NASA CR-96009

SENSITIVITY REDUCTION THROUGH
REOPTIMIZATION

By Fredrick James Taylor

June 30, 1969

Distribution of this report is provided in the interest of information
exchange and should not be construed as endorsement by NASA of
the material presented. Responsibility for the contents resides in
the author or organization that prepared it.

Department of Electrical Engineering
University of Colorado
Boulder, Colorado

for

Flight Resesrch Center
NATIONAL AERONATUTICS AND SPACE ADMINISTRATION

N69-35463 1

Wi 4 va
MG E 500 [ %

(NASA CR OR TMX OR AD NUMBER)’ ({CATEGORY) '

—————

FAGILITY FGRM 602




SENSITIVITY REDUCTION THROUGH -
REQPTIMIZATION

by

Fredrick James Taylor

THIS RESEARCH WAS JOINTLY SPONSORED BY
THE NATIONAL SCIENCE FOUNDATION AND THE
NATIONAL AERCNAUTICS AND SPACE ADMINISTRATION

UNDER RESEARCH GRANT NGR 06-003-083

\U;£¢£41¢L%H% 52"ng;;4£”?"

- Fredrick daZmes Ta¥lox -

xggﬁt | ‘
1.
[l M‘ W‘ / Q{
Isaac M. Horowlitz
Research Supervisor

Department of Electrical Engineering -
University of Colorado
Boulder, Colorado

June 30, 1969



ii.

SENSI:IVITY‘REDUCTION THROUGH REOPT;M;ZATION

Abstréct

The ability to maintain an optimal solution indepeﬁdent
of parameter variations is philosophically appealing.
Unfortunately,.whenever the iInternal system parameters
change in value, the system usually ﬁo 1o£ger operates in
an optimal fashion. Therefore, the purpose_éf this research
is to devise a scheme which will continually adjust its
-cbntrol séraﬁegy iﬂ such a manner that the control remains
optimum fof a set of parametef variations. To accomplish
this, the»Méx;mum Principle is applied to a truncated Taylor
series representation of the Hamiltoniap of the system with
parameter variations. An adaptivé control strategy is’
thereby de%ivéd. However, the adaptive structure requires

plant identification, so special attention is given to this

problem.



Chapter

iT.

TARLE OF CONTENTS

ABSTRACT
INTRODUCTION

Historical Background

. Performance Sensitivity

- Trajectory Sensitivity

Objectives and Methods

. Notation and Symbols

FORMULATION OF THE PROBLEM
Necessary Conditions for Optimization
Set of Admissible Parameters

Extended Hamiltonian Systems

Truncation Errors

‘Example Problems

Reoptimization

PARAMETER ESTIMATTON

Parameter Estimation

Dimeﬁsional Restrictions
Modeling and Implicit Estimation
Numerical Techniques

Gradient Techniques

Non-deterministic Parameter Estimation

Page
No.

il

190
10
12
17
34
36
45
49
49
58
64
71
85

102



Chapter Page

No.

Iv. ERROR ANALYSIS 104
4.1 . Approximating Parameters ' 104
4.2 Discontinuous Vector Fields 107
4.3 - Solutions in the Sense of Filippov 110
4.4 Stability with Respect to Measure 114
4.5 Cost Index Error i 118
4.6 Truncation ﬁrror 1i9
4.7 General Performance Error 123

V. SENSITIVITY 125
5.1 Sensitivity Index 125
5.2 Sensitivity Reduction 126
5.3 ‘Alternative Sensitivity -Index 126
VI. SUMMARY ‘ 137
6.1 Summary 137
6.2 Suggestions for Further Research 138

VII. BIBLIOGRAPHY 141



LIST OF FIGURES

Figure Page
No. So._
1-1 Adaptive Controller 7
2-1 | 'éonvex N 19
2-2 Adaptive Structure 34
2-3 State Space e = .1 42
2~4 Control Space € = .1 43
2-5 " Gain Plots s
2-6 Cost TIncurred 45
3~1 Trajectory Variations 51
3-2 Pe(tl} 52
3-3a,b o Hypersurface 55
3-4 Simple Example 56
3-5 Formal System Model 66
3-6 Fixed Iteration Interval 76
3-7 Plant - Model Diagram for Example ' 77
3-8 A Generalized Step Function 79
3-9 Example Sampling Interval 81
3-10 Parallel Models 82
3-11 Plant - Model Diagram for Example 84
3-12 Minimization Process 86
3-13 Second Example 90
3-14 Side Constraint Problem g1
3-15 Example Problem Plant 97
4-1a,b Parameter Plots 106
4-2 p Lipschitzian 109

4-3 u Discontinuocus 109



Figure Page

No. No.
4-4 Vector Field One 111
4-5 Vector Field Two 111
5-1 State Trajectories 133
5-2 t” Hyperplane 133

- 5-3 Acceptable f(t’) 134

5-4a,b Unacceptable Values of f(t’) 135



CHAPTER I

" INTRODUCTION

1.1 Historical Background

Progress in the sensitivity problem has not in
general kéét pace with the general advances achieved
within the framework of optimal control.. Briefly, the
optimization problem involves transferriﬁg the state of
a given system from some initial staté to a given target
set under various constraints, in sucﬂ a manner as to
‘minimize a given cost functional. The need for a sensi-
tivity aﬁalysis results from the structure of the system's
dynamical model %(t) = f(x(t),u(t),a), where x(t) is the
state of the systenm, u(t) the control effort, and a the
parameter vector of the system. This model rxepresents
an ideal plant where the parameters are assumed to be
known exactly. Such parameters shall be called the
"nominal parameters." However, the plant parameters may
change in value during their life span, or even if fixed,
their precise values may not be known. Therefore, the
dependence of the state dynamical model upon parameter
values gives rise to a performance functional, state, and
optimal control strategy which are dependent upon those
parameter values.

Considerable progress has been made in the design of
linear autonomous svstems with controlled seﬁsitivity to
parameter uncertainty. The foundation work for this class

of problems is due to Bodel, with applications and exten-



sions by Horowitzz’3. Some methods have been presented
in the field of optimal control systems which are subject
to parameter variations. There are essentially two
mutually exclusive philosophies being pursued in this
field. They are4:

The study of

(1) Performance Sensitivity

Sensitivity reduction by considering the
dependence of the cost functional on the
parameters.

{2) Trajectory Sensitivity

Sensitivity reduction by considering the
dependence of the states on the parametérs.

1.2 Pexformance Sensitivity

Consider any optimal control law which may be im-
plemented-in either an open-loop or closed-loop structure.
The question of which structure offers the smallest varia-
tions in cost for given parameter variations was posed by
DoratoS. Prom the study of classical control systems,
the notion of sensitivity reduction to parameter varia-
tions with the implementation of particular feedback laws
was developed. The sensitivity index considered was
usually eguivalent to

ng 8_’;'/ aaa ) (1-1)

which is a ratio of the change in transfer function T per

change in parameter value c¢. For the open-loop configura-

+
tion SCL = I-



For certain feedback mechanizations Sz can be made less

. . X . . e 6
than unity implying a reduction in sensitivity. Pagurek
investigated an analogue of the classical sensitivity

problem. He considered the cost functional

Cct_j,,a)--fTchm,um,q.;«dt' A (1-2)
Let 6C(u,n) represent the first variation of the cost
functlonal. If the plant's 1n1t1al condltlons are known
and the target set is the whole state space, then Pagurek

=

stated that ‘ _
SC(ua) —S\Cc“u,aJ =Q - (1-3)
where the subscrlpts o and ¢ denote/OPen— and closed-loop
guantities.. That is, the cost 1ndex sen51t1V1ty to
parametex ehapge is the same for both ppen— and ¢losed-
loop transformations provided, og course, the parameter
variations are infiniteeiﬁallglemal;; The question of how
much the cost index changes from the qominaily optimal
cosf'was left unfeeolved. Al#hoqg? Pagurek's results
were for a special case, a more general result, eccordiﬁg
to‘Sorbal,_was gi;en by Kokofonib and Sanngit7l It was
found that (1-3) need.not be.zero ia general.

Another performance een31t1v1ty idea considered a
game theoretic approaéhr “Rohrer -and Sobra18 defined the

“reiative sensitivity index" for a_control u(t) to be



o
Cour,ar -CLllwr,a 1-a)

SR( .
u =
> | Ceuwocty, ad |

where C{u(t),e) is defined by (1-2)and up(t) is the optimal

control for the plant having parameters o. That is,

C (ult),ad = r&ung CCU-(-t),CI.)} , : (1-5)

The "plant sensitivity" is chosen to be a quantitative
index of the deviations of C{u(t),e) from C(uo(t),a) and

is defined to be

p f? ]
_max! S ue),a) (1-6)
S wey 2 =
The optimal design criterion becomes u(t) = u (t), where
SP'CUI*‘({:J)'—' min {Sp(u.tt))}
u R (1-7)
= Min max { S (u_tt).,CLJ}
L a .

Essentially what is being accomplished is u(t) is chosen
to make C{u(t)) as close as possible to the optimal
value of C(u(t)) at all values of a.

1.3 Trajectory Sensitivity

In this method there is generated a trajectory in the
solution space which is "least" sensitive to parameter
variations. This is accomplished by constructing an aug-
mented cost index. Instead of the cost functional being a
function of x(t), u(t), t, the augmented cost functional
is a function of x(t), u(t), £, and a term which relates
the change in plant trajectories to parameter variations.
For example, the cost index which is a function of

x(t), ul(t), t, and sx(t)|oa. A trajectory from the
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solution space which is least sensitive to parameter
variations will not in general produce a trajectory which
is optimal with respect to the original unaugmented cost
criterion. Trajectory sensitivity methods have been

investigated by Kahneg, D'Angelo, Moe, and Hendrickslo,

Bradtll, and others.

As the two sensitivity classes differ philosophically,
s0 do their applications. Pefformancg sensitivity methods
maintain the identity of the original cost functional and
therefore the results achieved relate to some optimal
solution. Trajectory sensitivity concerns itself with
minimizing, in a sense, a cone of trajectories about a
trajectory which is optimal with respect to an augmented
cost criterion. -

The last technique described in the performance sen-
sitivity section is closely allied to an idea proposed by
Kokotovic and Heller*. They have adopted an approach
which preserves the concept of optimality in the sense
that the control law minimizes some given unaugmented cost

index

-
C(u)"—'-jt‘ Lex ey, u), trydt, (1-8)
(=]

The cost index defined by (1-8) is aesthetically pleasing
in that most physically meaningful optimal control problems
have a cost index of this form. Their objective was to

develop a system which attempts to be optimal for "small"

*
Notes, 1967



parameter variations. Their approach postulated the
a-priori -control law
*  Su=C ox+CAa
where C; and C, are obtained via the_Maximum (Minimum)
Principle. That is, the control é§u, which was dalled‘the
"optimally sensitive control" will tend to minimize (1-8)
under the influence of small parameter variations. Be-
sides the loss in generality due to réquiring that the
feedback control have the structure of (%), the authors
left several important facets of the problem unanswered.,
They are:
(1) How "large" may the allowable parameter
variations be?
(2} Is the system's cost of operation (i.e., (1-8))
less sensitive to parameter variations than
__its non-adaptive counterpart (i.e., using
the fixed nominally optimal control only)?
(3) Under what conditions will the adaptive
‘structure result in a cost which is equal
to, or close to, the true minimal cost
of oéeration for a system subject to paramecter
variations?
Also, the authors' implementation restricted the number of
parameters considered to be equal to the number of states
considered. In such cases (see Figure 1.1)
Ad = ‘F(SX).

However, the authors state that this dimensionality



restriction may be overcome.

= 'z: bt X=+Cx, w,oe ul -
. ()X
(:I _ﬁ\gi)dh_

Cz <~ fesx> (s [

Figure 1-1
Adaptive Controller

1.4 Objectives and Methods

The objective of this invest;gation is to develop a
design method which will operate optimally (or if not,
arbitrarily close to optimal} over some allowable set of
parameter variatioens. Varioﬁs types of parameter varia-
tions will be investigated and given a unified analysis.
The cost funcéional considered will be that cost func-
tional associated with the nominal problem.

The problem will be formulated in a general mathe-
maticai sense with all structurai forms (i.e., constraints
and control strategy} being a derived result instead of
being assumed a priori. Arguments pertaining to known
optimal solutions and their neighboring solutions will be
used to develop a general Hamiltonian system of equations
valid over a set of admissible parameters. The desired

control law will be obtained from a set of necessary



condilions placed on the general Hamiltonian system. This
control law will be found to minimize (1-8) over the set
of well-defined admissible parameter variations.

Parameter estimation will be found necessary Lo
mechanize the derived system. Therefore, questions re-
lative to parameter estimation and dimensional restric-
tions will be explored. Variodus computational devices

will be developed to satisfy the parameter estimation

]
i

condition.

Error analysis techniques will be employed to estab-
lish bounds on the allowable parameter variations and
cost index variations. Finally, it will be shown that if
certain conditions dre satisfied, the derived system is
less sensitive to parameter variations (in the performaﬁcé
sensitivity sense) than its nominally optimal controlled
counterpart.

1.5 Notation and Symbols

The following symbols will be used throughout the

study:
ble state vector
o parameter vector
o™ nominal pérameter vector
* .
o . actual parameter vector
o« estimated parameter vector
. parameter, real
P - costate vector

u control vector



H(-)

C(u)

Spaces

i

augmented state wvector
Hamiltonian function

cost index (cost function or performance
index)

az
at

Euclidian g dimensional space

Iy .
The class of all functio*s with i continuous
partial derivatives with'respect to all
arguments on the real interval tel

The class of all piecewise continuous’
functions

Norm

non~degenerate inner prbduct
Transpose

“oxder".of £

1

Largest integer smaller than or equal to v

Variable identification (superscripts)

*

-optimal variable
adaptive (approximate optimum) variable
nominal variable

actual system variable
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CHAPTER IX
FORMULATION OF THE PROBLEM

2.1 Necessary Conditions for Optimization

Consider the autonomous plant

k(-_&):P.cxtt),utta,a}, t € [tosT] ’

n

where: x(t) B, x(t ) = x (2-1)
A . \ \ *
O =[u(t) = ul(t) ui(t) is an admijissible measurable
control function on teft (T],
: S 0
. i =1, ..., xr {
u, (t)

o, the parameter vector will be formally defined as:
' @, m
a:[i }eacE ,
A
and A = {ailai is an admissible measurable parameter of
the system defined in (2-1), i = 1, ..., m}. The per-

formance index C(u) is defined to be:

+
Cwr=5% <XIT),T'XiT)>'*‘/t- Lextt),uen ot (2-2)
where <x(T), T x {(T)> is the 1erminal cost functional and
T is a diagonal positive definite matrix (notice it is
assumed to be guadratic).
Necessaryrconaitions for finding a u({t)ef, which -
-transfers the state of system defined by (2-1) from X to

some target set S at the terminal time T, T given, with:

fr—:C[to,TJ, £: ©Exax ¥ ", Le c[to,ﬂ L: E"xQ-e"

—{!

*Meashrable functions will be considered to be bounded.
This does not allow for the existence of the Dirac
delta distributions because distributions are not
functions.



11

such that C(u) is minimized, subject to the differential
side constraint (2-1), are well known from Maximum
(Minimum) Principlelz. The Maximum Principle states that
for a u*(t) to be an optimal control, in that min C(u) =
C{u*), is that there exists a nontrivial p#*(t) such that
for

H a2 L £ |

(X,p,u;QL) = <x,u_>+<p, (S NIRRT DY (2-3)
n

and ts:[to,T], p(t) cE _ !

(i) p*(t), X*(t), and u*(t} are solutfohs of the canonical

equations 3+ * A
¥y = SHx @), pleey, uw)) jx*cto)-,-xo (2-4)
b ct)=_%HU‘ e, pXet), uX ) (2-5)
X

(i1} 3%3 H (X (), p*(t), ult)) = H{x*(t), p*(t), u*(t))(2-6)
(iii), and ﬁﬁt) satisfies the usual transversality condi-
tions dictated by the target set S,*
Conditions i, ii, and iii are only necessary and not
sufficient. For example, there exists cases where i, ii,
and iii are satisfied but the satisfying u(t) is not
optimal but a singular control belonging.to Qis. However,
for the purposes of this investigation it shall be assumed
that a unigue nonsingular optimal control always exists
and that it satisfies the Maximum Principle.

To establish a more definite understanding about the
character of the plant considered in (2-1), and therefore

the problem, the set of admissible parameﬁers nmust be

*
For a listing of transversality conditions for the defined

problem see pages 306-307 of 12.
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e | (‘)J-r\ﬂ. merrver Fully., Tho aol, of admisaible paramel ot
should accept o wide spectium ol inLerprotatbions. By
this it is meant that the admissible parameters should be
applicable to all systems where the parameters are con-
sidered to be, for example, initial conditions, or plant
coefficients, or perhaps a combination of the two. For-
tunatel?, there exists a property of ordinary differential
equations which will establish an equi?alency between

i

these three parameter cases.

2.2 BSet of Admissible Parameters

Consider the continuity aspects of a system of first
order ordinary differential equations for the following
three cases:

For xeE"
(1) x(t) = £(e,x(t)), *x(t)) =y
y considered to be a parameter vector, ysEn.
(i) x(t) = £(t,x,a), x(t,) = x_ fixed
e = (al, ey umy’to be c¢onsgidered as a parameter
vector, asEnl
(iii) Combinations of (i) and {ii)
It is known that under the proper reduction routinelB:
(1)< (ii)FE=> (iii)
Moreovexr, these proper reductions preserve all the con-
tinuity properties of the original system considered.
Proot:
(1} == (ii}

Let ® = z - vy, X{(t}) a solution of (i). Then £ = X% for v
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- - A
constant. Therefore, z = x = F(t,z(t) - y) = g(t,z,y} and

Z(to) = 0. Continuity and the smoothness of (i} are pre-

served under this linear transformation.

(ii) == (1), Let z = (X, veuy X4 %gs conr i )
and
z(t,)) = (xlo, ceey K Op gy een am)‘
. A
define z = [§£§6¥¢%1J 2 glt,z).

Agein smoothness is preserved; i.e., if fqu[tO,T] then

gECq [:to ,T] .

The other implications follow: ¥

Because there exists an equivalence between (i}, (ii),
and (iii), a problem formulated in any of the three classes
may be reduced to any chosen class. Therefore, this in-
vestigation will only consider problems posed in class (ii).

For the sake of completeness, t, may also be con-
sidexed to be a parameter in (i), and therefore in class
(ii) or (iii), by increasing the dimeﬁsion of (i) by one.
Proof:

First convert the nonautonomous nth orxder ordinary
differential system of equations to a (n+l) order ordinary
auvtonomous system of differential equations by letting

v ; e T
xml&)_l’xmi&& =ty

Define: =z(t) = (xh+l(t), xl(t), ..y xn(t))‘

Define: g(t,x) = (1,£(t,x))

*By virtue of this transformation only autonomous systems
need be considered, realizing that a nonautonomous system
can be reduced to an autonomous equivalent.
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Then a{L-0) - (O,xI(O), . Xn(o))
z(t) - (HKL(T), ey anf))’ = g{z{T))
z (T = to) = (Xn+l(f = to)r x (T = to)) = (to’xo)

Thus, the continuity properties of a system of ordinary
differential equations with respect to parameters admits

a specialized analysis 65 a class (ii) problem without ig;
noring stﬁdy of all other possiblé cases.

However, if one considers a plant'to be parameterized
by vectors ae (F, then the optimizatioﬁ problem, over .,
would have to be accomplished the cardinal number of tf(
times. This means that for every parameter vector in A
the optimal control would have to be computed and this
computation performed'for all such vectors in ¢&. For ex-
ample, if ne A ET such that (A= [0,1], then the optimiza-
tion would have to be performed.b.ﬁimes, where £ is the
.power of the continuium. Therefore, one is motivated to
seek a technigue which would allow for the analysis of. the
optimal problem but which would significantly reduce the
number of computations required if o is allowed to range
over some set. The most obvious approach would be to hope
for the existence of an extension of a known solution into
a neighborhood of that solution. ©Or in other words, the
hope is that the behavior of an optimal control uy corre-
sponding to a parameter vector o is related to the optimal

control uy for o in a straightforward manner. For example,
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X =10,11 and for any ae X the "optimal" solution of
W o= ow, w(to) = W is defined to be ¢(t;a). Suppose also
that it only be reguired that if o belongs to 2 small §
neighborhood of o the "optimal solution ¢(t,g) belongs to
some £ neighbeorhood of p(t,2), € > 0, § > 0. This state-
ment requires, for & small, small parameter variations
result only in small trajectory variations. Obviously,
$(t,a) is unigue for all ae . Ther§ exists a continuous
mapping G, such that G:Cfé-Elx[to,T]l Butcriﬁ compact
and therefore has a finite open § cover. Then, undexr G,
the solution space ¥(t,n) = {¢(t,a)} = {¢(t,aj1|¢(t,aj) is
the solution of w = ajw, w(to) = v, for all “j £ CK has a
_finite open € cover. And furthermore, there exists a
§ > 0 such that for |uj - @] < 6 and € > 0 given,
|¢(t:aj) - ¢(tr&j, = | exp (- ajt} - exp (- &t)[ < E.
Therefore, instead of considering £ exact computations,
one need only consider a finite‘number of calculations if
the ¢ error criterion is acceptable to the designer.

The extension-méchanism to be investigated will be
an expansion of the Hamiltonian by a truncated Taylor Series
about some known solution. In particular, the Known
solution considered will be the nominal solution. The
nominal solution is that optimal solution which corre-
sponds to a = o, where o is the nominal design parameter
vector. The Hamiltonian is dependent upon the given plant
(2-1) in which the plant parameters are imbedded into its

definition. Therefore, it is desirable, before attempting
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ko axtend the Hamiltonian in a truncated Taylor Series,
to introdues a more flaxible notation which will give the
paramiat ey cyoeetor o more o liont roepragenktation in the
lami I tonian.  “This is accomplished as follows:

Define a new state vector (augmented state vector)
y such that
n+M

yeE'x Il C E

where .
Y 4 {x], XeEn, aell é o

It should be noted that the a defined above is not ﬁime
varying. It was stated earlier that only autonomous sys-—
tems need be ‘considered by virtue of a reduction technigue
displayed in footnoteT. This technigue is to be thought
of as a device which will eliminate the -explicit time
dependence from the plant. For example:

Consider the monautonomous system

X = (alt+a25in )X + u te [O,l]

= {)
X (0)
then under the transformation t = % = X,
n+1 2
xl = (alx2 + a, sin x2} Xl + ul , X(o) 0
X 1 0

The parameter vector of this autonomous system is

o
ot =[u§]  where Gy and 4, are constants. As a practical
consideration, one may wish to allow a weak parameter time

depcndence to exist. This may take the form of a drift or
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parameter aging. This situation will be considered in

more detail in Chapter 3. An example of this proposition

may be an extension of the previous illustration for

1R

;xl(t) = g

1 and uz(t) s then
)| @ mx, + 2, 8inx, X, v
X, () 1

Now, also define i
y(to)=[%i3
where o is,tﬁe initial parameter vector, which without
any a priori knowledge of its value will be assumed to be
the nominal parameter vector «". With this notation the

Hamiltonian may now be expanded in a truncated Taylor

Series. The development proceeds as follows:

2.3 Extended Hamiltonian Systems
Define the nominal Hamilitonlan to be:

N
H cyees, peor, wcer = He y ey, pter, uie))

for n+m

p(-t) € E

gy, p ), u" (L) being solutions of (2-4,
b,and &) for CL=Cl-n,and

a N o
g (=[x = [Fax"eo,ucrsa

a” e o)

yts) = E%'—‘} ﬂ"%’ﬁ}
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Theorem 2-1: Tet H(y{t), p(t), u(t)) and all its partial

derivatives up through order k be continiious in some
neighborhood N of {yn(t), pn(t),-un(t)). Then for

(v(t), p(t), u(t))eN (dropping the t dependence)
k.t

. ( n
H‘%Ra“"Z .i.<(‘1"j":P'P":GL-‘-L“>:V>LH“JJP5“”
&
<(g (jSP P Ty 7, V>H (P L)
where- . ’ ' 27

q
H (tj Pal)= H(q P u ),
(4hp%u?y eN

and V is the gradient operatorl4.

The vector (y¥,p9,u¥) is a point on the line segment
connectiﬁé (y;p,u)eﬁ to (yn,pn,un) N. Because the neigh-
borhood N is a convex subset of g2 (NTR)IFT (i.e. it is a .
2(n+m)+r dlmen51onal ball) The interior of N,i(N) is
" either convex or empty. If i(N) is.not empty, then the
followipg is true:

Given two points:fy,p,u) and yn,pn,un) in N

with (yn,pn,un) obviously-in the interior of N

then every point on the line'segment_between

(v ,pu) and'(yn,ﬁn,un) (with the possible exception

of (y,p,u) itself) is an interior point of N.
Because N is convex, N = co(N) (co(N) denctes the convex

hull of N).' So eguivalently, (y%,p%,ud) & (co(N)) except

foxr the previous noted exception.
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Example: (y,p,u)cE3 P

t (N}

Figure 2-1

CONVEX N
By (2-7), the Hamiltonian can be represented in a neighbor-
hood N of a particular vector (yn,pn,un) by a truncated
finite series if the Hamiltonian satisfies the conditions
stated in the theorem. The last term on the right hand side:
of (2-7) has special significance. This term, which is
evaluated at some point in N, (not necessarily (yn,pn,un)),

represeﬁfi the exror in approximating H(y,p,u) by

) n n n lHn
z ;f! Ly-yhp-plau-u, V2 1 Ly, pyw).
The teré-o

K
-+ <Y-yhp-phusu, Y H Yy, Py

shall henceforth be referred to as the truncation error

and denoted as o(ek); The argument £ will later be used

to denote the vector difference between (y,p,u) and
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(yn,pn,un). The necessary condition that H(y,p,u)eck(tO,T)

is réally not to sever. In the cases to be invéstigated
it will aiways be assumed that H(y,p,u) does indeed
possess k continuous partial derivatives. If it does not,
then there still remains another alternative. From the
Theory of Mollifiers15 a function can be gpproximated,
in nérm to within an arbitrary error ¢, € > 0, by a
le}o, ] function. Therefore, even though the Hamiltonian
may not have a desired number of partial derivatives
existing, it can be approximated by a function which has
tﬁe'desired derivatives. Furtherﬁore; the derivatives
which do exist in the original function will also be found
in the approximating function.
The study shall ﬁow-concentrate on a special trun-

cated Téylor Series representatien of the Hamiltonian
° B

| n n n 1}4”

= <UY-yY, p-pru-w i, v g, psu+

{2-8)

_rﬁ(g,p,UJ-z

1=

o

n n n 3 q
Y-y p-pPs U-tL %§7>P4(g,p,u)

,-..‘
iy
(i

+ 1 "
3
Therefore, (2~7) is being considered for k = 3 and '

H(y,p.u1) = C3 to,f] at least, in some neighborhood of

n

(yn,pn,u ). This property will be used later for purposes

of unigueness of solutions.
- T
Let: Cu) =% <« x{(T),Tx(T) > +J L{x,u}dt again, and

i
impose once more the differential®side constraint

g2 gly,w = l;_‘_pj_ﬁ,’_u_‘),;l s Yo given

Notation: Let
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K, h n
LR BT
X z;:" :.’ "} “ ‘_g I

where 3 + 1 + h = k.
Then the necessary conditions for the minimization of

H(y,p,u) given by (2-4,5 and 6) become

g = d Hey,pywo
dp

n

n
- HPC‘:janu-) + HPZ(Uap:quP"pn) T {2-9)

N n
+ H by Yo P wcy-ym+ Hpy (Y, poudu-uy +
+ oP(€3)

p =_9hHcyp
S y
Hiy " "
= - 3‘31?5%)—H32(g,p,u>(3—cﬁ ) + (2-10)
n n
- Hyptdip,wip-p™ - Hyly, prwd cu-uh+

_ 3
otjc,e‘. J

and where u* in (2-6) is assumed to exist and be unique.
Also, equation (2-6) shall be weakened for computational
pPurposes as follows:

For Hiy,p,u) ¢ CB-E:OJ] given,

the optimal control u* satisfies +

ok Hu.“j’p)u')lu-—u*ﬁ °
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For some u* tNci(a)*.

It shall also be required that the second derivative
type test Hu2(y,p,u *} > 0 thereby insuring a minimum.
It should be noted that Hu(y,p,u) and Hu2(y,p,u) exist
over N.

Summary of Assumptions: u¥ei (Q)

i) u* is obtainable from Hu(y,p,u) =0

ii) H 2(y,p,u*) > 0

By the assumed uniqueness of u*, u* is a globally
optimél_control over N.

Therefore, u* satisfies

h n
= H, g powr + H e (y, puntu-t+
W=

Huﬁq,p,u)

n " (2-11)
+}4ug(g,F%cL)(g-g"J+ PﬂAP(H1P7M3CP-pn)+

+OuC€3)lu=u* =0 over té[to:T] .

The assumptions placed on u*, that is (i) and (ii), are
really not too restrictive if the class of control func-
tions to be implemented possess some natural smocothness.
However, such control strategies as bang-bang control
would nafuxally be excluded from this analysis.

From the extended canonical eqguations (2-2, 10, and

11) several important properties pertaining to 'the

If u* satisfies (2-6) and u*tdQ, then finding u* by
setting t equal to zero would not make sense. Therefore,
it shall be reguired that the u satisfying t belongs to
1(a).
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extended Hamiltonian system become apparent. First, it is
desirable to insure that the solutions to the extended
canonical equations are well behaved for an arbitrary
parameter vector o "close" to o,

Lemma 2-1

For o + o the solution of (2-8)

E

g = H;(ujjp,u.) + H;a (Yap,OCp-p™ +

n

n
+
Hps‘%PM“%-a“) + Hou (Y, prun(u-w+
£ 0pCe)
ce : }JP(tj,,oij)
converges ﬁniquel& to yn(t), the solution of (2-10)

n r
p = —Hygpw - Hzcyopruwrcy-y») +
n .
;HH,ch,p,u_.J(pr")— H;u(g,p,a) (U~
3
- Oy (€”)
.Le: = H%(g)pgu)

converges unigquely to pn(t),
and the u which satisfies (2-11)
Le: Hu(tj,p,u) = O
converges uniquely to u ().
Proof:
By hypothesis there exists a unique control effort,
call it ua(t), which satisfies the original optimization

problem with o being an arbitrary plant parameter and
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al Cf. Remembering (2-9) is an exact equality and fox
(YIU-) eN tf.: E:O'T]
(1)

X = ﬁ(xd),ua(t),al)'

X"ty =X

Because for a = o, F(x(t), an, un(t)) is Lipschitizian

in x(t), and u"(t) (unique by hypothesis), the solution

of (i), for x(to) = X is unique and was defined to be
xM (). The function f(x{t), a, uu(t)) is also continuous
on J

T[C:: {(t,x(t),al t e[‘ca,'r],, (x,a)eN }

Also, suppose | £{x({t), a, u&(t)[:sM on]Tam

There exists a ¢ > 0 such that for any fixed «
(which implies a fixed u_(£)) with || (= - o, u —u) ] <,
every solution ¢, of (i) exists uniquely on [FO,T] and
as o » o (correspondingly u, > ™ from the continuity of
Hu(y,p,u)),¢a(t) - xME).

Proof:

The proof will be developed locally then extended.

Choose A sufficiently small so that
C={(tx)eE7 [ IE-tol ), IX-Xo1 SMA,

where M is a Lipschitiz constant JC N —

Then, for any o, uaaN a solution of (i) exists on

[t - to] < A. Let ¢_be any solution of (i) for a
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*
parameler véctor o and corresponding control u, . Thon
{¢a} forms a bounded cquicontinuous family. That is,
for each & + 0 there exists a § > 0 such that

9, (8) = ¢, (£ [] <«

where |t - t”7| < §. This implies, by Ascoli's Theorem ®,

{¢u(,)} has a uniformly convergent subsequence {¢a(k)(°)}'

But from the uniqueness of the solution at an,un un’

¢u(k) - ¢an = xn(t) as af{k) - a?

This gives a local result over [t - t_| < A. Extend the
results té [tO,T]. Notice also, oniy the unigueness of
$, at a point was required.
#({Claim)

Thus, from the claim the solution of (i) tends to the
unigue solution.xn(t) as o - o . Obviously the solution
of

a{t) = 0, a(to) = o
tends to o as.a » o -
Now all that remainsg is to show p(f) ~ p™(t) as o » o
(1) p(E) = = H_(y(t), p(E), u(t)), b (T) given and
Hy{y(t), p(t), ul(t) is Lipschitzian in p. Therefore, there
exists a unique solution of (ii) for y(t), u(t) given.
Let y(t), u(t) assume the role of the parameter vector o

in the claim. Then, from the claim

p(t) » p () as a + o

*

Fundamental Lemmal3. ¢ is a Caratheadory solution of
q(t) = hit,qft)), qa(ty) = g, on TE(to,t) if and only if
$(t) = qofjgt h(£,¢ (£7)at. .

@]
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The previous results can be used to show how the
cost index C(u) reacts as o =+ an. The obvious question
to ask ig "does C({u) converge to cu™® as a » o2

~ n ~ n - n
Theorem 2-2: As a » o , for o, o ga’c(u) + C{u )’

where u denotes the unigque sclution of (2-11) for o = .
Proof:

All that need be proven is that x{t) ~ xé(t) and
G(t) -+ un(t), where x is the solution of {2-9) for ao = .
Lemma 2-1 satisfies this demand. Tﬁen (§,§) - (xn,un)
as @ - an,_thus c{u) - C(un)

‘ y

What of the case where o # 2 If the optimization problem

is to make sense, one would intuitively expect the follow-

ing to be trivially true.

Theorem 2-3, minc(ﬁ) = C(u*) < C(un), w@ere u* denotes
the unique-solution of (2-11) for a*:#aL.
Proof:

Suppose not. Then there exists a uWEN such that

c(u™) < c{u*).
But, for (y*, p*, u*) eN the min H(y*,p*,u) = H(y*,p*,u¥*),
ugt () -
#

It should be noted that a weak inequality is used in
Theorem 2-3. Even if u* is a globally optimal control
over N, it is possible to construct a cost functional
whose arguments x(t) and ﬁ(t} are independenh of parameter

variations, when x(t) € E*(t) and u(t)e€ E" (t).
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For the sake of notational convenience the following
notational convention shall be established.
Let ‘
by =y - ¢ y.yten
Ap = p - p i p,p eN
- Au o= ou - un: u,uneN.
Also, in (2-9), (2-10), or (2-11l) it should be noted that
Hg(y,p,u) = 0 and H?z(y,p,u} = 0 (due to p appearing
linearly in H(y,p,u)). From (2-11), Au may be explicitly
solved in terms of Ay and Ap because ng(y,p,u) > 0 by

hypothesis; therefore, HEZ (y,p,u) 1 exists.

- n

Al = - { [H:a tcj,p,(,u] [HP%} (Ysprr) AY +

. n (2-12)
+H“~P(H’P’u') AP +OU..('€3)] } ]

The results of (2-12) may now be used to eliminate Au f£rom

(2-9) and (2-10) by direct substitution.

. n n n -1
sy [ - Hoatt v [ 5]
n

n (2-13)
HU\-LJ CquPgL{.)]AH -I:HPLL(‘I’JP’LL)

[H:.Z“dvfo:“-’]‘l H:p‘%l"s“’] dp +

r n -7
-Hpu, (g, oy L) [Huz (lj,)o,a_}:' Oa_(és) + O}g(és)
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0
Wh . = -
here Ay(to) [Y]'
y arbitrary.

The arbitrariness of y will not affect the desired result

‘as will‘ﬁe shown shortly, and
: -
a n n n
AP ={Hﬁ2(g,lp,u) - Hlju(bj,p,u.) [Huz-{"'japau):'

n n .
H:H(Lj-,p,u)} A(j - {HHP C‘{jupau-‘)." szu.w'f)’u')

-I n (2“14)

HU—P {Yqp, W) }Ap +.

l"\ . - n :,.1 ,

- Hyu,(g'ipzu—) HLLZ‘UJ'LP':U“)] C)’u‘(eﬁi)_ og’((‘“ )9
A’P(T:> giUen;

TFor N suffigiently small such that the higher order terms

n -—
{Hu}(ggp,viu

Qu(e3), 0p(e3) and oy(e3) are negligible, then (2-13Y% énd ‘
(2-14) can be répresentéd as a system of 2{ntm) linear
ordinaﬁy differential eguations. (Error‘bounds on ou(e3),
' Op(z3) and oy(e3) w?ll be established later). Suppose
such a non-empty neighborhood exists.

Then:

297 [Aaw: Bw] [ay

' A
. ! . - = G(‘t) _____‘..:‘_ (2-15)
AP C ) ; -_'A('t) AD . Ap

BY Ap (T) given
where A, B, and C are defined in the following manner:

For H(erru) = L(x,u) + < 5: fi{x,u,a) > + < ’ﬁr U

—

where P = iEP-(-rl)i!—)—ﬁ s pCT)= E?_i;.f?~}

‘3 cmtx\J
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"Then, from (2-13}

T g —— i it b —

/ —‘r‘n 1 n -Fn n
At = { [T :?a{x,u,a)} _[ ucx,u,a)][ ISR,

L O 1 O o
r-r_ ’ n -1 .n ] -_P / — n :
M U.(X,u,CL)L] [Lux(x,un[ U_(x,u,a)p] X!
-P/ _In - {(2-131)
[ u.(X:LL7CL)f3}cz]
. n h o
. ’ - n/ ;
B ) =-([’c_u_(_§,_ ng_-)_j][l.ue(.x,un-[f“cx,a{l)p] UJ [‘Fucxa‘i,m ;'QD
. O . ‘
. (2-131ii)
and from_(2—14)
' n - . [pr e’ RUEE
C t)= Lszu,xw F);cx, u,cz.)P ' [1[;()(, W, )p} i+
L =~ - ___u%_ L ¢
Eaa(x, w,a) ﬁ:’ I
W ) t
n 4 —11 A
Lxu.(x: L) +['Fx (X,U,,(IJP]UL [LLL“’-(X"U“”) +
res "~ = - - (2-141)
[qtacx,u,a))
|

“;[2(",()( u'a)f)]n] [L" (x 1;34[-}:':)( ua)“p]" '[—F X,u a)‘]n]}
W W, xQ? x LHa Pu.
A‘iathér‘interesting phenomenon occurs in~equatidn (2-15) .
The .fows of its A& partition are egual to zero- In fact,
the truncation errors associated with the A& rows are also
zero. This implies that the autonomy of the parameters
have been analytically preserved. Therefore, the parameter
variations‘gonsidered, of the form o - an, equal a con-
stant. Por a physical viewpoint, however, it is desirable

to allow for a previously noted weak time varying of the

parameter. If so, such qualities as parameter drift and
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aging may ‘be considered. This quality shali be introduced
into the problems structure as follows. Assume the exist-
ence of a £(t) which will appear in the A4 eguations in
place of.a truncation error. Then A& é'z(t),Aa(o)
arbitrary has a solution which is equal to a constant plus
a low amplltude, or slowly varylng tlme dependent term if
[le(e) |l is emall. Tt will be demanded that ||£(t)[| be
sufficiently small so that it may be dismissed as were

the legitimate truncation errors. This is a reasonable
demand ﬁécaﬁse one would not expect a set of ﬁarameters to
exist which are fapidly changing or stfongly varying in
ﬁagn;tude; to admit a truncated Taylor series representaf
.tion of H(&Fp,ﬁf.

Eq.-(2f15) is fecdgnize&'to be almétrix Riccati type
equation.’ It can be recognlzed as such because of the
structure of G(t). The solution of (2-15) is given byla
(n+m) x (n+m) nonlinear system of differential eguations.

That is, there ‘exists a symmetric XK(t) such that

K 2 kib) = ATE) K+ KEYAM) - K6 B(%)‘KH:)_ +C )

, © (2-16)
K(T) = [:g g]
and Ap(t) = K(t)Ay(t)

The solution of * w1ll usually involve a computer

mechanization of the problem. Some techniques of solving

a Riccati eguation. can be found in Tuell7, Frledland18

and Bass with an example supplied by Stoner, Taylox, and

Basslg. If any of the 2(n+m) solutions of (2-15)} are
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known in closed form, then partioning routines can be
used'to‘reauce the computational difficulties asscciated
with findfng K(t)lB. Pértioning techniques also Sﬁggesﬁ
another method of realizing the elements of K(t) for this-
particulaf‘ﬁroblem. ‘

Partition K{t) follows:

Kt{) LT . :. ,,,,,, i

where Ki is nxn, K2 is nxm, X, is mxm. Then au defined by

- (2-12) can be expréSsed-és .

. . n. : - T

AU.. = _,I:Huz(:ljjpabl)] '[Hutj((jippu-)'f'[-p ((j\)U.CL)K('E)l
)[I (LJ,u,CL)K {t)ﬂag ' - (2-12i)

Therefore, one needs only to focus atténéiqn on ‘calculating
Ky (t) aﬁa K,(t). From (2-13i, ii), (2-141)', and (2-15)

the dlfferentlal equatlons defining. K (t) and K (t} are
establlshed as:

1s nxn, Az is hxm

LA A+(~t) '

A ) A(t) A (t)% A
A3'5rnxn,Aﬁismeu

Cem n
Aw = F oxd,ar-1, (,x,u ay L zoxuw +

n

(s ool (Ve oo (FLonneB )

. ' n
A2(t)= ?a(x,u,(l)*'F (X,u,d)[LU@ cx,u)_+

n

(ap- (X, U, a)p) (ﬁ (X, U, a)p)
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Aty =A ) =0

Betye [Bet) B,w| | B,t)1s nxn , B, () 15 nxm
1By .54(t) Batt) 1s mxn, 54&) 1S mXxm

h A ’ N o n ’
Bycty= £ x,u,a) [Lz_z (X, W) +(1Cu{x,u,a>;3)d {ch,u,a)
B,y =B (ty=B, =0

CLt);.[Cl(t); Cz(t)} 5 C,.H:J IS nxn s Cz (£) is nxm
Cyety Cowr] Cttd s mxng, Cy¢t) 15 mxm

’ ) h- / o N - n n R
Cit) = Lxé(x,w«}-(ﬁx(x,u,mp)x = [L)m(x-,b_t) +

-1

i (ﬁx . X’.u,aapm [ )_Z_z X, ) +(1fu (x,u,a)ﬁ);j.
| '[L*;K x, u;} + (Fooad,arp), |
Covr= (£ ox,usa p) LLXLLCA W (1C X p). ]
[L 2(X,U) + 7[ (X ump)a] (7E cx,{{’a)p_‘)';;-
C3(-t}- (‘Fa(x,u a)p) "ﬁ (x ua)p) L zexsw v
-+, ua{lJF’)u] (Lhw( (X,u) + (ifu'o(; u,a ) ;3):)
C, @) = ﬂcx,u',as 5):L (L 2 Ky f(fu’(x,u,a)ﬁ)‘i] ":'

A <x,u,@)_"ﬁ)&
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Theréfore:.
() K (Y= K YA t-t)+A 8 K ) - K mB () K t#)
+C ct) l( (T)-T

and

wr - K= Kty A+ A w K, 4y - K e B oK
+Cattr, Ky(T)=0O.

Comments:

Equéfion (i} is .a homogeneous nxn nonlinear differen-
tial system of equations. Its boundary data is specified
aﬁ t=T. It is independent of the_initiél_data Ay(to);

Eqﬁatibh (ii) is a nonhombgeneoﬁs (nkm) linear
differentiai.system of eguations. Its boundary data is
specified at £ = T. It'is independent of the initial data
Ay(to), thus leaving Aqo‘arbitrary as acceptable.

Con§i§gr now the solution to (2-12) to be of- the
form ’

~ . :

Aultr= Gagtt) ' (2-17)
whére G(t) is calculated through one of the suggested
methods. A remarkable observation may be.abstracted from
(2-17). The implementation of the adaptive'control need
6nly require‘that xn(t) need be stored in some memory
device. The simplest example of sgch a déviée would be a
tape. Thus, after é(t) has been precomputed, a(t), being
a-function of the nominal variables‘yn(t), ﬁn(t), and u”(t),
it will be-multiplied in real time by.(y(t) - yEN -

But yn(t) equals (xn(t), un), and o is nothing more than
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some known biasing term. Thus only n ‘known time varying
functions must be -introduced into the system from memory
in redl time instead of §(n+m)+r funcf¥ions which migﬁt
have been éarliér preaicted.

"The schematizéd realization of:thé adaptive system is
given in Eigure 2-2, where 0 is an estimation of a* and
a* is the actual plant parameter vector. Parameter

estimation will be treated in Chapter 3.

— [UrTrR

PLANT :
X = f (X, Uck), o0

ADAPTIVE — o~ |
CONTROLLER o>

" PARAMETER
ESTIMATOR

Figukre 2-~2

Adaptive Structure

2.4 Truncétioh Exrors

To complété this section, the structure of the
truncatioﬁ error terms will.be inveétigated. Rather than
an exhibit the results in tensor notation, the equivalent
scalar triple sum will be analyzed.

Let z é, (v,p,u) Ez(n+m)+r
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Then the truncation error of (2-8) becomes

2(n+m}+r 9
(1) :-3% 2 (Z4 Z- )fz- z; )(zK z‘,\)egzl"{éizzé)z
;31K j— K

Evaluating 5 H q(Z) for special cases

52‘ aZJ c\)ZK

it can be noted that o and p appear linearly in H(y,p,u).

Therefore,. for Y 8- (,Zifz‘j,zk) having any two or three of
its elemeﬁt being an element, or elements of p, or the
last m é'lements of p,
‘ 63 H q(z)
6 s éZJ éZ K

(zi*.,zj,zk) having two or three of its elements

= O
=

-

e

For A
being an, element oOr elements, of o
b‘HqEZ) C ‘
O .
3z:02;0Zx ;
It may be noted that the truncat:l.on error, defined in (i),

is dependent upon zq,, z3eN.  The requirement of flnc’;ilng
“such a 23 which establishes the equality in (2~8) may be
relaxed by redefining the truncatiqn exror. Let the

bound on the tfuncatiori errcr, denoted as g, be defined

as follows:

- 24N+ + 1
€ = sup 3-1,—7[23 (z,-2"XZ; Z )(ZK -Z2) é_ﬁé(_Z_)__
- ZeN - ,J,K-I 3202307
(1i)
2Ny

2 Sup Zcz -ZINZ -2 X2 -2 ny & Hlzy ]
zZe N L,1yK =3 ) bz bz bZK
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Also, the truncation error associated with (2-12), (2-13),
and (2-14) may be interpreted similarly.
Let“?)(z) be the middle term of (ii).

Then

- )
.OdﬁalsSup{ }
ZENYqg w L
;
erieds )
<@(e,>s§z%{ } .
L , J

Therefore, requiring ou(a3), op(e3), and oy(e3) being

O Q-
3

(i) 4 Op(€3) < su
{ P zei{

5SS

a%
i

small can be insured by-requiring thé righf hand side of
(1ii) is small. '

2.5 Example Problem I

§

Example: .-Linear ReéulérSCéingle.channel_controi)
Cohsider the plant

(i) X (t) =‘A{a)X(t)+Bu(t), X (tg)=C

éné the éost index

T

(11)  Clu) = %X (T), §X(T)>+%.[ <X (t), QX (t)>+
: t .

+<ult) ,Ru(t)> dat ©

where

The terminal time T is specified

=1

is a 2x2 positive semidefinite matrix
Q is a’2x2 diagonal positive semidefinite matrix
R

is a 1xl diagonal positive definite matrix

Ala) = [ o 1 ]
, “‘C(.I -—OL?
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The nominally optimal solution is found as follows: De-
tine the nominal Hamiltonian to be
H(X(t) o, ple) ,ult)) = H<X(t), OQX(t)>+

C¥scu(t), Ru(t)>+<p(t),A(a")}X(t)+Bult)>

ana
(iii)  pl(¥) = - %g = - 0X(t) ~ A% (e™)p(¥)
'Sé%ET = 0 - Ru(t)+B p(t) = 0
then
a(e) = = RBp(e)
Note also '
——Eiﬂq-_ R0,
aui(t)
Then v
M| fA %—BR 'B
S Ty ( QA

and P(T) = FX"(T).
Asséme the solutiﬁn of ({(iv) to -exist and be of the form
n o, n ="
oretr | (i D] k@ X ]
__E......._;-._n.....-....:__.-n ________
!

pht) | \Kp () | Kppt xng .

‘ Now construct G -of (2-15), remembéring

X (£Y7 O
Yy =| X2, i =] P2
Ta, P (1)

@, _p4(t)



Note:

ot } © o) o
7 n n
=, ~Qg X7 X, 10
O a o Q :o
O o O o 1 O
e — - = — | —
“qu © P O 1 ©
o - n oy
. 92 o p, -
Pz O o O :O
n
i o P-’? o O |1©

O SO
O o O -
O o o
a’ o o
a) o o
-X\“ O o
n
-Xo o ©

pg(t) could be redefined in terms of X" (t).

38

& AXT>,
le: P;(t):z l( (t)x () £ <
. N
Therefore_, :
o-Q) o o © i o o
> . e Al n 4] 1]
~Kyz| 1-@z 0 0 KH:) + Kiegy| "G Xy X2 |+
© x;‘ © o 0O © o o
0 X, 00 o o0 o o
© o o o _ -q,,'opg_o
~K®y| @ =no o Kty +| 0 -9, o o}
© .0 9. o p; (&) O 0O
O o o o O pr;‘ o o
where K{t) = [}fij]’ i, =1, ..., 4
! T
be)
Solve for K(t) and construct E(t} of (2~17). The bound



on the truncation error for this example is:

e'= sup[(d; - a]) (X - X} (P, = pp+laym o) (X,

ZeN

For ‘example, if zeN, N =‘{(XfururPYE iyZ i

then e = 2¥3,

Also
o'q(é) =0
op(&y=lop@r]=] o 1
| Op,(€) (@ -aN0X, - XMr(CLy A XX =Xy 4
Op3(€) - O

OB(EB) = rOxl €y | l@-altip,-p2) ]
' Ox, (€Y | lta, azXpz-Pz)
(X=X )(P,- P)

,_(;(2.):2)(,pz,‘-P,_")_J :

‘ ‘Oa‘(e)
_OCLZ(G}

Under the previous example N,

3
ou(€)=o

3.
. o2
- 2
09(63) = 2[:2]
. rz

Example Problem 2:

Consider the plant

X{t) = aX{t) + ult),

X(0)

<

1

g3

39

- %3) (p,-py ]
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Ll Lhe nominal value of 0 e o0 w = |, Also, consider
the cost index given by
<0
C(uh—é] (x2ty+ Ulee) JE,
o

The nominal system is optimized by solving

XPe) = - x™e) - ptt)
() = - xP(e) + pt(t)

dPt) = - pM(E) = - kP (k)

]

where k" is the nominal Riccati gain and is equal to
n

kK = =2 >0
Thug P (£) = (= 1 +/2)x" (t)
u (t) = (1 - 2)x% (%)

and X7 (t) = exp(—'dat)

Now consider the system subject to the parameter variation

a=a"- e, ult) = uWe).

X (k)= @% €)X+ (1-4/2 ) x"ee)
= -1+ X+ G-2rexp Wz i)
Y(%):cxp[—(ia-é)t][l + {1-4f2) {exp [( i+ €

A1+ € «f2)
~E ] -]

‘Note: for & = 0, h}{'(t) = Xn(t)%

For a = a < ¢ = a*, the true optimal strategy is
Xk(E) = = (L+e)X*(t) - p*(t), X*(0) = 1
P*¥ (k) = ~ X*¥(t) + (l+e) p*(t)
uk(t) = - p*(t) = - k*X¥(t)

where k* = = (lte) +¢ (1+e)%4+1 > O,
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and

X*(t) -= exp [ —'V(l+s)2+l)t ] .

Now the adaptive dynamics are:

n

for a, = = 1, a, = X'(£), by 7 1, ¢, =1, ¢, = p ()

2

Therefore : -

KE-D+ kT~ kEOkE+1 = kT
But thig is a homogeneous constant coeﬁficient.differenh
tial eqﬁation evaluated over tO = 0, T+ », Therefore,
from a steady state argument ile = 0. Thus

l(?t: ,14MQE =1(i

Also:

e e n e . e, e h € o) = 0.
_kz:k\x—kz“k,ka‘kpﬁkaft )
Integrating backwards in time one finds

ki(‘t) =2 c' l—g@) éxp(-&t),

The:efofe

U= U - [+ 42 XX-XM+ exp &2 D2y a]
Letting Aa'= o - o = «"-e~0a" = -¢

XS - C t+€‘)}("~'(t)-(-l+#é )xe(f)-gxp(—g/é—e)Z(—f+ 2 )€

Thus

‘ ' t
T XS4y = cxp(-gfg -ext - exp[-'c 2+e)t]ﬁexp(§/5+e)1')
o
2(-1i +&) € exP(-.;%/%T) dr

= exP[uC%‘Z-w—E)t]{ I~ 2(-5-4-#2 )[CXPCG-%_J -i]}
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)

Notice, for e = 0, Xe(t) = Xn(t) and for et small
x®(t) ¥ x*(t). Consider now a 10% parameter variation

(i.e. ¢ =_1). One finds

~ - F
XS X(1r=C .79%)
~ -/
X (4D x*n et .80

Y
XEE) - xXSciy=e 7o)

T O N N

]

Figure 2-3°

STATE SPACE € = .1

Now considering the various control efforts considered for -

€. = 1..

GKer = Clligz.21 ) expCyzar t)
Wy = (-.994) C‘Xp(-‘/é y )_

Wety= W) [Cry2 XSy - X (D~ X p(-y21)2 (142 ) ()]
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o J_ a
I
W
-1 ' T
2 uXcr)y= - 0877
W= - 10y
-3 USCt) == 0873
Ayl X
// k) e=.1
PR VA e UL
L Tw=uww UFo) = -.3860
-5 TMoy= - 414

o= -.3858

Figure 2-4

CONTROL SPACE

e = .1

From (¥) it can be noted for (et) small'(i.e., the. internal

where Xe(t) has its largest values) Xe(t) acts optimally.

The non-optimal characteristics of Xe(t) occur when (et)

is large. But over this internal x®(t) is small and its

contribution to C(ue) is minor.



44

IRl 4. N

'

Figure 2-5

GAIN PLOTS
It is easy to see from Figures 2-2 and 2-3 that
Clu*) < c(u®) < C(ur)-
in fact, Figure (2~6) exhibits a significant reduction in

cost by using w®(t) over u'(t).
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A

5 ey o -

4 7T cud S

5 R Cudd

» - ”

oy 4;7//

Z o+ //

g4

o ; v —
© /2 L t

Figure 2-6

COST INCURRED

2.6 Reoptimization

It -ig assumed:

{i) that the actunal state X(t) can Be measured in
real time in the absence of noise. If the cbserva-
tions are noisf, then a state estimation technique
-might Have to be considered. (Examples —- nonlinear
stochastic filters, Kalman filter, etc.) -
(ii) Xn(t) and o can be loaded into the system in
real time, This could be accomplished by loading
these vectors from a tape which is synchronized in
real time with the physical system.

and -
(iii) qe can be generated (estimated).

Methods which satisfy {iii) (i.e., the parameter vector «
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need be estimated) and will be treated later in this
investigation.

Tt may be noted that the feedback loop is adaptive
and produces a conkrol cffort which is in such a-dircction
as to minimize the cost incurred. This preservation of
the concept of optimality will be called "reoptimization."

In order that the adaptive structure be of practical

use it must possess the gquality that:

jc{ux) - c®) | < jc*) - c)]
for u® being the adaptive:control and for a set of
@araméter vectors in some neighborhood of o

Theorem 2-4: For an ada@tive control u® satisfying (2~17}

ﬁeeﬂh% there exists ¢ > 0, and sufficiently small, such
that .for Jlae - a*ff < g3 ae}-ueCX '
lc(ur) - cu®) ]| < |clu*) - c™].

\

Proof:

For a = a* # un,~C(u*) £ C(un):froijHeorem 2-3,
From (2—13)‘and the matricies defined:by (2-15) (ae being
' the approximation of a*)

(%) g% = 9% = a@y* - ¥®) + Blp* - p®) +
( +oyly* - ¥7, pr - p7, wr - W),
vy - ¥ =17

where vy (y* - v p* - p", u* - u™). is the Eruncation exror
of (2-13) foxr (*). From {2-14) and the matrices defined

by (2-15)
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e’
{
.
i

* X L% . .
cly -y%) -a"(p -p%) +
* n * .1
-p,u -u),

F Yl - ¥
(" (1) - p%(T)) = given
Now choose ﬁa # ¢ such that the truncgtion errors y and y
are negléctable. Either N8 is the point set (yn, pn, un)
or otherwise. If N8 is the point set (which is the result
of insufficient smoothness of H(y,p,u) about Hn(y,p,u)),
finished. If N_ is hot the point set,‘thep there exists
0® such that ||a" - 8]} < []a” - "]+
In an argument similar to that of Lemma 2-1, excepf

- e *
a” =+ o instead of an;

i.e.:{xeet'—ta): xs:
P (T Y= p Ty
the solution of o ;

C r e - *
o [FEHAS Al

, P -P% | |[Cty Ayl p -P

tends to the trivial solution (i.e., (y*(t) - ye(t)) + 0
and (p*(t) - p%{t)) = 0. The trivial solution i; the unigue
solution of (i) for o° = o (i.e., € = 0). It is apparent
tha£ u® tends to u* for this local argument because of
their linear structure.

Thefefore, for a* and aeeNe and ae sufficiently close
to a*, L(xé,ue) defined in (2-2) can be made arbitrarily
close or equal tq L(x*,u*). But u" is a fixed function of
time and for a* # o® is some constant non-zero vector A.’

Consider the sequence of parameter vectors a?,
u?sNE, such thét ||m? - ao"|| =0 for i, =1, 2, ... . Then

* n * n n n
for @ and ojeN_, and ||a - o] = A, Lix_, u;) need
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* * . *® e
not converge to L{x ,u ) as i + «. Then IIC(u ) - C(u )]]
* : C
< ety - C{un)l[ for a set of o ° sufficiently to
=
o .

The adaptive structure now formally possessed the
qualities demanded of a recptimization scheme (see
Theorem (2-2)}, (2-3, (2-4)). Namely, Cc@u®) » c@™ as
a® = an, C(u*) < C(un), and C(u?) -+ c(u¥) as of » u*.

Also; subject to the constraints imposed on the pfoblem,
the derived adaptive control is the "best" minimizing
control fof the given problem. One intrinsic feature still

needs attention, namely the computational requirements

imposed by the necessity of generating oS (see Figure 2-2).



CHAPTER III

PARAMETER ESTIMATION

3.1 Parameter Estimation

The objective of a parameter estimator is to approxi-
mate the actual parameters while hopefuliy satisfying as
many of the following gualities as possiblé.

Qualities to be achieved:

(1) Compute unigquely the unknown parameters.

{(2) The estimation should converge rapidly to

an accurate sclution.

(3) The computational routine and its physical

gechanization should not be complex.

(4) The parameter estimator should be free of

dimensional restrictions. '
The efficiency of a parameter estimator may be thought of
as a trade-off between the first three qualities. Quality
4, however, is an often neglected property éf estimation
techniques and will be givén speéial attention. After
all, any method used must allow for all the desired
parameters independent of their number of be computed.
Therefore, the estimation devibe is truly an enginéering
problem.

If the plant parameters can be obtained by direct
measurement, then the reoptimization problem is direct.
In general, however, one cannot hope that all, if any,

of the parameters are monitorable.* The estimation of

*
Monitorable implies obtainable by direct measurement
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non-monitorable parameters will vary in complexity and
accuracy as a function of the computational technigue
considered. It is for this reason that numerous selected
‘computational technigues will be developed leaving the
choice of which method to mechaniieua matter of persbnal,
preference,

To @otivate some of the numerical and gradient'tech—
nigues té be developed in this Chapter, the effect of
parameter %ariations upon the systems’ trajecfories will
be explore&. With suitable modificaf%ons, some due to
H, Hermes, a méthod-similar %o one‘deveiqpéd by L‘.S.
Pontryaqin{r Vl G. Bﬁlfyanski, R;‘Vt Gamkrilidze, and

E. F. Miscﬁenkozo

will be employed to examine the
parameter—trajectory varia£ional propefties. (Pontryagin's
work was used to show how a given trajectory was.dis-—
turbed by variations in the‘confxol effort.)

Suppose x(t) and u(t) are monitorabie, u(t) measur-

able (in the sense of Lebesque), then o can be estimated

as follows:

Consider

x(t) = £(x,u; o) | (3~1)
'x(to) = X4
o not monitorable over te[tOfT]
‘Assumé the solﬁtioﬁ of (3-1) exists over ts[tl - L€, th=
[t,, 71,
2 >0

e > 0.
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Consider the model of (3-~1) to be:

x€=fxeue,as)

X€(t,-Le)= x(,-2&) (3-2)
oveyr
te [t-Re,t,].

t

Figure 3-1

Trajectory Variations
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For x (t), u® {t) measurable, the game is to find an o

such that (3-2) models (3-1) in that lt minimizes some
normed aifference in their trajectories*. befine xi |
to be the solution of (3-2) for o = a .e A, ori

being the cardinality of(jz. Define:

l"(t)-UX ,
‘V-a e@

Obviously

xit) (7T (t)?f¢

i Xy
x (L)
Xo
'x,
Figure 3-2
Pe(tl)
*
an ET norm will be used. While a Lz[t - ze,tll norm

would be desirable, the computational problems become
prohibitive for this development.
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Let it be demanded that t, is a Lebesgue point of o, o

measurable {(i.e.: if

t, - ,
f .'Fc)r, a’rdt= ﬁcytt,),a‘Jle +O(CE)
-Re

where o(e)} denotes "order of €").
Define an elementary perturbation of o as follows
N Le <t
Q@ on '!:l- € < .é{'.,

(3-3)

o] =
_Trc a* elsewhere

4 xl(t ), ult)el and assumed known (i.e.,

).

Consider ¢(t)

monitorable), and x?(t,e) = x(t,uﬁ_
i

Now compute ¢{(o) as follows, using (3-1), (3-2),

(3-3),
Aim _‘..[x (t,,e) - Xt )]
€+0o €
- ! E
Lim L (ch?(t,e),a-f)—ﬁ(X{t),CL*)Jdt
L
€0 € t,- L€ .

1!

il .

'gim 1. {H(x(t,,é),&‘f)— ﬁcx(’cn,a*)Jjﬁ*O(e)}
-~y ’
(3-4)

= [f{xct,),afy- chti),a*)]ﬁ

= (i) CO)d
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Define (i)

VT"L&') = dgl_ K“TL({"@ : (3-5)
€ €=0

(ii) '

% (3-6)
=la
Cfm g T, l aﬂi close to @ }
Then
xﬂi(tl,e) =Xt)- Y (t)er o),

(3-7)

‘poi" Clme aﬂbc a,

is a point function.
Let c(tl) be a hypersurface of all solutions of x =

f(x,u;aﬂi).at tzti. Notice élsglvﬂ_{tl) is tangent to o(tl)

i
at the point Xﬂi(tl)-
If o(g) is sufficiently small
o Ny 3-8
X“,L(_‘t”é:) = ?((t,) V'rr;_(t:)e- ( )
The error in approximating x(tl) with x“_(tl,c) is
. i
v {(t.). Minimizing |[|v_ (t,)]|| for e fixed and suffic-
LN 1 w1

iently small, one achieves by using (3-7),

min | Y () € =min |l [#cx,t,,a*) —fcx,t,,a?]ﬂ. i

. . R s - e e
which can be written for a minimum occurring at o, = o~ as

1

min Hvy (k&30 =min |l [)'Ht,)wfrx wy;as Tall, (3-9)
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Ty ) s IMAGE OF Sy,
/ 1 L
IN £, HYPERPLANE

Figure 3-3 (a,b)

o Illypersurface
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The ronuld of (3=9) lLoends ibnelf Lo an inlLoi bive
interprotation basced on triangles. ‘Phis oversimplifica-
tion will investigate the sclution to a two-dimensional

system of ordinary differential equations.

i

Figqure 3-=4

Simple Example

Let b - a= 1%, ¢ - b =v and the line segment ab represent
N )
the solution (3-1) (i.e., o = Q ) and the line segment ad

represent X (t) for a = o . The slope of the line
i i .
segment ac is approximately that of ad (i.e., X (e)) .

. i
Therefore, as v + 0

”.IV_" — H)E (‘t,)—“{:(x,t-,a?) ”__,,_ o.
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Scveral cngincering problems must be resolved if {3-9)

is to bhe developed further. They are:

i)

ii)

Is é(tl) monitorable?

What are, if any, the dimensionality restrictions

-on the problem?

If x{t) is monitorable, the of which minimizes {3-9)

may, in some cases, be difectly computed. The vector

élements xi(tl), 1l £ i « n, which are not monitorable

must be calculated from monitorable information. Some of

the methods which will facilitate this are:

a)

b}

c)

One-sided derivatives for x(t) sufficiently
smooth and fe sufficiently small; % pro-
poxrtional to an a priori smoothness judgment
on x(&).

If any element of elements, ki(t) of x(t)

~are independent of parameters, ki(t) can .

be computed directly. (i.e., ii(t)=G(x(t)},

x{t) monitorable)

Mesh refinement methods where observations

are obtainable at times ti' tia[tl—sﬁ,tl], i =1,

weay ky ti monotonically increasing. The follow-

ing methods will establish derived derivatives

at a point, or points interior to [tl - e, tl].

(1) Derivative formulas from difference
operations.

(2) Central difference formulas [21].

(3} Modified Euler's Formula.



58

(4) Weighted averaging of a sequence of
ii(ti's) where ﬁ(ti) is found by any
applicable method. This will smooth
the data and reduce the effect of
data points which have a large

. variance from the mean.

The. techniques of finding ﬁ(tl) will not be pursued
any further. The problem of numerically approximating
a derivative is that it may ‘be noisy. Other approxima-
tion methods shall be developed which will not have need
of a k(tlj computation} Therefore, it will be assumed
that if k(tl) is a required computation, it may be ac-
complished with sufficient accuracy so as not to intro-
duce significant errors into the system. The question
of dimensional requirement will now be treated.

3-2. Dimensicnal Restrictions

'In Equation (3—9) it shall be assumed that ﬁ(tl) has
been satisfactorily computed. also, x(ty) is known from
direct measurements énd.the mapping £ of (3-1) is well
defined., Then the problem of finding an oF which satisfies
(3-9) becomes a problem of solving a linear system of
non-homogeneous equations. Because a® appears linearly
in (3-9), ﬁ(tl), x(tl) being known constants, one is
interested in the solution to an algebraic equation of

the form:

Att‘iae = bit) (3-10)
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where b(tl) is a n vector whose components are bi(tl),
i=1, ..., n, and b, (t) = f(i(tl) plus any term in the
ith row of f(x(tl); a®) which does not multiply an
element of af. The matrix A(tl) is n x n.* If there
does exist a zZero row in A(tl) remove it.by reducing the
dimension of A(tl) and b(tl) by some appropriate amount
(all remaining arguments will be applicable). The matrix
A(tl) is formed by those fixed lumped system parameters
and known state variables which multiply any element of

e

¢ . The construction of A(tl) will have at least one

entry per row. For example:

S(l ’ alxl '!'X:' X|(‘t.) O O o

- - 3 _ 3

)_<2 =| @,X, +Xg > A=l 5 x;)0 o
X3 QgX,+ TgXz N o O X)X

A matrix A(tl) which has only one entry per row is

exemplified by

X |- (l.x.;-x; X) 0 o
Xp7l=| @z Xz + X3 = Atg={ o Xty o
XS. 0.3)(, +K3 O s O Xl(tl)

Let the rank of A(tl) be g.

*
A({t,) will be assumed to be free of zZero rows. A zero

row would be the result of some b.(t) = 0 in (3-10) being
indeperident: of o t
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If g = m = n the solution of {3~16) is trivial and

is
e _ .—-1

If g = m<n and x(tl) is monitorable, and %(tl) is monitored
and/or computed exactly, (3-10) represents a system of m
consistent linearly independent eguations. Then construct

Aitya®= bt

where
;i(f,) is mxm,rankm
e E7
E({,)gEm

the solution becomes
e /\-_l' /‘-—‘-
a =AYby, .

Otherwise, two types of degeneracy can occux. R. E.
Mortensen 22 listed them as:
1. If x(ty) and/or i(tl) is not monitored or
Gomputed exactly, and if b(ty)eIm(Alty))
then no exact solution is possible. Im(A(tl))
denotes the image space of A(tl). The image
space of A(tl) is the set of vectors
‘b(tl)eEm of the form b(tl) = A(fl)ue for
some aSeE". Im(A(tl)) is a subspace of
n

E". Case one is like having more equations

than unknowns. The special case to be



considered is one where b(tl) is considered
noisy, and one may choose to takg redundant
measurements. "Noisy" shall be inter-
preted as the uncertainty associated with

a measurement or a Célculation.. In this
case, one may request a solution in a

"best lease mean squares fit" sense. (See
end cof case 2 for further results.)

If ker (A(tl)) # ¢, then a solution, if it
exists, is not unigue. Here ker (A(tl))
denotes the‘kernel of A(ty). Suppose oa
and E” are the apaces to be considered;
and let A(tl) be the linear mapping

m

A(ty) 3 B~ E". Then the kernel of

3

A(tl)‘ig the subset of vecto?s aSer™

such that A(tl)ue = 0. It follows that
ker‘(A(tl)) is a SubSpaC% of E®. The
case where ker (A(tl)) # ¢ is like having
more unknowns than equations. This bar—
ticular formulation may easily be tﬁe

‘class of problems that (3-9) is imbedded

into. However, there are ways to circum-

vent a type 2 degeneracy to achieve a usable

solution, if one does exist. One way of
achieving the solution is with quadratic
programming with an ordered vector cost

functional.22

61
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Because uniqueness cannot be achieved, it is desirable
to at least guarantee that the computed vector o
has'propeyties which make senée in the physical system.
Let it be)required that o be close to of. This ﬁill
exclude solutions which reguire the system parameters to‘
have large variaticns from the nominal. It is reasonable

to suggest this because the adaptive problem considered

local parameter variations about the nominal.

Let .
Awpya®=beey = X
and
Nas- a'iP=¢as- o, at- o>
Al =<A, A>
Define

N 2 n-Atah,
T =min {il A & @™ i }

This means, first determine an o° such that ||i|| is mini-
mized. If b(fl)sIm(A(tl)), then ||A|| = 0, otherwise
minimize |[A]] > 0. If ker (A(t;)) = § then the solution
is unique and the problem is finished. If ker (A(tl)) # ¥,
then it is possible to minimize not only I]Xll but
Ilae-un|| also, This results is a "best" solution with
respect to the given I'. This can be more compactly stated

. . .22
by the following adaptation of a theorem found in .
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Theorem 4-1: The solution to min {||i||%]Jae—an||}, where

A(tl)ae—bftl) = A, and A(tl),b(tl),an are given, is o =
A+(tl)b(tl)+an, whengA+ is the pseudoinverse of A.+
The notion of a pseudoinverse is not limited to a
type 2 Eroblem. Consider a type 1 problem again with
m<n (i.e.: an overdetermined, or overspecified system

of linear equations),

Define:

B = A, )a®-bt) 1% <A )2 bety, Att,)aS bit),

The parameter vector o will be said to be the "best
sclution in the least mean square sense" if it minimizes
R. The minimization is accomplished by setting the

gradient of ||A(tl)ue—b(tl))|| = 0.

v A dpaC-bipll- 2 Atp At ya®- 2Aw,) bit))

= a (AEsAEN At b)),

23

But, Penrose in established the following egualities:

(i) A ATAa=n1a
(ii) (a af)yr =a at

Therefore

from (i) A,(t,) (Att) Af(t.))l'? Aty

from (ii) Alft,)Alt.)AT(‘t,)= A’(ts);

.'. . R
The pseundoinverse is also known by the name generalized

inverse.
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then A?({|)= (A’('ti)AH:ﬂ)—'AI{'t,),

whore A'(I‘)A(t]) ig m x m.
Ifﬁ{F(Ll) exists (i.e.: rank A(tl} = m) then the mini-

mizing a® is defined by:
e T
a®= A" &) b,

The parameter estimation problém will now turn to
modeling techniques. Unfortunately, modéling technigues
:also live in the shadow of dimeﬁsional requirements.
Therefore, the methods to be developed %ill be applicable
oniy when certain restrictions uéon the state and parametér

vectors have been satisfied.

3-3. Modeling and Implicit Estimation:

Consider a system model of the form

xSty = + (XS0, L), S )

= (x%0, ae) (3-11)

xe('tj) given, t; € [t,, T3

(Superscripf "~" denotes actual system variables)
where E.is known from measurements (thus its functional
dependence in (3-11) is omitted), and o is arbitrary,
u®e CX:. Assume (3-11) is completely controllable and
observable; Also, it will be demanded that ie(t),
xe{t), and a®(t) are monitorable over te[tO,T]. This is
reasonable since (3-11) is to be synthesized (example:
RLC circuit or computer program), and the monitorability

can be built into the model. The model will share whatever
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.continuity properties (2-1) possesses. The model, which

is a parameterized version of the plant, will be used to

estimate the actual plant parameter vector through eithex
(1) numerical methods or (2) gradient techniques.

The computational technigues to be developed will be
philosoéhically different than those methods reqﬁired by
(3-9). While the solution of (3-9) involves the general
solution of a linear system of egquations (i.e.: (3-10}),
the modeling technique will use iterative routines.

Formally, a model will be subject to the same con-—
trol effort as that acting on the plant. fhe output of
the model will be‘compafed to the output of the plant in
some a priori manner and an estimate of the plant parameter
vector will then be made. The model will bé updated, and
the process repeated again using the original control.=
The process of iteration will be continued until terminated

by some decision device.
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- - T T T |
o
X = (X,04,0L2 <S>
’ =‘:_-==.—-a >
L AcTeme feanT J a
)
T |
= . ' T
; € = fex®a, o) 2!& o
i - R
s !
: A PMopsl
! £ |
}' Bt EsTirmars S
L___| rrerarion - 2 PROCESS
CoOrtrtone 0 " DATA
Figure 3-5

Formal System Model

'Before the computational deviées can be properly
introduced, some important mapping requirements must be
analyzed. It is desirable to insure that the parameﬁer
vectors achieved by =ither method (1) or (2) are unigue.
The Imélicit Function Theorem will satisfy this goal.

This well-known theorem establishes some very useful
properties of a sysfem of the form F{x,a) = 2z for a
mapping F that is continuously differentiable with respect

24 states that F is

to «. A theorem to be found in
continuously differentiable with respect to o if and
only if [BFi/Baj] exists, and is continuous for all i

and j.
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13

Theorem 3-2: (Implicit Function Theorem)
Le£ z, o F, g be m dimensional vectors, and X an

n dimensional vector. Let F(x, o) be continuﬁus for

(x,a) near (x,a) and have a continucus partial derivative

with respect to the components of a. Let the Jacobian

with respect to o be nonsingular (i.e.: det[BFj/aai]#O)
at (X,3). Let z = F(X,%). Then there exists e>0 and
§>0 such that if z and o are fixed, |[]|z-2z|| < § and

| |[x-%][<8, the equation z = F{x,a) has a unique solution
o = g(x,z) satisfying ]]a—a||<€. Furthermore, g(x,z) is
continuous for ||z-z||<é ,||x-%||<§ and has continuous
partial derivatives with respect to the componénts of =z.
It is apparent from Theorem 3-2 that F(x,a) is a

restricted mapping (i.e.: g™ E™ . Therefore, if
the Impliecit function Theoren and model (3-11) are used
together, special attention must be given to all defined
mappings. Specifically, F(x,0) will serve as the pre-
viously notea state and model output comparator whose
argument, in part, will be the model (3-~11).

Assume for the moment that f is well defined (i.e.:
F.EXTR E™) . How then may F(x,a) be constructed so as

to yield a computable 0? The mappings to be considered

are:

(1) Fex,ar= (Kt - @k, a))

(11) Fox,ar= (K- fFoxen,a)
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for telt,,T]

K&y e Eq known.
Several consequences to be found in these defined mappings
are:

K
They are point functions.[ ]

Also, the solution of F(x,a) = 0 involves
dimensionality cénsidefations. (See the

Dimensionality Restrictions Section)

The engineer may also use some of his in-

tuitive powers to enrich the solution space

of F(x,a) = 0.

For example, the case where m > n, whicb implies

m > q, it may be possible to consider (mtqi parameters
to be eséentially nomiﬁal over some interval Af time.
In such a case, one may choose to'fix these -(m ~ g}
parameters equal to their nominal value over this inter-
val. This would admit a i’:En+q + 9 over this interval,
and the uniqueness of the y parameters would be the result

of a satisfied Implicit Function Theorem. The interval

*

If F was defined to be a bounded linear operatoxr taking

a Banach (or Hilbert) space into a Banach (Hilbert) space,
then Theorem 3-2 would reguire an investigation with
respect to Frechet [Strong] differentials 5, This

will be considered later in this chapter.
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[tO,T] can be covered by a union of closed connected
intervals. For each of these intervals,(m - q) parameters
would be chosen to be essentially constant if possible.
Another notion of essentially constaﬁt parameter
vectors can be associated with F(x,a). Instead of in-

vestigating the parameter alone, consider

N
Fox,ar® Frx,a)s B, adx-x")+

n T -
+ lil_(x,cu(a— a ).

for x and o sufficiently close to " and o. Consider
now the invariance of F(x,0) to parameter variations.

Define:
& n ] )
.=F (X,Q) P
i e, eI )

Suppeose (m—-g) ot the fj(aj - CL?_ ) are small, and further-
more are small With regpact Eo the remaining g, then these
(m-g) terms may be ignored. That is, their contribution
to F(x,a) is neglidgible. The parameters associated with
these (m~q) terms may be, for convenience, fixed at their
nominal Qalue; thereby admitting a map E‘:Erﬂ"i'q > g9,
Example:

" Consider the following

~- o0 @, %X,

X.ay=|
Fex, K, - 100 @sX,-GzKz |
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Also, reguire that (ul,uz,a3) and(xl,xz) are reghricted

to some set about their nominal values.

Let:
o X=10% | A, =1%.1
X:a= |+ .1 AQp=Il=* 1
La=t .1

Here a; and a, would be the most likely candidates to be

essentially nominal. Also, Kq and K, are known, and

-0 £XK,¢-90 , K?z- fele)
- MotLE Kys -900.9 KZ = - OOy
E'(a,—d-?)z —!OOXQ(O';"CL?)

£1a,-a5)= ~ 100 X (ap-a})
. n )
{@s-alr= - Xla-ag)

For this example, o, would be the most likely candidate to

3
have its variational effect ignored. A technigue may

also be deveioped using a mixture of both of these methods.
" Another suggestion relates to the adaptive gain defined

by (2-17), namely ¢. The matrix G is a n+m x r and time

varying. Partition G as follows:

J[8.14,]

n

[ggi‘]i] i-: ”2‘...,m
j= " a’¢¢0,r

4

ub

G
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iLE (m—cq) vectors, say‘yi
94 @
21 :
| 9ri @

are negligible, component by component, compared to the

4 )L:’-'Z"",m
t

remaining g vectors, then the corresponding Oy of which
thefe are (m—-g), may be assumed nominal. This is because
they have a minimal influence in the adaptive control.
Then a mapping ¥ 4 g4 may be postulated. The pro-
blem of constructing a mapping Fﬂby intuitive means,
rather than by techniques éiscus;ed in the Dimensional
Restriction section, relies on ad hoc methods and the
engineer_must Eﬁiﬂﬁ seriously before ignoring totally
thé effects of.(m—q) plant parameters. Assume that
'F(x,a)‘is now the well-defined map F:En+q - 9. vor
simpiicity, let g = m,remewbering the original maps F

may have been defined for g # m.

3-4. Numerical Technigques

The numerical device to be investigated is the
Newton Raphsdn method. Alternative methods posed by
Todd and Ward, and Rich and Shaw, are also applicable

to this séctionth

"Consider F(k;a) = (E(ti) -¢(ti;ae))
where:

The vector E(ti) is a point in the state

output space at t = ti, tia[to,T].
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¢(t;,0%) is the solution of the model
equation (3-11) at t = te o xe{tj) = E(tj)
given, tj < ti' and o given.
F(x,ca) has the following properties:
(i) F(x,a) =0
(ii) F(x,a)eCBItO;T] inmplies Fu(x,a)‘is
continuous on |[X(t;) - xe(ti),
a - o} < e
Now, if FQ(E{E) is nonsingular, then there exists a unigque

a such that ae‘= g(§(ti), xe{ti)) in a neighborhood of

(o)

e (o)

E(ti), E(ti). To compute o, let o = o +g, where o

is an initial guess of o. By Newton Raphson's mefhod

' -1
g(k“)-_--g(m- {%_(xef:-ti),ae"m-r g(k)]

eco} - (k) ]

[Fuaxew,a g

with g(o) = 0. At éach iteration step k a gk is computed,

(o) (k)

and if o is sufficiently close to ¢, then g > g

always as k +» o,

For example, suppose the plant is defined to be
(i) -'R'(t)=-F<2ct>,a<t3-,'d)

. AXrrut),

-
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and @ .= over TE€ BDJ]
Gty = |

then X(= [~ exp(-})

Consider the model
o XC@w = A% xCw+ T
(1i) _
‘Xe(o)=-X<0)
€

a afbitrary,

The solution to (ii) is:
x€tr= L (I- exp(—aSt))
d§
' kY, e
F e (XS,a® = é.ée‘”*( /@ exp(-a) 1)
N e e -}
[Fae(X(!),Q.(}))] is nonsingular for

all finite o and

’ -1
T R < e B e.2
[Faegx ), a cn))] = a
(-1+1+Q%) exp(-Q%))
For g(o) = 0 and the initial guess of o being
o 0) /2

g“’-_- O+.45 =.45 = a° = 95

. 2
q‘2’=,45+,oq,95 -15195 = A" = LO95

9

) ecs
3 5195-.0190 =.50086 = a* = 1.005


http:exe(t)+Ta.tt
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After three iterations, conve;gencé becomes
apparent. For gk »+ 1/2, for some k sufficiently

largé;
(K44}= L 1=-expl-N-U-exp(~1)) =3_=<3(k)
(-1+ 2 exp (-1)) 2

which implies
ae(0J+ (k+t) _a

In this examﬁle, the model's trajectories were known
in cloged form. The quality was used strongly in the
coniputation of a®. 'If a closed form solution was not
available, tﬁen the iterative method would have been
based totélly on numerica} results.

A special case of the technique just develoéed would
allow for one iteration, then again sample the plant data,
namely ﬁ(t), EB, x(t) or é(t) for'te[tj}ti]e[to,T] and
‘contipue. -The data from the second sampling then would
be influenced by the updated o® (achieved by one iteration
of the last sampled aata} in the adaptive control- loop.
This process hay have merit if significant convergence
is made-through one iteration in that the adaptive con-
trel would be operating with a "freshexr" parameter
estimate. -However, one must realize that frequent sampling
will reduce the possible number of iterations which may be

imbedded into a fixed real time interval.
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Termination of these routines will be introduced as
follows:
1. Completion of a fixed number of iterations,
say N. This can be related to a fixed time
interval over which iterating will be allowed.
2. Satisfying the e>0 condition,
i gi"?— g‘u<e
p a positive integer
3. Similar to 2, except to minimize the effect of
possible oscillatory convergence of g,

require that the variation

P
S gt gtice
A=i
p a positive integer.

4. Combinations of i, 2, or 3.

The.termination device remains rather arbitrary. A
few furthexr comments on its structure will be offered as
a guide to the designer. Suppose a mean (or maximum)
estimate of the real time required by the computer to
complete one iteration is At. TLet AT denote the amount
of real time that the computer will be allowed to operate
on a specific set of plant data. Then [[ AT/At T (see
Symbols, Chapter 1) represents the mean (or minirmim)
integex numger of iterations processed for the specified
plant data. To add an additional degree of design free-

dom, consider AT to be either variable or fixed over
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[to,Tﬂ. For example, let AT be proportional to an a
priori sﬁoothness assumption on the monitored (or -dexrived)
plant data. |

" For a pérticulér tj' tj being the initiating time for
a 5ampling interval, the basic structure of a typical
"fixed" sampling interval.is given in figure 3-6.-

. ' At
COLLECT | | l

N 1

PLANT . ITERATIONS !

DATA AND PERFORMED -
. - g

NITIALIZE | L . : ,

l - . .S2START ITERATIONS _
MODEL :

AT -
' : i

@———————  DATA PROCESSING INTERVAL  ——————t>)

Figuxre 3-6
 Fixéd Iteration Interval

"The iteration deviées'proposéd by methods 2 and 3 (i.e.:
satisfy an e€>o condition) may be though of as a "rate of

chahge" test, in that

'ltq -g° = 19 _-3“

fCL+1y =i

The designer must establish a workable trade off between
too large an ¢, which might sacrifice convergence -in-
formationf‘and too small an e, which may néver be achieved

in a reasonable amount of time.
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Xt,)

PAsY ‘"f "
- " [
) ‘ ’ JL ) ;](
MEMORY MEMORY SET MEMo Ry
STORE STORE X Lt,) of €= STORE

@i [ X Cte)
I%: MoODE L

- <
ﬁ XGCK)_—_(O( (:)9(K‘)XGCK)+J ; ==_.—-=_—-qﬁ-1

SET ‘ ] RESET

g9. o = gk _ g (K)

W
STORE - ———elp=x{ com fé’rf- <

' * MEMOR
94° 9 Yecnr
q} STORE X Tk5)

ITTERATE TERNINATION .

K=K+l TEST, TERMINATE
t':tc'cf_ t; . c .

FARLSE TRUE

Figure 3-7
Plant - Model Diagram for Example

Earlier, the notion of acknowledging the existence
of a weak time dependent component of the parameter
vector o was established. (eiample: drift, aging) The
parameter estimators thus far developed were point function
estimators, which implies that the estimated parameters
wexre constants. An approximation of the time wvarying
nature of the parameter vector can be accomplished with

generalized step functions.
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Definition: A gencralized step function is one in which

a measurable function takes on only a finite
number of different real values. {i.e.:
simple functions).

The claim is that for some sequence of generalized step

functions

{at} .
(—].('t)'-'-ﬂim{(l?‘} ]
h->co
Proof: -Halmesz6.
This is to say that a generalized step function with

a finite collection of walues can be fougd which is
arbitrarily close to o(t).
Consider for example: -

a )=t

Define:

riiﬁjn‘tj d 1tten
P, k)=

o 1 1t >n
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b te) —= oty

AS e oo

Figure 3-8

A Ceneralized Step Function

Therefore, one is motivated to find a “"good™ approx-
imation of a(t) with some refinement of the sampling

interval.

Define: The kth parameter estimation to be that para-
meter vector based upon the kth set of in-
dependent plant data, k=1, ..., s, s finite.
(Independence'to be defined later.)

Define: The data sampling interval (see figure 3-6) for

.the kth parametexr estimation to be [tk,t?l.

3



PDefinition:

Define:

Define:

for all &, k=1, ..., s
[+t INIE 1= ¢
if ke d.

The kth iteration interval (see figure 3-6)
for the kth parameter estimation to be

tt?, ATk+t§], remembering AT may be fixed
or variable depending on the termination
strategy employed.

The kth data processing interval (see figure

3-6) for the kth parameter estimation to be

k
p.

P [EX X AT

The data.processing scheme proceeds as follows:

l. 1If operating with only one complete model

80

The plant data is said to be independent if

(with memory) in the loep (see figure 3-5),

perform operation P1 for some-t% > to'
Follow Pl with P2 .. PS, Pkf)Pz = @ for
k, 2 =1, ...; s, k#2 and for the fixed
terminal time T, [ti, £t'IiNT = g for
t'e(ti, ti + ATS), but AT?(\ T need not
be empty. The spacing of these intervals

is a matter of the designer's judgement.

For example, one may choose to initiate
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the data sampling to begin at t% =t

or at some delayed time-ti > to. Also,

one may choose to follow Pk immediately
. k+1 . . .
with P ; ktl £ 5, or delay it in time.
The greater the expected rate of para-
meter change, the more densely packed
should be the P's. Obviously consider-

. Sei .
ing a Ps+l, such that [tsatf*&zsrs‘jrrr=T

Z DATA SAMPLING
X Darw PROCESSING
P VPZ PB p4 P.f—-l PS
N NZNN N NS
L~
\ Z
RN N7 NN ’\ ’ NN
L~
N d& 4 z N
t T t

] Figure 3-9
Example Sampling Interval

If operating with several complete models
(with memory) in the loop {see figure 3-5)
follow the outline of events established
-in (1) for each model. However, require
that the intersections of small neighbor~
hecods about the t?'s associated with each

model be empty.
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o X
PLANT s
" SYSTEM
i MODEL ¥/ I
WITH NMEMORY m{ae,'r £=2% ]
o an -ﬁf—w
SYSTeEM

sl M I E L » ~ o _""k

Figure 3-10

Parallel Models

- Consider a second example

o (X,a) =()"((t;)- -che(ti),.ae))
where ¥ € £ and £ ex €, a<) is given by (3-11).

F(x,a) again satisfies the following

L) FXitp,ar=o
(ii) Fae(xeit-t),af’ctt)) is contiriuous on
UXt)-X4t),a - aStpll € €

and if Fae(Q,E) ié nonsingular., <+hen there exists a unigue
a® such that
a®=q (X<(to, X t+)).
The desired o is again obtained from Newton Raphson's
method. It should be noted that i(ti) may not be monitor-

able and may have to be computed numerically.


http:xct),.ae

Consider the numerical example:

%= F (X0, Tt s &)
= ELX £) + Q. t)

and

Xt =0

t+e [t., 71

cipl
i

i
——

)

Then -
X(h=exp (-1,
Define thé plant model to be
xSttr= aSXEtr+ Wity

for arbitrary o and xe(to) = 0

.F;lecxe; aSr= O (Xtk)-aSXCE,y-1) = XSt
S ae . '

Again, if o®(®) = 172, 419 = ¢

< 143 = a“" . 643

(@
9

2) .
g =225 = ¢S ..7¢5
g3¥ = 280 =5 g€> .. 780

(k) e(k)

(k) = lfp=g =2 o = 1.

for gt = 1/2{g(k+l)

The closed form solution of F(x,0) was again available,
which will not always be the case. Therefore, Fae(xe,ae)

as well as f(xe(ti),ae) may require numerical computations.



84

The truncation devices which are applicable to this pro-
blem; as well as data processing intervals, have been pre-
viously considered. (See figure 3-11)

It may be noted that the rate of convergence of
numerical example one was superior to that of numerical
example-two. This is not to be considered a general rule.
The rate of convergence is a property of the problem
(i.e.: F(x,a)) considered. Another computational device
which has parameter estiﬁation applications is the method

of steepest descent.

X{t,)

¢ . — PLANT % i

E ,i =¥ DERIVE or
MEMORY | MEMORY _ €T, 05| MEASURE
STORE Lt ' | sTORE XEto) & X £

MODEL _ '

ey S@ (KDY EK — 2CK)

XS E e ,,

SET RESET MEMORY g.".fg'g;\'
go‘_ o gk‘b’l - 8. K . STORE - -

pew xecm XD

¢ 1 e,

EMORY,_ COMPUTE |
STORE g P~ gk+! :
B I é

ITTER,?TE TRUNCATION ot 7ERMINATE

K= - )

£ .= by <l TEST

FALSE FRUE

Figure 3-11
Plant - Model Diagram-.for Example
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3-5. Gradient Technigues

The particular problems to be investigated &dre:
1. The minimization of a function on E9.
2. The.minimization of a function on EF with
side constraints.
3. The minimization of functionals.
4. The minimization of functionals with side
constraints.
These methods will vary in their utility from problem to
problem. In some instances, approximations will be re-
gquired. In all cases, the required function, or functional,
wili be assumed to bz well defined.

The first method answers the following question:

Find a local minimum of a real valued function
defined on E9. Let z = (zl,...,zq) be a point
in some regiOan=Eq. let C{z) be a real
valued, continucusly differentiable function
defined on Tt . Pick a Z and consider all
curves z(s)} parameterized by arc length s,
Z.)dzesHr/dsl 2 tuesr=1 =p» unit
velocdity. For such curves passing through

Zr find a curve which minimizes C(z(s)) as

rapidly as possible.
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Levew Lines
ot Ccz)

" Figure 3-12

Minimization Process

The solution is found thusly:

dCczesyy & Vz Cezesn-z'es
- ds

choose

sy = =V -

|V, Cczesn) -
for Vz Cezesy # O. Therefore dC(z(S))/ds
z - i Vz C( Z(S3) { " This defines a curve which

is always noxmal to the level lines of C(z(s)) as implied
by figure 3-14. If C(z) has a local minimum, then the

scheme proceeds to it with unit velocity. In application
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one may choose the following:
z%sy= -k V, Ctzesyy, zeo) =z,

where k adjusts the rate of convergence. If k is too
large, then the minimizing trajectory may pass by the
local minimum with sufficient velocity so as to tend
towards another possible local minimum. If k is too
small then the convergence rate is needlessly too slow.
Examéle:

Consider a plant

% =AX+W, Xcor=0 .
and (=1 36.';-_.i over ‘té[oalj--

Therefore
X(£) =t~ exp (1),
Consider the model
X€= ax+q x€cos = 0.
Then xSt ={l-exp(-A¥t»/ @€ and 1let 2CCAT) =
(P,ac) — X a , where ¢b(t OF)is the solution

to the model eguation with arbitraxry .

'Ijhen DC1a®) = C ¢cl,ae)_2(|)} : ,)((umonitored.n
o as oa®

Note: 1In this particular example, the above partial de-

rivative can be directly computed. But if 9’5(1:, a%)was not

in closed form, then the partial derivative would have to
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be approximated by the derived partial

S A, a® = H,a%- B, 0
o as (as-4de)

for o sufficiently close to a¢®. Another technique of
determining this required partial derivative is given by
Margolis:27. He considered the ordinary differential

equation.

(i) X(£)+ A X)) = 3 ety 5 Xtta) =X,

which can be written trivially as

(i1) A x(ty + QX =ﬁ<+:.) Lie: DX L dxd
ot ot at

Now take the partial of (ii) with respect to o and note

B(t) # £(a,t).

z
(iii) O X)) + O IXE) +X(£) =0
Sdaat Sa

Let UM =z X () , then (iii) becomes
oa
(iv)
Uty = QA vit) = -AL)

where the solution of (iv), for x(t} monitorable is

DX(L)
oQ

Ut) = if o is constant.
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However, if o is time varying, then 3x/3t = Bx/9t +
+{9x/9a) (da/9t). So the validity of (iv) is predicated
on o being either constant or slowly varying in time.

If this be the case, then the solution to (iv) is a good
approximation of 3x(t)/3u.

Therefore:

oCca®y < (1 (I—exp(—a“-’)~3'<(1))(l—(|+ae)exp(-a‘3)
das - a®

ae

and,

(aeCS))I':-k %‘?Céaecs;) , 'por Q_eCS);fo
' a“¢s)y '

. e —_ . L — [ - ’
and Fim Q3> -= @ and if cz‘?oka, As)=aq <> (gScsN=0,
S-—»co

The solution of the above equation is nonlinear, and can

be solved numerically;

Example:

- , . SN -
Consider 2 L(@)=(XSC1, a®y-X(D)]

Then, with computations similar to those found in the

previous example
(@cs) = -k (1-exp (-as) - Xn)exp acsy),

Qo= f(l) monitored.

o



Again 1lim a€(s) + @, and for a%(o) = d,
5->00

aSH=0 <=>(a%s) = o,

A solution.diagram of the previous example is given in

Figure 3-15.

X

MEMORY STORE oR X Y
STORE . CoMPUTE
U L) X
f MODEL __W_PX('t, oLt D
e i COMPUTE
i ™ 3, ae)
T R
- COMPUTE
INTEGRATE P oxw)
QVER S S&—e l
Xesy == K [As XD+ .
- XM ][esrO X CoOMPUTE (’ 5
a 1
o) 2Lex et ey Z
Xy et
‘ . D =
-K
COMPUTE |
- ot
ﬁ(xcnacfsy—X(D /

S _ﬁ,{ A o

Figure 3-13

Second Example

90
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Method 2 has the following formulation:
Let C(a) be given and C(d)eC'{to,T}. Consider
the minimization of C{(a) subject to rem constraints
gi(a) =0, i=1, ..., r , where g, (a)ec* [t _,T].

o’
Consider all curves alonga(c), with wl(o) = d

il

which satisfies V _g.(a(g))-o0'(o) = 0 (see figure

3-14).

IMAGE oF
< ) THE PROJECTION
OF gtXcon)= g

g eAroy) i

C:Qlux«rn=CD

\

éh%&ﬁ%l’%%jV

V’QCouow) ZL

o)

9(0\’(0"3)3-"0

Figure 3-14

Side Constraint Problem
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Among thesce ¢(o), find the one which minimizes
d((af{o))/do. It can be shown28 that the’

solution to this problem is:

s
Q(o)-= -%C(GKO”)HE A Vachacd))

1

where X' = (X, +.., A ), A =G "y if G is

nonsingular,

G -[{Gik}] where Gik = ;9@ G (@,

(G is a Grammin matrix)

and

Y,
y=|: |5 y= (Vg G Ca).

Y

However, if one investigates the possible choilces

for C(a®) or g(ae), namely:

(@ (xSt ,a%)-xt; ) =0
) (XSCt;, aS-XENT =0

for p, g positive integers, one would soon

i

f£ind that a'(g) =0 if x°(t,), X(t;),
Ee(ti) are monitored exactly, and E(ti) is
monitored or computed exactly. If a'(c) =0

then oa{g) = a(o). This situation is a result

of g(ae) = 0 being equivalent to c(a®) E 0.



In other words, {(a) or (b) used as a side

condition will only introduce redundant

information into the parameter estimator.

Then the minimization process can only

yvield a oo} which equals the fixed a®
and thus o'(c).= 0. Therefore, this

method is of little use without some
modifications. The modifications to be
considerad will relax the side con-

strainte. This will serve to allow

uncertainties in the monitoring or

.computing of xe(ti), E(ti), and ée(ti).

Also, the relaxation will suppress the
eguivalence relation between giae) =0
and €(a®). This condition will be arti-
ficially introduced with "Valentine's
Device"zg. Valentine's claim was that
inequality constraints can be reduced to

equality constraints by increasing the

dimension of the constraint space.

()3

Suppose ae' = {ae, . ag).and there are £<m con-

straints ¢, (@€ jr<zo given.

befine:

e ae

MY T e

D) A /
g, l@a=1=g; laf,-,a.a

e . A
:93 L¢ Q, :"'7‘1:) ]+[(a;e;,+3) ]

j:l,\iua-ﬂ-,

Y]
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ASIIPN mifl
Consider minimizing C{(A %)= C(A%)inE subject to
constraiqts gj(&e} = 0. Notice that %j(&e}=0£> gj(ae)iﬂ.
Then, for é(&e) = C(a®), the minimum of 6(&6) is the
"minimum of CCae). In particular, each of the gj(ae) shall
be expressed as gj(ue)szj, where Ej represents an a priori
error estimate associated with the j constraint. Thus,
Ej associates a number with, in a sense, an allowable
error tolerance resulting from inaccurate measurements or
computations. For §xample, let gj(ae) = (ij(ti) - d?xe(ti)*
~l)2$€.. If . was to egqual zero, which would be used if

3 J
: . € _
perfect system information was available, then @73 =

('x':"j (ti)fl)/xe(ti) €10 For €j>0, inplying system un-
3

certainty, G.je ZO

as - [£E /XS + (& -0/ xatp [ o .

o
aszo

If the system is slowly evolving in time, the tech-
nigques which determine the minimization of a function at
a polint have béen shown applicable. Data can be collected
and processed over some interval of time, say f . If the
parameters do not change significantly, then the generated
parameter vector at the end of this é.interval is a
good approximation of a for some future time.

One may desire to base the estimate of o based on

more information than used for point estimation. For
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example, let ae ;12[tO,T]. ¥ In other words, one wishes
to investigate ae(o) rather that ae(ti). This is accom—
plished with a functional format placed on the problemn.
~There are several dissimilarities existing between a
steepest descent problem, using a functional ‘structure, -

and a E¥ structure. First of all, the functional problem
will be worked in Hilbert space, denote H. Secondly, the
notion of‘a directly computed gradient no longer exists.
1n$£ead, one must consider Frechet (stron§) differgntialszs.
However, the‘problem.wiil be simplified by reguiring that
the weak diﬁferentia} exists and egquals the strong25. The
existence of a strong differential implies the existence

of the weak differential, but the convérse is not nec-
essarily true. Then by the Riesz Repfesentation Theorem3q

a gradient operator may be defined.

Definition: (gradient operator)
For a Hilbert space H, and a continuous linear-

C, '
functional C (ug) on H, there exists a unique

element Vaec(ai) (the: gradient of c(a®) at ag
o i
in H) such that:

Ci(af, yh ‘—'(Vae C(Cl.g), h)
=]

* N
Definition: ;{ {o]l is the set of all measurable

functions that are square integrable
over [o].
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whetre (,) is the Hilbert space inner product and

ClasHh = fim CaS+ah)-C@l)
A0 A

for ai and h in H, A & scaler.

The functional minimization problems are:
1. Minimize a given C(o°) for o®eH with no side
‘constraints.

éolution: Path of steepest descent.

(a€on=- Vae CuaSon.

2. Minimize a given C(a®) for 0%el and constraints

gicae)*—-o s i=1, oo, k
Solution: Path of steepest descent.

K
. e '
(a%@on=-Y, (Ccae(cr))-t-; A Vg cac@n),

hi previously defined.
The construction of C(a%) must demand that the minimization
of C(ae) would imply o® + T over some interval of time.

For example:

@ e Lfen] , fpedelen ]

t;
C(aﬁ’)=j£ (i(-&)—cﬁ(t,ae;,?ut)-. Pt,asy) dt.
j .
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Example:

'Tﬁis problem is motivated by the linear regulator
problem. The problem will be offered primarily as a
"device to exhibit the techniques required of (1) or (2).
Considér the special plant and the comﬁutations paralleling
~a technigue used in the solution of the linear regulator
problem, Qith appropriate modifications.

Let the linear plant be defined to be:

X 6 = Cenr@inre A Xetr+ Teo,

X (E)=X,,
where f£(t}, Alt), C(t) are known on te{tj,ti}.
This particular plant is of the form % ='Ax + Bu eXkcept-
for the C({t)u(t) term. The term f£(t) will play the role
of B(t)}u(t) and C(t)a(t) will serve as a biasing term for
the plant's inputlforcihg function. One may consider £(t)

to be the external forcing function, and C{t)o(t) to be an

internal forcing function

ToX)

Figure 3-15

Example Problem Flant
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Let the médel be:

- Xetr= CrtraSet) + Artr x €ty + et
O’.eé jz [tj 2
XClt) =X
Then, fc;r )(e(t‘._}::)_(-{: Q}ix}ep,
(ii)

Xe(ni:;_) =X(t;. ,'t.‘ )Xe('b.’) +
t;
+f Xt O [_-CC’C)CLe(’tJ-i-'F(’E')]d’C
+°: .
,J -

where X‘(‘i:,tj) is the furidamental matrix for
the. homogeneous part of (i).
The cost functional to be minimized will £orce the ‘para-

meters to vary only in a neighboerhood of their nominal

values. Let - .

(1ii) i t, ‘
Cca®)= f (ao-a, aSw-a”) dt
£

: Z
i

« jictw-ay.
2

Also, the following constraints will be imposed:

(iv) K .
- gpla®r= (Y,a%)-0 =0

K=1,--39

for x(t) ¢ Eq, where:
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(v)

W= X Xt Cety

pX(t) is the kth row of Y(t)
and

{vi) Uk ig the kth element of

T
X‘ta’”X(t;.tj)Xth)“ft_ X(‘ti‘,TJ‘F(T)d’E.
4
Therefcre gi(ae) becomes :

t

]

/ (X(ti,'r) Cery aery - Xtk + X(t;,t;}f{t; d T+
+

t

+ -

+/;_ X(f,‘,,'ﬁ firy dr =o

4

This implies the model will be required to satisfy the
terminal state conditicns of the actual plant. One might

also choose to use Valentine's method to represent some

allowable terminal errcr.

et DC (a®his (Vg Cca®,h)

::Q_Cfaﬁ+hhl
d A A=
y J{.‘CiCC1&+ )jT-CIn)acit
€ d X A=0
= J[t?tle4)\h —41n)}1d’t
'tj >\=O

-(@S- ah) = VgeCa®) =(a% a,

o 173
a (€)=
vV q(ai= ¥

similarly
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VR Gs L] ke,
--Where:

q-k = ( agkaeJ Vgﬂ(ae)) (‘P ’\U'g
f Hb(t)\bct)dt
* then )
G=X ,t-)XH(lt ) C(t.)Cc;-) [X -("Jc;,.t;J]/
- Xty = Xt tp MX ki )

- where M is a control;ablllty matrix, there-

fore a nonsingular[+l.

The path of steepest -descent becomes the solution -to
(viii)
9

da€cey_ e
;;E——ww- = i?;e(:(CLe)+EE: )E'VW3K(C1 )

A necessary and sufficient condition that (i) be con-

trollable (given originally by Kalman, and to be found
on pages 187-188 of 28) is that:

i ] ’ - L
Y% =/; X oloCro (X m)dt

is nonsingular. 1In particular, if X' () cle)er (6) (x T (e))

is nonsingular at just one-t, then.M is nonsingular for
all t.
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where

/\k (G-'td)
E (VCLECJV?K)
=(aj- a, ¥k
- as, ',bk) (@), y*
kf X({:“L)C(T)CL dx

.ok
= O VJKCLK

Therefore (viii) becomes

fal . |
32 cex) = -[a%e0-a"]+Cofl ] X pGlo+Na],

or
a” €ot ( )_fgx ¢ [C'H:)
(e,1) = CxXp(-€)A (0, L+ exp € P
[X~lX®)G (o +Nam+a1dr
. exp-e1a%o,ts + Li-exp-€)] e [Xwl’
X G (o« Na™+a 1
The oF which satisfies the minimization of C(ae) with the
given side constraints is found by letting e+0o, Also

note that because exp (-£)~0, the final of is indeﬁendent

of ue(o{t)z
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3-6. HNon-deterministic Parameter Estimation

So far the wvarious parameter estimation devices have
had a deterministic structure. There has been some active
research associated with the problem of estimating the
"best" parameter with respect to some given cost index
with sufficient a prioxi statistics known, ox assumed known.
This research paper will not attempt to enter a detailed
analysis of non-deterministic problems. The techniques
involved in the stochastic pfoblem.are manifeold. A useful
device, which-will find the paramete? vector, minimizing
a cgst index of the form ||x(t) - x%(&)||, is an extension
of a scalar problem solved by Aoki3l. It essentially
uses the property of a sufficient statiétic, a differential
difference rgpresentation of the plant, a normally dis-
tributed parameter wector with unknown (but constant) mean,
and a Baysian decision rule to update the estimate of the
" parameters. The parameter estimation is accomplished gy
minimizing .the expected cost, starting with the last stage,
then working backwards in time, and using previous Ob-
servation to update the estimate of the parameters.

Althéugh no definite parameter estimaticn procedure
hag heen eétablished, it shall he assumed that the tech-
niques offered are sufficiently rich in number agd variety
so as to produce a "good" parameter estimate, if one does

exist.
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then workihg backwards in time, and using previous ob-
servation t& update the estimate of the parameters.
Although no defihite parameter estimation procedure
has bheen gstablished, it shall be assumed that the tech-
nigques cffered are sufficiently rich in number and variety

so as to produce a "good" parameter estimate, if one does
exist.



104

CHAPTER IV
LERROR ANALYSIS

4.1 Approximating Paramelers

Consider again the vector differential equation

Ay Al Bray

_— R VN N

=

Apl Lc -A'llap

with its 2 (n+m) boundary conditions given. The partitioned
Ay vecéor was defined to be [Ax]&%]’, where Aa = o - ol.
Ideally, the estimated o should equal the actual

parameter vector a*. (note: In Chapter III the actual
parameter vector was denoted o). Suppose a® has a value
other than a*. Such an estimation error would give rise to
two solutions of the Riccati equation (2-15) corresponding
to Aos 2 af - o and Aa* 4 a* - o™ Nothing has been

said at this point about the two solutions being dissimilar.
| Thg system parameters by assumption beloﬁg to some
differentiable class of functions which implies some degree
of smoothness. However, tlhie class of fﬁnctions which the
estimated parameters belong to has been left to the designer
to choose. This can be exemplified by the case where the
parémeter vector is a composition of constant vectors over
disjoint intervals. That is, a piecewise constant vector.
One would desire‘fhat of = u*, but this would necessitate

oS belongs to some smooth class of functions. The ex-

hibited computational methods would, however, forbid in
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general the realization of o in a snooth manner. As a
result, o° will be necessity be imhedded into a larger
class of fﬁnctions. For.example, simple functions or
plecewise continuous functions. This "large” class of
functions would allow the designer a high degree of flexi-
bility in choosing which parameter estimating device may
be used. The choice of measurable vector valued func-
tions will sexve as the "large" class of functions to be
congidered. This class will be denoted

M [2e,T]
such that _ ‘

e M [to7] .

™ [tO,T_‘l= {att)'{a measuraovle on [to,T] }.

This class of funtions is very rich in estimated parameter

vector candidates. For example:

Let
e C’lo2] = M o,2]
3
e ._|t e , te [O,l
then  3q€e _ | |, t€ [ea1]

di3 [ o .t€ 1,2]

or, let aeeP[D,l] {cwend M [O,l] for example, and

r\=4

F g
a =)+t



or, let C,',ee P [O ; l]c.‘. M [0,}1 for example, and

e

- = b, telo, i)
l'/Q ] 't = VZ
2 , te(Vz,1]
4 i
Ofe |
o e
o !
,.,//‘{’ |
1 e e e 4 -
i n
a |
I I
l |
o | 1
@ i/ !

Figure 4-la
PARAMETER PLOT

Then form

Ads gt g
* x n
A =Q -

one achieves

A c
LA
1 - ///E
Ao ’H/fﬂéf*’ Aa™ |
— } . |
iz H Aa™ |
' |
I |
o l |
o i/z 1

Figure 4-1b

A PARAMETER PLOT

loé
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Because[&]? is an m dimensional subspace of
[av]ap]” € 2 ") the righthand side of (2-15) is allowed
to be discontinuous. One is interested in how this dis-
continuity affects the soluticn of (2-15). With o® or a*
defining Aa and ol fixed, it is possible to determine the
variatiohal bounds on the solutions of (2-15) for varia-
fions in Ao using calculus in the sense of Lebesque. But
to generate insight into the problem, the study of dis-

continuous vector fields will be pursued.

4,2 Discontinuous Vector Fields

To mo£iVate such arguments one can study a common
application of discontinuous vector fields in ccntrol
theory using closed loop state feedback control belonging
to some constrained set. Problems of this class involve
sucﬁ notions as solutions in the sense of Filippov

32

and stability with respect to measure. H. Hermes dis-—

cussed such concepts and developed some additional exten-

sions. He chose to consider a control system of the form

X ="X(x)

* L] n r
ie: X =qg(x,ucxn, xeb,uekb. (4-1)

I+ should be noted that this forms a special class of
problems in that the control effort is a function of the
states of the system only. The control u(x) is chosen
from some control set § and the target set consists of a
manifold 7 in [0,*)X E®. If g is bounded and Lipschitzian

in both arguments and u is a given Lipschitzian control,
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then (4—;) has a unigque solution for x(0) = xo‘given. De-
fipe the solution of (4-~1) to be ¢(t,0,x05,.whe;e the
three arguments of ¢ are to be read as the solution at
time t initiating at time t equal to zero with initial
data ;. _ A solution which reaches the target set ét
t = tl will be represented as ¢(tl,0,xo)ew- A reasQngbie
question to ask is: If the target set 7 has é dimension
less than n in En+l, can one ever expect to find a collec-
tion of %'s-belonging to some nontrivial neighborhood
of the'initial data X, éay'n (xo)c:;En, and a time, say'
t(x), 0 < l(X) < », such thaé the.solut;on ¢(t(x);d,x))ew?
This is to!séy, can -one show a solution starting from
some n dimensional maniﬁqld.reachés the target set m in
some time t(x) and h?s a dimensioﬁ less than n. The
énswer infuitivel& seems to be no. in faét, it is no.
The reason that the answer is falsé is that u(x) is
Lipschitzian. If, however, the Lipschitz.condition on
‘u(x) was reméved and u(x) allowed to be discontihuous,
the answer may be affirmative.‘ For 'example:
i

Suppose u is Lipschitzian, then consider (4-1) in .

E2+1, and
I[g [xz,xl = constant, t = constant J' .
Then for no t(x) there exists ¢(t(x),0,x)) € J1 for

XE T}(xor.
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P(t,0,%0

JFigure 4-2

2 Lipschitzian

¥

If wu’is allowed to be discoritinuous,"then the follow-

ing could occur: .

Figure 4-3

u Discontinuous
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To develop the concept of solutions of differential
equations whose righthand sides are discontinuous solutions
in the sense of Filippov will be investigated.

4.3 Solutions in the Sense of Filippov

Let X be a measurable function defined almost every--

where in soéme domain G < E. Define:

K{Xcol= 1 N &B{XUx: 810}
C 7 Sopd=o

where
éS " denotes convex hull
U(x,8) denotes a closed §. neighborhood of x
N "denotes an arbitrary set of ok
1 denotes Lebesque measure

Definition: An absolutely continuous vector valued func-

tion ¢ on [0,?} is called a solution in the sense of
Filippov of x = X(x) if for almost all t, 5(t)€K{X(¢(t))}

 Here K(X(X)), in a sense, determines how the deriva-
tive x = X (%) behaves localiy. For example:

Consider the following graph of trajectoriés leaving
2

a neighborhood of a point x, xcE
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X(U(-x,a)«N) '

S

Figure 4-4

VECTOR FIELD ONE .

As U(x,§) becomes small, (i.e., & + 0), K {X(x)} becomes

x, or K{x(x)} =

case may occur. Consider the followihg graph of tra-

X({x). However, the following extreme

jectories. |
Xq '-U(x‘S;). }(.,(UCX’S)-',\“
|
(N = O’X /
A
Figure 4-5

VECTOR FIELD TWO
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Here K { X(x) ! becomes a wedge in E2+l. This can be

interpretgd to mean the follewing. If & noisy measure-
ment of x is taken, then one cannot be sure, even locally,
that this measurement error will not admit a totally
different trajectory than the one associated with the
true x. Therefore, one may generate a whole family of
different trajectories in seme convex hull, even as §+0.
If X is continuous, as a special case, K { X{(x) } = X(x).

Definition: If there is an absolutely continuous function

¢ for the real variable t which satisfies some initial
data and &(t) = X{(¢(t)) almost everywhere, we call ¢ a
classical solution.

If ¢ is a Filippov solution of x = X(x), x(0) = X
then for any £,8>0 there exists a measurable function
£: [O,T] > E® with |] & || < & such that a classical
solution ¢ exists on.[O,T] for the problem i = X (xt éYt)},
x(0) = x_, and satisfies |[|¢ - yle.

Here

1€ 0=ess. sw {lewl,te[t,T] ]

=-inf{N1l ] &(t)] < M almost everywhere on [O,T] }.

So, if one can show {(2-15) has a solution in the sense of
Filippov, then there exists an allowably small measurable
error &(t) such that the resultant solution ¥ (t) differs
from the classiéal solution ¢(t) by no more than €.
claim

Equation (2-15) has a solution in the sense of Pilippov.

Proof:
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whose elements dij' i,3 =1, ..., 2(n+tm) are bounded.
Also, define

% " n

Aa gAa"=a -a

Because (i) is a Riccati equation which has a unigue solu-

-

b

tion whiéh is expreséable in terms of K({}, (K(t) a con-
tinuous boqnde&'linear operator) and establishes the
relationship ) ‘ )

s pw)= Kexdyw) (see 2-16)

. Ay may be described as follows:’

i) Ag = Eca yr= D, (Ay,KAy)=(A+ E)K)Aq .
‘Therefore, all that need be shown to prove the claim is
_that {ii) has a solu£ion in the‘sense of Filippov.
Call the solution of (ii) @(t). Notice from the éontinuity
. of @(t) on:[tO,T]tﬁat $ is a solupion of (Z—lSi in the

sense of Filippov.

Therefore, for any €,8>0 there exists a measurable
function &(t) on f[tO,T] with || -£|]<8 such that a ¥ satis-

fying Ay - E(Ay+ £(t)) exists and furthermore it 'satisfies



|l ~ w]l<e. Although an £(t) has only been postulated,
one may hope that there exists such an E(t) which can be
used to represent the differgnce between a* and a. If
one considers such a representation, and if &(t) is small
in norm, it shall be shown that the difference between the

* *
solutions of (ii) corresponding to Ad = o = o and

2a = o —_an is also small. Thérefore, one's attention’
is directed toward relating the magﬁitude of the paraméter
estimation error to the errors found in the solution

Spaée (i.e., ¢ - ¥). This shall be accomplished through

the study of "stability with respect to measure.”

4.4 Stability with Respect to Measure
32

Definition: A vector field E for which a classical sqlu-

tion ¢ of z = E(z) exists with arbitrary initial data I

is said to be stable with respect to measure if given an

€>0 and T>0 finite, there exists a 6>0 such that whenever
"€ is a measurable function on {tO,T} with values in E”
and || €||<6, for whieh a corresponding solution of

z = E(z+ £(t))

z(to) = Z,
exists on te[to,ﬁ] , then I1¢ ~ w]]|<e.

The last definition is a canonical definition for
this problem. By that it is meant tha£ this definition
would have evolved from a straight calculus attack on the
problem. .However, this approach would probably not have

developed fully the powerful property which is nested in

the given definition. First of all, the whole, or only
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part of Che vector z may be considered to represent
measurement errors. Also, the measurement error 1is
additive which will lend itself‘to intuitive arguments.
Ano#hei importént feature is that one is working with a
given erroxr bound placed on the normed difference of ¢ and
Y, namely €. This'allows the designer to establish some
maximum tolerable error on the solutions of (i) in some
a priori fashion.
Claim’

Thé-vector field defined by Dy ie stable with respect
- to me&éﬁre.

Consider €>0 given and te [FO,TJ. Let ¢ be the
classical solution of (ii). Let ¥ 'be a solution in the

classical sense of

G AG=D(AY+ & K(AYy+ED
Ayt given

or Ag=(A+BIAY+(A+BK) €

Let P(t) be the fundamental matrix of (ii). Let
¢(t,t0,y) and w(t,to,y) denote the solutions of tii) and
(iii) respectively at time t and arbitrary initial data
Yq given at to. Then
C,bft,'tﬁ,‘j): C'I'D(t,to)g

and

.
Yt ta,q) = Dbty A ® T ATHBMOKMIET)IT.
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Therefore
I Pt r,,2)- ety 2l =

t

=l ft S, THIATHBROTXKT) €(Tid T4

41 T-tol | e, DATI+BC KIS I,
T e [t.,T].

Therefore choose

€
VT -t ol 1 (¢, THATH B KT a (4-2)

If a more delicate § was desired, then a closer sxam-

inaticn of || PATHATHEDKTN for a given plant need be
performed..
Examgie: (séaiar{

Let f{x,u;o) = ax(t)+bu(t)

and
. T 2 2
C(u.)=.12.[ (X2t + Wiy dt
. to
Then
n n _ n.2
D, a x"y t-(b)" o
) ) ' 0 O
- - " —n_ .....T-_—;;___—_n.
Dz =/ “P (t)l ..a o
1
../on(f:J 1 B .-,\("({_-) 0
Por Ao = a* - o0 = c, ¢ a consfant under perfect measurement.
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2
A xity= a"Axey+ x"wic - (b) [k,,AX(’C”K\zC]
™ (Y k) A X+ (X - (B K e
Ad =oi

Suppose Ao is subject to a measurement error such that

o A X&) A X)) 1
{e)= =
Ay Aa <-,+€r.+.>J

, * n a *
The term c¢ + £(t) represents (o =~ o )+(¢” ~ o }. BSuppose
ot equals a* almost everywhere on [t ,T]. Then the “"bad"

o o]

data points belong to a set of zero measure. Therefore,
|| €t)t| =0 and 6 =0 ][¢ - 9| = 0. This result

correlates with the fact that two differential equations,

namely,

() W = 41u3,o)
wity)s W,

anad

®) W= T(w,v)
wlty= -
and v measurable,

where f is bounded and Lipschitzian in the first argument
and measurable in the second,will have solutions equal
eﬁerywhefe if v differs from zerc only on a set of zero
meas&re, if €(t) is some finite (in norm) measurement
- error, then a bound § can be calculated from (4-2). In
this example only parameter vector measurement and/or
estimation errors were considered. fhe § resulting from
an a priori € will influence which of the possible choices
of a parameter estimator may be selected. That is,.there

will be a prescribed § precision required from the
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parameter estimator implemented,

4.5 Cost Index Exror

What variations exist in the cost index-due-to
measurement (i.e., approximation errors)? Consider a
neighborhood of y" (&) sufficiently small so as to admit
a truncated Tayvlor series representation of H{y;p,u)
‘'with negligible truncation terms. Let C(u) be again de-

fined as

T
Cuy-= %<X(T),Txc'r)>+f Lex,uydt
tb

where L is Lipschitz continuous. From Dy being stable with
respect to measure and e>0 such that if || £(t)]|]|<s, then
ll¢ - ¢]|<e. The vector ¢(t) and ¥(t) are members of
E(n+m)

and were previously defined. By Minkowski's in-

egquality it is apparent that

ii C#‘l't)"lpl't)“ < i( 95‘ (k1,00 ¢n{t”i(\k(t), L , \bn (f:))l e
¥ ” ¢n+|&):" o ¢n.‘.(;&n))’_(1pn+‘(t}J R "kh_sg))’ " .

BEven with the postulated small measurement, or estima-
tion errors, the adaptive control Au will have its original

structure.

S Auwe) = G Ay HoApe

where G(t) and H(t) are defined by the matraices .of (2-12)
in an obvious manner. But by virtue of the fact that
Ap(t) = K(t)Ay(t), Au(t) becomes

AUty = [G{-tH Hct)K(tﬂ D ytt),

Because L is Lipschitzian, C(w,) - Ctuh, 2=

T
- -‘é-< X AT T X, 01> “"2‘<xz‘T)ﬂ-x2‘T)>+/[L(X,.,U..) -L (xz,uz)] dt
to t
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can be written as

HCeun-Couplte 1T-t) KT X,-Xp, i -u,ll +

+ K WX, (m-X,(mi

where K is Lipschitz constant, u,corresponds to the control

. * .
strategy with 0 = o and uzcorresponds to the control

. &
effort with ag = q - &,

By Minkowski's inequality

NCiwy - Crugll 2 1T-tot K LiX %0+ u,-un] +

CEK X, Ty =X, CTON
or
M Ceup-Couplie V-t K [1 #1/17-t 141G+ HRI] €= €7
for e giv;en and ¢>0 sufficiently small.

Thus, for the € ,8 conditions satisfied, the normed
differencé in the cost indiéies pased upon the ¢ and ¥
solutions are nothing more than a scalar multiple of €.

If maintaining ¢  below some maximal value was of paramount
imgortancé, then one would solve for the.last«equation for
€ and this ¢ would then define a required §.

The error bounds found in this chapter are not
necessarily the sharpest available, but will always be sat-
isfied. Therefore, the designer may loock upon them as a
maximal guide.

4.6 Truncation Erroxr

Consider now (2-13) and (2~14) with regard to their

solution with and without ignoring the contributions of
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truncation errors. That is
(1)
.
AH:[A:B]A%+ A: 1 )"-"n’“k
ZXthfo} given
(ii) .
A'-_ C :'AJ A +
P [ : ] ..._L_‘J.. A‘Z o >\.2:n+mxl

f AP
ApCT)Y given

for some previously defined Al' and Az. The vectors kl
and Az'will be used to fepresent the lumped truncation
Brrors Suggestéa by (2-13) and (2~14). Furthermore, for
Al and 12 geing small bounded trﬁncation e;rors defined
over (y,p,u)eN (N defined in Theorem 2-1) there exists an

61 and €2 such that

Sup lE%J_} < € t € IE&"’T] and for all
sup | >\?_| = €, ty,p.ua € N

Let Q(t,to) be .the 2 {n+m)x2.(n*m) fundamental matrix of

AGT /A B\[Ay

(i1i) "k
Ap |\C -A")|Ap
that is
Ay Ayt
- INE XN
1D pw A ptte)

where Apo is the unknown initial costate vector. Partition

Q(t,to) as
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ﬂt‘t}tﬂ) =(Q_!_I£t:;t_ol_ : Q_l_zit,_{:.ez )
- 21 t,tad ) nza £,ts) *
Define T to be (?:beipg the weighting positive semidefinite

matrix in (2-2),

i
T - I_;_C?. (him) X (n+m)
olo

which results in
A pM=T Ay(m.
This condition reqﬁires that at the terminal time T the

estimated parameter may belong to all of E", {Remember,

- R n+m
Ay actually belongs to some restricted subset of E ).

Also
Aym= QumAyw + R, (T apct)+

+£Enl‘(T,T)E%%+ N, mD[R)])T
and

AP =0, Ayw+ N,aiAp b +
R A
+ .
j:( N, (TT E_aj.}!- Ninm [A 4T

= ? A%CT)
After some algebra, Ap(t) becomes

‘ A Ao
Apit) = [ﬂzzfﬂm— T ﬂlzﬂm] [Tﬂ,,tm - ﬂz'{T,t):)Agh':H-

T s ‘fl~
+ [ ( [ﬂ 2 (L0-T z(T.T)](Tﬂ"(T,T* "QZ;CFT{Q]*D\JHT
+
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Bukt )
~t --i ~t
Kit) = {nzz (T,4) -TQW(T,-L)] [TﬂutT,‘k) ~ﬂ?_| (T;t)] ,
ey z
Kety= T

'fhe matrix K(t) has been previously defined. Upon sub-

stitution

. ; |
A Plto)': Kl'toi A (j('to) +] (KM [_é‘_q* [ )\zl)d 'T
s

Thereforé,
A Lj(t) = [ﬂ il H:'Jtaﬂ'ﬂ i2 (t,to? K (to)] A ‘j (-tb) ¥

t
%ﬁﬁ[ﬂn t, T+ N, ch)_[—%-'}r 20, 8,00, ] ddT
Let Ay(t) and Ap(t) be the solutions of (iii), A§(to) given,
bp (T) ?—-Ap("r) given. Then, for Ap(t) = K(t)Af(t),_
Ag&):[ﬂ L L) +n|2(~t.'t.g) Kttd‘)] A g (ta) -

Therefore,

I Ayw-Ageoh=l I{ﬂ,z tt, 0 Ko+, (t,t)] [_)\\:I ¥

S
to .

+2 N6, [)&2] Y dz

< \Tutoi[ﬂﬂlz(t;t) Keor+ 0, e, oill €+ 2unnct;nliez]
for't,Te[t T],
o

or

iv) l Ayt - Agull« M €+ Ne, |
Therefore, the computable error introduced in (i) by ig-
noring the-truncation is always less than a weighted linear
combination of the largest truncation error expected as y

and p range over some restricted domain. This domain was
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.investigated in Chapter IT.

4.7 General Performance Erxrror

Equatlon (1v) may also be used to establish an error
bound on the cost function. The dlfference between C(u )
(with truncation error considered) and C(u } (ignoring
truncatién errors)can be established as follows.

With El and 62 defined previously, consider €3 to be

€, < sup lo €|t 6[‘[‘.°,T]and fov atl

(4,p,wr€ N, 0,(€3) gtven
by 2-12.
Therefore, for G(t) of (2-17) represented as

a(t) =-£Rw;)'i St-t)],
R(t) is rxn

S(t) is rxm,

1U¥ ) - ol i R X -xSoll + 1 Stolna® ai+é;, .

Also, it can be noted that

<x M, T x*T1>-< x%em, Txem>

Z""u“‘ (Tr-X5 21 £ T ux*er)-xSem

i=}
where

= max T,_;

L= 1,
define k to be a constant such that

i X*L'Ti;- Eenll o ]

2
Then kPP X*T)-xScmlf = Tux¥mr-xScryl’
*
The difference in the cost indicies C(u )} and C(ue) becomes

K is a Lipschitz constant)
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§ G- CuHll £1T-tal K (X ¥ty - xSeo il + IRt
i e i Ma*- a5
nxFeer-x ol + Sy illa”- aiilve,) +

s kT ux*ery -x%eml

* €
£ i-T-tO)'iZ[( L+ HRH N + kI yux*xn+ Stoll ‘Ila-all+€3]
1Tt K

from (iv)

2 IT=t K (1+ Rl +(k P AT-t1 I Me,+N €, )+

lSwilila®- @i+ e, = A(K, €660, A5 T)

A(kzet 1 62-, 635(1{3(13,1-‘)':-&“(3 613625 633-[1)

For a prescribed maximum allowable value of A(k,€,€,,€,,T ),

say A, [IC(u*) ~ ¢{u®)]] ¢ A. Then k, may be

€1 €51 €3
chosen {(not uniquely) in such a way as to satisfy the A
constraint. Choosing a maximum acceptable terminal differ-
ence (i.e., ||x (7) - x%(T)||), thus fixing k, one can
find the neighborhood N (of Theorem 2-1) such that Ehe
€17 €5y €4 candidates are satisfied.

Because of the general treatment given to error bounds
in this chapter, the error bounds generated were, in some

sense, maximal. Tighter bounds may be established for

particular problems through a more detailed analysis of

its structure
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CHAPTER V
SENSITIVITY

5.1 Sensitivity Index

The previously developed machinery will be used to
show that under certain local, restrictions a reduction in
the systems sensitivity to parameter variations will be
accomplished. The gquestion of sensitivity will be
developed gualitatively. The sensitivity index chosen
should satisfy the following intuitive ideas:

1. The ideal adaptive control is one which equals
the optimal control for a particular problem. If
the ‘adaptive control for cértain parameter varia-
tions eguals the optiﬁal control over those same
variations, then the system's cos£ is insensitive
to those parameter varia£ions. ‘

2. If the adaptive control @5es not produce a cost
C(u), (C(u) defined by (2-2)) which equéls the
minimum of C(u) over a set of parameter varia-
tions, then the system should be considered sensi-
tive té those parameter variations. The greater
tbe aisparity between C{(u)} and the minimum
C(u) = C(u*), the more sensitive to‘parameter
variations is the system's cost.

A sengitivity index sY chosen will compare the cost of
operation of a system subject to parameter variations to

. *
the optimal cost of operation C(u ). Or more succinctly

sY = |c®) - cu”)| (5-1)
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whare the properties of C(u*) and C{u') follow directly
from (2-1}) and (2-2). Altﬂough the construction of a
sensitivity index is arbitrary, (5-1) shall be assumed to
be the cénonical sengitivity index. With thisg definition
of 8Y and Theorem (2-4) in mind, the following is easily

shown.

5.2 Sensitivity Reduction

Correlary (2-4)

Under the conditions stated in Theorem 2-4

where:
* e n . .
u , u, and u have been previously defined.
Proof:

Apply Theorem 2-4 to S% and s™.

This result %uarantees that under certain local
conditions giveh in Theorem 2-4, a system operatiﬁg with
an adaptive control strategy is less sensitive to parametery
variations than its nominally optimal céunterpart. In
fact, as o - a*, 8% » 0. These results are not philo-
sophically disturbing in light of the fact that the
adaptive control was derived to have a reoptimizing
gquality. One would naturally expect a control effort
which is constantly tending to minimize a given cost index
to be closer (or equal) to the optimal cost than a system
operating with a fixed nominally optimal control.

5.3 Alternative Sensitivity Index
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To reinforce these ideas geometrically a more in-
direct attack on the sensitivity problem will be performed.
Supﬁose for the moment C(u) is-a monotically increasing
function of time. One might then be motivated to consider
a quadratic sensitivity index. Because the original cost
index is a function of x(t) and u({t), the new sensitivity
shall also be. Define the sensitivity index Ni as follows:

O Y- Y * { * L

N=UX(r=-Xil™+ f<x L) - Xy, Sy (XF @ -Xen> +
to . . (5-2)
+<uX- adiey, Rady ey - wéeend dt
where S(t) and R(t) are positive definite and
sy = foxten, urer,a®)
Xl(t°)=)(° (5-3)

Because Ni_is positive definite, zero is the minimal
value of ﬁi. Consider, for example, the-case wﬁere the
paraﬁeter variations from the nominal are sufficiently
small and known exactly (i.e., ot = a*) such that u*(t) =
ue(t). Then x*(t) = xe(t) and N° = N* = 0, which implies
the system is insénsitive to such parameter variafions.

If two systems operating with contfol efforts ui(t) and
uk(t) are compared for a given set of admissible parameter
variations, and if Nj > Nk over this set of parameter
variations, then the system associated with uk shall be
considered to be the "less sensitive” of the tﬁo for the
given parameter variations with respect to Ni.

6ne may compare the sensitivity, in_the Ni sense,

of the derived adaptive system with the nominally optimal
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controiled system as follows:
Consider the dynamical n dimensional system
o %*
x(.-t}='F(Ktt), LRI, A7) 5 X(t)= X,
%
with u () and un(t) previously defined.

Condition (i)

For sufficiently small parameter variations it has

*
been established that ue(t) and u {(t) may be represented

as:

UEE) = LW + G @ (X -X )+

(5-4)
+ Hxy ca-a")
* n n
W) = w ) FGdy cxity - X"y +
(5-5)
rHa a-a") + o(€®).
Combining (5-4) and (5-5)
Uly= u¥ ey - ole?),
Congider the following admissible variations
X(t)= x*&neSx-{t), a= a%eda
For the adaptive system (i.e. u(t) = u® {t)), one achieves

the variational differential eguation

Lim O X+ €5y = SX
€vo Q€

(ii) . N
Sxety=Lim g('f:<x*(t> + €O XE) . AL HEDT, Wity -0€?)
€0 Q€

(5-6)

- £, e, wte S X g L, ufe da

8xtt°)=0
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where all the partial derivatives exist, are well defined

and continuous over te E:O,T] . Define the solution of (5.6)
to be E(t} .

. T
f(-t):jf CP(t,TI'Fa(x*(T),a’: wendadT

where

@ 1,7y = £ x¥er,af wHen S,
dir,7)-=1,

For u(t) = un(t)

(iii)

8)'({{\ = Qi (‘ch"'ct)+68xctx,a.*+€8a,
€O '

> LL*H:) - Q () (X*?-{-)-e— 68}(&) ~XTe)) +
- He (A% €Sa-a™) - ote?)
(5-10)
' ¥
- »Pxfx*(t), QL)) ety + ‘Fa(x*(t),a,
,u*&))@a - -Fu(x*(t),ai wet) [Qh':)

Sxtor+ Hwr Sa ]

Sxity=0

Define the solution of (5-10) to be ?7(t) .
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t

)= f DT fa(x‘m,a’:uc'rngad'r +

Ta

t -

- ft b (e, -Fucx*rr),a*, ulr) [C,‘mecrn
()

rHeridaldT

or equivalently

N = £y -Lednun-L,cawy (5-11)

where
‘ _ t
— b ¥ X
L, = ftocmt,:)-fucx o,a, U ¢ Gery

t
j: D (£,T) Fucx*m,a.f uirnHm)

0

ith

L,

and L, and L, are bounded linear operators.

1

It is now possible to compare the following sensitivity

indicies:
N%: the sensitivity index for the adaptive
(reoptimization) scheme.
N7: the sensitivity index for the nominally optimal

coﬁtrolled schene.
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1f the reoptimization scheme is to be "less sensi-
tive" than the nominal scheme for a given set of ad-

missible parameter varations

o) N®-N"zo.

This implies

-
J{[<SEH:),S(‘E)86(t)>'*'<8u"°(t),R(-t) SUEw > +

- <8N, S N> -<S U, R S U] dt +

FSEm,SmBEM> - <8N, RMENT .

Theorem 5-1: For the sensitivity index given by (5-2)

and Condition (i) satisfied, a sufficient condition that

e

N® - &% < 0 is that

an 2 <E (Y, S(t)[L|(877(U)'*' Lg(aa]] £1

L (SnwN+l, (Sa)llgtt)

Proof:

One notes su(t) = %gglggb(ez)ﬂ*'of
and S ut)=-GEaYSx Y -Hw8a&  (from 55)

t £
_{ <Susw), RS uew>dts f <Su, Resd et
o tTo

Therefore, for (iv) to hold true, it is sufficient to show

j{ 2< f(t)JSct)[ LSneen+L(Sa)> +
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-<:[L,(S'r}ctng(Sa)],_Sct)[L;(Smtﬂ+
4 L2<8a)]>}' dt +2<Em,Sen [ L (Spe+
+ Ly Sar]>-< [L, (&7 () +L,03a),

,SCT) [LlCS'r)(T))+L2(8a)]>

< O.

A sufficient condition is
2<é(il:‘),‘S(t)[L,(Sntt))%l_zfga)]}
L (Sg L, Sadll

for all tc [tO,T] .

£1

Although the structure of the scalar sufficiency
appears innocent, its computation may be a very complex
problem. However, the sufficiency condition does rein-—
force some intuitive ideas one may have about é&t) and'q(t).
Congider the following state t¥ajectories in 5> and their

intersection with a £ = ¢~ hyperplane.
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Xt£) FOR LLtd)= LLTE)
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] o '
x°é X (£) FOR UlE) = LTE) e
O xet) Fow it Bz t
k()
t HIPERPLANE Z—7]

Figure 5-1

STATE TRAJECTQRIES

In the t” hyperplane the following vectors may be

identified:

Xy FOR W)= Lh

f "

X)) FOR

X{t)For
n F
iy =)

‘ [ meJ+L2(8a>]

L’ HYPERPLANE

Figure 5-2

+” HYPERPLANE
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The vector 7)(t”) is the solution to the state variational
equation with u(t) = un(t), te [to,t’] , at £ = t°. The
vector f(t) is the solution to the state variational
equation with u(t) defined by (5-4), te [to,'t ﬂ at t = t°.
The vector [L,(?](t‘)) + La(aa)] is defined by (5-11) -at

t = t7. Inequality (v) (Theorem 5-~1) plac.es some restric-
tiong oh the magnitude and orientation off(t) . For ex-

ample, some acceptable wvalues of f(t) are diagramed below.

Lt +L,S0)
Ey= ot

f(t'} orthogonal to
L (et n+ L,(Sa)

L+l (Sa)

Figure 5-3

ACCEPTABLE f (£7)
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Examples where the sufficiency condition is wviolated are

(mote: [Ime) 1| < |1 &w |

€ £wr= L OEn+L:(8a)

. B ) / ) 'l'.‘
L,(77(t'))+l.2(8(1) 2\ 7%

(&) -

The angle 8 between f(t‘) and —(Ll(')’)(t)t) + L2(60L)5 belongs
to (90°,270°).

LeneN+L,San

(b)

Figures 5-4a,b

UNACCEPTABLE VALUES OF é (£”)
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Therefore, the fixrst variational argument goes beyond re-
guiring that the variations in the adaptive control, from
the true optimal control, be small, or neglected. It re-
quires that.é%t) be small and have a proper direction.
Because of the continuity properties associated with theé
variational equations one would expect.f(t) to have a
direction similar to the direction associated with‘ﬂ(t).

Therefore, (v) becomes basically a magnitude restriction

of the form ]Ié(t)ll < e,



137

Chapter VI.
SUMMARY
6.1 Summary

The problem of sensitivity with respect to parameter
variationé ﬁas been stlidied under the philosophical re-
gquirement that optimality be preserved. The device which
accomplishes this has the property of generating a control
effort which minimizes T

Cur= 3 <xm, Tx(Ty» *fto Lexy, we))ydt |
for parameter values belonging to a set of admissible
parameter variations. The mathematical machinery used to
develop such a device was a truncated Taylor Series rep-
resentation of the system's Hamiltonian system of equa-
tions. Once certain local smoothness and partial deriva-
tive tests had been satisfied in a neighborhood of the
nominally optimal solution, the Maximum (Minimum)
Principle was applied to the problem. As a result of this
-acfion, a set of canonical egquations were generated from
which the matrix Riccati equation evolved as a by-product.
As a derived result, the adaptive control abstracted from
these egquations was found to be a linear combination of
the system's states and parameters.

It was shown that for parameter esgimates sufficiently
close to the system's actual parameters, the cost incurred
using the adaptive control structure was less than, or at
worst equal to, that incurred by a system operating under

a nominally optimal contrcol policy only. That is, under
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‘certain local restrictions the adaptive system's control
effort was optimal, or near optimal, over .a set of admissi-
ble parameter variations. By virtue of this fact, and a
sensitivity index given by (5-1), .

872 ¢y -Cauh |
it was shown that the adaptive system was less sensitive
to parameter variations than its nominally Egtimal cohtrolled
counterpart.

Nuerous techniques were offered to resolve the "curse
of an adaptiﬁe system" which is éarameter estimation. They
were basically of two deterministic classes; nmamely, num-
.erical and éradient ﬁechniques. Also, an-intfoduction to
a particular claés of non—determiniétic parametér estima-
tion scheme was explored with squegtions and computational
techniquéé'givep Eo satisfy this_requiremént.

6.2 Suggestions for Purther Resgearch

The most obvious area requiiing additional research is
that of parameter‘estimation. The devices and techniques
which may be developed in this area, beéause they'are after
all épprdximation schemes, are limited only by the
designer's imagination.

Numerical experimentation should also prove useful in
determining a largexr class of admissible parameter varia-
tions than that achieved by analytical means. Another
numerical study might be to form a linearized approximation

of a particular given plant to achieve a system of the form

X =Awix+Bu.
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Then mechanize an adaptive controller for this system, and
perform numerical experiments on it over a set of éarameter
variations, to establish whether or not this technigque has
any merit. .

An ihﬁeresting analytical study might involve deter;
mining aﬂ optimal selection policy which would define a
finite set of fixed parameter véctors. It would be re-
guired that for each parameter vector, say 0,; @ successful
reoptimization can be éccomplished with an adaptive con-
troller with an acceptable degree of accuracy. A set of
fixed dissimilar parameter vectors will be called the
optimal set of pafameter vectors if it satisfies the
criterion tﬁat for an open néighborhood.#ﬁ' of parameter
vegtors about Oy admitting the previously éiséussed re-
optimization, and some given set of iN of~paraméter varia-
tions, about the;nominal paraﬁeter vector.C£ﬁ ,1 £ is
minimum, ﬁhere

3
U wa_c: N.
. i1 t
That is, one Wiéhes'to find the minimal number of open set
(;.e.,tkg_J which forms an oﬁen govef of N..

Alsoi controllability and observability were essen-
tial in constructing the reoptimizing system. A study
pertaining to the loss of controllability or observability,
if -indeed it should occur, would prove beneficial. Such

an analysis would be straightforward.

The optimization problem considered was of a fixed



140

terminal time class. Extensions of this result into the
other basic classes of optimal control problems shéuld be
pursued. Also, the terminal cost index was defined to be
quadratié. It was assumed to be quadratic to reduce some
of the domputational problems encounterea without - too
great a loss of generality. Thereforé; it is suggested

that this ferninal cost index might be generalized.
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