will have its energy
of motion altered, and its velocity vector will undergo a change in direction.
These several happenings are all due to the gravitational attraction of one moving
massive body on a second smaller moving mass, (say) the satellite.

s

As an example of the problem type which will be described herein, consider
Figure I.1 where an earth launched satellite is depicted to pass close to one of
the massive outer planets. Because of the close proximity of the spacecraft to
the atiracting planet, the vehicle's path is altered.

It is not difficult to visualize that one might be ahle to "control" the effects
of such a swing-by operation; especially if it would be possible to "'control" how
close the satellite approached to the planet, and if some "control" could be main-
tained over the speed of the vehicle. As a matter of interest previous theoretical
studies, related to space travel, have indicated that significant fuel savings and/or
increased payloads — as well as shortened flight times - could be achieved by a
proper utilization of this technique.
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Figure I.1-Sketch Depicting the Coplanar Circular Orbits of Earth and the Swing-By
Planet, with effects of Swing-By (A V4 and Path Change) Illustrated.



Wl W e

R g e,

A AR O e,

II. BASIC ASSUMPTIONS

In order to simplify the mathematics for this investigation, and to aid in pro-
viding analytic solutions, several assumptions will be made. In general, these
are as follows:

1. All motions will be treated as two-body situations; thus, when the satellite
is in the vicinity of a disturbing planet it will be assumed that the planet provides
the principal influence on the trajectcry. Consequently, all other bodies are
neglected and the problem is referred to planetocentric space. However, for
motion in interplanetary space it will be assumed that the primary influence is the
Sun and the study is (then) referred to heliocentric space.

These assumptions naturally lead to the conceptual idea of a ''Sphere of
Influence,' which will be employed when the gravitational influence of an attracting

body, on the flight path, is that of the disturbing mass.

2. During that time period when the vehicle is in passage through the sphere
of influence, the attracting planet is presumed to mcve only negligibly along its
own orbit; hence, the "swing-by" is presumed tc occur at a fixed heliocentric
location for the attracting body.

3. The trajectory flown by the satellite through the Sphere of In{luence will
be a hyperbola. This will be treated as a constant energy path; thus the vehicle
will be influenced solely by the attracting planet. For this condition, the trajectory
will be described by its constant specific energy and a fixed specific angular
momentum (relative to the attracting planet).

NOTE: The interplanetary trajectories, under the same restrictions as noted
above, are two-body flight paths, where the satellite moves about under the singular
influence of the Sun. In this regard the vehicle's trajectory, outside of the attract-
ing planet's sphere of influence, is made up of heliocentric arcs characterized
by constant energy and angular momentum (so long as the only force considered
is that of the Sun's gravitational attraction.)

It should be mentioned that the solution technique employed here is by no
means exact; it is an approximation utilized to alleviate some of the computational
difficulties which necessarily arise when the true multi-body aspects of this
problem are introduced. The case studies included here are variations of the
patched conizz mode of solution; the two modes v« approach which constitute this
investigation are included to indicate the degrees of complexity which can be intro-
duced into this simpler analytic approach. Needless to say, when extreme accuracy
is desired these approximate methods should be abandoned and a fully developed
mathematical program, computer solved, should be employed.
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[II. EXAMPLE OF PLANETARY SWING-BY FLIGHT

The example presented here will be concerned with the flight of a spacecraft
from an Earth orbit to (say) an outer planetary orbit. During this maneuver the
spacecraft will pass close by an intermediate (massive) planet, executing a
"swing-by' maneuver; thereby having its ballistic trajcctory altered by the
gravitational influence of this intermediate body.

In this study the ballistic path of the spacecraft is obtained from a restricted
two-bady solution, with the sun serving as a primary mass. For this problem,
then, the intermediate planet effectively acts as a perturbing influence, altering
the two-body path, and '"bending' the ballistic space trajectory according to the
mode of passage by the disturbing body.

In the analysis of this flight problem, two methods of approach will be pre-
sented. For the first, and simplest, case the effect on the trajectory produced
by the perturbing planet will be assumed to occur at a given, fixed radial distance
(namely, at that heliocentric distance locating the disturbing planet itself). Thus,
the spacecraft will fly to the perturbing planet's orbit where the "swing-by" will
be treated as a local occurrence — "bending' the flight path at this position in
space — then, the spacecraft will be assumed to move on along a new ballistic
trajectory. This is a rather uncomplicated approach to the ""'swing-by''; cne which
is easy to follow and to understand, yet one which provides the basic information
needed to describe this type of a perturbed flight track.

In the second case study, a more rigorous and complicated approach is
undertaken. For this investigation a finite size of the perturbing planet's "sphere
of influence" is assumed, and the "bending" of the space track is accounted for in
a more realistic fashion. Here, the geometry of the (close-in) planetocentric
space trajectory is determined, and evolves, as a finite dimensioned situation,

In this regard the events arising from the perturbation are relegated to the
"vicinity' of the planet rather than to a point in heliocentric space. The conse-
quence of this latter approach is that thé—f)?t‘)blem becomes more complicated,
and needs additional analysis and computational effort; but it does lead to a more
realistic evaluation of the physical problem. Whether or not the added effort,
involved here, is worth the additional accuracy achieved is a matter to be decided
by the investigator. His need for computational accuracy and for geometric
description will dictate which of these two approaches (if either) should be
undertaken,
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III.A. AN INTERPLANETARY TRANSFER

In this example it is proposed that an earth launched spacecraft wii' travel
to one of the outer planets, aided (envoute) by a planetary '"swing-by' maneuver.
For the sake of specifics, suppose that a mission is designed whereby Pluto is
reached via a Jupiter swing-by, following the earth orbit launch.

Having the need for an initial and comparison trajectory, then a first con-
sideration will be to describe a basic ballistic transfer path; subsequently the
swingby operation will be viewed as a modification to this refersnce trajectory.

For a fundamental reference path suppcse that a Hohmann* transfer from
(an assumed) earth circular orbit to an assumed circular outer planetary orbit
is selected. Thus this basic flight path will be a nominal, least energy transfer
arc, and the subsequent swing-by will result in a modification of this conic.

[I1.B.1, THE HOHMANN TRANSFER

As a means for describing the Hohmann trajectory, its several parameters
will be listed bzlow — as these relate to this problem. It shou'd be recalled that
this trajectory is part of an ellipse which is cotangential to both of the assumed
circular orbits (e.g. those of earth and the terminal planet). Thus, here, the
earth's orbit radius will match the Hohmann pericentric distance while the size
of the terminal circular orbit will correspond to the apocentric radius.

The orbital (two-body; :.arameters:

(8) eccentricity of the Hohmann ellipse:

é “Toeri *Fopo _ Ts "o (IT1.1)

(b) major axis of the ellipse:

2a, e Fapo * Fperi = T t Toi (I11.2)

“The Hohmann ellipse was selected simply as o matter of convenience. Any convenient initial
path could be chosen; becouse of its relative simplicity, in definition, the Hohmann tronsfer

serves as an easily understood reference arc.



(c) focal parameter for the trajectory:

T . I T
p, 22 Pt e g ®T¢ (IIL.3)
rperi + r:mo "'e + rf
IM1.B.2. DYNAMICAL PROPERTIES OF THE HOHMANN ELLIPSE \

(a) the specific angular momentum:

i

h

f— e
i =
H R VI x.;;\eri Vperi

(measured at the pericentric position on the ellipse; the earth's radial distance
from the sun, 1 a.u.) wherein,

and, from the specific energy equation, the speed at pericenter is

1/2
v _ 2 Mo Ho [ Ho 2r¢ /1q
pEfi - - _ - - _——_/— :
Toer: 3y r 1 +re/rg

peri L2 L

Here u_ is the gravitational parameter (Gm,)for the sun. One should keep in
mind the fact that this particular ballistic path is a heliocentric trajectory.

Combining these definitions, it is evident that the momentum constant for ;,
the Hohmann path can be expressed as;

2¢ 1/2
hy = 1 Ve, [ f } , (II1.4)

wherein V., (circular orbit speed at a distance equivalent to the earth's helio-
centric radius) = /u_ /1, .

IS gt i
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(b) The level of energy, for this heliocentric trajectory, can be described

from the specific energy expression; thus,

A (V2 4 Mo ~He
El = —— = - =
H 2 r )y 2aH fp + T'g
or, after manipulation,
_V2 .
C
®
E, = —_— (II1.5)
H 14+ ry 1y

These characteristics, above, are adequate for describing the Hohmann arc.

There is one parameter which should also be defined — the time for motion — this
is deferred for the moment, it appears in a following section.

III.B.3. CHARACTERISTIC SPEEDS AND VELOCITY IMPULSE SCHEDULE

On the Hohmann transfer ellipse the two speeds which are of primary im-
portance, immediately, are those corresponding to departure (at pericenter) and
to flight terminus (apocenter, at the terminal planet radius). Manipulating the
definition for specific energy it is easy to show these two characteristic speeds

are:
2 1/2
( peri)H = (Ve)u = VC \: f jl , (IH.G&)
® | rp 41y
and
2 1/2
(vapo)H = (vf)H = Vc [ ® } ’ (HI.6b)
d rf + re

wherein Vo, =/, /r .

Next, in order to begin the transfer, at pericenter a AV (impulse) would be
needed to shift the vehicle from its earth circular orbit onto the transfer ellipse;

and, in a like fashion, to get off the ellipse (at apocenter) and onto a terminal

s i, oSt

iy
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circular path, a second AV is needed. In this regard, then, the AV schedule needed
to achieve these two actions can be determined as: the impulse at,

(1) departure from pericenter;

AV, = L -1). (I11.7a)
rf + re
and
(2) terminus, at apocenter;
2
AV =V, |1- e ) (I11.7b)
o Tet Te

It should be evident that these AV, values are in the (+) direction relative to the
local velocity vectors, respectively.

II1.B.4. THE TIME FOR TRANSFER

The Hohmann transfer, which occurs over one-half of the ellipse, would re-
quire a transit time equal to half of the orbital period; thus, the transfer time
along this idealized flight path would be:

1

P 3
AtH = _H =T :‘.H_.
2 Mo

”

or, using the Hohmann parameters,

r,)3
(s + o)™ (II1.8)

At = T
H™ 9

244

In the present problem this quantity is not needed since the full extent of the
Hohmann geometry is not utilized, per se; however, it is included here since it
is one of the parameters describing the reference path,




[I1.C. SPHERE OF INFLUENCE

For those calculations which describe the '"'swing-by,'" per se, it is necessary
to define the perturbing planet's ''sphere-of-influence." This is the region in
which the maneuver occurs. Consequently a ficticious boundary which defines

the "sphere' can be obtained from:

m \2/5
ry =R (.5.) , (I11.9)
0]

wherein . describes the planetocentric radius of the "sphere of influence;"

while R is the radius to the planet (m ), measured from m_ (the sun). Also, the

quantities m; and m, are the solar and disturbing planet masses, respectively.

I.D.1. THE SWING-BY MANEUVER; MODE 1

The simpler mode of analysis, used to describe the swing-by maneuver, will
be designated herein as Mode I. For this operation the flight begins as (say) a
Hohmann transfer, and continues as such until the spacecraft is in the very im-
mediate vicinity of the "'swing-by" planet. Then, in the neighborhood of this
perturbing body - actually, within its sphere of influence — the swing-by occurs.
Due to the planet's gravitational attraction the flight path is altered so that the
subsequent heliocentric trajectory is no longer a continuation of the Hohmann
ellipse, in general, but becomes another (and possibly different) heliocentric

conic.

In this first analysis the effects of the swing-by are assumed to occur at a
fixed radius; that one which locates the perturbing planet in heliocentric space.

Because of this assumption the swing-by is assumed to alter the trajectory
locally, producing a change in the vehicle's heliocentric kinetic energy. However,
the idea of this assumption does not allow any apparent change in the vehicle's

potential energy (due to the encounter).

Now then, of necessity, when one does attempt to ascertain the change in
direction for the spacecraft's velocity vector, an analysis which determines the

flight path through the sphere of influence must be undertaken.

In addition, the sphere of influence may be utilized as an aid in accurately
estimating the transit time through this region of (planetocentric) space during

the encounter. This particular topic will be discussed later!

w0
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III.D.2. A DESCRIPTION OF INTERCEPT WITH THE SWING-BY
PLANET'S ORBIT

The assumptions used for a Mode I swing-by consider the disturbance to.
occur at the planet's heliocentric radius rather than in its sphere of influence.
Consequently this intersecting of the paths of motion is an important factor in
the analysis; and one which necessitates an evaluation of this intercept. In this
regard one needs to know conditions, parameters, and a description of the
spacecraft's path, at the swing-by planet's heliocentric radius (r).

,
/
_& pATH FORMd
yd
/
- /
v m
e /md HOMMANN PATH
7Hd% -
vd |/
| b4
' - - -
| LINE OF APSIDES e o

HOHMANN PATH

Figure 111.1-Sketch Showing Intercept of the Hohmann
Path with the Orbit of m ;.

Since the characteristics of the Hohmann path are known, explicitly, then at
encounter with the disturbing pianet's orbit, the spacecraft's heliocentric position
(angle) can be acquired from the conic equation. A manipulation of this expression,
expressedly written to describe the Hohmann ellipse (at r, ), gives

L] a1 .
(9y)4 = cOs s (1-¢€d)- ZH_ . (I11.10)

To define the spacecraft's speed, at ''m ", use will be made of the specific B |
energy Eqn. (solved by Vi, s that is, the speed at r, , for the vehicle on its
Hohmann track is;

10
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_ He T4
V), - {27; (1 _ > . (TI1.11)

Also, for subsequent use, the heliocentric speed of the planet (m 4)» at encounter,
can be assumed to be

v,= [ =2, (II1.12)

since the path of "m," is presumedly circular.

In order to describe the elevation angle (+, g at ry, for the spacecraft's
velocity vector one could proceed in the following manner:

In view of the conservation of (two-body) moment of momentum, write,

V. cosy, = — =71, Q.
Hy Hy

Recalling that h, = ‘/pH,u@' ; then, accounting for the conic equation, rewrite
the above expression as

and, therefore,

1/2
L | He (1 + ¢4 cos coHd)

r 2
d

Y, = COS”
Hy

(IT1.13)

d VH

(Note, there is no need to find the sin-! function (here) since the physics of this
problem locates 7, in the first or second quadrants of the orbit's geometry.
Similarly, any other transfer situation would physically describe ¥ so that no
ambiguity would exist.)

11
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In view of the assumptions made for the Mode I solution the spacecraft meets
the swing-by planet — and subsequently departs from it — at the heliocentric
position (r, vy, ). Notwithstanding this simplification, in order to evaluate the
influence of the planet, m 40 On the spacecraft, during the "encounter,' the overall
analysis must include the essentials of a swing-by maneuver in order to ascertain
the degree of trajectory perturbation introduced by this occurrence. For the
purpose of determining a spacecraft track, relative to the encountered planet,
the swing-by problem is treated (here) as a two-body situation, but with "m "
serving as the primary mass, now.

II1.D.3. TIME OF FLIGHT TO THE SPHERE OF INFLUENCE (MODE I)

Before continuing with this analysis, and prior to considering the flight path
inside the sphere of influence, it would be advisable to ascertain the time required
to perform the first segment of the overall mission. This will account for the time
lapse from the initial point, on the Hohmann arc, to the point of intercept with the
m, -orbit (the perturbing planet's heliocentric orbit). It should be evident that the
arc in question is from pericenter (at one earth heliocentric radius) to the inter-
cept, at one m, heliocentric radius.

Knowing the position of this intercept (r,, oy,), see Eqn. (III.10); and knowing
the orbital parameters for the (Hohmann) arc, then it is quite apparent that the
time required to reach the intercept position is given by

A ay | [L-e
Aty =ty =ty = [ — - ey tan 7Hd+2tan

Ho

(DH
H tan 4 (I11.14)

iy 2

with €,,a, described in Eqns. (.1, .2), and 7, obtained from Eqn. (IIL.13).
d

III.D.4. CONDITIONS AT ENTRY INTO THE SPHERE OF INFLUENCE

At that point in time and space when the spacecraft reaches the "boundary"
for the sphere of influence, it will be necessary to describe the trajectory con-
ditions relative to the attracting mass (m 4)+ This is needed so that one can shift
from a heliocentric track to a planetocentric flight path.

At the imaginary boundary enclosing the sphere of influence, the vehicle's
velocity vector(s) are related by
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Figure I11.2-Geometric and Kinematic Conditions at Intercept
of the Hohmann Path with the Orbit of m,

is the velocity of the vehicle relative to m ; v % is the velocity of m,
i

where Vz
cle, at the distance

relative to the sun (0); and, Vy 4 18 the velocity of the ve
ry, on the Hohmann path.,

Solving for |V,| one obtains a measure of the speed for the vehicle, relative
to m,, when it reaches the "sphere of influence." Thus,

IVI }ﬁl+V2-V.V;
Hy

or, noting the previous sketch,

- 2 2
- ‘/vd V2 -2V, V, cos iy - (II1.15)

II1.D.5. THE TRAJECTORY INSIDE THE SPHERE OF INFLUENCE

Once the vehicle enters the sphere of influence its flight path is considered
to be a planetocentric two-body trajectory. It is most likely, here, that the pre-
viously described heliocentric ellipse becomes a planetocentric hyperbola. Of
course this will depend on the magnitude of V, in relation to (say) the planeto-

centric circular speed (or escape speed), at the radius of entry.

13
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Inside the sphere of influence, where the only gravitational attraction is
that due to mass mg, the flight path is (again) characterized by constant specific
energy and moment of momentum. In view of the assumptions used for the Mode I
calculations the planetocentric study will treat this part of the problem as if the
entry conditions were the same as the "infinity" values for a two-body hyperbola.

That is, from the energy expression in planetocentric space,

V2 My Hq

S e e D 4 m—

_2r 2a

(which presumes a hyperbolic geometric figure), the energy relation — correspond-
ing to large radii — leads to the approximation

2
Ex = x b
2 2

Allowing this approximation to be a description of entry into the "sphere of
influence," it follows that the planetocentric trajectory has, as its major dimen-

sion (approximately),

B Nl R P I S,

Hd
¥ (I11.16)

8 = com—— .

2 ]
Vi
vith V, defined by Eqn. (III.15) above.

As an aid to obtaining pertinent information for this ""hyperbolic encounter,"
vith the perturbing mass (m,), one can employ (first) the conic equation. Thus,
\ description of the planetocentric position angle, relative to the planetocentric
)ericenter, at entry into the sphere of influence, will come from

e e

Py
rI: .
1+ €, cosq,

here ¢, implies the "infinity," or large radius, (entry) position. Following with
1@ idea that r; is very large, then

=

Py ,
— 2 0=14+¢€,cosq, ;
N

14
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(hence ¢_ essentially defines the approach — and/or receding — asymptote);
or, in terms of the complimentary angle (v), where v = 7 - ¢, (see the sketch
below),

DA=bg-¥
Ve = €05~ (-1/€)
m=Q+2V :

\e

Figure 111.3-Sketch Illustrating the Planetocentric Hyperbola

P >0=14¢ cos(m-v),

T d
and
1
COS Y = + == (I11.17)
€4

From this expression the eccentricity of the planetocentric conic can be obtained
as:

€4 = Sec y. (IT1.18)

A geometric parameter of major importance to the swing-by is the angle "a"
shown on the accompanying sketch. This angle describes the magnitude of the

15



rotation which is given to the spacecraft's velocity vector as a consequence of
the ""swing-by'" maneuver. Denoting the vehicle's final velocity vector as Vs in
planetocentric space — just before it departs from the sphere of influence - then
the angle between '\72 and '\73 is "a'". Thus, in mathematical parlence,

V, ' Yy
a= cos™ ! | etz |; (I11.19)
AARA

also, it is the angle which describes the ''size" of the "kink' produced in the
heliocentric space trajectory due to the "swing-by'' operation.

A description for a can be acquired in the following manner: Since a =
9, - v (see the sketch on preceding page), then

cos a = cos(P, - ¥) = COS P, COS ¥ + Sin ¢, sin v;

and
sina =sin ¢, COS ¥ - COS O, sin y;

hence, after substitution and clearing,

€2 -2 2/€¢2 -1
cos a = —3—, sina = ——, (IT1.20a)

taking into account Eqn. (II1.17); and/or

tana = 93 . (I11.20Db)

A study of this last expression will indicate that the angle o« is rather strongly
dependent on the eccentricity of the planetocentric path - and, as an a priori
statement, the figure is a hyperbola. Also, it is apparent that ¢ , ¥ and a are
related according to the tabulations noted on following page:
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1 < ed<f2- Ocw < n/4 mya>n/2
) /4 m/2
sV2 /4 < w< /2 /2> a> 0
The "'size' of this hyperbolic path about the disturbing mass (m,) can be de-
fined by means of its focal parameter (p,). That is, since
Py 2 a(e2 - 1y;
then according to the assumptions set forth for this probiem's study — namely,
that V, ~ V, = /u,/a; also, since tana /2 = 1/e3 - 1 - it follows that
i
Py d : (I11.21)

2
V, tan
(V2020 5)

In general, the characteristics of the planetocentric (hyperbolic) trajectory
are known, now, and this geometry is described, at least in priaciple.

The conditions (speed, orientation of V, eic.) at exit from the sphere of
influence have not been determined but will be obtained below. Also, even though
the size of the sphere of influence is not considered — on the heliocentric scale
of distances — it may be desirable to estimate the time required to move through
this figurative region in space. To this end, in a subsequent paragraph 21 "time
needed for the planetocentric transit' will be defined.

NI.D.6. FLIGHT CONDITIONS AT EXIT FROM TH7” SPHERE OF INFLUENCE

The assumptions made for the Mode I swing-by computational nrocedures
dictated that the discontinuity in the spacecraft's trajectory, produced by the
encounter, would occur at the fixed position locating the disturbing planet in
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heliocentric space. This would imply a vanighingly small sphere of influence

(on a heliocentric scale); however, in order to view and describe flight conditions,
at exit from the sphere, it is necessary to give this region som= finite size (as a
planetocentric space). In this manner the orientation, etc. of the vehicle's "exiting"
velocity vector can be defined. The pair of sketches below will indicate condi-

tions which are of interest here.

VELOCITY DIAGRAMS

APPROACH
ASYMPTOTE

| orerT

N SPHERE OF
"l— —  INFLUENCE '
PLANETOCENTRIC HE LIOCENTRIC PATH
HYPERBOLA (FROM @ TO Mg)

Figure [11.4—Geometrics for the Encounter at m

The sketches (above) illustrate geometric conditions which fit the ideas of the
Mode I calculations in the region of the encounter with m,. For the sake of clarity
the nomenclature used here is described below:

(1) At the position of m_, the heliocentric velocity for the vehicle is vy 4 3 the
velocity of m 4 (itself) in this space is V 4 also, according to the following vector

expression these are related by

V2+Vd:VHd'

with Vz being the planetocentric velocity of the spacecraft at entry (A) into the
Sphere of Influence.
18
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(2) Point (B), at exit from the Sphere of Influence, is noted to have the
following vector relation satisfied:

Ve V=V - (II1.22)

Here Va is the planetocentric velocity of the spacecraft, and VT d is the helio-
centric vector (the subscript T refers to the terminal heliocentric arc).

(3) In heliocentric space the elevation angles (+, ., 714 ) locate Vud and V; g
relative to V, (the planet's local velocity vector, para dllehng the helioceatric
horizor;. The corresponding planetocentric angles are (yy, + SH g and (yry + 51y,
locating the planetocentric velocity vectors (Vz’ v ;) relative to V4. (One should
note that the 8 angles position the V2, relatlve to the V. jk vectors).

(4) Since the hyperbola is a symmetric figure in planetocentric space, then

it follows that
A / Hq
v, =V, <: - ) (I11.23)

Also, according to the assumptions in use here the heliocentric speed of m,
is described by

(5) In planetocentric space the vehicle flies a hyperbolic track, about m,, so
that the effect of the encounter is to alter the direction of the spacecraft's velocity
vector by an (angular) amount, a — in that space.

In heliocentric space the influence of the encounter is to alter the direction
of V (spacecraft velocity) according to the following scheme: Relative to V the
approach velocity (V 3) is located by the elevation angle (). After the encounber
the angular posmon of the vehicle's heliocentric velocity vector (V 4 relative

From the sketch (above) it is evident that 72 is described relative to V 4 by
two relations; namely,

¥ (Vy Vo) =y, + 8, =g, + 8 +a (II1.24a)
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Next, in heliocentric space the angle between the vectors V. and V, is
d d

V y v - - > ;
or, from the expressions above,

y (Ve V) =las sy -8 |, (IT1.24b)

denoting that the velocity change in direction is not the same in heliocentric space
as it is in planetocentric space.

III.D.7. A DESCRIPTION OF THE VELOCITY, AFTER ENCOUNTER

At exit from the sphere of influence the spacecraft has a velocity VS , relative
to my, and a velocity VTd in heliocentric space. (Note: For clarity the subscript
"T'" will be employed hereafter to identify the post-encounter, or terminal,
heliocentric arc.)

This heliocentric vector can be fully described by: (1) defining its magnitude;
and, (2) indicating its direction (say) in terms of its elevation angle (de). The
speed (Vrd) is acquired by manipulating Eqn. (II.22); that is,

A - P
VTd = ‘V.l.dl = VV% +V§ +2V, -V,
or
A ‘[ V24 V242V, V, cos O+ Bp) (II1.25)

wherein (as noted previously)

m
Vs?vzé\ /’u_d,and Vdé —E;
a rd

also, the angle (g, + 8r,) is described from Eqn. (II.24) in terms of a, 7, 8.

In order to describe yq, , explicitly, the geometry shown in the sketch above
should be consulted to ascertain the following relations:

20
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On the ''velocity diagram' one notes that
V3l sin (8 4+ ) = 1V | sin (),

but (8Td + 'de) = [ (8“d + de) - a] from Eqn. (III.24); so,

V, sin [(&, + - a]
sin (o) = 3 Oy *+71,) ; (I11.26a)

V

d

and, by manipulating Eqn. (II1.22), one can show that

(V2 +VZ) -v2
Tqg 47 8 (IT1.26b)

cos(Ym ) =
Ta 2V, V,

A combination of these two expressions leads directly to the arc tangent expression;
or,

2V, V, sin [(SHd + 7.rd) - a]

Yr. = tan-! (II1.26¢)

d v2
Ty

+V2_v?

Equations (II1.25) and (II1.26) should provide sufficient information to properly
define the velocity (Vrd) in heliocentric space. With this as a known quantity,
plus a knowledge of the position (r,), then according to previous assumptions one
should be able to establish the nature of the terminal arc. Having a description
of this (last) segment of the space track, the analyst would be able to complete
his computations for the entire mission.

Prior to beginning a description for this last phase of the journey the side
issue of "time to fly through the sphere of influence' will be mentioned.

II1.D.8. TIME OF FLIGHT THROUGH THE SPHERE OF INFLUENCE

In many instances it may be desirable to estimate a time required for the
spacecraft to complete the hyperbolic encounter, per se. Recognizing that this
is the time of transit through the sphere of influence (from point (A) to point (B)
shown on the sketch above), then it is readily evident that the time lapse for this
segment of the flight track can be defined from
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Y A4 1+ ¢, cos 0, €

where (At)IN signifies the time lapse in traversing the Sphere of Influence. In
this expression (¢, a) are purameters describing the hyperbolic are; u, is the
gravitational parameter for the perturbing planet (m;); and », is the planetocentric

position angle corresponding to the actual entry (position) into the sphere of
influence. The muitiplier, ""2", is included here to describe the full transit time;
Eqn. (II1.27), without the multiplier, is indicative of the time of motion from
pericenter to the sphere of influence boundary (described by o,).

In order to obtain a realistic time measure, here, it is necessary to relax
the assumption-used earlier-regarding the ''size' of the sphere of influence.
In the present instance, a true value for r,y is needed so that a proper estimate
of @, (the position angle, corresponding to r;,, on the hyperbolic path) can be
obtained. Thus, using the conic equation — having determined r;, from (II1.9)
and ¢, from Eqn. (II[.18) — it follows that

p
9, = cos~1 [ﬁl_ (?i i, 1>] (I11.28)
d 1

with p, found from Eqn. (III.21).

In keeping with the various assumptions used for the Mode I calculations, it
is quite likely that for the simpler case studies, the time to fly through the sphere
of influence could be neglected (in many instances); yet, on a small (time) scaled
mission it may be prudent to include this time fraction in the overall estimates.
Such a decision must be made as a part of an evaluation for the overall problem.

II1.D.9. CHARACTERISTICS OF THE TERMINAL TRAJECTORY

After the spacecraft exits from the influence of m 4 and continues on its
way to m_ (the "final mass" and its space position), via a free flight heliocentric
trajectory, one should ascertain the characteristics of this flight path. As an aid
to this description the flight path can be identified simply in terms of how the
vehicle's heliocentric speed, after swing-by, compares to (say) the heliocentric
escape speed. If the spacecraft's speed is less than the escape value then the
final path is an ellipse. However, if the flight speed is above the parabolic value
(corresponding to the local value of r) then the vehicle escapes from my and

progresses on toward m. along a hyperbolic "free path."
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In order to describe the character of this final path the vehicle's speed con-
dition may be examined according to (the specific energy equation):

U
V% = 2 —:O_+i(z H
d !'d a.l.
but u, /a;, = V3 , so that
0]
2 -2 2 .
v‘”@ VT - vesco ' (HI 29)
wherein vg,c@ = 2 uy/rq (the escape speed squared, in heliocentric value), and

Vo is the heliocentric hyperbolic excess speed.

If Eqn. (II1.29) is negative then the "escape' condition has not been realized
and the flight path "T" is elliptic; however, .f V2 > 0, then escape has been
attained and the heliocentric trajectory is a hype%bola - incidentally, one should
recall that the parabolic path is a special case of the hyperbola, but one where
a. - and Vf,@ vanishes.

Necessarily, the Terminal Flight Path would not be expected to have the same
(or a parallel) line of apsides compared to the Hohmann Path, Likewise, these
figures (in heliocentric space) are not likely to have a same eccentricity, or
size. So, in order to complete the description of the terminal path these orbital
parameters must be oktained.

The eccentricity of the terminal path (¢,) is easily shown to be expressed by

2, 2En?
- + """2__ )
n
or
r, V% 2 1/2
€p = 2 -1) cos?y +sin?y (IT1.30)
d d

for the situation considered here (Mode I transfer geometry); and at exit from the
sphere of influence, but with the exit assumed to occur at r .

The gize of the terminal path can be described by the parameter (p;); or,

by the major dimension (a,). Since [E,| = n/2a (for either figure), then it
follows that

23

e




e

0

g

a = Fol . o (I11.31)
2E, V2 _2 ]
Td ry

where the absolute value is employed to leave a, as a positive definite parameter
regardless of the geometry describing the path (T).

In order to account for the "shift'" (angular displacement) of the line of
apsides (between the original Hohmann, and the terminal path) one should calculate

the (new) position angle (v, ) and then describe this displacement according
to the relation d

Do, = cpﬂd - cp,rd , (I11.32)

where cpHd is obtained from (III.10), and where cp.rd is obtained from

op =cos™t | Pr 1) (I11.33)
d fd ET ET

In Eqn. (II1.33) p, = a; | 1 - €2[, accounting for all conic types (except the
parabola).

Note: If (II1.32) yields a negative resultant, then the line of apsides (terminal
path) has moved in a retrograde direction relative to the original apsidal axis
(for the Hohmann). A positive resultant indicates a posigrade rotation of the
apsidal axis (wrt the Hohmann).

Some other quantities of interest, describing the terminal path, are noted
balow:

(1) Pericentric radius (of pathT),

= 8 1 - eTl ; (hyp. ellip.)

(2) Apocentric radius,

r

P ar (1 + €p); (ellip. only)

(3) Period of Motion, for path T,

a3
P-2n |1, (ellip. only)
#9
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(4) parameter, Pr>

pp=ar [1-€e]; (ellip., hyp.)
and

(5) parameter p (parabolic path),

Pr = er’r . (parab. only)
M¢ ORBIT
/ Mg ORBIT
HOHMANN PATH (H)
/ ———.Md

_~" LINE OF APSIDES (T)

Figure l11.5-Sketch Showing the Flight Paths for the Swing-By at m,

At the terminus of the mission the spacecraft is assumed to have reached
m,. (along the Terminal Path). In this regard the position of the intercept at the
terminus is specified by (r, ¢ f) where r_ is known, a priori. To calculate
q:Tf one can resort to the conic equation, obtaining

P
o, =cost| T .1 (IT1.34)
f ee€r &

wherein p_ and €; are known (see Eqns. (III.30, (I11.33)). Note that Eqn. (I11.34)
locates m; relative to the pericenter for path (T).
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II1.D.10. TIME OF FLIGHT SUMMARY

In the analysis discussed here the total time of flight involves motion along
two arcs, at least. The first segment involves the motion from ¢ to m,; and, the
second involves the arc from m, to m.. (In some instances, but not necessarily
the case at hand, one may wish to account for the time within the sphere of
influence. However, for present purposes this latter time increment will be
ignored, and the mission, timewise, will be assumed to be composed solely of the
two principal arcs for the transfer.)

The two arcs considered here may be segments of ellipses; or, the last arc

may be a segment of a hyperbola. Thus, to account for the total "time of motion"

it will be necessary to include both (possible) equations and to use them appropriately.
Since the equations for time, set down below, count time from pericenter

passage it will be necessary to ""manipulate' these expressions in order to obtain

the desired results. One should note that these expressions involve the orbit
parameters (a, ¢ ) and the position coordinate (¢), only; thus, time is expressed as

t =t(a, € 9);
or specifically:

(1) For an eliiptic arc (from pericenter to some position ¢ );

3 /|2 :
t = a !V“ € IE - I!SIHCD + 2 tan_l 1 - € tan .(.P“ . (111.353)
L N 1 +€coso V 1 +e€ 2

©

(2) For a hyperbolic arc (from pericenter to a position o);

l1+eccoso € +1 2

3 /c? i
(- |2 [e € -1sino _ 2 tanh-! ( e-1 ion _q’_>j1, (IT1.35b)

or

Fo 1 +ecoso Je+l /e -1tan(0/2)

a® |e/e? -1sing _ 40 (,/e +1 +/e_1tan(c0/2)> . (II1.35¢)
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In computing the time of flight (neglecting the time passage when the vehicle
inside the sphere of influence) the above equations are employed in the following
manner:

(A) Time from o to my — use (III.35a) wherein
t =t (ay, cp“d. €,) — see eqn. (IIL.14), also.
(B) Time from m, to m, — use (II1.35a), or (II1.35b), (II1.35¢), as follows:
(1) if 0 < ¢, < 1.0; then use (II1.35a), calculating:

t

1=t (8p 9p 0 €p)

(ad
1]

2=t (8p Op, 1)

and then,

At =t, -t, =time of flight frommy to m (I11.36a)

(2) if 1.0< € < »; then use (II1.35b) or (III.35c), calculating:

t, =t (an ®r . €1)

[ d
1

2= % (8p Op 0 &)
and then,

At = t, -t,=time of flight fromm, to m,. (IT1.36Db)

III.D.11. ENERGY CHANGE DUE TO SWING-BY

Another of the trajectory parameters which can be significantly affected by
the swing-by maneuver is t* 2 total specific energy, referred to heliocentric space.
The change which occurs in the energy is caused by the vehicle's heliocentric
velocity vector being altered (in direction), due to its passage closeby the dis-
turbing body (which is, itself, in motion).

In order to describe the change in total energy (positive or negative) one should
recall that the specific energy is defined by

ne>

Vi L
E —— e}
12 r
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thus, in heliocentric space, V is the speed along the arc(s) (H and/or T), while
K T te, and r defines position relative to m,

For this present case, the position at encounter has been assumed to be fixed;
i.e. r - r,, and consequently,

v2 V2 \
MESE LB s |- [ld_ e,
T H 2 ry 2 r,

or
v2 v2
AE = 4 _ Hd. (I11.37)
2 2

This last expression will describe the energy gained (AE > 0), or lost (AE < 0),
during the swing-by maneuver,

Essentially, now, the calculation procedures, by a Mode I analysis, are com-

plete. In the next paragraphs, the more exacting scheme (Mode II) will be described.

III.LE.1. MODE II TRANSFER, SWING-BY OPERATION

The extension to the earlier problem, introduced here, is such that a finite
size for the sphere of influence is included in this next formulation, and is
utilized throughout the computational procedure. That is, instead of having the
two principal arcs end and begin at m,, these are nocw carried only to the sphere
of influence — where each arc intersects this imaginary boundary, and the motion
through the sphere of influence becomes an integral part of the problem. The
motion through this region becomes a real and essential piece of the overall
analysis.

The assumption of ry 282 finite (or non-zero) value adds a complication
to che problem which was not previously encountered.

In describing the sphere of influence, its size will be assumed to be calcu-
lated from (see Eqn. (II1.9))
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where i ,j refer to the disturbing mass bodies being considered; or, specifically,
for this problem where the encounter is with m,, then

(I11.38)

m, 2/8
Py = Ty » py = radius of sphere of influence,
relative to m, as a conter;

and, wherein r, locates m, relative tom_.

Now, the Mode II problem will be concerned with three (3) separat> zres of

motion, namely;

(1) The Hohmann arc from e to {0;),, the sphere of influence;

(2) the hyperbolic arc through the Sphere of Influence; and,

(3) the free trajectory from the Sphere of Influence to m_ !

[II.E.2, THE PRE-ENCOUNTER TRAJECTORY

This path arc is (again) selected to be a portion of the Hohmann trajectory*
connecting the orbits of m, and m.. As expressed in Eqns. (II[.1) through (III.8)

the characteristics of this arc are:

r -T . re - T
@ € = —po Peri f ° (accentricity of the Hohmann arc)
Tg + Te

L]

" r \ 172
© (1 . _4H ) (speed, at any point along the Hohmann arc)

12
(speed, at m, position on
the Hohmann arc)

eLrf + Ty

\| 2
© ¥y = 2V2 (-L’.):vc[- ry

*As noted earlier, the selection of a Hohmann path is done mainly for convenience and familarity.
In ony case the initial arc moy be selected as ony conic the analyst would care to describe. :
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(d)

v .V 2ry |12 (speed, at the m, position
He oy on the Hohmann arc)

(increment in speed needed

2r
() "V, V. — to leave the circle (ry) and
i Ty + Tg get onto the Hohmann arc)
2r (speed increment needed to
(H AV, =V_ {1 . get off the Hohmann arc, at
f Te t T m¢, and onto the circle (r))

(8 Py=a (1)
(orbital parameter)

() by -4, 1-c2 = Ja,py

(minor axis length)

(time for motion, from m,

3
1) At - P " % tom, , on the Hohmann
Oty - B ¢
He arc)

The quantities listed above describe the Hohmann ellipse (or, specifically,
the semi-ellipse) on which the spacecraft is assumed to move initially. What
has not been described here is the location and conditions of motion at the inter-
cept between the vehicle's path and the "boundary" for the sphere of influence.

Because of the non-zero size for this boundary the "point'" where intercept
can cceur is rather vague; actually, there is a fairly large length (of the major
circle - . this sphere) on which this point can lie. Assuming that the situation
to & : .ascribed (nere) is fully one in a single plane, then the intercept can be
described, and the trajectory characteristics at intercept can be determined.

[I1.E.3. SPEED AT ENTRY TO THE SPHERE OF INFLUENCE
According to Figure III.6, it is seén that the maximum magnitude for I

Tinax = Fd ¥ oy and, the least magnitude if r; ;, =r,- ¢;. Ina like manner,
the rauge of values for the angle Py 1i8;

£0 < fe, - %
) HI ( Hd lpd
max

) (I11.39)
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Figure 111.6—Sketch lllustrating Extremes for
the Sphere of Influence .

where

0, =09, -0 ;
d Hd HI

(these angles (9,) are measured relative to the pericenter of the Hohmann arc,

with m_ as a focus).

For the situation illustrated on the figure, it is evident that

)

%y >0, 8cpd <0

max min

Note: At 34| max, min the radius, T, , is tangent to the Sphere of Influence so that
the intersection of the Hohmann trajectory with a major circle of the sphere is
such that |T,| < |T,|, by some "small" amount in a real sense. It should be

evident that at this condition T; and , are orthogonal vectors (the scalar product

vanishes); and, that, as such,

while, for this condition,

el oo oy




and the relationship between ¢ and §¢ is such that

6+ | s =7/2.
m'ax,
min

'This would indicate that for this condition

cos 9 = sin 30

I _ N |
(00 = l o® ’max.min)'

III.E.4. A DESCRIPTION OF THE INTERCEPT POSITION (I)

The intercept to be considered here occurs as the vehicle flies along the
initial transfer path. It is to occur in heliocentric space at the position denoted
by roﬂI and measured from the pericenter position for the Hohmann ellipse.
Necessarily rDHI satisfies the constraint, noted above; namely, that

%y, = Oy, * 50y, (I11.40)

where + 69, < sin -’ (p; /r 4)- Following along with this condition, then, it is
apparent that the radius to the point, I, can be expressed as

P
r, = L , (II1.41a)
1+ €y COS @y
I

from the conic equation.

As an alternate description for this radius, note that from Figure III.7 (for
the condition shown)

r; sin %0, = p; sin &, and, r; cos 89, + p, cos ¢ =T

I 1

so that
Py Sin 6 r, - p, cos
r, = ————; and/or, r, = d 1 , (I.41b)
sin 6@, cos g,
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In Eqn. (II1.41) the radius (r;) was defined; consequently, now, one knows the
coordinates locating the point where the vehicle penetrates the ''sphere of influence."

Even though this is a ficticious boundary, nevertheless it is essential that the
intercept point (I) should be specified in order that the problem may proceed

according to the assumptions set down earlier.

Knowing the peaition of (I), one can describe the spacecraft's heliocentric
speed, at this point, from the specific energy equation. In this regard, it is easily

verified that

1/2
A s Ho Ho |
Vi, = Vg | = [2 f_{“«’?‘?] (II1.42)

(See Fig. II1.7 for a graphical description of Vﬂd 1)

Also, from the figure, it is evident that

Ty +P = gy

thus
: Tr =Tq — Pro
& and, therefore,
5
: 2.2, .2 ot .5
Iy = Tg +Pp-2Tg " Py

:r3+,o% —2x'dpI cos(9+8cpd).

Including Eqn. (III.41) into the above relation, then,

e T

2
Py
- r§ +p¥ -2 Ty O cos (0 + SCPd)v

gl - "
gL M

2
(1 4+ €y COS cpHI)

e
i

wherein the unknowns (here) are the angles 6 and 89, (r, is known, a priori;
py is calculated from Eqn. (II1.38); o, and ¢, are calculated for the Hohmann

path; and the angle Py =By - 8o, is as described before).
1 d

A part of the present computational dilemma can be overcome by noting
that 6 and 5, are connected through Eqn. (III.41b) — which can be used to

express 0 = &(39.); that is,
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r. sin o9 ol sin 8¢
6=sint |9 |-sin-? H . d (I11.43)
Py 1+ €,cos wHI P1

Now, with 6 defined, as shown in Eqn. (II1.43), then

2
P
1 - = rg + pf ~ 2r,p; coS(0 + 69,), (I11.44)
(1 + ¢, cos(vy + 59)12

which is an explicit relation in the unknown %9, (i.e. including Eqn. (III.43) to
relate ¢ to 8v,). Of course, it should be remembered that 3p, is constrained
as indicated by the comment given with Eqn. (III.40).

An iteration and/or interpolation formula (or algorithm) can be developed
to satisfy this expression, Eqn. (III.44). It should be evident that there are
actually four values for ¥ which could theoretically satisfy this relation (based
on a given value of l Scpd‘ ); these represent the various quadrant intersections
of the path (H) with the sphere of influerce boundary at a value of (£) dv, .
Necessarily, the physical problem and its constraints will dictate which of the
points one should consider.

After having obtained 3¢, from (III.44) - and, likewise, defining 6 by Eqn.
(II1.43) — then the entry point is known, specifically and in toto, by the coordinates
(rys Puy ). (This is tantemount to specifying a value for Oy and then solving
for r;). !

A last quantity needed to fully describe conditions at intercept with the sphere
of influence is the velocity vector's elevation angle (yH ) as noted on the figure.
By definition this quantity is obtained from

.
tan y, = I S (IT1.45)

1+ ¢, cos Py

H 1

which is used to "locate' the velocity vector relative to the local horizon, (which
is normal to r; here).

Occasionally one wishes to know the angularity of the velocity vector (VH )

with respect to the radius vector (p;) — see Figure III.8! From the figure it is
noted that (per the case shown)
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v RS 0

b3 v
§ (Vad’ rX) = ‘5‘ - 7}{ ’
and, also, that

X Ty B = (04 180, - (% -7,,d)

=6+ | o, = _.;l; (I11.46)

thus the angularity is defined in terms of known quantities.

III.E.5. TIME OF FLIGHT (FROM LAUNCH TO INTERCEPT, I).

Since the initial segment of the flight path is an arc of the Hohmann ellipse
then one can calculate the time required to go from pericenter (at m,) to the entry
point (I) by means of,

7 4 % yi-e [ [l (IIL.47)
t = —_— |-Y1 -€5 tany, +2 tan~ tan ; y
“@ H Hd 1+ €H 2

wherein tan 7y, is defined above, Eqn. (IlI.45). This is only the first time incre-
ment for the overall flight. The remaining two (2) intervals, to be calculated,
will be discussed and determined subsequently.

III.E.6. HYPERBOLIC TRAJECTORY, INSIDE THE SPHERE OF INFLUENCE

Within the sphere of influence the flight trajectory will (usually) be a hyperbola —

thus the reference in the literature to a "hyperbolic encounter." In this section
the nature and description of this part of the overall flight maneuver will be pre-
sented and discussed.

On Figure (II1.8) the geometric and kinematic conditions at entry into the
sphere of influence are depicted. The velocity vector for the vehicle, relative
to the heliocentric (i.e. Vy 4) and relative to the attracting mass (i.e. V,), are
shown, along with the velocity of the disturbing mass (my) relative to the helio-
center (i.e. V,) — and these are related to one another by
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V., =V, +V,.

w, = Vo + Yy (I11.48)

Accordingly, this expression can be scalar expanded toyield

vgd =V2 V242V, -V = V2 V24 2V,V, cos(V,, V), (I11.49)

where
Yy (V,. V) = (8, + 7, + | 80, 1), as shown,

Rearranging Eqn. (II1.48) to read

v, = —V:Hd -V, (I11.50)

then as expression for |V, | is obtained as

Vi

=~

7 Vi 2V“d v, cos(\_lﬂd,vd) (IT1.51)

V, = fvgd + V2o 20, -,
wherein ¥ (Vy,, V,) = (o, *+ | 39,|), which is known! Consequently Eqns. /III.51)
and (I11.49) can be used to dstermine |V, |, in addition to the angle 5 4G XV,
Uy -

III.LE.7. A MEASURE OF ASSUMPTION ACCURACY

One of the assumptions used here is that the hyperbolic trajectory through
the sphere of influence is reasonably close to a two-body conic and its properties.
One recalls that for such a geometry the asymptotes and the figure merge at large
distances from the focus (as the radius approaches infinity). Certainly this
sitvation does not exist here; and, even though the sphere of inflv :nce may be
large there will always be some small (angular) separation between these two
geometric lines, One measure of how accurate the present analysis is, compared
to the assumption stated, would be the proximity of the radius (p,) to the asymptote.
That is, if the angle S (shown below) vahished, then the approximation becomes an
“exact'" hypothesig; and, as 3 becomes large (compared to zero) the degree of
approximation is worsened. In this regard an expression for 5 is developed
below; however, no numeric is assigned to the angle, as a means of ascertaining
the degree of accuracy achieved by any particular analysis.
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PO:a  COSPp=-g
FaP=g FORB=O:

FgQ:=b TANV =b/o
TAN=b/-0

ASYMPTOTE

Figure I11.9-Sketch Showing the Planet Centered Hyperbolic
Path through the Sphere of Influence.

According to the sketch (above) the perpendicular to the asymptote (drawn
through the Focus F,) — i.e., the line F, Q (=b), — is related to p; (the radius
of the sphere of influence) by

FQ(=b) = p;sin S (II1.52)

where 8 = ) (V,, 5,). From an inspection of Figure IIL9 it is found that
iz _ k4
A=y vy 4 80,1 —(—2-- 9)

=By 4o+ |80,] +6 - 121 : (T11.53)

wherein all quantities are (now) known,

An alternate evaluation of 3 could be achieved by determining the angle (v)
of the asymptote, and the position angle (¢) corresponding to p, , then describing
B accordingly. This should be compared with the expression above to ascertain
the deviation between the exact and approximation situations.
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III.E.8. DETERMINATION OF PERICENTER

A quantity necessary to the successful study of an encounter problem (ina
physical se¢.se) is the expected planetocentric pericenter radius, cp. In order
to relate this quantity to "entry" conditions, and known terms, one might follow
the procedure outlined below:

From conservation considerations (assuming, as noted before, the autonomy
of the sphere of influence);

pp Vo T (FyQ V, - bV,,

and
K, n
vé-zi:vg_zi .
Pp Pr

Combining these expressions, elimination Vp, then

b bV, \2 Ky
pp ¥ — 1+( 2) viia—)-1]. (I11.54)
b (n 'ud “d 'DI
2

[II.E.9. ORBITAL PARAMETERS (HYPERBOLA)

The orbital parameters for the hyperbolic path are easily defined from the
geometric, dynamic properties of the encounter (within the sphere of influence).
These are evaluation below:

(1) The major length of the geometric figure (a) can be obtained from
the planetocentric energy expression (E,), since

m m
(E)q = !2..- MRS (assuming a hyperbola)
2 r 2a
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thus, for instance, for conditions corresponding to entry at the boundary
of the sphere of influence,

a-_d b _ (ITL.55)

it b (vg - ﬁ‘.)
Py Hg Py

"

Since the figure of the motion is a conic, then by definition, the radius
to pericenter is

PP 8 a(e - 1);

consequently, the eccentricity can be described from,

0
=P, (I11.564)
a

As a matter of interest, comparing the expression above, for o, to that
given in Eqn. (III.54) it is noted that (alternately) '

bv,_\2 M .
€Y 4/14+ | =2 vZ_2 MR (II1.56b)
K4 Py

The turn (or angular change in direction) fcr the vehicle and its velocity
vector, due to the encounter, is indicated on the figure above bya . This
angle can be defined from the following:

Note that
a+2y=m,

wherein the angle v has been obtained from

Y = tan-!

oo

or, alternately,

W:"T-¢w,
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with

(recall that :_ is the limitl position angle for the hvperbola). If ore employs

these approximations, then

2 =7 -2y {wherew = tan"1(h/a); (1I1.57a)

I TT = &k

or, alternately

(I11.57h)

S S B O

This would indicate that + ~ - /3 for the encounter (regardless of the initial
situation). JUoviously this leads to an anomalistic condition which should be
recognized as having arisen from the fact that, herein, the hyperbolic figure
ha- been assumed to lie close to its own asymptotes; and, that the entry
conditions to the sphere of influence closely approximate the limit conditions
for a (planetocentric) hyperbolic trajectory. Necessarily, the degree of
error which has been incurred in this analysis is directly linked to the extent
which the initial entry state departs from the hyperbolic limit state. Some
measure of this approximation can be linked to the angle, ;.

A check on the accuracy of v may be afforded (in part) by the following
manipulations:

(a) Knowing p. , then a value for ¢, is obtained from the conic equation
(exactly) as,

g 2
(:fm ) =cos ! __a(e - .1. ;
vf!'v' lm vm - Epl é ?

then according to Fig. II1.10,

& \y:ﬂ—(wfﬁig+ﬁ)’

where 2 has been given by Eqn. (II1.45)! (b) Using the result above, calculate

M 0
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a=1m-2v,

and compare this to Eqn. (III.57a) - or to (III.57b)!

With the information which has been obtained to this point in the analysis one
is ready to proceed, next, to a description of the exit conditions from the sphere
of influence.

The flight through the sphere of influence has occured over a figure which
has dynamic and geometric symmetry; thus the speed at entry (V,) is the same as
the speed at exit (V,) — in agreement with the assumptions made earlier. That
is,

ANESLAR (I11.58)
Also, in agreement with the assumptions employed herein, the vector Vd
(describing the velocity of m; relative tom ) is a constant; and, by the simplifi-

cations introduced, the vectors V, and V, are (essentially) directed along the
hyperbola's asymptotes. In this regard, then,

YV, V) +a=3(V, ¥, (T11.59)

where o is defined by Eqn. (II1.57). Also, since V, + V, = Vr, (where Vi, is the
heliocentric velocity of the space vehicle at exit from the sphere of influence) then,

or

Vp_ = Y V2 + V2 2V, V, cos (V,, V,) (II1.60)

wherein the cos (V,, V, ) can be obtaine. rrom Eqn. (IIL.59); and, the angle } (V,,
V) used above, has been noted to satisfy the relation

3 (vd' vg) = Bud + 7ﬂd + 'S‘vd!v

Hy

with 3¢, = -
The magnitude of VTD is known, now; however, to complete a description of

the vector its direction 1aust be specified also. This can be done by locating the

vector (in angular position) relative to (say) V,. In this regard note that (See

Fig. II1.10).
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TD} sin(V. X Vd) = Wsl sin (Vs, Vd)
or

L L |V, sin (V,, V))
b (VTD, V) =sin~ . (II1.61a)

v, |

where 3 (V,, V,) is described by Eqn. (I11.59). Also, as a check, this angle is
described by

Wdl + Wsl cos (73, V_d)

— (II1.61b)
V.. |
D

3 (VTD, V,) = cos™!

According to the construction shown on the figure there is an angle equivalence
statement which is useful here; namely,

3 (an' Vy) = Y+ sq,T, (I11.61c)

where Eqns. (II1.61) describe the angle (V; ,Vy). The angles ¥y, and 3y, define,
(first) the elevation angle for V'rn (as it relates to the "final" flight path (T)); and,
second, (&p.l.) describes the absolute angular separatxon between the two position
vectors r, and t,. :

In describing these angles it is necessary to obtain the vector magnitude lr |-
A definition of T is obtained (see the figure produced here) from

Tp =T, + Ppi
leading directly to
rp = [r2 4+ 02 4+ 27, - 31"
hence
rp = {r: + Op + 2r, py cos(T,, Pp) (I11.62)

wherein ¥ (r,, o)) = n/2 - n (See Fig. 11.10). However, 7 is defined from a
description of' the total angle about m, ; i.e.,

.

45




AN R W A o

27 = 2|<D,eim| +16] +7/2+m,

8o
nm_a_(ﬂq) l+|9l) (I11.63)
2 4 im : *
As a consequence of (II1.63) one notes that

y Ty B =5 -n=2log |+ 18] -7 (IT1.64)

Next, as a means of describing the angle ¢, , one can make use of the following

geometric identity; that is,
Byl cos m=]|7,| sin 8o,
thus

Byl cos 7
50, =sin™! [——— | . (111.65)

Tl

(Note that the sign of $¢, has been arbitrarily set by 0 < §o_ <7/2, then 8o, =
|y - 94/, where the 3 ¢, locate "D'" and "m," relative to some consistent peri-
centric origin).

Knowing 7 (Eqn. (II1.63)) and &p (Eqn. (II1.65)) then the elevation angle
(¥;,) can be obtained from Eqn. (III. 61c) This angle locates the velocity vector
(V ") relative to the local horizon &3 it is described for the final trajectory arc,
T. Recall that this final arc extends from "D'" to the terminus (which is located
at m, and/or its time position in heliocentric space).

The one quantity left to be described — for the trajectory through the sphere

of influence — is the time ¢ flight. This will be deferred for the moment, but
will be discussed subsequently.

III.E.10. THE TERMINAL TRAJECTORY
The terminal trajectory extends from point '""'D'", on the imaginary boundary

of the sphere of influence, to the orbit of the terminal body (m;). Because of the

s
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encounter with the massive body (m,) this final arc is not a continuation of the
pre-encounter arc (the Hohmann ellipse). Actually the terminal path has a dif-
ferent eccentricity and size, hence the latter orbital parameters (¢,, a;) must

be determined.

In regard to these parameters it should be apparent that there is (now) enough
information known about the terminal arc to specify values for each. For instance,
employing the expression for eccentricity

and recalling that this flight path is described as having constant E, and h — in
heliocentric space — then it can be shown that

r, V2 2 1/2
€. = D _1] cos?y. +siny ) (I11.66)
D D :

Also, from the energy equation it is easy to show that the trajectory's charac-
teristic length is described by

_r (II1.67)
V2
TD _9
Fo/Tp

a'l'=

III.E.11 ANGULARITY OF THE LINE OF APSIDES

As a next task, to find the amount which the terminal apsidal axis has been
shifted, relative to the initial (Hohmann) figure, the following method is suggestea.

By means of the conic equation, written for the terminal arc, the appropriate
position angle (9 for the radius r is obtained as:

e _1
9, = cos™! [aTI T | l_j‘. (I11.68)
D

Tp €r €r
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Now, define the angularity (change) for the apsidal axes as,Ap; which is the
angular separation between the pericenter locations for the two trajectories ( )u
and ( );! A sketch illustrating this shift in position(s) is shown below,

EXTRAPOLATED PATH(T)

PATH T

LINE OF APSIDES (H)

LINE OF

/ APSIDES (T)

Figure I11.11-Sketch lllustrating the Angular Fositioning of Pericenter ()
on the Original (Hohmann) Path, and the Final, Post-Encounter Trajectory.

-

In agreement with the figure shown above the angle o locates rj relative

to the pericenter (F’T). This, in turn, is separated from the original pericenter
location (pl) by the angle A¢; and, in addition, one notes that

2 +Acp=fx>,,I +80, + 09,

hence

Ao = (w“I + 30, + 805) - Q’Tn’ (I11.69)

where these various angles have been determined previously. One should note
that Ap > 0 (dependent on the angle summation noted above). What is shown on

the sketch (above) is a 'supposed' positive valued Agp!

il
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The last parameter needed to complete the trajectory analysis is a description
of the position on the terminal path "T'" where the spacecraft will intersect the
orbit of m; ! Knowing the orbital radius, (r), of this planet (or other celestial
body), as an a priori, then by means of the conic equation it is easy to define the

appropriate position angle as

'a.rle% -1 1
O, = cos"! [—T’f'_e'.;'" - =1, (I11.70)

where the absolute value is employed in the event that the final trajectory may be
either hyperbolic or elliptic!

NI.E.12. TOTAL TIME OF FLIGHT

In caiculating the total time of flight it should be recognized that there are
three (3) arcs to be considered; hence, three equations for time must be included
in this evaluation. Since one or more of these arcs may be for either an elliptic
or a hyperbolic arc then the two appropriate general expressions for time are:

(a) For an elliptic arc (time measured from pericenter passage);

3l‘ ,/ €2 .1 sxnm -
t = /3_ | 2 tan-! ( 1-€ tan 3) . (I1.71a)

1 +€ecoso 1+e¢ 2

(b) For the hyperbolic arc (time measured from pericenter passage);

a3 |e/|€? -1 sino c - 1 q)—l
-2 tanh"! tan __| : (TI1.71b)

t = —_
n 14+ecoso 1 +e€

or

a3 e/l €? - ll sin Q n( /e +1 4 /e -1- tan(@/2)> (IL.71c)

t = —
M 1+ecosq> Je +1 - /e -1+ tan(0/2)
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It is noted that, symbolically, these formulas define time as a function of the
orbital parameters and other quantities, as

t =t (u, a 0 €). (I11.72)

The three time intervals, making up a complete description of the mission
flight time, are obtained as the time required to {ly the three separate arcs

making up the complete mission path. Of course, this statement is in agreement
with the assumptions set forth earlier. These three arcs are:

(1) The Hohmann path length, from launch at m; to intercept with the sphere

of influence (at I); this considers an arc from a heliocentric position ¢ = 0 to one
denoted as ¢ = ¢ !
I

(2) The hyperbolic arc, within the sphere of influence, is that arc whose
angular extent is from a planetocentric position of - cp,ﬁimto one denoted by + og,
and,

(3) the arc along the terminal trajectory, extending from the exit heliocentric
position, 0 = (DTD , to the terminus position, ¢ = ‘I"rf

In order to describe these time intervals from the expressions above the
computations are carried cut in the following manner:

(a) For the first arc (along the Hohmann path) the time is described via
Eqn. (III.71a) where the quantities employed in that expression are noted to be

t =t (Ly 8y, Py &) - (111, 73a)
(b) Within the sphere of influence the arc is a hyperbolic section, thus use
is made of either Eqn. (III.71b) or (III.71c). Also since this arc is symmetric

about the pericenter (and the figure's axis) then the time of flight would be twice
the value calculared from eithe: of the expressions noted above. Thus,

A BN 0 i g, v

*

= 2t(my 8 9 € (II1. 73b)

wherein, in reality, 0p, s the angle corresponding to a radius p; in planetocentric
space.

(¢) For the final arc the trajectory may be either an ellipse or hyperbola —
this can be ascertained from Eqn. {III.66), where the eccentricity is described.
As a consequence, this time must be calculated from the appropriate expression

given by Eqgns. (III.71). Also, since the arc covered by the spacecraft on this leg
of the mission is described by

. il
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then it will be necessary to compute the flight time by the scheme .uoted below:

The time increment of interest here is,

A
tZ At =t -t (I1.73c)

wherein
tr = t (ko B Pp0 €p)s

and

tD = t(,ug, ay, qp.rD, e.r).

[II.E.13. ENERGY CHANGE DUE TO THE SWING-BY MANEUVER

Calculations carried out in the sections prior to this one have been concerned,
primarily, with the physical and geometric aspects of this overall maneuver.
However, one of the more important parameters associated with this operation is
still to be determined — that is, the energy change which has been brought about

by the "swing-by" itself.

For a determination of the energy change one should recognize, first, that
the description is concerned with the energy change referred to heliocentric
space; and, also, that the considerations are in regard to both the kinetic and
potential energies referred to this space.

Defining the change in energy, symbolically, as

AE, =E, -E (111.74)

" il'm il

where, typically, for example,

v2
E, = ;D - ‘:" -y ::T (IT1.758)
D

(again, the * have been written tno account for the possibility of either an elliptic
or hyperbolic terminal path); and where, for example,
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(wriiten, as such, since the initial path was described as a Hohmann segment,.

From Eqns (III.75) one can define the change in both kinetic energy and potential
energy (per uiit of spacecraft mass); or, alternately, one can define the change

in total energy, per se, by simply describiug the change in a, (1 =T ,H), For either
scheme chosen a consistent definition of AE; would be obtained.

To some degree the effectiveness of the hyperbolic encounter can be measured
in terms of the heliocentric speed gained for a trajectory passage close to the
massive disturbing body. In this regard, an indication of such is given by com-
paring the quantities Vy, (pre-encounter speed) and Vi, (post-encounter speed).
Also, for that case where the final path is highly energetic (Eyp > 0) itis of some
value to note the magnitude of the hyperbolic excess speed along the terminal tra-
jectory. This topic will be briefly mentioned below.

Recalling that hyperbolic excess speed 1s defined as

vmé]/i ,
a

then for the terminal path this quantity would be

IJ'@
v, - /_ (I11.762)
T aT

or, as related to escape speed for this trajectory (referred to some convenient
position),

V2 -v2 _2 #_Q =V2 _V? (IT1.76b)
(DT TD rD TD esc

since stc =2 u,/ £ (at point "'D", in heliocentric space). Necessarily if, from
Eqn. (III.76b), the resultant is negative then the vehicle did not attain hyperbolic
speed. n the other hand, if the resultant is positive then the escape, and hyper-
bolic speed, was reached by the vehicle during the encounter, and as a consequence
of it.
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IV. REMARKS

In the foregoing sections two approximate schemes, which allow the analyst
to study a Swing-By operation, have been outlined. Of these, the Mode I method
i3 simplest to use and manipulate; while Mode II is a more exact procedure inso-
far as the basic assumptions used herein are concerned.

Needless to say these methods are not "exact" in a physical and mathoematical
sense; and, as such, both schemes will suffer some loss in accuracy under certain
conditions. To illustrate that the methods used herein are not in full agreement
with the physical situation; recall that the assumption haes been made whereby
m, is presumed to be fixed in a spatial position when the Swing-By occurs. In
many instances such an approximation may not seriously affect the result; yet,
in other cuses this assumption n ight lead to unacceptable errors. One means
of correcting for this (one) objection would be to properly account for the
rotation of the m, velocity vector,V, , at exit from the sphere of influence. Know-
ing the time of motion in planetocentric space it is immediately evident what the
magnitude of this angularity would be — and, of course, its direction is known.
Such a correction may (or may not) be of consequence; this will be a matter for

the analyst to decide.

In general, the methods presented here have been developed to aid in the
evaluation of planetary swing-by maneuvers, as a means of performing long
distance-and-time missions. It is not suggested that these schemes will provide
the accuracy needed for (say) guidance and precise performance calculations;
however, the various influences which do arise as a consequence of the '"Swing-By"

can be determined, and evaluated in a not-too-rough manner,

Some of the mure subtle aspects of this maneuver (type) can be found in the
bibliographical listings; the interested reader is urged to consult these for this

information,
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VI. SYMBOILS

a semi-major length of a conic (trajeciory)
-~ b semi-major length of a conic (trajectory) .
E, specific energy of a particle in motion about a primary
AE, a change in specific energy
F location of a conic's focus

G universal gravitational constant
h specific moment of momentum (2|7 x V|)
i, j, k indices
m mass
m, mass of the disturbing planet (about which "swing-by" occurs)
m, solar mass [ See Egn, (IT1.9) ]
 p orbital parameter (semi-latus recturn)
" P period of motion; corresponding to given values of a, u
r radial distance (radius) 7
R a radius [See Eqn. (I11.9)]
r,y radius of the sphere of influence
t time
V speed
V,.(V,) heliocentric velocity (speed) at entry to; and exit from;
V,.(V,) the sphers of influence

Vy -V heliocentric speed, at m ;, on the Hohmann (H) and Terminal (T) tra-
4 4 jectory arcs

mmmwmmmwwmwmmwwmmmwwmm‘.mwmmmwwwuwwWWWWWWHWWWWWWMWWWWWWWWWWWWWMWWWWMWWWMWWWWW

a relative inclination between both asymptotes of a hyperbolic path
B angular position of comc'sasym&e rglﬁlve to limit radius (o,)
y elevation angle for velocity |
r spéi;d ratio (See Eqn. A,él, Appendix A)
ACY.8() increment values ( ) |
5, angularity of V, (i = 2, 3) relativa to V,, (j-=H, T)
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e eccentricity
angle between radii (5, 1)

gravitational parameter (éGm; peo = Gmy, po =Gmg, py = Gmy)

LA LI SN o}

asymptote positioning angle (See Appendix B)
%,(p) planetocentric radius, measured relative to m;, as primary
@ polar positioning angle (measured from pericenter)
v angularity of asymptotes, referred to a conic's axis; see Fig. III.3.

w a positioning angle (Appendix A)
Subscripts

apo corresponding to apocenter

D refers to exit point, leaving sphere of influence

o

refers to disturbing mass (m e

)

corresponds to final position (orbit, mass, etc.)
H refers tv the Hohmann arc
h a heliocentric rcferenced quantity
I refers to the initial (entry) point to sphere of influence
P corresponding to pericenter
o refers to extreme (limit) position on a hyperbolic path
(), ; Quantities associated with vV, , V,
o refers to earth quantities

o refers to sun (solar) quantities
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APPENDIX A
Geometry for the Planetary Swing-By
The planetary swing-by, per se, is considered to be confined to that region

in space which lies within the planet's sphere of influence. In a simple definition
of this region, the radius of this sphere is defined by

2/5
ox - (_'“d
IN ~

Mo

£ radius of the sphere measured from m

(See Eqn. (IT1.9)), wherein:

-y
ot
Z
ne> 1

heliocentric radius locating m, (wrtm)

ne>

mass of the planet, and sun, respectively.

The presumption made here is that the swing-by trajectory is a hyperbola;
and, consequent to the definition above, the conic will have geometric and dynamic
symmetry; with the planet, m , (hencz u = Gm, /r?) serving as the focus.

For the geometric and kinematic conditions to be described next, concern is
centered within the sphere of influence; though conditions at the boundary are
also of consequence. In this regard the velocity vectors (see Fig. A.1) at thc
entry (I) to the sphere, and exit (D) from it are of interest. Also, these vectors,
as referred to heliocentric space and planetocentric space, are of equal im-
portance. For these purposes then, the vectors

Vi , Vi (1 =1 D; etc)
h 'd
are defined, whersin (), refers to heliocentric space, and (), implies quantities
referred to the disturbing mass (m,).

Since the planet (m,) is in motion, in heliocentric space, then its velocity v 4
is described and used here. For purposes of this analysis lVd\ is coni:itant; and
one of the assumptions to be employed here will suggest that Vd is also constant,
but during the time of the planetary encounter only.
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Vi, 2 S/C HELIOCENTRIC
CIRCLE
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Viy 2 S/C PLANETOCENTRIC
VELOCITY, AT INTERCEPT

Vg 2 HELIOCENTRIC VELOCITY
OF ENCOUNTERED Vg
PLANET (/)

Vp,? S/C HELIOCENTRIC VELOCITY,
AT DEPARTURE (D)

Vos S/C PLANETOCENTRIC VELOCITY
AT DEPARTURE

-

(INTERCEPT
POSITION)

APPROACH
TRAJECTORY

Figure A.1-Geometry of the Hyperbolic Path Inside the Sphere of Influence
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Certain angles, seen in Fig. A.1, are of interest here; those of primary con-
cern are listed and described below:

£ turning angle for the velocity vector during passage through the sphere
of influence;

2
)

v = inclination of the agsymptotes relative to the axi~ of the planet centered
hyperbolic trajectory;

w = the angle of inclination for the perpendicuiar to the asymptote, measured
from the figure's axis of symmetry. (Nota that w +v = 7/2.)

A satellite approaches the sphere of influence, along its heliocentric flight
path (approach trajectory), and intersects this imaginary boundary at I. The
heliocentric velocity at this point is Vxh , while the planetccentric velocity is V; g
These velocities are related according to

Vi, =V 4T (A.1)

Looking at Figure A.1 it is noted that several of the angles which are of
interest here are related by the following

a+2¥=m,
and

y-T _o,

2
hence
a=2w. (A.2)

Also, it is seen that

tan¥ = b/a,
while

tan w = a/b, (A.3)
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hence

tan w = cot ¥,

which is also evident from the second relation given in Equation (A.2).

Since a = 2w, then from Equation (A.2) and the definition of b it follows that

2tan w 22 /2
tan a = tan 2w: n = b = H (A.4)
1-tan? w _ _ai €2 -2
b2
also, with
a 1
tan W = = = ——m=—= , (A.5)
b |
then
b 2
tan¥=—_ = /e -1. (A.6)
a

From the conic equation, it is noted that the radius to pericenter, defined as
r(o =0) is,

= P = -1;
rp 1+6 8(6 )

similarly, since th2 semi-minor length b = a/€? - 1, and the eccentricity can
be determined from €2 =1 + b2 /a2, then it follows that

2 r 2
P?+1:€2:<'£+1\);
a a

or, after manipulation

b=ry [14+2 a . (A.7)
o
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Equation (A.7) is important to these problems since it is (both) the semi-minor
axis length as well as the perpendicular distance to the asymptotes from the iocus,
F, (see Fig. A.1).

The semi-major axis length (a) is also significant in that according to previous
assumptions the vectors V; 4 and VD 4 are essentially parallel to the asymptotes.
Consequently these play the roles (approximately) of the so-called "hyperbolic
excess velocity' vectors (V,), which are defined as being parallel to the asymptotes
at the extremities of the hyperbola (as r — ).

One should recall that this velocity vector has a magnitude defined by
v, = JE . (A.8)
a

Next, a parameter ([':, describing a speed ratio, will be introduced: this
quantity will be defined (h:re) as

2
rz & _ VO (A.9)

/-L/l’p ,

where /1 / o is the circular speed for an orbit of radius T (the pericentric
radius). As a consequence of this definition it can be shown that the following
expressions occur:

(1) Using Eqgns. (A.8, A.9),

2

a vId

—_— 1"1“2; where I’f = ) (A.10a)*

rp d d #/ rp

(2) From Eqgns. (A.7, A.9),
vi
£ d sor b=ty [14 _§_ . (A.10b)
/ I
I Y 2 4 T‘fd I,

*One should note that Pld EI‘Dd, since lVIdl u WDdI'
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(3) From Eqns. (A.5, A.9),
tan¥ = cot w= T‘ld Y2+ I“x"; . (A.10c)

(4) Combining Egns. (A.8, A.9, and A.4),

2PI ]/2 +PI2
d d_ . (A.10d)

N2(24+02) -1
o2+

tan a =

and

(5) Utilizing the Eqns. for (rp) and (A.8),

€ = 1 + I}zd . (A.loe)

Note: these expressions apply only for the hyperbolic encounter,

From these expressions it is apparent that for a fized value of rp » 48 Vi, i8
increased the angle a decreases. That is, the '"turning'" of the velocity vector
is reduced; this can be attributed to a reduction in time during which the space-
craft can be influenced by the attracting (or fly-by) mass. Therefore, to obtain
a maximum of turning (a) it is essential that a slowest approach velocity (Vld\
should be available, at a fixed value of r, . Conversely, for |V;,| fixed the value
of a increases as rp is reduced; hence, a close passage to the attracting planet
is desired if a is to be maximized (for a given value of | Vld| ).

In substance, then, the maximum turning (a) occurs when r, and |V, | are
smallest, compatible with the assumptions and constraints of the mathematical

model assumed here.

It should be recognized that there are some least values for quantities con-
nected with this study. For instance, the smallest value of rp which can be used
here is that corresponding to the dimensions of the attracting planet (and its
atmosphere, in those cases where atmospheres are significant). Secondly, the
entire problem has pre-supposed that the trajectory, during swing-by, is hyper-
bolic; therefore lVIdI — and |Vp,| - must be at least as large as the parabolic
speed relative to the attracting planet. This assures the geometric form of the

conic assumed earlier.
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One final remark before leaving this section; this is in regard to the distance
FP (= B) shown on Fig. A.1. It has been stated (without proof) that this length is
equal to the semi-minor axis (b) of the gevmetric figure; actually this is easily
demonstrated, and will not be developed here.

Since the hyperbolic trajectory is assumed to be generated as a two-body
flight path, it should be evident that the uzual two-body relations are applicable
ani can be used to describe this geometry. Also, the state of motion — as well
as time of flight - relative to the planetary mass (;.), can be described from
two-body results.

Velocity and Energy Change from the '"Swing-By' Maneuver

_ Figure (A.1) shows the heliocentric exit and entrance velocity vectors as
Vp, and Vy, , respectively. Consequently the change in velocity (8V), due to an
encounter with an attracting mass can be defined as

<A =
VeV, -V, . A.11
b, = V1, ( )

Making use of (A.1) it is evident that

WV -V =V -7 (A.12)

n

as seen from the sketch here, (Fig. A.2).

ISSPLESEEN%FE Figure A.?_—Sk_etch illustrating the velocity
change, 5V =Vp, = Vi . Here the Circle
of Influence is o cross-section of the Sphere
of Influence.
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The magnitude of this change (| 5V|) is obtained as

1/2

A X1 v v v v L3
av = | 8V] = [(Vp, -Vi) _vld)] ;
or, expanding and recognizing that Vo, = \",d, then
AV = v,d /2(1 -cos a) = Vo, /2(1 - cos a). (A.13a)

An equivalent expression, more compactly written,* is

&V =2V, sin i;. : (A.13b)*

The total energy, relative to the heli~center, at entry to tle sphere of in-
fluence (at I) and exit from it (at D), can be written, generally, as

v2
E, = —h oot (-1, D
i 2 r, 2a,

h

where no is the gravitational constant jor the sun; r;, is the radius to the points
(i) from the sun; and, "a," i# the cemi-major length describing the heliocentric
trajectories (before and/or after encounter). In gereral the energy is not the
same before and after the swing-by - this is normally une of the reasons for
attempting this maneuver — therefore, a change in total specific energy, 5E, >< 0,
is expected.

Under the assumptions made for this analysis, it will be presumed that in

heliocentric space, fy, ~ Ipy,s therefore, the change in energy may be expressed
(approximately) by

vz V2
1
5E, ~E, -E, = %" -5 (A.148)

(since the r, are assumed equal).

*It was noted earlier that a/2 = w, ond that V 4 /u/ a, hence on approximate svaluation of AV
is obtained as AV = 2Vy, sin a/2 > 2/1/0 sinw=2/11, acos v.
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In this expression,

2 _ Iy 2 . y2 2 v .V
VDh ;VDd+Vd| _VDd+vd+2VDd Vd
and

= W‘d + V|2 :V%d + V2 +2VID Vg

so that, accounting for the angles £, (3 =1,D) on Figure A.2; also recalling
that V = V then,

2 _ 2 - y2 2,
Vo, _vfJ +2V, Vp cos&y + Vi=Vp + 2V V,cos &y Vg

also

2 _\2 - 2 _ g2 - 2.
VIh_VId+2VIdVdcosgI Vd-V +2VDdVdcos§I +Vd,

and, therefore,

°E, TV, VId (cos &, - cos &) (A.14b)

which is equivalent to

V. -V.) =V, -5V (A.14c)

(See Eqn. (A.12)).

It should be evident from these expressions that SE >. 0 depending on the
orientations of Vi, and Vp,_ . Another means of stating thlS is to note that the
sign of SE, is compatible with the direction cosine of §V relative to V; (See
Eqn. /*.14c)); or, it depends on the sign and/or magnitude of cos £, and cos &,
(See rgn. (A.14b)). In any regard, it is seen that the energy change, relative to
the heliocenter, can be described as a gain in energy ( SE, > 0) or a loss of energy
(SE, < 0), for the satellite, depending on on the approach to and retreat from the
sphere of influence. If §V is generally in the direction of V; then energy is
gained; however, if the direction of 8V is in opposition to Vd , then the vehicle's
passage will represent a giving up of energy to the attracting bedy, or a "loss"

of energy relative to the heliocenter.

Before leaving this section, it is desirable to express some of these results
in terms of the defined speed ratio (ry ) In this regard, it should be recalled

that
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1

sinw= :

e

and, according to the footnote with Eqn. (A.13b).

/“L I"12
[~ Tp 1
AVx2 [ sinw=2 . (A.15)
a 1+02 (2412
+ ID( + Id)

Extending this to encompass the statement given as Eqn. (A.14c¢) it is evident

§ that

_ ¢ T2
Y T d

- |2 , (A.16)
| 8V] \/ 1+072(24+12)
L d d

where (now) the magnitude of the change in velocity, and the change in energy, due
to the encounter with an attracting mass, have been expressed in terms of known
(or selected) quantities, and the speed ratio (I“Icl ).
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APPENDIX B

Extremals for the Change in Velocity and Specific Total Energy

Having evaluated the changes produced by a "swing-by'', the next logical
step is to investigate these to ascertain the conditions and magnitudes for the
extremals of each. Taking these in logical order, the change in velocity (magnitude)
will be determined first.

In order to describe an extremium for the change in velocity the magnitude
of 5V will be studied first since the direction of 5V depends on the vector
difference Vp, - Vi, , wherein each of these vectors has the same magnitude.
Generally the extremal will be dependent on V;, ( = Vp,) since the pericenter
distance (r,) is dependent on the energy (hence the entry speed) for the hyperbolic
path. In this regard, then,the extremal for Av will be determined in terms of
Vi4 (or, equivalently, in terms of [} g - and, in particular, in terms of I}g since
this is the order of this quantity as it appears in Equation (A.15)).

Therefore, differentiating Eqn. (A.15) with respect to Ffd and setting the
result to zero leads to the expression

w/ o

2\13
M2 [1+r (2+00))

(1-T2) = 0;

from which the condition for the extremal is

2 -1, .
I, (B.1)
and/or
vz = £
d fp

Necessarily this suggests a condition for a maximum since the minimum for
AV is obviously zero.

Equation (B.1) implies that if AV is to become (AV) __, then the speed(s) V,

(and Vp, ) should be equivalent to the circular speed corresponding to an orbit
of radius rp!
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Using Equation (B.1) in Equation (A.15) one finds the maximum of 5V to be

AV = | K (B.2)

hence the magnitude of the maximum gain in velocity is equivalent to this (circular)
speed_also. The direction of §V has been determined as the vector sum of Vp d

and -Vy, ; these (in turn) depend on the entry and exit positions at the sphere of
influence. Note that the gain (which is depicted here) is independent of the planet's
velocity (V,) and is solely determined by the closeness of the passage to the planet
(rp), as well as the size of the attracting mass (u).

The extremal for the change in specific energyis more involved since (see Eqns.
(A.14))there is an implied conditionality for the orientation of vectors involved here.
Certainly the extremal for this quantity depends on both the direction and magni-
tude of 8V. For the moment, neglecting the magnitude of §V, it is evident that
SE, has its largest value when the angle between V, and sV is zero; and, in
contrast, SE1 is a least value when these vectors are directed opposite to one
another. Thus, the extremals of SE, are dependent on the statement

cos(vd,SV) =4+ 1.

Now, having defined a magnitude, (&)__ , then it would appear, from Eqn.
(A.14Db), that the extremals for SE, are defined according to the conditions

(1) AV = (AV) (B.3)

max

and
(2) cos §D -cos ¢ = ¢ 1.

Condition (1) has been described, see Eqn. (B.2); condition (2) can be established,
however, it should be noted that in agreement with Figure A.1l,

él-énza;

therefore, condition (2) is better stated as

cos £ - cos(&y +a) =+ 15 (B.4)
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or, expanding,
cos £ (1 - cos a) +sin §ysina =+ 1.
After a value for a is decided upon, then it becomes a relatively simple matter

to evaluate Eqn. (B.4) for the angle £_; and, to use Eqn. (B.3) to ascertain a
proper value for &;.

It should be apparent that the angle a is not arbitrary; as a matter of fact
Eqgns. (A.13b), (B.1) through (B.3) lead immediately to the result

. a
(Av)max = (2 vld sin ?)max

hence,

K =2 ..M..sini ’
l‘p I‘p 2

or, the requirement that is implied here is

v
_ T B.5
ly . =3 (B.5)

T e

S UL

i Now, solving Eqn. (B.4), accounting for the proper value of a, it is found that
, cos & {,
:%; 2D -J%sinénzil
: % and, therefore,
P ‘:;
1
cos & = ¢t 3 i
which requires that
"77 1
- f = =
3 or cos &, 3
ép = < . (B.6)
27 for cos £, = - = !
3 P2
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Now, using Equation (B.3), it is observed that the corresponding values of
£,» needed to extremize 3E,, are obtained from

1
cos§1=$'2-

and, as a summary, the following table is presented.

Table B.?
Conditions for Extremizing 3E, Due to a Planetary Swing-By Maneuver
SE, cos (V,, &V) Comment

(Ey)ax 0 n/3  2m/3 Energy is added for the

satellite's heliocentric path
(3E) . m 27n/3 n/3 Energy is extracted from the

min
satellite's heliocentric path

Graphically, the solutions noted in the above tabulation correspond to the
following fly-by conditions, in the sphere of influence:

8E, <O
2
8E'rﬂiﬂ:'\’d

AVminz-Vyg =—J.'E_
(-3

8,20
BE/mox Vg

AVMO‘ :Vd =J#:

(energy is extracted from the

(energy is added to the
heliocentric path)

heliocentric path)

The information above indicates that the extremals for $E, are obtained by:
(1) a gain in energy by passing behind the attracting mass; and doing so by keep—
ing the vectors V and 5V parallel (directly), also having AV = (AV) .
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second extremal, (3E)) . , occurs when the satellite vehicle (or attracted mass)
passes in front of the attracting mass; this occurs when §V and V, are oppositely
parallel, but while AV is retained at the level of (AV),,,. All of this is, of course,

based on the assumption that I has heen pre-selected, a priori, and that this
parameter does not otherwise influence the extremals.

Apparently conditions relative to the direction of V;h , Vph , etc., the size of

the trajectory_flown during the passage through the sphere of influence, and the
magnitude of V4 (other than v4/Tp) will produce changes in 8V and SE, but not

the values corresponding to the extremals unless the necessary conditions for the
extremals are satisfied.
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