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$ENSXTIVITY REDUCTION THROUGH REOPTIMIZATION
 

Abstract
 

The ability to maintain an optimal solution independent
 

of parameter variations is philosophically appealing.
 

Unfortunately, whenever the internal system parameters
 

change in value, the system usually no longer operates in
 

an optimal fashion. Therefore, the purpose,of this research
 

is to devise a scheme which will continually adjust its
 

control strategy in such a manner that the control remains
 

optimum for a set of parameter variations. To accomplish
 

this, the- Miximum Principle is applied to a truncated Taylor
 

series reuresentation of the Hamiltonian of the system with
 

parameter variations. An adaptive control strategy is'
 

thereby derived. However, the adaptive structure requires
 

plant identification, so special attention is given to this
 

problem.
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CHAPTER I
 

INTRODUCTION
 

1.1 	 Historical Background
 

Progress in the sensitivity problem has not in
 

general kept pace with the general advances achieved
 

within the framework of optimal control., Briefly, the
 

optimization problem involves transferring the state of
 

a given system from some initial state to a given target
 

set under various constraints, in such a manner as to
 

minimize a given cost functional. The need for a sensi­

tivity analysis results from the structure of the system's
 

dynamical model i(t) = f(x(t),u(t),), where x(t) is the
 

state of the system, u(t) the control effort, and a the
 

parameter vector of the system. This model represents
 

an ideal plant where the parameters are assumed to be
 

known exactly. Such parameters shall be called the
 

"nominal parameters." However, the plant parameters may
 

change in value during their life span, or even if fixed,
 

their precise values may not be known. Therefore, the
 

dependence of the state dynamical model upon parameter
 

values gives rise to a performance functional, state, and
 

optimal control strategy which are dependent upon those
 

parameter values.
 

Considerable progress has been made in the design of
 

linear autonomous systems with controlled sensitivity to
 

parameter uncertainty. The foundation work for this class
 

of problems is due to Bode , with applications and exten­
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3
sions by Horowitz 2 Some methods have been presented
 

in the field of optimal control systems which are subject
 

to parameter variations. There are essentially two
 

mutually exclusive philosophies being pursued in this
 

field. They are 
44
 

The 	study of
 

(1) 	Performance Sensitivity
 

Sensitivity reduction by considering the
 

dependence of the cost functional on the
 

parameters.
 

(2) 	Trajectory Sensitivity
 

Sensitivity reduction by considering the
 

dependence of the states on the parameters.
 

1.2 	 Performance Sensitivity
 

Consider any optimal control law which may be im­

plemented in either an open-loop or closed-loop structure.
 

The question of which structure offers the smallest varia­

tions in cost for given parameter variations was posed by
 

Dorato55 . From the study of classical control systems,
 

the notion of sensitivity reduction to parameter varia­

tions with the implementation of particular feedback laws
 

was developed. The sensitivity index considered was
 

usually equivalent to
 

which is a ratio of the change in transfer function T per
 

change in parameter value a. For the open-loop configura­

tion SC1.
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For certain feedback mechanizations ST can be made less
 
a
 

than unity implying a reduction in sensitivity. Pagurek 6
 

investigated an analogue of the classical sensitivity
 

problem. He considered the cost functional
 

•T"
 

Cui Q> j L (Am)t),L)tC.)S (1-2) 

Let 6C(u,a) represent the first variation of the cost
 

functional. If the plant's initial conditions are known
 

and the target set is the whole state space, then Pagurek
 

stated that
 

SC ("(nSC=Q (1-3)A~, 
where the subscripts o and c denote open- and closed-loop
 

quantities,. That is, the cost index sensitivity to
 

parameter change is the same for both open- and closed­

loop transformations provided, of Course; the parameter
 

variations are infinitesimally:small; The question of how
 

much the cost index changes from the nominally optimal
 

cost was left unresolved. Although Pagurek's results
 

were for a special case,- a more general result, according
 

to'Sorbal, was given by Kokotonib and Sannuit It'was
 

found that (1-3) need-not be .zero in general.
 

Another performance sensitivity idea considered a
 

game theoretic approaC. Rohrer -and Sobral defined the
 

"relative sensitivity index" for a-control u(t) to be
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R Cc L (1-4)u(t)7.CL-CL)
S cLtL t) JC(a) Ct); L 

where C(ujt),a) is defined by(l-2)and u0 (t) is the optimal
 

control for the plant having parameters a. That is,
 

(1-5)
C(ot),L)= rnin{C(Lit),a)} 


The "plant sensitivity" is chosen to be a quantitative
 

index of the deviations of C(u(t),a) from C(u0 (t),a) and
 

is defined to be
 
SP }= { ) .(1-6) 

S (U (t))=Th&XS1 s caL)4 
The optimal design criterion becomes u(t) = u. (t), where 

SpLU*(+))=mrin {SP(U())}
 
U {t(1-7)
 

ax L.M 'Mm SRCUM 

Essentially what is being accomplished is u(t) is chosen
 

to make Ciu(t)) as close as possible to the optimal
 

value of C(u(t)) at all values of a.
 

1.3 Trajectory Sensitivity
 

In this method there is generated a trajectory in the
 

solution space which is "least" sensitive to parameter
 

variations. This is accomplished by constructing an aug­

mented cost index. Instead of the cost functional being a
 

function of x(t), u(t), t, the augmented cost functional
 

is a function of x(t), u(t), t, and a term which relates
 

the change in plant trajectories to parameter variations.
 

For example, the cost index which is a function of
 

x(t), u(t), t, and Dx(t)j3a. A trajectory from the
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solution space which is least sensitive to parameter
 

variations will not in general produce a trajectory which
 

is optimal with respect to the original unaugmented cost
 

criterion. Trajectory sensitivity methods have been
 

,
investigated by Kahne9 , D'Angelo, Moe, and Hendricks 1i
 

BradtI I , and others.
 

As the two sensitivity classes differ philosophically,
 

so do their applications. Petformance sensitivity methods
 

maintain the identity of the original cost functional and
 

therefore the results achieved relate to some optimal
 

solution. Trajectory sensitivity concerns itself with
 

minimizing, in a sense, a cone of trajectories about a
 

trajectory which is optimal with respect to an augmented
 

cost criterion.
 

The last technique described in the performance sen­

sitivity section is closely allied to an idea proposed by
 
* 

Kokotovic and Heller They have adopted, an approach
 

which preserves the concept of optimality in the sense
 

that the control law minimizes some given unaugmented cost
 

index
 

C (LU)fL(C-,ULA( ),t-b±) (1-8) 
to
 

The cost index defined by (1-8) is aesthetically pleasing
 

in that most physically meaningful optimal control problems
 

have a cost index of this form. Their objective was to
 

develop a system which attempts to be optimal for "small"
 

Notes, 1967
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parameter variations. Their approach postulated the
 

a-priori-control law
 

8* C,SX +Ca AaC8a 
where C1 and C2 are obtained via the Maximum (Minimum)
 

Principle. That is, the control 6u, which was called the
 

"optimally sensitive control" will tend to minimize (1-8)
 

under the influence of small parameter variations. Be­

sides the loss in generality due to requiring that the
 

feedback control have the structure of (*), the authors
 

left 	several important facets of the problem unanswered.
 

They are: 

(1) How "large" may the allowable parameter 

variations be? 

(2) Is the system's cost of operation (i.e., (1-8)) 

less sensitive to parameter variations than­

its non-adaptive counterpart (i.e., using
 

the fixed nominally optimal control only)?
 

(3) 	Under what conditions will the adaptive
 

structure result in a cost which is equal
 

to, or close to, the true minimal cost
 

of operation for a system subject to parameter
 

variations?
 

Also, the authors' implementation restricted the number of
 

parameters considered to be equal to the number of states
 

considered. In such cases (see Figure 1.1)
 

However, the authors state that this dimensionality
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restriction may be overcome.
 

Figure 1-1
 

Adaptive Controller
 

1.4 Ojectives and Methods
 

The objective of this investigation is to develop a
 

design method which will operate optimally (or if not,
 

arbitrarily close to optimal) over some allowable set of
 

parameter variations. Various types of parameter varia­

tions will be investigated and given a unified analysis.
 

The cost functional considered will be that cost func­

tional associated with the nominal problem.
 

The problem will be formulated in a general mathe­

matical sense with all structural forms (i.e., constraints
 

and control strategy) being a derived result instead of
 

being assumed a priori. Arguments pertaining to known
 

optimal solutions and their neighboring solutions will be
 

Used to develop a general Hamiltonian system of equations
 

valid over a set of admissible parameters. The desired
 

control law will be obtained from a set of necessary
 



:rmd LLions p1 dcrd on thr general. lnmiltonian system. This 

control ]aw will be found to minimize (1-8) over the set 

of well-defined admissible parameter variations. 

Parameter estimation will be found necessary to
 

mechanize the derived system. Therefore, questions re­

lative to parameter estimation and dimensional restric­

tions will be explored. Various computational devices
 

will be developed to satisfy the parameter estimation
 

condition.
 

Error analysis techniques will be employed,to estab­

lish 	bounds on the allowable parameter variations and
 

cost 	index variations. Finally, it will be shown that if
 

certain conditions are satisfied, the derived system is
 

less sensitive to parameter variations (in the performance
 

sensitivity sense) than *ts nominally optimal controlled
 

counterpart.
 

1.5 	 Notation and Symbols
 

The following symbols will be used throughout the
 

study:
 

x state vector
 

aparameter vector
 

n nominal parameter vector
 

a actual parameter vector
 
e
 
a estimated parameter vector
 

ai parameter, real
 

p costate vector
 

u control vector 
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y 	 augmented state vector
 

Hamiltonian function
 

C(u) 	 cost index (cost function or performafice
 
index)
 

dz
 

spL es
 

-Eq Euclidian q dimensional space"
 

c'ilJ The class of all functios with i"continuous
 
partial derivatives with respect to all 
arguments on the real interval tsI 

Pil The class of all piecewise continuous' 
functions 

11 11 Norm 

non-degenerate inner product 

Transpose 

o(c) "order" of C 

lv Largest integer smaller than or equal to v 

Variable identification (superscripts) 

* -optimal variable 

e adaptive (approximate optimum) variable
 

n nominal variable
 

actual system variable
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CHAPTER 1I 

FORMULATION OF THE PROBLEM
 

2.1 	Necessary Conditions for Optimization
 

Consider the autonomous plant
 

(-zf.(x tuLct a), t 	 c [tt J I 

where: x(t) En , X(to = x O 	 (2-1)II 	 * 
n u(t) =Ul(t) 	 u (t) is an admissible measurable
 

control functio on t E[to,T] ,
 
siar
ur~t 

a, the parameter vector will be formally defined as:
 

CL= 	 : E 

andag failai is an admissible measurable parameter of
 

the system defined in (2-1), i = 1, ... , ml. The per­

formance index C(u) is defined to be:
 

T 

where <x(T), T x (T)> is the terminal cost functional and
 

T is a diagonal positive definite matrix (notice it is
 

assumed to be quadratic).
 

Necessary'conditions for finding a i(t)sc2, which 

-transfers the state of system defined by (2-1) from x0 to 

some target set S at the terminal time T, T given, with: 

n o[toT], L: EnXEnfEC[toT], f: EnXqXa--E , Lc C 

Measurable functions will be considered to be bounded.
 
This does not allow for the existence of the Dirac
 
delta distributions because distributions are not
 
functions­



such that C(u) is minimized, subject to the differential
 

side constraint (2-1), are well known from Maximum
 

(Minimum) Principle 12
 . The Maximum Principle states that
 

for a u*(t) to be an optimal control, in that min C(u)
 

C(u*), is that there exists a nontrivial p*(t) such that
 

for
 

H x'p'a5cii 	 (2-3)'-

and tr.t0,T], p(t) cEn
 

(i) p*(t), X'*(t), and u*(t) are solutiofis of the canonical 

equations 	 * * * 
*(±)= H x (tp(t) x enX 0 (2-4) 

fHc 	 (2-5) 

(ii) min H (x*(t), p*(t), u(t)) = H(x*(t) p* (t) u* (t)) (2-6) 

(iii), and p(t) satisfies the usual transversality condi­

tions dictated by the target set S.
 

Conditions i, ii, and iii are only necessary and not
 

sufficient. For example, there exists cases where i, ii,
 

and iii are satisfied but the satisfying u(t) is not
 

optimal but a singular control belonging to Qis. However,
 

for the purposes of this investigation it shall be assumed
 

that a unique nonsingular optimal control always exists
 

and that it satisfies the Maximum Principle.
 

To establish a more definite understanding about the
 

character of the plant considered in (2-1), and therefore
 

the problem, the set of admissible parameters must be
 

For a listing of transversality conditions for the defined
 
problem see pages 306-307 of 12.
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this it is meant that the admissible parameters should be 

applicable to all systems where the parameters are con­

sidered to be, for example, initial conditions, or plant 

coefficients, or perhaps a combination of the two. For­

tunately, there exists a property of ordinary differential 

eguations which will establish an equivalency between
 

these three parameter cases.
 

2.2 	 Set of Admissible Parameters
 

Consider the continuity aspects of a system of first
 

order ordinary differential equations for the following
 

three cases:
 

For xcE
n
 

(i) 	A(t) = f(t,x(t)), X(to) y 

y considered to be a parameter vector, ycE n. 

(ii) 	x(t) = f(t,x,a), X(to) = x fixed 

a 	 (a , ... am) to be considered as a parameter 

.vector, aiE
 

(iii) Combinations of (i) and (ii)
 

It is known that under the proper reduction routine13
 

Moreover, these proper reductions preserve all the con­

tinuity properties of the original system considered.
 

Proof:
 

(i) ==(ii)
 

Let x = z - y, )(t) a solution of (i). Then z = for y
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A
 
constant. Therefore, z = f(t,z(t) y) = g(t,z,y) and
 

z(t0 ) = 0. Continuity and the smoothness of (i) are pre­

served under this linear transformation.
 

(ii) = (i)_ Let z (X 1 , ... , Xn, al, . m
 

and
 

'
Z(t0 ) = (Xl°' " " ' al ...' " am) 

define i = [f(ttX,) A g(t,z). 

Again smoothness is preserved; i.e., if fcq[toT] then 
gFCq [o,T] 

The other implications follow:
 

Because there exists an equivalence between" (i), (ii),
 

and (iii), a problem formulated in any of the three classes
 

may be reduced to any chosen class. Therefore, this in­

vestigation will only consider problems posed in class (ii).
 

For the sake of completeness, to may also be con­

sidered to be a parameter in (i), and therefore in class
 

(ii) or (iii), by increasing the dimension of (i) by one. 

Proof: 
th 

First convert the nonautonomous n order ordinary
 

differential system of equations to a (n+l) order ordinary
 

autonomous system of differential equations by letting
 

= l, )n+l(t) = t o.n+l(t) 

Define: z(t) = (X (t) , X (t) ..... X (t))
n-i- 1 n 

Define; g(t,x) _ (1,f(t,x)) 

tBV virtue of this transformation only autonomous systems
 
need be considered, realizing that a nonautonomous system
 
can be reduced to an autonomous equivalent.
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ihcn z 	(L -0) (0 ,x (0) , . (0))
 

(*) ( 'r) ..... = g(z(V))
(.x (r)) 


z(, to) = (xn+l(= to), x(= t)) = (toX o) 

Thus, the continuity properties of a system of ordinary 

differential equations with respect to parameters admits 

a specialized analysis of a class (ii) problem without ig­

noring study of all other possible cases. 

However, if one considers a plant to be parameterized
 

by vectors ae a, then the optimization problem, over a,
 

would have to be accomplished the cardinal number of
 

times. This means that for every parameter vector in
 

the optimal control would have to be computed and this
 

computation performed'for all such vectors in 6r. For ex­

ample, if a E1 such that a= [0,1]., then the optimiza­
tion would have to be performed c times, whererc is the
 

.power of the continuium. Therefore, one is motivated to
 

seek a technique which would allow for the analysis of.the
 

optimal problem but which would significantly reduce the
 

number of'computations required if a is allowed to range
 

over some set. The most obvious approach would be to hope
 

for the existence of an extension of a known solution into
 

a neighborhood of that solution. Or in other words, the
 

hope is that the behavior of an optimal control u corre­

sponding to a parameter vector a is related to the optimal
 

control u- for a in a straightforward manner. For example,

a
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L = [0,11 and for any ea6the "optimal" solution of 

w aw, W(to) = wO , is defined to be 4(t,c). Suppose also 

that it only be required that if & belongs to a small 6
 

neighborhood of a the "optimal solution *(t,) belongs to
 

some c neighborhood of 0(t,c), £ > 0, 6 > 0. This state­

ment requires, for c small, small parameter variations
 

result only in small trajectory variations. Obviously,
 

4(t,) is unique for all eJ . There exists a continuous 

mapping G, such that G:6T E1X(t0,T]. Butais compact 

and therefore has a finite open 6 cover. Then, under G, 

the solution space i(t,) = {iita)} ={t4(t'aJ).IttcJ) is
 
the solution of- w aejw, w(t W for all a C }hasa
 

finite open s cover. And furthermore, there exists a
 

6 > 0 such that for Jaj - al < 6 and c > 0 given,
 

j*Ct,cj) - P(t,aj. = I exp (- ait) - exp (- at) I < E. 

Therefore, instead of considering C exact computations,
 

one need only consider a finite number of calculations if
 

the E error criterion is acceptable to the designer.
 

The extension mechanism to be investigated will be
 

an expansion of the Hamiltonian by a truncated Taylor Series
 

about some known solution. In particular, the known
 

solution considered will be the nominal solution. The
 

nominal solution is that optimal solution which corre­

sponds to a . an, where an is the nominal design parameter
 

vector. The Hamiltonian is dependent upon the given plant
 

(2-1) in which the plant parameters are imbedded into its
 

definition. Therefore, it is desirable, before attempting
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to extend the Hamiltonian in a truncated Taylor Series,
 

to Int rrdiuc" a more fi exible notation which will give the 

J,. ( .its,' ,- v,0',, . 1J, - "'r' ,| ]r:J I rr.i)rescznt It~i n in th e 

Ildmi IL'nian. lhis is accomplished as follows: 

Define a new state vector (augmented state vector) 

y such that 

yeEnX orc En+M 

where 

.Y XStj , ac'z r- 'E 

It should be noted that the a defined above is not time
 

varying. It was stated earlier that only autonomous sys­

tems need be considered by virtue of a reduction technique
 

displayed in foothotetv This technique is to be thought
 

of as a device which will eliminate the-explicit time
 

dependence from the plant. For example:
 

Consider the-nonautonomous system
 

= (lt+a 2sin t)X + u tE [, 

(0) = 0 

then under the transformation t Xn+ 1 = X.2
 

{ij= (a X2 + aX sin 9X1 +] 

The parameter vector of this autonomous system is
 

A =2 , where a1 and a2 are constants. As a practical 

consideration, one may wish to allow a weak parameter time
 

dependence to exist. This may take the form of a drift or
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parameter aging. This situation will be considered in 

more detail in Chapter 3. An example of this proposition 

may be an extension of the previous illustration for 

al(t) aa1 and a2(t) = a2' then 

[(±~e)xa+o.2 ctusiflxa)X+LLj
 

Now, also define
 

where a° is the initial parameter vector, which without
 

any a priori knowledge of its value will be assumed to be
 

the nominal parameter vector an . With this notation the
 

Hamiltonian may now be expanded in a truncated Taylor
 

Series. The development proceeds as follows:
 

2.3 	 Extended Hamiltonian Systems
 

Define the nominal Hamiltonian to be:
 

for
 

p(t) 	E En"m 

9n( ),P n( ),Un(t) being solCtion5 of (2-4, 
5 ;and 6) for cz=cOMand 

CX()LL n(t) 

0 	 J 
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Theorem 2-1: Let H(y(t), p(t), u(t)) and all its partial 

derivatives up through order k be continuous in some 

neighborhood N.of (yn(t), pn(t), -un (t)). Then for 

(y(t), p(t), u(t))EN (dropping the t dependence)
 

k-!
 

where- (2-7)
 

H£
 

14
and V is the gradient operator
 

The vector (yq,pq,uq) is a point on the line segment
 

connecting (yp,u)EsN to (yn,pn'un) N. Because the neigh­

borhood N is a convex subset of E2 (n+m)+r (i.e. It is a -

2(n+m)+r dimensional ball). The interior of N,i(N) is
 

either convex or empty. If i(N) is not empty, then the
 

following is true:
 

Given two points, (y,p,u) and yn,pn ,un) in N
 
n *'n -n
 

with (y ,p ,d) obviously-in the interior of N
 

then every point on the line segment between
 

(y,pu) and- (yn ,pn,u ) (with the possible exception 

of (y,p,.u) itself) is an interior point of N.
 

Because N is convex, N = co(N) (E5(N) denotes the convex
 

hull of N).' So equivalently, (yq,pq,uq) e (co(N)) except
 

for the previous noted exception.
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Example: (y,p,u)rE3
 

• N 

X(N) 

Figure 2-1
 

CONVEX N
 

By (2-7), the Hamiltonian can be represented in a neighbor­

hood N of a particular vector (yn,p n,u n) by a truncated
 

finite series if the Hamiltonian satisfies the conditions
 

stated in-the theorem. The last term on the right hand side,
 

of (2-7) has special significance.. This term, which is
 

evaluated at some point in N, (not necessarily (yn,pn,un)),
 

represents the error in approximating H(y,p,u) by
 
k-I
 

1.=0
 
The term--!< pH ~. 

I <L _YprL-tk ),v-(Wjm)n 

shall henceforth be referred to as the truncation error 

and denoted as O(k ). The argument c will later be used 

to denote the vector difference between (y,p,u) and 
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(y , u The necessary condition that H(y,p,u)sC (t ,T)
 

is really not to sever. In the cases to be investigated
 

it will aiways be assumed that H(y,p,u) does indeed
 

possess k continuous partial derivatives. If it does not,
 

then there still remains another alternative. From the
 

Theory of Mollifiers 1 5 a function can be approximated,
 

in norm to within an arbitrary error c, £ > 0, by a' 

C ,T function. Therefore, even though the Hamiltonian
 

may not have a desired number of partial derivatives
 

existing, it can be approximated by a function which has
 

the desired derivatives. Furthermore, the derivatives
 

which do exist in the original function will also be found
 

in the approximating function.
 

The study shall now concentrate on a special trun­

cated Taylor Series representation of the Hamiltonian
 

L=O (2-8)
 

.3! 

Therefore, (2-7) is being considered for k = 3 and
 

H(ypu) E CIto'T] at least, in some neighborhood of
 

n n n

(y ,p ,un). This property will be used later for purposes
 

of uniqueness of•solutions.
 IT
 
Let: C(u) = x(T),Tx(T) > + L(x,u)dt again, and 

impose once more the differential side constraint
 

att CJt , o K given
0L J 

Notation: Let
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where j + i + h = k. 

Then Lhe necessary conditions for the minimization of
 

E(y,p,u) given by (2-4,5 and 6) become
 

Ap 

H p.)pU_) + HpnC~p 
- HH 2 pU)tcp-p') + (2-9) 

4HpL(T , c(Yc-Cj p. u-")U) ) p 4­

+ OP 5.) 

n r 

-= ( -) - - H>Z p,Lt) -M - (2-10)
n n 

H~jpc LpuCLpcPj ) -)+ 

and where u* in (2-6) is assumed to exist and be unique. 

Also, equation (2-6) shall be weakened for computational 

purposes as follows: 

For H(y,p,u) r C3[toT] given, 

the optimal control u* satisfies t 

(I-) H tj))LLI = O 
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For some u* bNCi(a)*.
 

It shall also be required that the second derivative
 

type test 111
u2(y,p,u *) > 0 thereby insuring a minimum.
 

It should be noted that Hu(y,p,u) and Hu2(y,p,u) exist
 

over N.
 

Summary of Assumptions: u*ci(Q)
 

i) u* is obtainable from Hu(y,p,u) = 0
 

ii) H 2(y,p,u*) > 0
 u 

By the assumed uniqueness of u*, u* is a globaliy
 

optimal control over N.
 

Therefore, u* satisfies
 

(qO U =A MU pL* U,p~)auHU C j H55 ,1.HHr)2 % ,,wux-Lt-I 

n (2-11) 

+HU tJ, p,L)(y-yj')+ H L u,pt,o (p-p, )+ 

+ 0LCE I -) over tce [",T] 

The assumptions placed on u*, that is (i) and (ii), are
 

really not too restrictive if the class of control func­

tions to be implemented possess some natural smoothness.
 

However, such control strategies as bang-bang control
 

would naturally be excluded from this analysis.
 

Prom the extended canonical equations (2-9, 10, and
 

11) several important properties pertaining to'the
 

If u* satisfies (2-6) and u*F3S, then finding u* by
 
setting -f-equal to zero would not make sense. Therefore,
 
it shall be required that the u satisfying ± belongs to
 
i () .
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extended Hamiltonian system become apparent. First, it is
 

desirable to insure that the solutions to the extended
 

canonical equations are well behaved for an arbitrary
 

parameter vector a "close" to a .
 

Lemma 2-1
 
n
For + a , the solution of (2-9)
n
 

-H p(L3,pL) 4- Hn? (P-Pn ) +U,) 


nn
 

converges uniquely the solution of (2-10)
 

n 

+-}-;CL,p,(-)-(. -p 

-I-- Pcy ,pu.-.J(-P2 f.!,~a -. )
Le: -HpLj CoV)
 

converges uniquely to pn (t),
 

and the u which satisfies (2-11)
 

converges uniquely to un(t).
 

Proof:
 

By hypothesis there exists a unique control effort,
 

call it u (t), which satisfies the original optimization
 

problem with x being an arbitrary plant parameter and
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aeL . Remembering (2-9) is an exact equality and for 

(yu)CN,- tc [t0 T] 

(i)
 

xt) (xt0
X n 

n
Because for a = n f(x(t), a un (t)) is Lipschitizian 

in x(t), and un(t) (unique by hypothesis), the solution
 

of (i), for x(t) = xo , is unique and was defined to be 

xn t). The function f(x(t), a, u (t)) is also continuous 

on I[. 

Also, suppose f(x(t), a, ua(t)j <M ont.a
 

Claim:
 

There exists a 6 > 0 such that for any fixed a
 

n

(t)) with II(cz _ a , u -u) 1 <6,


(which implies a fixed u 
aa
 

every solution 4a of (i) exists uniquely on [to,T] and
 
nn
 

as a a (,correspondingly ua . from the continuity of
 

Hu (y,p,u) )Oa(t) _, xn (t). 

Proof: 

The proof will be developed locally then extended.
 

Choose A sufficiently small so that
 

-j(tlx )E iLt-to1 xI XX1 MX, 

where M is a Lipschitiz constant}C N
 

Then, for any a, u a.N a solution of (i) exists on
 
a
 

[t - to ] < X. Let 4, be any solution of (i) for a 
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't caic Lur vd-ctor u :tnd correzsponding conLro, u Thc-n 

{,) U forms a bounded equicontinuous family. That is, 

for each E + 0 there exists a 6 > 0 such that 

14 	. (t) - a(t<)II < 

This implies, by Ascoli's Theorem
16 

where It - t1I < 6. 


f{c(.)l}has a uniformly convergent subsequence
 

= But from the uniqueness of the solution at an,u n un
 

n = x (t) as 4c(k) an 

This gives a local result over It - tel < X. Extend the 

results to itoT]. Notice also, only the uniqueness of 

4, at a point was required. 

#(Claim)
 

Thus, from the claim the solution of (i) tends to the
 
n n 

unique solution x (t) as a + a Obviously the solution
 

of
 

&(t) = 0, a(t) = 

tends to a asa
 

n
 
pn (t) as a a

Now all that remains is to show p(t) 


(ii) p(t) =- Hy(y(t), p'(t), u(t)), p(T) given and 

H (y(t), p(t), u(t) is Lipschitzian in p. Therefore, therey 

exists a unique solution of (ii) for y(t), u(t) given. 

Let y(t), u(t) assume the role of the parameter vector a 

in the claim. Then, from the claim 

p(t) p (t) as a -. a 

.
Fundamental Lemma13 is a Caratheadory solution of
 
q(t) = h(t ,qt)), q(t ) q on TS(t ,t) if and only if
 

0
flt) 	= q+f h(t,,())de. 

0 
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The previous results can be used to show how the 

cost index C(u) reacts as a - a The obvious question 

to ask is "does C(u) converge to C(un) as a -- a 

Theorem 2-2: As a -> an, for t acAC(u) _YC(un), 

where u denotes the unique solution of (2-11) for a =a. 

Proof: 

All that need be proven is that x(t) xn(t) and 

u(t) ._Yun(t), Where x is the solution of (2-9) for a a. 

Lemma 2-1 satisfies this demand. Then ( ,4) (xnu 
n
asa- a , thus C(an) C(un)
 

What of the case where a $ an? If the optimization problem 

is to make sense, one would intuitively expect the follow­

ing to be trivially true. 

n
Theorem 2-.3, minC(u) = C(u*) < C(u ), where u* denotes 

the unique-solution of (2-11) for a*# a.
 

Proof:
 

Suppose not. Then there exists a unEN such that
 

C(un) < C(u*). 

But, for (y*, p*, u*) EN the min H(y*,p*,u) = H(y*,p*,u*), 

U -6CQ2) 

It should be noted that a weak inequality is used in
 

Theorem 2-3.- Even if U* is a globally optimal control
 

over N, it is possible to construct a cost functional
 

whose arguments (t) and %(t) are independent of parameter
 

variations, when x(t) E En(t) and U(t)6 Er (t).
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For the sake of notational convenience the following
 

notational convention shall be established.
 

Let
 

Ay = y - yn; y,y sN -

Ap = p - pn; p,pnN
 

Au = u - Un; u,unN.
 

Also, in (2-9), (2-10), or .(2-11) it should be noted that
 

Hn (ypu)= 0 and Hn2(y,p,u) =.0 (due to p appearing
 

linearly in H(y,p,u)). From (2-11), Au may be explicitly
 

solved in terms of Ay and Ap because Hn2 (y,p,u) > 0 by
 

hypothesis; therefore, Hn2 (y,p,u) -1 exists.
 

': - (rh [H";n(,POLL) AyJ + 
<H °
 

(2-12)
n } .+ HLJp : Pu AP + o,,.CE3] 

The results of (2-12) may now be used to eliminate Au from
 

(2-9) and (2-10) by direct substitution.
 

nn
 

HY)J h I jPO L)[H jPI L4)][hi p jctpp,tt -P~ 

n cy,L.4)JAj [H_ ( P, L.L) (2-13) 

-H ( U 
nt OpE 3 
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where: Ay(t0
 

y arbitrary.
 

The arbitrariness of y will not affect the desired result
 

as wi-ll be shown shortly, and
 

Ap { plta) tL5LJt L) 9n2 - P, 

n L- (2-14)
 

- ,~ LI1ac~~i]O'UJE5w %, Oy(Cb-

VCT
3'uetr)i 


For N sufficiently small such that the higher order terms
 

3­o u(C 3), O pC 3 ) and oy(E ) are negligible, then (2-13)' and
 

(2-14) can be represented as a system of 2-(n+m) linear
 

ordinary differential equations. (Error bounds on ou( 3 ),
 

O (W3 ) and o ( 3 ) will be established later). Suppose
 
p y 
such a non-empty neighborhood exists.
 

Then:
 

r 1 
Ay0 , Ap(T) given
 

where A, B, and C are defined in the following manner: 

For H(y,p,u) = L(x,u) + < p, f(x,u,a) > + < p, 0 > 

= n
where p cnxi.-,- pCT) [SLVCr-
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Then, from (2-13)
 

I X , 0
A 2C --- - ­

n n -nn
 

(2-13ii)
 

and from (2-14)
 

L -(-X)- 2
+](u. 4 X, i [-j L 

• _ n ' n
 

A rather interesting phenomenon occurs it eguatibn (2-15).
 

The rows of .its A& partition are equal to zero. in fact,
 

the truncation errors associated with •the A rows are also
 

zero. This implies that the autonomy of the parameters
 

have been analytically preserved. Therefore, the parameter
 

vari'ations" considered, of the form a a,n equal a con­

stant. For a physical viewpoint, however, it is desirable
 

to allow for a previously noted weak time varying of the
 

parameter. If so, such qualities as parameter drift and
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aging may be considered. This quality shall be introduced
 

into the kroblems structure as follows. Assume the exist­

ence of a C(t) which will appear in the A& equations in
 

place of a truncation error. Then A & =,Ct),Ac(o)
 

arbitrary has a solution which is equal to a constant plus
 

a low amplitude, or slowly varying time dependent term if
 

il (t)I[ is small. It will be demanded that luj(t)I be 

sufficiently small so that it may be dismissed as were 

the legitimate truncation errors. This is a reasonable 

demand because one would not expect a set of paraieters to 

exist which are rapidly changing or strongly varying in 

magnitude to admhit a truncated Taylor seties representa­

tion of H(yp,u).
 

Eq. -(2-15) is recognize& to be a matrix Riccati type
 

equation. It can be recognized as such because of the
 

structure of G(t). The solution of (2-15) is given by a
 

(n+m)x(n+m) nonlinear sys-tem of differential equations.
 

That is, there exists a symmetric K(t) such that
 

-0A- = A~t+,) sK-LAOiCtBL +Cit) 

(2-16)
K(T{ a] 

and Ap(t) = K(t)Ay(t). 

The solution of * will usually involve a computer 

mechanization of the problem. Some techniques of solving
 

a Riccati equation.can be found in Tuel 7, Friedland
1 8
 

and Bass with an example supplied by Stoner, Taylor, and
 

Bass1 9 . If any of the 2(n+m) solutions of (2-15) &re
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known in closed form, then partioning routines can be
 

used to reduce the computational diffichlties associated
 

.
with finding K(t)13 Partioni'ng techniques also suggest
 

another method of realizing the elements of K(t) for this"
 

particular .problem.
 

Partition K(t) follows:
 

K4 -L)-- - - - - - ­

where Xi is nxn, K2 is nxm, K 3 is mxm. Then Au defined by
 

(2-12) can be expressed as
 

At(9 	 ,~ + * 

- n 
 2(t]AY 	 (LcA_.2-12i)
 

Therefore, one needs only to focus attention oncalculating
 

K1(t) and K2 (t). From '(-2-i3i, ii), (2-14i)', and .(2-15)
 

the differential equations defining.K (t) and K2 (t) are
 

establ'ished-as:
 

A(t. 	 A isnrn, Aa is nxm 

A3A" Mxn, A 4 isrnxm. 

ri nitxLLJa. (X,U)A) xItoz})- CL~ 	 + 

U.g
fix~aOL)~fXLL cEL ,CX).± 

+ (;~, aa)](1(X 	 L 2 03P 
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Cf) 11\0tBLC -j I Is hxn is nxy 

BC3,(.) is rvnB e ) is mxrn 

CXnU[Gil ) Lt (, U) ~ 6 ahsC+ 

- K 1-4 

B (+) bx3m[B. tia) 

. oL , + (5'xna 

C. ( f
<c, u2a).) 

C3 (C .( 34 Cjx Z-cc) C.3ft) I-s;5 p L(x) ia))f (K, xu ±"Ia)~ 

C4 t) =-Qtc,a,a-)p)b[L~ &,r t( cx,u op)'' ­



33 

Therefore:
 

ci-K1 L±L) k1 (bA,(+t)+a At aKtuu- K1 ct E~j c-) Ki(cej 
+ C Ic() I, CT)= T 

and
 

+C(+t,), K 2 c(T)=O. 

Comments:
 

Equation (i) is a homogeneous nxn nonlinear differen­

tial system of equations. Its boundary data is specified 

at t = T. It is independent of the initialdata Ay(ot ) 

Equation (ii) is a nonhomgeneous (nxm) linear
 

differential.system of equations. Its boundary data is
 

specified at t = T. It is independent of the initial data
 

Ay(t ), thus leaving Aao arbitrary as acceptable.

0 0O 

Consider now the solution to (2-12) to be of-the
 

form
 

A. ()Att) ) (2-17) 

where G(t) is calculated through one of the suggested 

methods. A remarkable observation may be abstracted from 

(2-17). The implementation of'the adaptive control need
 

only require that xn(t) need be stored in some memory
 

device. The simplest example of such a device would be a
 

tape. Thus, after G(t) has been precomputed, G(t), being
 

a function bf the nominal variables yn (t), pn (t), and un(t), 

it will be multiplied in real time by (y(t) - yn(t)). 

But yn (t) equals (xn(t), n), and an is nothing more than 



34 

some known biasing term. Thus only n'known time varying
 

functions must be-introduced into the system from memory
 

in real time instead of 2(n+m)+r functions which might
 

have been earlier predicted.
 

The schematized realization of-thd adaptive system is
 

e.
given in Figure 2-2, where a is an estimation of a* and
 

'* is the actual plant parameter vector. Parameter
 

estimation will be treated in Chapter 3.
 

AUL ADAP-IVE
 

Figure 2-2 
 -

A D4P
Adaptive Structure
 

2.4 Truncatioh Errors
 

'To complete this section, the structure of the
 

truncation error terms will be investigated. Rather thani
 

an exhibit the results in tensor notation, the eguivaleht
 

scalar triple sum will be analyzed.
 

Let z =(y,p,u) EU+l~
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Then the truncation error of (2-8) becomes
 

2Cfl+m)a-r 3 9]( 
CL) Z k 4 Z Z y,) Z)3! z .zZK-Zk)Z 

j-t(z)Evaluating H for special cases 

it can be noted that a and p appear linearly in H(y,p,u). 

Therefore, for y = (-zi z.,Z) having any two or three ofjk
 
its element being an element, or elements of p, or the
 

last m elements of p,
 
.. H9_o
 

6 Zz 12j zK 

For X (z., zz k) having two or three of its elements
 

being an element Or elements, of a
 

f~'~9cz) -

It may be noted that the truncation error, defined in (i),
 

is dependent upon zq, 7q N. The requirement of finding
 

such a zq which establishes the equality in (2-8) may be
 

relaxed by redefining the truncation error. Let the
 

bound on the truncation error, denoted as e, be defined
 

as follows-


t[Z )ZJ~ZJ )E :sup (z- zz XzK -Z K ) HCZ 

F 2(nwon- * 0 
(ii)
 

t sup L (zz-zZ')(j -ZLX -z) HHz); 
Fe-NL,1-, -z6 z .
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Also, the truncation error associated with 

and (2-14) may be interpreted similarly. 

Let (z) be the middle term of (ii). 

Then 

(2-12), (2-13), 

ZEfN 
 PJ
 

UUo O(E 3 ) 7E <sup {7 
- ZEN 

Therefore, 	requiring ou( 3 ), o (), and o (63) being

u P y
 

small can be insured by requiring.the right hand side of
 

(-]ii) 	is 'small. 

2.5 	 Example Problem I
 

Example: Linear -Regular"(single channel control)
 

Cohsider the plant
 

(i) X(t) = A.(a)X(t)+Bu(t), X(to)=C 

and the cost index 

(ii) 	 C(u) = 1<X(T), PX(T)>+ <X(t),QX(t)>+ 

+<U(t) Ru(t)> dt 0 

where
 

The terminal time T is specified
 

-T 
 is a 2x2 positive semidefinite matrix
 

Q is a'2x2 diagonal positive semidefinite matrix
 

R is a lxl diagonal positive definite matrix
 

A(c) -- ­
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The nominally optimal solution is found as follows: De-

LineILhe nominal Hamiltonian to be 

H(X(t),an,p(t),u(t)) = <X(t)'"QX(t)>+ 

+ cu(t), Ru(t)>+<p(t),A(n)x(t)+BU(t)> 

and 

pi =p)H= QX(t) - A' (n)p(t) 

S0u(t) 0 Ru(t)+B'p(t) = 0 

then
 

u(t)= R Bp(t)
 

Note also
 
a
 
Z R)0.
 

au'.t) 

Then
 

(iv) T-A-c- -)][-

and pf(p)T = XCT).
 

Assume the solution of (iv) to exist and be of the form
 

n 

Now construct-G-of (2-15), remembering
 

-x1Ct) P4C)B 

p:(t)
Lt] L4 
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o 311 0 0t o0 0 0 

-a 	 -a.z x x I1 - C0 0 

0 a o0 0 2 0 0 

= o 0 o 0 0 0 

, n22 0 1- n 0 0 
2Pa o Pa Cla o o 

PZ 0 0 0 I 0 _x In 0 0 

0 n C) 1n 
- o 0o -X 2 o aa 	 o 

Note:
 

P2(t) could be redefined in terms of Xn(t).
 

Le: p(t = k t)XL Ln t) <Xx"c+a>. 

Therefore,
 

Kun - t[l,-c o '- +< -c, xx
 
0 LoY.0 0 0 0 0 0 

_ -a n , oe KXn: XV)-%o 5Y440) 	 -1-Kt; [' 2 t 2 

' o 

where K(t) -- k.:]' 1' j -- 1, ..-. , 4 

ol ) o['] KSolve fo(t) an costuc 0(t of (27) Th4on
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on the truncation error for this example is:
 

sup" (a )(X1 - x2 (P2 ) 
zE:N 1, 1 1 1(2 2 

For-example, if zeN, N ={(Xcutp)"j 

then = 2,93 

(2 2 ) ( 2aH 

Z H < r 

) p 

Also 

QepY( 0 Pj 0CLC(X, - x ) t(ct c42)(X z-Az) 

0 p$E)(E)o 

° OOp4CE) 

(O ( CL- a,X,P- P )
 
Oxz( (CL_aCt.)(,P2 - PZ)
 
-OC.,(E) .(x,-x')Cp.Z-P.,)
 

EOa(l) (X )(,p-PZ)
 

Under the revious example N,
 

+ ) O 
0 (e) 

r2
 
2
 

Example P~roblem 2:
 

Consider the plant
 

k{(t) = aX(t), + u(t), X(O)=1
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L. li . ri I o iI vai . 'fl I, j . AILso, (cfISJ j(Ior" 

the cost index given by
 

( X & # LL (+) ct .C cutt f o 

The nominal system is optimized by solving
 

n (t) = - xt(t) - pn(t) 

Pn(t) = - xn(t) + pn(t) 

un (t) = - pn(t) = - knxn (t) 

where kn is the nominal Xiccati gain and is equal to 
n.n
 

k -- , > 0 

Thus pn(t) = ( 1 +2)xn(t) 

n (t) = (I -w)Xn(t) 

and xn(t) = exp(-<St)
 

Now consider the system subject to the parameter variation
 
n 

a. an _ , u(t) un(t). 

X' (a - E)X~t)+ (I -h))(t 

Xco = I 

=ePFO1 -A -in 4[ (1 - z)F (exp I+ E 
.Q±E*-2)" 

Note: for .= 0, 3(t) Xn(t) 

For a a c = a*, the true optimal strategy is 

5*(t) = - (l+c)X*(t) - p*(t), X*(O) = 1 

b*(t) =- X*(t) + (1+) p*(t) 

u*(t) = - p*(t) = - k*X*(t) 

where k* (1+c) + (1+) +1 > 01 
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and
 

X*(t) exp I-F(+C+l)t 1 

Now the adaptive dynamics are:
 

for a, - 1, a2 = x n(t), bI 7 1, c0 = 1, c2 - pn(t)
 

Therefore
 

But this is a homogeneous constant coefficient differen­

tial equation evaluated over t = 0, T o. Therefore,

0fe 

from a steady state argument k1 0. Thus
 

k2 - -4ktn
 
Also:
 

-- kx- VC - k, k p keC-o. 

Integrating backwards in time one finds
 

Therefore
 

n n n 

Letting A'='a -a = an - an = -6 

kF (I*EC-t) )E
-

Thus
 
t 

)( XP~ e(+= + E)t p2+E)T)~ #p~ ex[( (ex 

2(ji-Jt )E exp(7~T cIT 

plI (;V'-1E )t]tic +J[x c)I}
-ex 



Notice, for c = 0, Xe(t) xn(t) and for at small 

xe t) ZX*(t). Consider now a 10% parameter variation 

(i.e. e =.l). One finds
 

x( / 


g9 \ .x
- ()= (xTS) 

.8 A' *(L)C C.63
 

".G, -- 6=.I
 

I c ' ­

.5
 

o a
 

Figure 2-3'
 

STATE SPACE e = .1
 

Now considering the various control efforts considered for,
 

&kC*)r( 'U cxp& 4 Tt u,.0- - V4*)[-1 CX e 3.-Ln )eP-±Z-+ ) ') 

LuU rN &{2 0a)4)Cx 
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-.5 

S077
 

Leo)= l.ot 

-- / . -- u81. (J F) 

_4t 
LL 	 U'(0 -36& 

L co)= -. 414 

LI (O-.38$S 

Figure 2-4 

CONTROL SPACE s = . 

From (t)it can be noted for (et) small (i.e., the. internal
 

where Xe (t) has its largest values) Xe(t) acts optimally.
 

The non-optimal characteristics of Xe (t) occur when (Et)
 

is large. But over this internal Xe(t) is small and its
 

contribution to C(ue ) is minor.
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.8 

.7
 

.5 

l I .4 - -­

-3 

oZ 

0 

Figure 2-5
 

GAIN PLOTS
 

It is easy to see from Figures 2-2 and 2-3 that
 

) < C(u
r)


C(u*) < C(u
e
 

In fact, Figure (2-6) exhibits a significant reduction in
 

cost by using ue(t) over un(t).
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.5 	 caL) - -------- ­

.5
 

.1
 

Figure 2-6
 

COST INCURRED
 

2.6 	 Reoptimization
 

It-is assumed:
 

(i) that the actual state X(t) can be measured in
 

real time in the absence of noise. If the observa­

tions are noisy, then a state estimation technique
 

-might have to be considered. (Examples -- nonlinear
 

stochastic filters, Kalman filter, etc.)
 

n
(ii) 	Xn(t) and a can be loaded into the system in
 

real time. This could be accomplished by loading
 

these vectors from a tape which is synchronized in
 

real time with the physical system.
 

and
 

(iii) ae can be generated (estimated).
 

Methods which satisfy (iii) (i.e., the parameter vector a
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need be estimated) and will be treated later in this
 

investigation.
 

It may be noted that the feedback loop is adaptive
 

and produces a control effort which is tn such a-dirction
 

as to minimize the cost incurred. This preservation of
 

the concept of optimality will be called "reoptimization."
 

In order that the adaptive structure be of practical
 

use it must possess the quality that:
 

IC u*) - C(uel cu*) _ C(un)I 

for ue being the adaptive,control and for a set of 

nparameter vectors in some neighborhood of a
 

e
Theorem 2-4: For an adaptive control u satisfying (2-17) 

u ei),there-exists c > 0, and sufficiently small, such 

that.for 1f1 -ec*H1 < C; a,e saE, 

- f.IC(u*) - C(ue) I C(u*) C(u) 

Proof: 

For a = a* C-n , C(u*) c(un) from Theorem 2-3. 

From (2-13) and the matricies defined by (2-15) (,e being 

the approximation of a*) 

(,) ,_e = A(y* - ye) + B(p* - pe) + 

-+ y.y n p* -pn, u* -u) 

(* ye )_)"(Yo - eo o] 

where y(y* yn p- pn, u* n) is the truncation error
 

of (2-13) for (*). From (2-14) and the matrices defined 

by (2-15)
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p 	 p= C(y - ye - A'p* - p) + 
-(y* n * n * n 

y , p -p ,u -u),+y(y-
(p (T) - pe (T)) = given 

Now choose N 3 p such that the truncation errors y and 7 
E 

n n 
are neglectable. Either N is the point set (y , p , u
 

or otherwise. If N is the point set (which is the result
 

n
of ihsufficient smoothness of H(y,p,u) about H (y,p,u)),
 

.finished. If N is hot the point set, then there exists
 
<e such that Ia* - ii Ila* an. 

In an argument similar to that of Lemma 2-1, except 

ae a 1* instead"** ofan 

the solution of
 

t end sto -A'ItjLP 

tends to the trivial ,solution (i.e., (y (t) - ye(t)) -0
 

and (p (t) -p et)) - 0. The trivial solution is the unique 

solution of (i) for ae = (i.e., c = 0). It is apparent
* 

that ue tends to u for this local argument because of
 

their linear structure.
 
•* e e 

Therefore, for a and aeEN an'd a sufficiently closea
 
* 	 e
 

e )
to a , L(xe,u defined in (2-2) can be made arbitrarily
 
* * n
 

close or equal to L(x ,u ). But u is a fixed function of 
* 	 n . 

time 	and for a a iis some constant non-zero vector X.
 

Consider the sequence of parameter vectors
 

' ' l
a nN 5 such that h 9i- = 0 for i, = 1, 2, ... Then
 

nfor a and anN , and Ila - ll = 0, ) needL(Xo 
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not converge to L(x ,u ) as i . Then IIC(u*) - C(ue)II 

S IC(u*) - C(un)I[ for a set of aes sufficiently to 

The adaptive structure now formally possessed the 

qualities demanded of a reoptimization scheme (see 

Theorem (2-2), (2-3, (2-4)). Namely, C(ue ) C(u n ) as 

ee+ an, C(u*) 5 C(un ), and C(un) - C(u ) as e + a. 

Also, subject to the constraints imposed on the problem, 

the derived adaptive control is the "best" minimizing 

control for the given problem. One intrinsic feature still 

needs attention, namely the computational requirements 

imposed by the necessity of generating ae (see Figure 2-2). 



CHAPTER III
 

PARAMETER ESTIMATION
 

3.1 	Parameter Estimation
 

The objective of a parameter estimator is to approxi­

mate the actual parameters while hopefully satisfying as
 

many of the following qualities as possible.
 

Qualities to be achieved:
 

(1) 	Compute uniquely the unknown parameters.
 

(2) 	The estimation should converge rapidly to
 

an accurate solution.
 

(3) 	The computational routine and its physical
 

mechanization should not be complex.
 

(4) 	The parameter estimator should be free of
 

dimensional restrictions.
 

The 	efficiency of a parameter'estimator may be thought of
 

as a 	trade-off between the first three qualities. Quality
 

4, however, is an often neglected property of estimation
 

techniques and will be given special attention. After
 

all, 	any method used must allow for all the desired
 

parameters independent of their number of be computed.
 

Therefore, the estimation device is truly an engineering
 

problem.
 

If the plant parameters can be obtained by direct
 

measurement, then the reoptimization problem is direct.
 

In general, however, one cannot hope that all, if any,
 

of the parameters are ronitorable.* The estimation of
 

Monitorable iimplies obtainable by direct measurement
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non-monitorable parameters will vary in complexity and
 

accuracy as a function of the computational technique
 

considered. It is for this reason that numerous selected
 

computational techniques will be developed leaving the
 

choice of which method to mechaniie a matter of personal
 

preference.
 

To motivate some of the numerical and gradient tech­

niques to be developed in this Chapter, the effect of
 

parameter variations upon the systems' trajectories will
 

be explored. With suitable modifications, some due to
 

H. Hermes, a method similar to one,developed by L. S.
 

Pontryagin, V. G. Boltyanski, R. V. Gamkrilidze, and
 

E. F. Mischenko20 will be employed to examine the
 

parameterrtrajectory variational properties. (Pon tryagin's
 

work was used to show how a given trajectory was.dis­

turbed by variations in the control effort.)
 

Suppose x(t) and u(t) are monitorable, u(t) measur­

able (in the sense of Lebesque), then c can be estimated 

as follows: 

Consider 

x(t)= f(x,u; a (3-1) 

x(to) = 0 

a not monitorable over ts[toT]
 

Assume the solution of (3-1) exists over tE[t I - kc, tl]
 

[t ,T],
 

E > 0. 
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Consider the model. of (3-1) to be:
 

=xe (t-e) x (t,-IE ) (3-2) 

over 

X t--t 

Figure 3-1
 

Trajectory Variations
 



For xe(t), ue (t) measurable, the game is to find an ae 

such that (3-2) models C3-1) in that it minimizes some 

norned difference in their trajectories . Define x. 
e.e
 

to be the solution of (3-2) for a e. aa ,or i
 

being the cardinality of L . Define: 

-tae Q 
Obviously
 

A~tfl1t) ftk
 

-xl 

x - L 

Figure 3-2
 

Fe(t 1 ) 

An En norm will be used. While a L 2t 1 - Zs,t 1 ] norm 
would be desirable, the computational problems become 
prohibitive for this development. 
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Let it be demanded that tI is a Lebesgue point of a, a
 

measurable (i.e.: if
 

f .+ C7?',t)dt= ;ch/ t,), XCLII c 

where o(E) denotes "order of e").
 

Define an elementary perturbation of a as follows:
 

cL.7 : eLCLIlsewhereC4on t et CL*(3-3) 

Consider (t g xi(te), u(t)sc and assumed known (i.e., 

monitorable), and xe(t,) = x(t, .).
I. 7T. 

Now compute ;(o) as follows, using (3-1), (3-2),
 

(3-3),
 

E--O E 

(3-4)
 

= .0 C0) 
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Define (i
 

vV=T R dx Tr(+I)6) (3-5) 
- de 

(3-6)
o CL }. IaCLi close(~,Z 


Then
 

(3-7)
 

is a point function.
 

Let C(t1 ) be a hypersurface of all solutions of i = 

f(x,u;vn i) at t=t1 . Notice also v (t) is tangent to c(t)
1ri 

at the point x (tI) -

I 
If o(ce) is sufficiently small
 

X C( €) - X(t 1 )-va (,)c. (3-8) 

The error in approximating x(t1 ) with x i(tI,c) is
 

V (t 1 Minimizing IV 7r(t1)11 for c fixed and suffic­

iently small, one achieves by using (3-7),
 

fLf )IV! (t,, E)lL=min 11[h~~c5 7 ,,zrxIi
 

which can be written for a minimum occurring at ap = a as
 

nun I T(E,,eF)I :min II[lt,)- Tx t,); Cei].ll (3-9) 
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a. ) MArE OF Xc 

IN IL 14YPEI2PLANGr+± 

/,/L 

// F/C-k,) _~ <L, 

lllb 

Figure 3-3 (a,b) 

o llypersurface
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Tli, : II ,f (I-") Itnri,; i Lnri l. f I.o ar inl i,l Livc.' 

intLerprfitatLon based on trianges. This ovursimp I Lrica­

tion will investigate the solution to a two-dimensional 

system" of ordinary differential equations. 

Figure 3-'4
 

Simple Example
 

Let b - a = Z, c - b = v and the line segment ab represent 
* 

the solution (3-1) (i.e., a a ) and the line segment ad 

represent x (t) for a = a .. The slope of the line 
1 

segment ac is approxim

1 

ately that of ad (i.e., x (t)). 

Therefore, as 

1, 
V + 

If 
0 

-E-- 0. 



57 

Several engineering problems must be resolved if (3-9)
 

is to be developed further. They are:
 

i) is x(t1 ) monitorable?
 

ii) What are, if any, the dimensionality restrictions
 

on the problem?
 

If x(t) is monitorable, the ce which minimizes (3-9)
 

may, in some cases, be directly computed. The vector
 

elements xi(t ), 1 :-i < n, which are hot monitorable
 

must be calculated from monitorable information. Some of
 

the methods which will facilitate this are:
 

a) 	One-sided derivatives for x(t) sufficiently
 

smooth and 9s sufficiently small, Y pro­

portional to an a priori smoothness judgment
 

on x(t).
 

b) 	 If any element of elements, xi(t) of x(t)
 

are independent of parameters, xi (t) can.
 

be computed directly. (i.e., i(t)=G(x(t)),
 

x(t) monitorable)
 

c) Mesh refinement methods where observations 

are obtainable at times ti , ti[t1 -Z,t 1 ], i = 1, 

k, ti monotonically increasing. The follow­

ing methods will establish derived derivatives 

at a point, or points interior to [t1 - s9, tl]. 

(1) 	Derivative formulas from difference
 

operations.
 

(2) 	Central difference formulas [21].
 

(3) 	Modified Euler's Formula.
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(4) 	weighted averaging of a sequence of
 

xi(tis) where x(ti ) is found by any
 

applicable method. This will smooth
 

the data and reduce the effect of
 

data points which have a large
 

variance from the mean.
 

The techniques of finding x(tI) will not be pursued
 

any further. The problem of numerically approximating
 

a derivative is that it may-be noisy. Other approxima­

tion methods shall be developed which will not have need
 

of a x(t.) computation. Therefore, it will be assumed
 

that if x(t1 ) is a required computation, it may be ac­

complished with sufficient accuracy so as not to intro­

duce significant errors into the system. The question
 

of dimensional requirement will now be treated.
 

3-2. Dimensional Restrictions
 

In Equation (3-9) it shall be assumed that x(tI ) has
 

been satisfactorily computed. Also, x(tI) is known from
 

direct measurements and the mapping f of (3-1) is well
 

defined. Then the problem of finding an ae which satisfies
 

(3-9) becomes a problem of solving a linear system of
 

non-homogeneous equations. Because e appears linearly
 

in (3-9), x(tl, x(t1 ) being known constants, one is
 

interested in the solution to an algebraic equation of
 

the 	form:
 

ALti 	a0 bct,) (3-10) 
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where b(t1 ) is a n vector whose components are bi (t1 ),
 

i = 1, ... , n, and bi t I ) = xi(tl) plus any term in the 

ith row of f(x(tl); ae) which does not multiply an
 

element of ce. The matrix A(tl) is n x n. If there
 

does exist a zero row in A(t ) remove it.by reducing the1 
dimension of A(t1 ) and b(tI ) by some appropriate amount
 

(all remaining arguments will be applicable). The matrix
 

A(tI) is formed by those fixed lumped system parameters
 

and known state variables which multiply any element of
 

e
 
a. The construction of A(tI ) will have at least one 

entry per row. For example: -

Fi]1 /X X (t )o0 0 0L+i~X3 At-LI) JX (4)%0 X)Xs 3XI+' CL4Xs3) xX3(-, 

A matrix A(tI) which has only one entry per row is
 

exemplified by
 

1 X2 t( x1 )
Lid (:+1:XA3±i 

Let the rank of A(t1) be q.
 

A(t ) will be assumed to be free of zero rows. A zero
 
row would be the result of some b. Ct) = 0 in (3-10) being
 
independent of ae 1
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If q = m = n the solution of (3-10) is trivial and 

is 

e A-1 (t1)b(t1) 

If q = m<n and x(t1 ) is monitorable, and x(t1) is monitored
 

and/or computed exactly, (3-10) represents a system of m
 

consistent linearly independent equations. Then construct
 

where
 

A(i,) is m xrnrankm. 

a. E 

the solution becomes
 

ae =A(,) b t,. 

Otherwise, two types of degeneracy can occur. R. E.
 

22

Mortensen listed them as:
 

1l. If x(t1 ) and/or k(t 1 ) is not monitored or 

computed exactly, and if b(t1 )EIm(A(tI )) 

then no exact solution is possible. Im(A(t1 )) 

denotes the image space of A(t1 ). The image
 

space of A(t1 ) is the set of vectors 

b(tl) SEm of the form b(tI) = A(t1 )ae for 

some ae Emn. Im(A(t1)) is a subspace of 

En. Case one is like having more equations 

than unknowns. The special case to be 
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considered is one where b(t1 ) is considered
 

noisy, and one may choose to take redundant
 

measurements. "Noisy" shall be inter­

preted as the uncertainty associated with
 

a measurement or a calculation. In this
 

case, one may request a solution in a
 

"best lease mean squares fit" sense. (See
 

end of case 2 for further results.)
 

2. If ker (A(tl)) 4, then a solution, if it
1 


exists, is not unique. Here ker (A(t1))
 

denotes the kernel of A(t1). Suppose Em
 

and En are the apaces to be considered;
 

and let A(t1 ) be the linear mapping
 

A(tl) :,Em . En . Then the kernel of
 

Act1 ) is the subset of vectors eeE m 

such that A(t1 ),e = 0. 'it follows that 

ker (A(t1 )) is a subspace of E. The 

case where ker (A(tl))1 4 is like having 

more unknowns than equations. This par­

ticular formulation may easily be the 

class of problems that (3-9) is imbedded 

into. However, there are ways to circum­

vent a type 2 degeneracy to achieve a usable 

solution, if one does exist. One way of 

achieving the solution is with quadratic 

programming with an ordered vector cost
 
22
 

functional.
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Because uniqueness cannot be achieved, it is desirable
 

ae
to at least guarantee that the computed vector 


has'properties which make sense in the physical system.
 

Let it be required that e be close to a .This will
 

exclude solutions which require the system parameters to
 

have large variations from the nominal. It is reasonable
 

to suggest this because the adaptive problem considered
 

local parameter variations about the nominal.
 

Let
 

and
 

Define "-

X= 6 x Al ct 

This means, first determine an ae such that is mini­j1XI 

mized. If b(t1)lmm(A(tl)), then i1i1 = 0, otherwise 

minimize I I > 0. If ker (A(tl) $ then the solution 

is unique and the problem is finished. If ker (A(tI ) $ Of 

then it is possible to minimize not only ll I but 

110,e - n also. This results is a "best" solution with
 

respect to the given r. This can be more compactly stated
 

22

by the following adaptation of a theorem found in
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Theorem 4-1: The solution to min {IIXjIIjflaCe-nlI}, where 

A(t1 )a -bt I) = X, and A(tjl,b(t1),an are given, is a = 

nA+(t1)b(t)+) , wheA+ is the pseudoinverse of A."[
 

The notion of a pseudoinverse is not limited to a
 

type 2 problem. Consider a type 1 problem again with
 

m-xi (i.e.: an overdetermined, or overspecified system
 

of linear equations).
 

Define:
 

-= IlAtt )e b(t,)l1 <A (ta e-b ),At,)a b(t,)>. 

The parameter vector ue will be said to be the "best
 

solution in the least mean square sense" if it minimizes
 

P. The minimization is accomplished by setting the 

gradient of IIA(t1)ae-b(t)I)I = 0. 

_ -VGIAF)c.e bcU(,) -2A'(t,)Ac(tae LA'L) ba.,) 

But, Penrose in 23 established the following equalities;
 

S(i) A A+A = A
 

(ii) (A A+)' = A A+
 

Therefore
 

from (i)A't±,HA~t,)A (t) A(t 

from (ii) A'1t,)A tt,) At(t) A Ct,) 

'The pseudoinverse is also known by the name generalized
 
inverse.
 



64 

then A 

whore A' (I I)A(t ) is M X m. 

If A'7(LI) exists (i.e.: rank AU 1 ) n=) Lhen Ehe mini­

emizing a is defined by:
 

a.e =A -t bt. 

The parameter estimation problem will now turn to
 

modeling techniques. Unfortunately, modeling techniques
 

also live in the shadow of dimensional requirements.
 

Therefore, the methods to be developed will be applicable
 

only when certain restrictions upon the state and parameter
 

vectors have been satisfied.
 

3-3. Modeling and Implicit Estimation:
 

Consider a system model of the form
 

x (-I=~xea) zzw,aeLt)
: ae e(t) ) (3-11) 

Ce(tj) given, tcEioT 

(superscript "-" denotes actual system variables)
 

where u is known from measurements (thus its functional
 

dependence in (3-11) is omitted), and ae is arbitrary, 

Ce . Assume (3-11) is completely controllable and 

observable. Also, it will be demanded that xe(t), 

xe (t), and ce(t) are monitorable over tEf[t ,T]. This is 

reasonable since (3-11) is to be synthesized (example:
 

RLC circuit or computer program), and the monitorability
 

can be built into the model. The model will share whatever
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continuity properties (2-1) possesses. The model, which
 

is a parameterized version of the plant, will be used to
 

estimate the actual plant parameter vector through either
 

(1) numerical methods or (2) gradient techniques.
 

The computational techniques to be developed will be
 

philosophically different than those methods required by
 

(3-9). While the solution of (3-9) involves the general
 

solution of a linear system of equations (i.e.: (3-10)),
 

the modeling technique will use iterative routines.
 

Formally, a model will be subject to the same con­

trol effort as that acting on the plant. The output of
 

the model will be compared to the output of the plant in
 

some a priori manner and an estimate of the plant parameter
 

vector will then be made. The model will be updated, and
 

the process repeated again using the original control.
 

The process of iteration will be continued until terminated
 

by some decision device.
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K. Acraneq. -4,vrS-
-

I 

-O'-"..-,, - - --- A '.
 

I .4. 5r/ 

Figure 3-5
 

Formal System Model
 

Before the computational devices can be properly
 

introduced, some itportant mapping requirements must be
 

analyzed. It is desirable to insure that the parameter
 

vectors achieved by either method (1) or (2) are unique.
 

The Implicit Function Theorem will satisfy this goal.
 

This well-known theorem establishes some very useful 

properties of a system of the form F(x,) -= z for a 

mapping P that is continuously differentiable with respect 

24
to a. A theorem to be found in states that F is
 

continuously differentiable with respect to a if and
 

only if [aFi/a] exists, and is continuous for all i
 

and j.
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Theorem 3-2: (Implicit Function Theorem) 13
 

Let z, a F, g be m dimensional vectors, and x an
 

n dimensional vector. Let F(x, a) be continuous for
 

(x,a) near (x,a) and have a continuous partial derivative
 

with respect to the components of a. Let the Jacobian
 

with respect to a be nonsingular (i.e.: det[@FJ/ ai]0)
 

at (x,c). Let z = F(,t). Then there exists c>O and
 

6>0 such that if z and a are fixed, Ilz-zII < 6 and
 

I[x-iXj-<6, the equation z = F(x,a) has a unique solution 

a = g(x,z) satisfying Ha-Ell<s. Furthermore, g(x,z) is 

continuous for I z-] I<6 [j-x-xjj<6 and has continuous 

partial derivatives with respect to the components of z. 

It is apparent from Theorem 3-2 that F(x,) is a 

restricted mapping (i.e.: Em+n + Em). Therefore, if 

the Implicit Function Theorem and model (3-i1) are used 

together, special attention must be given to all defined 

mappings. Specifically, F(xa) will serve as the pre­

viously noted state and model output comparator whose 

argument, in part, will be the model (3-11). 

Assume for the moment that F is well defined (i.e.: 

n + m
F:E- Em). How then may F(x,a) be constructed so as
 

to yield a computable a? The mappings to be considered
 

are:
 

(ii) P (X. (Kta) - (xlt-),a) 
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for t C [t 0 ,T] 

K(L) E E 9 known. 

Several consequences to be found in these defined mappings
 

are:
 

They are point fundtions. 
[
 

Also, the solution of F(x,) = 0 involves 

dimensionality considerations. (See the 

Dimensionality Restrictions Section) 

The engineer may also use some of his in­

tuitive powers to enrich the solution space
 

of F(x,a) = 0.
 

For example, the case where m > n, which implies
 

m > q, it may be possible to consider (mq)parameters
 

to be essentially nominal over'some interval of time.
 

In such a case, one may choose to fix these (m - q)
 

parameters equal to their nominal value over this inter-


Eq
val. This would admit a p:En+q over this interval,
 

and the uniqueness of the q parameters would be the result
 

of a satisfied Implicit Function Theorem. The interval
 

If F was defined to be a bounded linear operator taking
 
a Banach (or Hilbert) space into a Banach (Hilbert) space,
 
then Theorem 3-2 would require an investigation with
 
respect to Frechet [Strong] differentials25 . This
 
will be considered later in this chapter.
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[toT] can be covered by a union of closed conhected
 

intervals. For each of these intervals,(m - q) parameters
 

would be chosen to be essentially constant if possible.
 

Another notion of essentially constant parameter
 

vectors can be associated with F(x,). Instead of in­

vestigating the parameter alone, consider
 

+ FL XxC+ acx an'x.
 

for x and a sufficiently close to xn and n. Consider
 

now the invariance of F(x,a) to parameter variations.
 

Define:
 

F 

Suppose (m-q) o the 61 ci3 - ) are small, And further­

more are small with respect to the remaining q, then these 

(m-q) terms may be ignored- That is, their contribution 

to F(x,) is negligible. The parameters associated with 

these (m-q) terms may be, for convenience, fixed at their 

Eq .
nominal value; thereby admitting a map F:Em+q 


Example:
 

Consider the following
 

K,- 00 a,AZ,<X ): K2 - 100 CX,-C3x 
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Also, require that (ala2,C3) and(x1 ,x2) are restricted 

to sone set about their nominal values. 

Let: 

x2= It . 1z 
0.3= I k.I
 

Here a1 and a3 would be the most likely candidates to be
 

essentially nominal. Also, X1 and K2 are known, and
 

- \ - --4 90. 9 K ­

/ =-IOO X (CLI-a n )L,a.") 

CL2a-CLn )= - 100X ,(a, -ct)2,1
 

0.3a-C )= - x2(a-3- a3) 

For this example, a3 would be the most likely candidate to
 

have its variational effect .ignored. A technique may
 

also be developed using a mixture of both of these methods.
 

Another suggestion relates to the adaptive gain defined
 

by (2-17), namely G. The matrix G is a n+m x r and time
 

varying. Partition C as follows:
 

n M 
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IC (m-q) vectors, say 

are negligible, component by component, compared to the
 

remaining q vectors, then the corresponding a., of which
 

there are (m-q), may be assumed nominal. This is because
 

they have a minimal influence in the adaptive control.
 

Then a mapping F:E n+q  Eq may be postulated. The pro­

blem of constructing a mapping F by intuitive means,
 

rather than by techniques discussed in the Dimensional
 

Restriction section, relies on ad hoc methods and the
 

engineer must think seriously before ignoring totally
 

the effects of (m-q) plant parameters. Assume that
 
.
+ Eq For 

now the well-defined map F:En+
q 


*F(x,a) is 

simplicity, let q = mremembering the original maps F 

may have been defined for q # m. 

3-4. Numerical Techniques
 

The numerical device to be investigated is the
 

Newton Raphson method. Alternative methods posed by
 

Todd and Ward, and Rich and Shaw, are also applicable
 

to this section
 

Consider F(x,a) =(x(ti ) ti;,e))
-


where:
 

The vector x(t.) is a point in the state
 

output space at t = ti, tis[toT].
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(tia e ) is the solution of the model 

equation (3-li) at t = , Xe (t.) = x(t 

given, t. < ti, and ae given. 

F(x,a) has the following properties: 

i) F(x,) = 0 

(ii) 	F(x,a)FC3t0T] implies F (x,a) is
 

continuous on IIx(t i) - Xe (ti),
 

Now, 	if F (x,a) is nonsingular, then there exists a unique
 

a such that e = g(CE(ti), Xe(ti )) in a neighborhood of 

3(ti ), d(ti). To compute a, let = e(o)+g, where e(o) 

is an initial guess of E. By Newton Raphson's method 

..
Ck+J) ~(k) [1 1 e e CO)gck)I 

a 

[Fxet, O) (kCLe 

with g(o) = 0. At each iteration step k a gk is computed, 

and if *e(o) is sufficiently close to *, then g (k) + g 

always as k
 

For example, suppose the plant is defined to be
 

(ii XCo) 

)0COo= 01 
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and E - over -LE [o) ] 

then XCI)= I- exp(-I)
 

Consider the model
 

(ii) 0 (f) exe(t)+Ta.tt 

Xe o)=x(o) 

CLe arbitrary,
 

The solution to (ii) is:
 

xect)=_t (I-expcaet)) 

an d 

Fe of 1 O{e p - e 

LF-e(X'!)AC(I))j is nonsingular for 

all finite a and 

(xe, (a.F . ~ C~) 

+(I+Cl ) exp(-cLe))
 

For g(O) = 0 and the initial guess of a being 
a e(o) 

13'M= o-.45 =.45 -5 CaL .95 

MZ ec
C2)

i ).45.OG95 =.595) CL 1.095 

9 =s195-.019o=.5005 == CL 1.005 

http:exe(t)+Ta.tt
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After three iterations, convergence becomes
 
k
 

apparent. For gk- 1/2, for some k sufficiently
 

large;
 

1Ck I) J ________ - _x (kC)

Z (-1+ 22x ­

which implies
 

e~o) (k41) -CL +@9 

In this example, the model's trajectories were known
 

in closed form. The quality was used strongly in the
 

coiputati6n of a e. If a closed form solution was not
 

available, then the iterative method would have been
 

based totally on numerical results.
 

A special case of the technique just developed would
 

allow for one iteration, then again sample the plant data,
 

namely u(t), 0, x(t) or X(t) for'ts[t.,t ls[toT] and
 

continue. The data from the second sampling then would
 

be influenced by the updated e (achieved by one iteration
 

of the last sampled data) in the adaptive control-loop.
 

This process nay have merit if significant convergence
 

is made-through one iteration in that the adaptive con­

trol would be operating with a "fresher" parameter
 

estimate. However, one must realize that frequent sampling
 

will reduce the possible number of iterations which may be
 

imbedded into a fixed real time interval.
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Termination of these routines will be introduced as
 

follows:
 

1. 	Completion of a fixed number of iterations,
 

say N. This can be related to a fixed time
 

interval over which iterating will be allowed.
 

2. 	Satisfying the e>o condition,
 

p a 	positive integer
 

3. 	Similar to 2, except to minimize the effect of
 

possible oscillatory convergence of g,
 

require that the variation
 

P 

5=' 

p a 	positive integer.
 

4. 	Combinations of 1, 2, or 3.
 

Thetermination device remains rather arbitrary. A
 

few further comments on its structure will be offered as
 

a guide to the designer. Suppose a mean (or maximum)
 

estimate of the real time required by the computer to
 

complete one iteration is At. Let AT denote the amount
 

of real time that the computer will be allowed to operate
 

on a specific set of plant data. Then t[ AT/At9 (see
 

Symbols, Chapter 1) represents the mean (or minimum)
 

integer number of iterations processed for the specified
 

plant data. To add an additional degree of design free­

dom, consider AT to be either variable or fixed over
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t0 ,T]. For example, let AT be'proportional to an a
 

priori smoothness assumption on the monitored (or derived)
 

plant data.
 

For a particular t., t. being the initiating time for
 

a sampling interval, the basic structure of a typical
 

"fixed" sampling interval-is given in figure 3-6.-


COLLECT r 
PLANT - ITERATIONS " 

DATA AND PERFORMED 

I1ITIALIZEMODEL -

ESRT1 1 
'ITERATIONS-1 1 

DATA PRocE551Nq INTERVAL 

Figure 3-6
 

Fixed-Iteration Interval
 

The iteration devices proposed by methods 2 and 3 (i.e.:
 

satisfy an s>o condition) may be though of as a "rate of
 

change" test, in that
 

The designer must establish a workable trade off between
 

too large an e, which might sacrifice convergence -in­

formation, and too small an s, which may never be achieved
 

in a reasonable amount of time.
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Figure 3-7
 

Plant - Model Diagram for Example
 

Earlier, the notion of acknowledging the existence
 

of a weak time dependent component of the parameter
 

vector a was established. (example: drift, aging) The
 

parameter estimators thus far developed were point function
 

estimators, which implies that the estimated parameters
 

were constants. An approximation of the time varying
 

nature of the parameter vector can be accomplished with
 

generalized step functions.
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Definition: A generalized step function is one in which
 

a measurable function takes on only a finite
 

number of different real values. (i.e.:
 

simple functions).
 

The claim is that for some sequence of generalized step
 

fuhctions
 

CL (t) rQifac4} 

Proof: Halmes2 6 .
 

This is to say that a generalized step function with
 

a finite collection of values can be found which is
 

arbitrarily close to a(t).
 

Consider for example:
 

Define:
 

(t) = 
0 - i'n 
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2 t 

I 

AS n- o 

Figure 3-8
 

A Generalized Step. Function
 

Therefore, one is motivated to find a "good" approx­

imation of a(t) with some refinement of the sampling
 

interval.
 

Define: The kth parameter estimation to be that para­

meter vector based upon the kth set of in­

dependent plant data, k = 1, ...,-s, s finite.
 

(Independence to be defined later.)
 

Define: The data sampling interval (see figure 3-6) for
 

k k
.the kth parameter estimation to be [t.,t.].. 
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Definition: 	 The plant data is said to be independent if 

for all X, k=l, ... , s 

I k #k 

Define: The 	kth iteration interval (see figure 3-6)
 

for the kth parameter estimation to be
 

k 	 k kc k
[tkt AT +t ], remembering AT may be fixed 

or variable depending on the termination 

strategy employed. 

Define: The kth data processing interval (see figure 

3-6) for the kth parameter estimation to be 

k 
p.
 

The 	data processing scheme proceeds as follows:
 

1. 	If operating with only one complete model 

(with memory) in the loop (see figure 3-5), 

perform operation P for some-t > t
j- 0 

1 2 s k X.Follow P with P ... P, P p = for
 

k, 9 = i, ... , s, k1P. and for the fixed 

terminal time T, [tt, t'inT = 0 for 

t'e(t, t + ATs), but AT fn T need not1 1 	 1 

be empty. The spacing of these intervals
 

is a matter of the designer's judgement.
 

For example, one may choose to initiate
 



the 	 data sampling to begin at t. = t
 
1 J 

or at some delayed timet > t . Also,] o 

one may choose to follow Pk immediately 

with pk+l, k+l . s, or delay it in time. 

The greater the expected rate of para* 

meter change, the more densely packed 

should be the P's. Obviously consider­

ing a P5+ , such that t',14 +,!T ]nt=T 

DATA 	 Si91/O PC/q
aTrD 	 PROcCSSINq -


Figure 3-9
 

Example Sampling Interval
 

2. 	If operating with several complete models
 

(with memory) in the loop (see figure 3-5)
 

follow the outline of events established
 

in (i) for each model. However, require
 

that the intersections of small neighbor­

hoodsabout the t 's associated with each
 

model be empty.
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-"gF PLANT
 

•OE SP/~E. 

W 1'H ^4eAII0e A7- e i ] 

Figure 3-10
 

Parallel Models
 

Consider a second example
 

F (x., a) (X_-(to - xct),.ae)) 
where X E Er and -(xe,, tie) is given by (3-11). 

F(x,) again satisfies the following 

(i) VC(Xti), a)= o 

(ii) Fae(Xe(tL)CC(L)) is continuous on 

and if F e(x,T) is nonsingular, then there exists a unique
 
e
 

U such that
 

e
f Xc ct.()
xe(t) 


The desired a is again obtained from Newton Raphson's
 

method. it should be noted that x(ti) may not be monitor­

able and may have to be computed numerically.
 

http:xct),.ae


Consider the numerical example:
 

kt9(~gt),3C-t)3 QL) 
-=[Xl + e
 

and
 

Then'
 

(I)--cXp(-I). 

Define the plant model to be
 

X CtLz)(Ct)t+cc(t)c. 
for arbitrary ce and xe (t ) 0 

F (Xe Ce 

aa 

Again, if ae(o)-= 1/2, g(O) = 0 

S=l43 G43
 

Fae2) =7Z5'
 

Q3)S-=.280= C =.780 

for g(k) 1/2,g(k+l) = I/? = g(k) 3 e~k) =(1. 

The closed form solution of F(x,a) was again available,
 

which will not always be the case. Therefore, F e(xea e
 

as well as f(xe(ti ), e) may require numerical computations.
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The truncation devices which are applicable to this pro­

blem; as well as data processing intervals, have been pre­

viously considered. (See figuie 3-11)
 

it may be noted that the rate of convergence of
 

numerical example one was superior to that of numerical
 

example two. This is not to be considered a general rule.
 

The rate of convergence is a property of the problem
 

(i.e.: F(x,a)) considered. Another computational device
 

which has parameter estimation applications is the method
 

of steepest descent.
 X (-L') 

, ! DERIVE o 

M FvOy [MEMORY rz hAEAURE 

Plant - Mcode Dcx<,.ff xapLeC 

TK- MR " MEMOI'ORII7 R Y 
PLNT 

' MEMORY I I O P-3 "l 'E 

ST, ' 13
 

ITTE'RATE TR7"UNCATIONV ./r 

-Z L E7-RU45
 

Figure 3-11
 

Plant - Model Diagram-.for Example
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3-5. Gradient Techniques
 

The particular problems to be investigated are:
 

1. The minimization of a function on E9 .
 
2. The minimization of a function on E with
 

side constraints.
 

3. The minimization of functionals.
 

4. The minimization of functionals with side
 

constraints.
 

These methods will vary in their utility from problem to
 

problem. In some instances, approximations will be re­

quired. In all cases, the required function, or functional,
 

will be assumed to be well defined.
 

The first method answers the following question:
 

Find a local minimum of a real valued function
 

defined on Eq . Let z = (zl,...,z q ) be a point
 

in some regionTcE q . Let C(z) be a real
 

valued, continuously differentiable function
 

defined on T Pick a z0 , and consider all 

curves z(s) parameterized by arc length s,
 

Z: jdzcsS)/ I I45' C)I2 I 4. unit 

velocity. For such curves passing through
 

z0, find a curve which minimizes C(z(s)) as
 

rapidly as possible.
 



-Figure 3-12
 

Minimization Process
 

The solution is found thusly:
 

dC(z(sn3 !- V- C(z(sn.z'cS)
 
ds
 

choose
 

*Z'cs. -V C (z(5)) ZCO) Zo 

)VzCCZCS))) 

for 7z CZ(S)) / Q Therefore cC(Z(s))/d(S 

- - I VZ Cc zc5) IC This defines a curve which 

is always normal to the level lines of C(z(s)) as implied
 

by figure 3-14. If C(z) has a local minimum, then the
 

scheme proceeds to it with unit velocity. In application
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one may choose the following:
 

z(5 = -k V C(zcs zco =z. 

where 'kadjusts the rate of convergence. If k is too
 

large, then the minimizing trajectory may pass by the
 

local minimum with sufficient velocity so as to tend
 

towards another possible local minimum. If k is too
 

small then the convergence rate is needlessly too slow.
 

Example:
 

Consider a plant
 

and .L 2 ., over t Eo iJ." 

Therefore
 

X (t) - exp' -el. 

Consider the model
 

Then Xe() e(xp(-CLtx ))/ cae and let 2C( te)= 

(#(CCL4e -- N())t ,where #ct,cl )is the solution 
e 

to the.model equation with arbitrary a.
 

Then 3cfae) )C(#C,e)X.)) ,g(monitored.-

Note: In this particular example, the above partial de­

rivative can be directly computed. But if 6(t) e)was not 

in closed form, then the partial derivative would have to 
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be approximated by the derived partial
 

a #(tae) 	 - (t)CCe) -;6(t, ) 
a)Cue 	 (ae' Cd) 

for a sufficiently close to ae. Another technique of
 

determining this required partial derivative is given by
 

27
Margolis- He considered the ordinary differential
 

equatibn.
 

M1 X (t)tGCX(t) fl+cti =X 

which can be written trivially as
 

(ii) 	 5Xct) - (x(t) =t( U e: - c x(bt 

a tt 

Now take the partial of (ii) with respect to a and note
 

S(t) 3 f (a,t). 

(iii) b 	 + L (t) +X(t)t = 

Let V(t) 	 X(t) , then (iii) becomes 

(iv) 
b(-It C V (t)r-X(t) 

where the solution of (iv), for x(t) monitorable is 

ULt) if a is constant. 
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However, if a is time varying, then ax/St = 3x/ t +
 

+(ax/aa)Qdoc/at). So the validity of (iv) is predicated
 

on otbeinq either constant or slowly varying in time.
 

If this be the case, then the solution to (iv) is a good
 

approximation of Dx(t)/aa.
 

Therefore:
 

and, (ec5),_-k (CcCraecn) , 4or ae<(s)o 
6clecs, 

and Pirn Q CS) -- lb a and if QcoizQ. acs)= a (ac) o 

The solution of the above equation is nonlinear, and can
 

be solved numerically.
 

Example: 

Consider Clct=-(x ,,ac -x e 

Then, with computations similar to those found in the
 

previous example
 

(Cec s)) = - k I ex p(-caecsfl -X(1)) CXP&Q-aXs)), 

t(I) rmonitored. 
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Again lira e(s) -, and for ae(o) = a, 

S ­

a (5s)-c 4 =(Cs))= o.
 

A solution.diagram of the previous example is given in
 

Figure 3-15.
 

MEOY5TORE" OR 

STORECOMDLU-rE 

MODEL "X(% 

--- COA4PUIT5 

"NTECRATE 

Figure 3-13
 

Second Example
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Method 2 has the following formulation: 

Let C(a) be given and C(I) C' [toT]. Consider 

the minimization of C(a) subject to r~m constraints 

gi() = 0, i = 1, ..., r , where gi(a)eC'tto,T]. 

Consider all curves along(o), with c(o) = d 

which satisfies V (giC())"c'(a) = 0 (see figure
 

3-14).
 

IMAQe oA 
7"A OROJE-Croiv 

OF 

C 0('fAC C7VSI 

NAAeD 1116-W 

\ 7 Cccn ec-q 

Figure 3-14
 

Side Constraint Problem
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Among these c(o), find the one which minimizes
 

28
d((Wo))/do. It can be shown that the'
 

solution to this problem is:
 

CL'c(-) -V Cosc(M 
r 

E X+kac 

Where ' = (Xi, ..., X X =AG-1 y if G is
 

nonsingular,
 

G= il wh6 eGk=-iCL--L~kC) 

(G is a Grammin matrix)
 

and
 

NCLrJ- ( V~,*cc V Ca(fL, 

However, if one investigates the possible choices
 

for C(ie) or g(ce), namely:
 

(a) CXe.( . cLCJ)_Jzdt )P=0 

(b)0
 

for p, q positive integers, one would soon
 

find that c'(a) 0 it xe(ti), x(ti),
 

x (t.) are monitored exactly, and 5(ti ) is
 

monitored or computed exactly. Ifc'() = 0
 

then c(c) = a(o). This situation is a result 

of g(ae) 0 being equivalent to C(e) = 0.
 



In other words, (a) or (b) used as a side
 

condition will only introduce redundant
 

information into the parameter estimator.
 

Then the minimization process can only
 

yield a c() which equals the fixed ae 

and thus a'(c)= 0. Therefore, this 

method is of little use without some 

modifications. The modifications to be 

considered will relax the side con­

straints. This will serve tb allow 

uncertainties in the monitoring or 

.computing of xe(ti), x(ti), and 2e(ti). 

Also, the relaxation will suppress the 

equivalence relation between g.(ae) = 0 

and c(ce) . This condition will be arti­

ficially introduced with "Valentine's 

Device" 29 Valentine's claim was that 

inequality constraints can be reduced to 

equality constraints by increasing the 

dimension of the constraint space. 

(ae, a,m). and there are £<m con­

j o 

Suppose ae .. 

straints gi (CL given.
 

Define:
 

a = " ,......,,, I,
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Consider minimizing Caeb C(G ) in £ subject to 

^ e ^ ^e
 

constraints g(a) 0. Notice that gj(e)=0=> gj(ae)<O. 

Then, for C(a) = Ccae), the minimum of C(ae) is the 

minimum of C(e) In particular, each of the gj(ae) shall 

be expressed as g.(e) j, where e. represents an a priori 

error estimate associated with the j constraint. Thus, 

e. associates a number with, in a sense, an allowable
 
3
 

error tolerance resulting from inaccurate measurements or

j
(xt. ctexeti)­

computations. For example, let gj(ae) ( i e
 

-l)2 s. If Fs was to equal zero, which would be used if
 e 
perfect system information was available, then a 3 -

c*Lt-)- ~I For 6.>O, implying system un­

.O/t0 I1X%L) IE-0 
certainty, a? o
 

J 

If the system is slowly evolving in time, the tech­

niques which determine the minimization of a function at
 

a point have been shown applicable. Data can be collected
 

and processed over some interval of time, say If the
 

parameters do not change significantly, then the generated
 

parameter vector at the end of this interval is a
 

good approximation of a for some future time.
 

One may desire to base the estimate of a based on
 

more information than used for point estimation. For
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example, let aeF 2[to,T]. In other words, one wishes
 

to investigate ae) rather that e(ti. This is accom­

plished with a functional format placed on the problem.
 

There are several dissimilarities existing between a
 

steepest descent problem, using a functional structure,­

and a Eq structure. First of all, the functional problem
 

will be worked in Hilbert space, denote H. Secondly, the
 

notion of a directly computed gradient no longer exists.
 

25

Instead, one must consider Frechet (strong) differentials
 

However, the problem will be simplified by requiring that
 

25

the weak differential exists and equals the strong The
 

existence of a strong differential implies the existence
 

of the weak differential, but the converse is not nec­

essarily true. Then by the Riesz Representation Theorem30
 

a gradient operator may be defined.
 

Definition: (gradient operator)
 

For a Hilbert space H, and a continuous linear­
e 

functional C (ae) on H, there exists a unique 
e0 e 

element V eC(% ) (the: gradient of C(a
e ) at e 

0 
in H) such that: 

C('(&) h =V,e Cct), k 

Definition: 12[a] is the set of all measurable
 
functions that are square integrable
 
over [a].
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where (, is the Hilbert space inner product and
 

C'(eth =fm C(co Xh)-C(o j 

for ce and h in H, X a scaler.

0 

The functional minimization problems are:
 

1. Minimize a given C(ae) for aesH with no side
 

constraints.
 

Solution: Path of steepest descent.
 

(aeo %CCaC~ean).CL 

2. Minimize a given C(e) for cesH and constraints
 

gja."e)= o L=-ZL--,k 

Solution: Path of steepest descent.
 

a~ccf'= 'e (Ccct~crfl+Z .V~a'cl 
CLt 

Xi previously defined.
 

1e
 
The construction of C(ae) must demand that the minimization
 

of C(Qe) would imply ae a- over some interval of time.
 

For example:
 

C ae)=f (iU - ct, ,, )- #(t. e,ae))dt. 
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Example:
 

This problem is motivated by the linear regulator
 

problem. The problem will be offered primarily as a
 

device to exhibit the techniques required of (1) or (2).
 

Consider the special plant and the computations paralleling
 

a technique used in the solution of the linear regulator
 

problem, with appropriate modifications.
 

LDet the linear plant be defined to be:
 

x t-o Cca)ELni-t+ Acut) 4-Li+ f­

where f(t), A(.t), C(t) are known on ts[t.,ti]. 

This particular plant is of the form x = Ax + Bu except 

for the C(t)E(t) term. The'term f(t) will play the role 

of B(t)u(t) and C(t)a(t) will serve as a biasing term for
 

the plnt's input forcing function. One may consider f(t)
 

to be the external forcing function, and C(t)a(t) to be an
 

internal forcing function
 

I . PLANT 

Figure 3-l15
 

Example Problem Plant
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Let the model be:
 

(i).(i)e(t). Ctctect) 4-Act N e(*) ± fct) 

CLt, Ex 

tt ee 
Then, for N (tI=Xf given, 

(ii)
 

where Xc,t j ) is the fundamental matrix for 

the,homogeneous part of (i). 

The cost functional to be minimized will force the para­

meters to vary only in a neighborhood of their nominal 

values. Let 

(iii)
 

C (cLe)= ( cant-a., Cu.al -CL" 

J 

t f (t -I coil, 
-2 

Also, the following constraints will be imposed:
 

(i v) • Me ) 

k=f t,-wr
 
for x(t) e Eq , where:
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ipk (t) is the kth row of i(t)
 

and
 

(vi) ak is the kth element of
 

t

-X ctj ,tj)itp ' C) z 

.
 

Therefore gi(e) becomes:
 

J'X(t,T) Cur) aer-Xrttj+Xt,)7(±;)YcrI 

t.
 

This implies the model will be required to satisfy the
 

terminal state conditions of the actual plant. One might
 

also choose to use Valentine's method to represent some
 

allowable terminal error. 

Let DC Cazhn (hV C Ca),h) 

= Ce -X I Xodft jCae+ CXh-

-'44 YcaS-Xh -cAa)hdo 

ti (e xh -a J­
-''IX~o 
-
e ) %)C> C)
W - h = eCae)=W-t 

similarly
 

Vaate= pk
Ci. 3k 
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&9
i Gv - k. I = 9 

where:
 

9a.Q (v (aEe~vs(ael> 
= k .22 

Rct dt, 
- then 

G=X ajti) (tL )ti) C t) C(tO) [K (t Il 
I X Ltzti) Pv'I'Lt 3) 

where M is a controllability matrix, there­

fore a nonsingular 
t ]
 

The path.of steepest -descent becomes the solution -to
 

(viii)
 

ac -:(,C)t~xv a 

k~g
 

-I-­

tA necessary and sufficient condition that (i) be con­
trollable (given originally by Kalman, and to be found
 
on pages 187-188 of 28) is that:
 

M X (Cf,Cw C (YW-C)t­
is nonsingular. In particular, if x'(t)C(t)C'(t)(x (t))'

is nonsingular at just one--t, then.,M is nonsingular for
 
all t.
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where
 

k4, PkC-lVI) 
= k.. YN1 v 

Therefore (viii) becomes
 

ca ecet) LecE - an C ' 

or
 

-
cfexp(,rnECt-)(E~tfl~Cp(~E~LCC~t gep 

Nuar+ca'] dir[ (E~ef' o-o+ 
ex p (-e(ot + Lexp -EjCUL) 1 A(t/ 

[X- ycV'c. Na N)+&fan 

The a±e which satisfies the minimization of C(cte ) with the 

given side constraints is found by letting e-0oo. Also 

note that because exp (-)-O, the final ae is independent 

of xe (o,t)". 
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3-6. Non-deterministic Parameter Estimation
 

So far the various parameter estimation devices have
 

had a deterministic structure. There has been some active
 

research associated with the problem of estimating the
 

"best" parameter with respect to some given cost index
 

with sufficient a priori statistics known, or assumed known.
 

This research paper will not attempt to enter a detailed
 

analysis'of non-deterministic problems. The techniques
 

involved in the stochastic problem are manifold. A useful
 

device, which will find the parameter vector, minimizing
 

a cost index of the form 11 (t)-_ xe(t)II , is an extension
 

31
of a scalar problem solved by Aoki 3 . It essentially
 

uses the property of a sufficient statistic, a differential
 

difference representation of the plant, a normally dis­

tributed parameter vector with unknown (but constant) mean,
 

and a Baysian decision rule to update the estimate of the
 

parameters. The parameter estimation is accomplished by
 

minimizing-the expected cost, starting with the last stage,
 

then working backwards in time, and using previous ob­

servation to update the estimate of the parameters.
 

Although no definite parameter estimation procedure
 

has been established, it shall be assumed that the tech­

niques offered are sufficiently rich in number and variety
 

so as to produce a "good" parameter estimate, if one does
 

exist.
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then working backwards in time, and using previous ob­

servation to update the estimate of the parameters.
 

Although no definite parameter estimation procedure
 

has been established, it shall be assumed that the tech­

niques offered are sufficiently rich in number and variety
 

so as to produce-a "good" parameter estimate, if one does
 

exist.
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CHAPTER IV
 

ERROR ANALYSIS
 

4.1 	 Approximating Parameters
 

Consider again the vector differential equation
 

AlA 
SI-AEAR C.IA'1tP 

with its 2(n+m) boundary conditions given. The partitioned 

Ay vector was defined to be Ax g ",where a a - an 

Ideally, the estimated ae should equal the actual 

parameter vector a . (note: In Chapter III the actual 

parameter vector was denoted a); Suppose ae has a value 

other than a . Such an estimation error would give rise to 

two solutions of the Riccati equation (2-15) corresponding

tA e 	A e _n * A * -n.
 

to a - a and Ac = aa - . Nothing has been 

said at this point about the two solutions being dissimilar. 

The system parameters by assumption belong to some
 

differentiable class of functions which implies some degree
 

of smoothness. However, the class of functions which the
 

estimated parameters belong to has been left to the designer
 

to choose. This can be exemplified by the case where the
 

parameter vector is a composition of constant vectors over
 

disjoint intervals. That is, a piecewise constant vector.
 

One would desire that e a*,a but this would necessitate
 

e belongs to some smooth class of functions. The ex­

hibited computational methods would, however, forbid in
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e
general the realization of a in a smooth manner. As a
 

result, ce will be necessity be imbedded into a larger
 

class of functions. For example, simple functions or
 

piecewise continuous functions. This "large" class of
 

functions would allow the designer a high degree of flexi­

bility in choosing which parameter estimating device may
 

be used. The choice of measurable vector valued func­

tions will serve as the "large" class of functions to be
 

considered. This class will be denoted
 

M 
such that
 

M E[T]j { Wt-11 C-meaSiable on [t°gj }] 
This class of funtions is very rich in estimated parameter
 

vector candidates. For example:
 

Let
 

CLe t[Er-0AF1 

e12-1/3 tE ( 2 

then d%25.) } tE Eoi1 

or, let aeEP[0,1] a M[0,i1 for example, and 

CL = 

Vt t
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or, etMCp[01]C-IEO,,3 for example, and 

CLe= I , EEO,/2) 

11/£2 t V ­

i 4 

o Ila 1 

Figure 4-la
 

PARAMETER PLOT
 

Then form
 

- Cn*
Aat 

one achieves
 

1 AaC 

ok II p 

Figure 4-lb
 

A PARAMETER PLOT
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BecausetAe is an m dimensional subspace of
 

[AyIApI -E 2 (n+n), the righthand side of (2-15) is allowed 

to be discontinuous. One is interested in how this dis­

continuity affects the solution of (2-15). With ae or a 

defining Aa and an fixed, it is possible to determine the 

variational bounds on the solutions of (2-15) for varia­

tions in Na using calculus in the sense of Lebesque. But 

to generate insight into the problem, the study of dis­

continuous vector fields will be pursued. 

4.2 Discontinuous Vector Fields
 

To motivate such arguments one can study a common
 

application of discontinuous vector fields in control
 

theory using closed loop state feedback control belonging
 

to some constrained set. Problems of this class involve
 

such notions as solutions in the sense of Filippov
 

32
and stability with respect to measure. H. Hermes dis­

cussed such concepts and developed some additional exten­

sions. He chose to consider a control system of the form
 

x'X(x) 

ir: x cx, xU()),XEE LLE (4-1) 

It should be noted that this forms a special class of
 

problems in that the control effort is a function of the
 

states of the system only. The control u(x) is chosen
 

from some control set 0 and the target set consists of-a
 

manifold irin [0,o)X E'. If g is bounded and Lipschitzian
 

in both arguments and u is a given Lipschitzian control,
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then (4-1) has a unique solution for x(O) = x given. De­
0.
 

fine the solution of (4-1) to be 4(t,0,x ),-where the
 
0
 

three arguments of are to be read as the solution at 

time t initiating at time t equal to zero with initial 

data xo. A solution which reaches the target set at 

t = t1 will be.represented as e(tl,O,xo)er. A reasonable 

question to ask is: If the target set w has a dimension 

less than n in E , can one ever expect to find a collec­

-tion of x's-belonging to some nontrivial neighborhood 

n
of the-initial data x0 , say 7 (x) CE , and a time, say 

t(x), 0 t(x) < -, such that the solution 4(t(x);o,x))Esr? 

This is to say, can one show a solution starting from 

some n dimensional manifold reaches the target set 7r in 

some time t(x) and has a dimension less than n. The 

answer intuitively seems to be no. In fact, it is no. 

The reason that the answer is false is that u(x) is 

Lipschitzian. If, however-, the Lipschitz- condition on 

u(x) was removed and u(x) allowed to be discontinuous, 

the answer may be affirmative. For~example: 

Suppose u is Lipschitzian, then consider (4-1) in
 

E2+  
 and 

f [x 2 ,xl = constant, t constant ] 
Then for no t(x) there exists 4(t(x),0,x)) E It for 

x 77 (xo) . 
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I-I 
0)41C(to0, 

.'Figure 4-2 

U Lipehitzijn 

If u is all-owed to be discozitinuous, then the follow­

ing could occur: 

XI
 

Figure 4-3
 

u Discontinuous
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To develop the concept of solutions of differential
 

equations whose righthand sides are discontinuous solutions
 

in the sense of Filippov will be investigated.
 

4.3 Solutions in the Sense of Filippov
 

Let X be a measurable function defin&d almost every­

where in some domain G =E n . Define:
 

K {Xdo = nI n 
where
 

co denotes convex hull
 

U(x,6) denotes a closed 6.neighborhood of x
 

M'denotes an arbitrary set of B
n
 

denotes Lebesque measure
 

Definition: An absolutely continuous vector valued func­

tion on 0,T] is called a solution in the sense of 

Filippov of x = X(x) if for almost all t, 4(t)CK{X(q(t))t 

Here K(X(x)), in a sense, determines how the deriva­

tive x = X(x) behaves localiy. For example: 

Consider the following graph of trajectories leaving 

.a neighborhood of a point x, xcE2
 



X2
 

X¢ U(',6)-N) " 

X(U(xX) 

Figure 4-4
 

VECTOR FIELD ONE
 

As U(x,6) becomes small, (i.e., & + 0), KXX(x)f becomes 

x, or k1 X(x) = X(x). However, the fol-lowing extreme 

case may occur. Consider the followihg graph of tra­

jectories.. 

XZ X (Ucx,8)- N) 
/ x2
 

U (XI 

Figure 4-5
 

VECTOR FIELD TWO
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.
Here K I X(x) } becomes a wedge in E2+1 This can be 

interpreted to mean the following. If a noisy measure­

ment of x is taken, then one cannot be sure, even locally, 

that this measurement error will not admit a totally 

different trajectory than the one associated with the
 

true 	x. Therefore, one may generate a whole family of
 

different trajectories in some convex hull, even as 6 0.
 

If X 	is continuous, as a special case, K I X(x) = X(x).
 

Definition: If there is an absolutely continuous function
 

for the real variable t which satisfies some initial
 

data 	and $(t) = X(4(t)) almost everywhere, we call 4 a
 

classical solution.
 

If * is a Filippov solution of x = X(x), x(O) x0o 

then 	for any e,6>0 there exists a measurable function
 

: [ 	 ]0,T]En with II < 6 such that a classical 

solution-0 exists on L0,T] for the problem x = X(x+ 6(t)), 

-
x(O) 	= xo, and satisfies I ) - PIIcs 

Here 

i(1!Hess. sup {iectcleto)T] 
=-inf{M I I e(t)l< M almost everywhere on [0,TJ } 

So, if one can show (2-15) has a solution in the sense of 

Filippov, then there exists an allowably small measurable 

error F(t) such that the resultant solution 4(t) differs 

from the classical solution 4(t) by no more than s. 

Claim 

Equation (2-15) has a solution in the sense of Filippov. 

Proof: 
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let D[A bi3[tD] 

whose elements d.., i,j = l, ..., 2(n+m) are bounded.
 

Also, define
 

Because (i) is a Riccati equation which has a unique solu­

tion which is expressable in terms of K(t-) ({(t) a con­

tinuous bounded,linear operator) and establishes the
 

relationship
 

t (see 2-16)
 

Ay may be described as follows:
 

(ii) A E(AY (AAKAq)= (A+ K)Aq. 
-Therefore, all that need be shown to prove the claim is
 

that (ii) ,has a solution i-n the sense of Filippov.
 

Call the solution of (ii) t(t). Notice from the continuity 

- of '(t) on.[to,Tthat ) is a solution of (2-15) in the 

sense of Filippov.
 

Therefore, for any E,8>0 there exists a measurable 

function (t) on [to,T] with 11 811f<6 such that a * satis­

fying Ay - E(Ay+ S(t)) exists and furthermore it ,satisfies 



<
II- ~ii s. Although an e(t) has only been postulated,
 

one may hope that there exists such an 8(t) which can be
 
*
 

used to represent the difference between a and ae If
 

one considers such a representation, and if e(t) is small
 

in norm, it shall be shown that the difference between the
 
* * n
 

solutions of (ii) corresponding to Aa =a n and
 

e e n 
Ae - a is also small. Therefore, one's attention 

is directed toward relating the magnitude of the parameter 

estimation error to the errors found in the solution 

space (i.e., - p). This shall be accomplished through 

the study of "stability with respect to measure." 

4.4 Stability with Respect to Measure 

Definition: 32 A vector field E for' which a classical solu­

tion of z = E(z) exists with arbitrary initial data zof 

is said to be stable with respect to measure if given an 

6>0 	and T>0 finite, there exists a 6>0 such that whenever
 

[toT] with values in En
Cis a measurable function on 


and 11 6 1<6, for which a corresponding solution of
 

z= E(z+ 4t)
 

z(t) = z0 

-exists on t ItT] , thek ir - 'Pf<s

The last'definition is a canonical definition for
 

this problem. By that it is meant that this definition
 

would have evolved from a straight calculus attack on the
 

problem. However, this approach would probably not have
 

developed fully the powerful property which is nested in
 

the given definition. First of all, the whole, or only
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,.art. of 	 I:hc: v ctor z may be considered to represent 

measurement errors. Also, the measurement error is
 

additive which will lend itself to intuitive arguments.
 

Another important feature is that one is working with a
 

given error bound placed on the normed difference of 4 and
 

q), namely E. This allows the designer to establish some
 

maximum tolerable error on the solutions of (i) in some
 

a priori fashion.
 

Claim,
 

The vector field defined by D1 is stable with respect
 

to measure.
 

Proof:
 

Consider s>O given and te [toT]. Let 4 be the
 

classical solution of (ii). Let W'be a solution in the
 

classical sense of
 

(iii) 	 ACJ=D(AuteK(Agt&)), 

f j(t-o qiven 
+ B K ) 

or or V', = (A + 5K)A j+ (A 8 

Let (t) be the fuhdament-al matrix of (ii). Let 

t(t,t ,y) and ip(t,t ,y) denote the solutions of (ii) and 

(iii) respectively at time t and arbitrary initial data
 

yo given at t0 Then
 

andT
 



116
 

Therefore
 

11'*(ttoz)- 4 '(tt 6 ,z-11­
to 

to 0]@(t,,')(A( -r)*B(TA<(T))68(r)a -r if­

IT-to.l 111'(t-,")(A("+Hb(T)K(T)IIIAe)rl, 

r E [t 0 3T]. 
Therefore choose
 

E 
tT-t", IJct,T)(Acr)B(- r r)II 4 (4-2) 

If a more delicate 6 was desired, then a closer exam­

inati6n of ft(tT)(Atrh&7)KrT)AI for given plant need bej1 a 

performed.
 

Example: (scalar)
 

Let f(xlu; ) ax(t)+bu(t)
 

and
 

T 
Cc~~ (xLO2e+ ct) dt 

Then
 

6-(b) 0 o.D - ~ -P(),-n
000 0 

'(-) 0 

n
 

-For Ac = a* a = c, c a constant under perfect measurement. 

From (ii). 
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Aa'P aAX (t-i+Xn-c'c - [tI, X(t) +K1±C] 

Act =o
 
Suppose Aa is subject to a measurement error such that
 

Act CA-tt) 1 

The term c + &(t) represents (a - an)+(e - a*). Suppose 

ae equals a almost everywhere on It T]. Then the "bad" 

data points belong to a set of zero measure. Therefore, 

II6(t)[ = 0 and 6 = 0 += j' - WIPI = 0. This result 

correlates with the fact that two differential equations, 

namely,
 

(a) o=f o 

and t*3) C 

{b) WV 

Wtt) W0 . 
and v measurable,
 

where f is bounded and Lipschitzian in the first argument
 

and measurable in the second,will have solutions equal
 

everywhere if v differs from zero only on a set of zero
 

measure, If e(t) is some finite (in norm) measurement
 

-error, then a bound 6 can be calculated from (4-2). In
 

this example only parameter vector measurement and/or
 

estimation errors were considered. The 6 resulting from
 

an a priori C will influence which of the possible choices
 

of a parameter estimator may be selected. That is,.there
 

will be a prescribed 6 precision required from the
 



parameter estimator implemented.
 

4.5 Cost Index Error
 

What variations exist in the cost index due -to
 

measurement (i.e., approximation errors)? Consider a
 

neighborhood of yn (t) sufficiently small so as to admit
 

a truncated Taylor series representation of H(y,p,u)
 

with negligible truncation terms. Let C(u) be again de­

fined as
 

C ( .)=j.X(T)bTxT)>+ J (X,Lodt 

where L is Lipschitz continuous. From D1 being stable with
 

respect to measure and a>0 such that if I (t)11<6, then
 

I H - '11<c. The vector 4(t) and t(t) are members of 
E(n+m) and were previously defined. By Minkowski's in­

equality it is apparent that
 

11(kcft)-4/ct'B*n(,ct,. c/' ue (+)2 .1 n wP) I I 
+(kt11 lk (tII ... , ))" + -. 

Even with the postulated small measurement, or estima­

tion errors, the adaptive control Au will have its original
 

structure.
 

ALL-) GainAtLjtwHc+bApct)
 
where G(t) and H(t) are defined by the matraices of (2-12)
 

in an obvious manner. But by virtue of the fact that
 

Ap(t) = K(t)Ay(t), Au(t) becomes
 

Aalij [e) + 1Ht) Kat Ayt 
Because L is Lipschitzian, C t , - Z) 

%<XTTx2 (T)> -.1XZ>f L X L,"x) 
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can be 	written as
 

11C u)- CLL)Il ' 17-to) -, 1IX,-X 2 , u. - uZ11­1 

+ K IIX(j-)-X 2 (T \ 

where K 	is Lipschitz constant, ulcorresponds to the control
 
* 

strategy with a az and u2corresponds to the control 

effort with a2 = 

By Minkowski's inequality 

C('t,)-	 Cut II4 1T-tol k [ uX1-x2u+II U,- UZ11 + 

K I x, T)-X2 (T)II 
or
 

11 CJ U,- C(U,, It 17-t,5K [i I/iT--I+IIq +HKI],E =C" 
forE given and 6>0 sufficiently small.
 

Thus, for the E,6 conditions satisfied, the normed 

difference in the cost indicies based upon the 4 and 

solutions are nothing more than a scalar multiple of C. 

If maintaining e below some maximal value was of paramount 

importance, then one would solve for the last equation for 

C and this ( would then define a required 6.
 

The error bounds found in this chapter are not
 

necessarily the sharpest available, but will always be sat­

isfied. Therefore, the designer may look upon them as a
 

maximal guide.
 

4.6 Truncation Error
 

Consider now (2-13) and (2-14) with regard to their
 

solution with and without ignoring the contributions of
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truncation errors. That is
 

(i)
 

A9[A 61[A 9 ] [-oI 

Aj givenML+) 

(ii) 

I~[ Y+AFr X2 2n+mxI:1 

Apen given 

for some previously defined 1, and A2. The vectors X1
 

and A2will be used to represent the lumped truncation
 

errors suggested by (2-13) and (2-14). Furthermore, for
 

XI and A2 being small bounded truncdtion errors defined
 

over (y,p,u)EN (N defined in Theorem 2-1) there exists an
 

£1 and I2 such that 

sup I 6I -EC,.,. and f. at 

supj 2
 
Let (t,t ) be the 2(n+m)x2.(n+m) fundamental matrix of
 

LAPp C _ P 

that is
 

[A (-lAt t [AlCjt10 

where AL PWI LA ptt~ 
where Apo is the unknown initial costate vector. Partition
 

Q(t,to) as
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° ) 	.,(.,t , t­.DT 	K<I+.J 

Define 	T to be 
(T being the weighting positive semidefinite
 

matrix in (2-2),
 

T -i--- (flnflK)cn1+n 

which 	results in
 

A p(T)T Ayj(T)-


This condition requires that at the terminal time T the
 
estimated parameter may belong to all of Em. 
 (Remember,
 

Ay actually be.longs to some restricted subset of En+m ) .
 

Also
 

2C 1-X
Ayrfa1 L,< yt-fLx,_ ,t) Apc 

and
 

Ap(T) -- 2 1(Tt AMcf+
+ 122CT)Ap t)+ 

(n)+fsT 	 ryt-r,, rX, c4 

-
T ALiCT)
 

After 	some algebra, Ap(t) becomes
 

Ap) 	 = [n 22%t)- f f$T,t,] [Th,,<,p>)- nl2 1crt)]Ayt. 

T 
+ ([ 2,(,r-rS,-(TT' .C(T1'1l ~("i;-r,-R ,(T,'-, 0 [X )dT 

"+
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Iu L 

K( ) --T. 
The matrix K(t) has been previously defined. Upon sub­

stitution
 

A pt0 )=Key,'A Lit,)< KM [] ~A-

Therefore,
 

A .jtb=[DlIt t6 )+f 1 zCtta K-a,) A 

Let Ay(t) and Ap(t) be the solutions of (iii), ty(t ) given, 

Ap(T) -4p(T) given. Then, for Ap(t) = K(t)Ay(t), 

A,to) +flEl 2 ttt0 )K A (to)-
Therefore,
 

ii2Ay2(gen, [X2] ) Ck"t 

2_ir-toibinl2 ,t,z kcx,+l,,<t,zIIE ,- 2I1fl,2ytrrile 2 ] 

for tT[toTI.
 

or
 

(iv) 11A tb1- AiLAl E N c 
Therefore, the computable error introduced in (i) by ig­

noring the-truncation is always less than a weighted linear
 

combination of the largest truncation error expected as y
 

and p range over some restricted domain. This domain was
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investigated in Chapter II.
 

4.7 	General Performance Error
 

Equation (iv) may also be used to establish an error
 

bound on the cost function. The difference between C(u)
 

(with truncation error considered) and C(ue ) (ignoring
 

truncation errors)can be established as follows.
 

With 61 andE2 defined previously, consideriE3 to be
 

sup 1o E0t - 6[+oT land lotv all 
Udj, p,u-E N,0ojE 3 ) given 

by 2-12. 

Therefore, for a(t) of (2-17) represented as
 

R(t) is rxn 

S(t) is rxm, 

11L.t 	 ) - UYct) It4I Rst)jII1 X*(jc)-XeLt)11+ I Sut) Illa.*- C6+E3. 

Also, it can be noted that
 

<,*(T),T (T) > < x T), T e(T) > 

Tj (X*(T)-XL (T)) i- P fIX (T)-XOCT) 1 

1=' 
where
 

F = nax T. 

define k to be a constant such that
 

JLX Sr k TII J
 

Then kfl 11X* (T)-XCCT)j[ - PrIIX*(T)L-X"(T)I)

*e
 

The difference in the cost indicies C(u ) and C(u ) becomes
 

K is a Lipschitz constant)
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)Ix *t)- X e(t(t) t+I S t)Ila*-aell+c1 ) 

+ ki lx*(T) -Xe(T) 

.1 I-T-to 1[(I+HilR)t + kr )I x*-xSIIsft)lL-a-cll+.a 3 
IT-t01 K 

from (iv)
 

- IT-tIlK( I+ IIRtt It (kP/IT-toI')( eN E2) + 

l5IC*-C~ll*.3~l A (k),E,, ,I La-f~tifljc E. C"Ee-& 

* e 
for a ea 

A (k,E, ,c., .' (k,(,., 4E213 

For a prescribed maximum allowable value of A(k,CI E..E. r 

sayX, IIC(u*)-. C(ue)lf ! A. Then k, sl, £2' £3 may be 

chosen (not uniquely) in such a way as to satisfy the X
 

constraint. Choosing a maximum acceptable terminal differ­

ence (i.e., IIx*(T) - Xe(T)ff) , thus fixing k, one can 

find the neighborhood N (of Theorem 2-1) such that the
 

Ell E2' ej candidates are satisfied.
 

Because of the general treatment given to error bounds
 

in this chapter, the error bounds generated were, in some
 

sense, maximal. Tighter bounds may be established for
 

particular problems through a more detailed analysis of
 

its structure
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CHAPTER V
 

SENSITIVITY
 

5.1 Sensitivity Index
 

The previously developed machinery will be used to
 

show that under certain local restrictions a reduction in
 

the systems sensitivity to parameter variations will be
 

accomplished. The question of sensitivity will be
 

developed qualitatively. The sensitivity index chosen
 

should satisfy the following intuitive ideas:
 

1. 	The ideal adaptive control is one which equals
 

the optimal control for a particular problem. If
 

the adaptive control for certain parameter varia­

tions equals the optimal control over those same
 

variations, then the system's cost is insensitive
 

to those parameter variations.
 

2. 	If the adaptive control does not produce a cost
 

C(u), (C(u) defined by (2-2)) which equals the
 

minimum of C(u) over a set of parameter varia­

tions, then the system should be considered sensi­

tive to those parameter variations. The greater
 

the disparity between C(u) and the -minimum
 
* 

C(u) = C(u ), the more sensitive to parameter 

variations is the system's cost. 

A sensitivity index Sy chosen will compare the cost of 

operation of a system subject to parameter variations to 
* 

the optimal cost of operation C(u ). Or more succinctly 

S y = IC(u*) - C(u¥) I (5-1) 
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* 

where the properties of C(u ) and C(uy ) follow directly
 

from (2-1) and (2-2). Although the construction of a
 

sensitivity index is arbitrary, (5-1) shall be assumed to
 

be the canonical sensitivity index. With this definition
 

of SY and Theorem (2-4) in mind, the following is easily
 

shown.
 

5.2 Sensitivity Reduction
 

Correlary (2-4)
 

Under the conditions stated in Theorem 2-4
 

Se < S
n
 

where:
 
* e un 

u , u , and u have been previously defined. 

Proof: 

Apply Theorem 2-4 to Se and Sn. 

This result guarantees that under certain local
 

conditions given in Theorem 2-4, a system operating with
 

an adaptive control strategy is less sensitive to parameter
 

variations than its nominally optimal counterpart. In
 
e * Se 

fact, as aG a , Se 0. These results are not philo­

sophically disturbing in light of the fact that the 

adaptive control was derived to have a reoptimizing 

quality. One would naturally expect a control effort 

which is constantly tending to minimize a given cost index 

to be closer (or equal) to the optimal cost than a system 

operating with a fixed nominally optimal control. 

5.3 Alternative Sensitivity Index
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To reinforce these ideas geometrically a more jn­

direct attack on the sensitivity problem will be perfotmed.
 

Suppose for the moment C(u) is-a monotically increasing
 

function of time. One might then be motivated to consider
 

a quadratic sensitivity index. Because the original cost
 

index is a function of x(t) and u(t), the new sensitivity
 

shall also be. Define the sensitivity index Ni as follows
 

N JX(*)-X MlhI 2 + <x*ct) -X (), 3a + 
(5-2) 

where S(t) and R(t) are positive definite and
 

to (t), CL(5-3)(to = 

Because N is positive definite, zero is the minimal
 

value of Ni. Consider, for example, the case where the 

parameter variations from the nominal are sufficiently 

small and known exactly (i.e., ae = a ) such that u (t) = 

ue (t). Then x*(t) = xe(t) and Ne = N = 0, which implies 

the system is insensitive to such parameter variations.
 

If two systems operating with control efforts u (t) and
 

ukt) are compared for a given set of admissible parameter
 

variations, and if Nj > Nk over this set of parameter
 

variations, then the system associated with uk 
shall be
 

considered to be the "less sensitive" of the two for the
 
.
given parameter variations with respect to N1
 

One may compare the sensitivity, in the N sense,
 

of the derived adaptive system with the nominally optimal
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controlled system as follows:
 

Consider the dynamical n dimensional system
 

ku(t)=4>f t (AEt),aL*), X&)rXNo
* n 

with u (t) and un(t) previously defined.
 

Condition (i)
 

For sufficiently small parameter variations it has
 

been established that ue (t) and u (t) may be represented
 

'as:
 

"c(tct)-t­

(5-4) 

U6 (tE- LA."I(t) + A~t 

LX- W6 LL FdCt+)() AI -X"Ct)) + 

(5-5)
 

+ H-t)( CL- + oE 2.) 

Combining (5-4) and (5-5)
 

LA.a(+)- U ct) - oC2). 

Consider the following admissible variations
 

For the adaptive system (i.e. u(t), = ue(t)), one achieves
 

the variational differential equation
 

utrn " 8 Xt) = 8kE 

(ii) 

(5-6) 

= ax (it.t) 0 
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where all the partial derivatives exist, are well defined
 

and continuous over ts [toT]. Define the solution of (5.6)
 

to be (t).
 

C~t~-f) tffvf(x *cT),ca* UL(T))8ad drT 

where
 
S 

T) (. ,Q.,UL. Ct))4 tf 

For u(t) = un(t) 

(iii)
 

Sia t (XPCx I+esxth) a*+e a, 

(5-10) 

(A= )C - LL )'7t) , *,. 

8X (to)= H 

Define the solution of (5-10) to be 77(t). 
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?7(t) JS4 ,,T) T , + 

-JCbt2T) + (X*CT),aj U'tT) LqmTaxcn)+ 
to LA. 

or equi.valently
 

97t) C- L(8-qt) -L, cLzt (5-11) 

where 

t 

L2- fCPt9T (px*o, LL.*Cr,) cj T) 

+0 

and L and L are bounded linear operators.
 

It is now possible to compare the following sensitivity
 

indicies:
 

Ne: the sensitivity index for the adaptive
 

(reoptimization) scheme.
 

Nn the sensitivity index for the nominally optimal
 

controlled scheme.
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if the reoptimization scheme is to be "less sensi­

tive" than the nominal scheme for a given set of ad­

missible parameter varations
 

(iv) Ne N .-


This implies
 

T
 

4k85),S()8~C )>- 87CT),R(T)SV)(T)>. 

Theorem 5-1: For the sensitivity index given by (5-2)
 

and Condition (i) satisfied, a sufficient condition that
 

Ne _ Nn 0 is that
 

ILL,(8 (t)) LZ (8c,)JI(2) 

Proof: 

One notes 6ue (t) = £ib --- (eZ)-' , 

and 8 a(t(n t - Hrtn'c 5-5)=-ct-_ 8ror 

fR t8 t o dt4f< tsfcientSrUu, tdt-hereto, 


tot 
Therefore, for (iv) to hold true, it is sufficient to show 

f{ 2tiSLL~m~+L 2 8czj> + 
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+ L,(80-)] >} cit+ (T,) 

, Sc-n [ L ( 2 88] >cL 87M)+L

0.
 

A sufficient condition is 

< ct),,.S() [ L,C8i (+)) +,L2 Sa) ]>
 

IFL1. c8-9 (-t)) + L, c 8a) It
 
for all te [to T
 

Although the structure of the scalar sufficiency
 

appears innocent, its computation may be a very complex
 

problem. However, the sufficiency condition does rein­

force some intuitive ideas one may have about 6(t) andS(t). 

Consider the following state trajectories in E3 and their
 

intersection with a t = t' hyperplane.
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xxc-) oR d(6bA 

U 4'
X z, FR () OR 

?E0x UY.-rP PLAN 

Figure 5-1 

STATE TRAJECTORIES 

In the t' hyperplane the following vector5 may be 

identified : 

XF-OR,(t 

-L" 14YPERPLAVE 

Figure 5-2 

t' HYPERPLANE 
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The vector 77(t') is the solution to the state variational
 

equation with u(t) un(t), tc [to t I, at t = t'. The
 

vector 6(t) is the solution to the state variational
 

equation with u(t) defined by (5-4), ts [tot I at t t'.
 

The vector E1(77(t')) + L,(da)] is defined by (5-1) -at
 

t = t,. Inequality (v) (Theorem 5-1) places some restric­

tions oh the magnitude and orientation of (t). For ex­

ample, some acceptable values of 6(t) are diagramed below.
 

L~L L.')' 4, (77(W)+ 

. 

a 6a.)orthosonal to 

c b 
S7 (t'))-t Lz ( SL) 

Figure 5-3
 

ACCEPTABLE 6(t-)
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Examples where the sufficiency condition is violated are 

(note: i7(t) 1< II E(t) II) 

L~c~ao-i-~ &a. 7 a 77 a' 

The angle e between $(t) and -(L1 (7(t)) + L2 (6a)) belongs 

to (900,2700). 

a
 

L'(v (t'))+L2 c a) 
C 

'
 

(b)
 

Figures 5-4a,b
 

UNACCEPTABLE VALUES OF 6(t-)
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Therefore, the first variational argument goes beyond re­

quiring that the variations in the adaptive control, from 

the true optimal control, be small, or neglected. It re­

quires that (t) be small and have a proper direction. 

Because of the continuity properties associated with the 

variational equations one would expect (t) to have a 

direction similar to the direction associated with ??(t). 

Therefore, (v) becomes basically a magnitude restriction 

of the form II(t) I I 77(t) 11. 
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Chapter VI.
 

SUMMARY
 

6.1 	Summary
 

The problem of sensitivity with respect to parameter
 

variations has been stUdied under the philosophical re­

quirement that optimaitybe preserved. The device which
 

accomplishes this has the property of generating a control
 

effort which minimizes
 

CU.r t<xcr Txe(n>1tjL xuz(tcutndLA 
for parameter values belonging to a set of admissible
 

parameter variations. The mathematical machinery used to
 

develop such a device was a truncated Taylor Series rep­

resentation of the system's Hamiltonian system of equa­

tions. Once certain local smoothness and partial deriva­

tive tests had been satisfied in a neighborhood of the
 

nominally pptimal solution, the Maximum (Minimum)
 

Principle was applied to the problem. As a result of this
 

-action, a set of canonical equations were generated from
 

which the matrix Riccati equation evolved as a by-product.
 

As a derived result, the adaptive control abstracted from
 

these equations was found to be a linear combination of
 

the system's states and parameters.
 

It was shown that for parameter estimates sufficiently
 

close to the system's actual parametersthe cost incurred
 

using the adaptive control structure was less than, or at
 

worst equal to, that incurred by a system operating under
 

a nominally optimal control policy only. That is, under
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-certain local restrictions the adaptive system"s 'control
 

effort was optimal, or near optimal, over ,aset of admissi­

ble parameter variations. By virtue of this fact, and a
 

sensitivity index given by (5-1),
 

3shIC tctfl-C( 
it was shown that the adaptive system was less sensitive
 

to parameter variations than its nominally optimal controlled
 

counterpart.
 

Numerous techniques were offered to resolve the "curse
 

of an adaptive system" which is parameter estimation. They
 

were basically of two deterministic classes-; -namely, num­

erical and gradient techniques. Also, an introduction to
 

a particular class of non-deterministic parameter estima­

tion scheme was'explored with suggestions and computational
 

techniques given to satisfy this requirement.
 

6.2 Suggestions for Further Research
 

The most obvious area requiring additional research is
 

that of parameter estimation. The devices and techniques
 

which may be developed in this area, because they are after
 

all approximation schemes, are limited only by the
 

designer's imagination,.
 

Numerical experimentation should also prove useful in
 

determining a larger class of admissible parameter varia­

tions than that achieved by analytical means. Another
 

numerical study might be to form a linearized approximation
 

of a particular given plant to achieve a system of the form
 

SA(a- x+Bu. 
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Then mechanize an adaptive controller for this system, and
 

perform numerical experiments on it over a set of parameter
 

variations, to establish whether or not this technique has
 

any merit.
 

An interesting analytical study might involve deter­

mining an optimal selection policy which would define a
 

finite set of fixed parameter vectors. It would be re­

quired that for each parameter vector, say ai, a successful
 

reoptimization can be accomplished with an adaptive con­

troller with an acceptable degree of accuracy. A set of
 

fixed dissimilar parameter vectors will be called the
 

optimal set of parameter vectors if it satisfies the
 

criterion that for an open neighborhood *a of parameter
 

vectors about ai admitting the previously discussed re­

optimization, and some given set oflN of parameter varia­

tions, about the %nominalparameter vector Z is
 

minimum, where
 

U PcLi
 

That is, one wishes'to find the minimal number of open,set
 

(i.e., *a which forms an open cover of N.
 

Also , controllability and observability were essen­

tial in constructing the reoptimizing system. A study
 

pertaining to the loss of controllability or observability,
 

if-indeed it should occur, would prove beneficial. Such
 

an analysis would be straightforward.
 

The optimization problem considered was of a fixed
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terminal time class. Extensions of this result into the
 

other basic classes of optimal control problems should be
 

pursued. Also, the terminal cost index was defined to be
 

quadratic. It was assumed to be quadratic to reduce some
 

of the computational problems encountered without too
 

great a loss of generality. Thereforej it is suggested
 

that this terminal cost index might 'be generalized.
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