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COLLISION INTEGRALS FOR NONELASTIC PROCESSES
IN PLASMA KINETIC THEORY
By John R, Viegas

Ames Research Center

I. SUMMARY

Often in the treatment of plasma dynamic problems the effects of
nonelastic encounters must be included. In this note collision integrals for
nonelastic processes that are important in plasma kinetic theory are developed.
The following nonelastic interactions associated with the electron Boltzmann
equation are presented in detail:

(1) Inelastic and superelastic encounters between electrons and neutral
species,

(2) Ionization and three-body recombination encounters in which the
third body is an electron, and

(3) Photoionization and two-body recombination encounters.

In addition, collision integrals are given for some of the processes that
affect the transfer equations of heavy particles (ions and neutrals) and
photons. Included here are radiative excitation and de-excitation encounters.
The compatibility of these collision integrals with the forms associated with
the usual macroscopic rate equations are demonstrated.

II. INTRODUCTION

Often in the treatment of plasma dynamic problems the effects of
nonelastic encounters must be included. Such effects are frequently of primary
importance in the calculation of electron distribution functions and in the
evaluation of electron continuity and energy equations (refs. 1-13). To a
lesser extent they can also play a role in transport property calculations
(refs. 1, 7, 13).

The purpose of this note is to present, under one report, in a consistent
form, collision integrals for nonelastic processes that are important in
plasma gasdynamic situations. These collision integrals will be presented in
the format usually associated with elastic collision integrals (ref. 14). It
is hoped that this format will lend itself to quick assimilation by the reader.

This paper represents some modifications and extensions of the work of
many authors. In addition to some of the previously cited references, the
work of Fowler (ref. 15) was found to be particularly helpful. Some of the



material presented in Section IV has also been published in reference 16.
However, for convenience, it seemed appropriate to reproduce the material here.

This paper is organized as follows: The first part presents generalized
nonelastic collision integrals for electrons that account for

(1) Inelastic encounters between electrons and neutral species,

(2) Ionization and three-body recombination encounters in which the
third body is an electron, and

(3) Photoionization and two-body recombination encounters.

Next the nonelastic collision integrals that affect the distribution of
neutral species, ionic species, and photons are treated briefly. Included are
radiative excitation and de-excitation encounters. In the last section the
compatibility of these collision integrals with the forms associated with the
macroscopic rate equations is demonstrated.

III. COLLISION INTEGRALS FOR NONELASTIC PROCESSES
ASSOCIATED WITH THE ELECTRON BOLTZMANN EQUATION

In a collision-dominated plasma composed of electrons, neutrals, and ions,
the rate of change of the electron distribution function! f(vg) as a result
of nonelastic encounters can be represented as

<aef5) - <aef5> - <aef5> + (aef5> (1)
ot /NE ot Jex %t J1on %t /ph

>
where fo = f(vg). The three collision terms on the right-hand side of
equation (1) represent the nonelastic interactions considered most important
in collision-dominated plasmas. They, respectively, account for

(1)} Inelastic (excitation) and superelastic (de-excitation) encounters
between electrons and neutral species,

(2) Ionization and three-body recombination encounters in which the
third body is an electron, and

(3) Photoionization and two-body recombination encounters.

In this section the collision integrals for these terms will be developed.
The state of the heavy particles will be indicated by the subscript j, k, or

!As is common practice in the treatment of collisions, the spatial and
temporal dependence of the distribution functions are not shown explicitly.



% added to the species subscript. These states are considered to be
specified by the principal and total angular-momentum quantum numbers and
degeneracies.

Inelastic and Superelastic Collisions

In this section collision integrals are developed for the conservation of
electrons in the set Vs,d3vs as a result of inelastic and superelastic
encounters that cause neutrals to undergo excitation and de-excitation reac-
tions, respectively. A typical interaction can be represented by

e + (Atom)% s e+ (Atom)ﬁ (2)

where the subscript n stands for the type of neutral atoms and the super-
scripts j and k (k > j) correspond to the state of the neutral particle.

This type of encounter can be distinguished by whether the reaction
causes the electron to be subtracted from or added to the set. When an excita-
tion (j » k) of a neutral atom is initiated by an electron with velocity v

- - s,
the energy equation is

(1/2)mgv 2 + (1/2)mnvn; = (W/2mgv 2 + (1/2mqvg, 2 + by (3)

Here 36 is the electron velocity after the collision, ?n. and ?nk are the

velocities of the neutral particle before and after the encounter, respectively
(the subscripts j and k serve the dual role of distinguishing between the
neutral before and after collision and representing its state), and A.k = hvjk
is the excitation energy for the interaction. When an excitation resuits in

an electron being added to the set, the energy equation is

(1/2)mgvy2 + (1/2)mnvnj2 = (1/2)mev52 + (1/2)mnvnk2 + Ajk (4)

where V; is the velocity of the electron before the inelastic collision.
The inverse (superelastic) encounters, which also contribute to the number of
electrons in the set, are described energetically by equations (3) and (4).

The number of electrons lost to the set VS, d3v. in unit time per unit
volume as a result of inelastic collisions with neutrals of velocity range

vﬂj’ d3vnj, such that the neutrals are placed in the set ?nk, d3vnk and the

electrons are scattered through an angle X,g, d20s measured relative to
?S - ?nj in the center-of-mass frame, with the velocity 30, d3v0 is



3
£g ddv £y Jd 53 sJ(g 57%05) g (5)

This type of transition is written:
(V V. > V.,V )
S? nj 0’ Ny

In the preceding inelastic loss expression, ok.(g .,x )dQ is the differ-

ential scattering cross section for the exc1tat10n colllslon in questlon The
relative velocity g6 3 is defined by gsj = [vs - an| fnj = £, (Vn ) is the

velocity distribution function for the species n neutral in the state j
normalized on the number density for this state.

In writing gsj and Xog as arguments of GEj’ we have addressed ourselves

to an examination of excitation collisions which cause heavy particle state
changes that can be classified by the principal and total angular-momentum
quantum numbers and degeneracies. The cross section should have enough infor-
mation specified in its arguments to determine, along with the conservation
equations, the velocities of both particles in the appropriate reference frame
after the collision. In the dynamics of inelastic collisions in the center-
of-mass coordinates, changes in the component contributions to the angular-
momentum vector of the system will cause the plane of the particles after the
encounter to differ from the plane of the particles before the encounter. If
no strong external magnetic fields exist, the direction of the total orbital
angular-momentum vector of the heavy particles can be taken to be arbitrary
both before and after the collision. Only the magnitude of this vector is of
interest. Then by symmetry the azimuthal dependence of the orlentatlon of the
relative velocity vector after the collision gok with respect to gsJ can

be neglected. Thus only the angle ¥, between gok and gsj needs to be

specified to describe adequately our inelastic collisions.

This argument can also be illustrated by the interaction between two
monoenergetic streams, one of which is taken to be the set of electrons having
the velocity range Vg , dv Vg; the other is a stream of neutrals in the set

3nj,d3vn,. As a result of the averaging effects of the streams the sum of the
total angular-momentum vectors of the heavy particles can be expected to be

zero. This initial symmetry would be preserved after the encounter allowing
us to neglect the azimuthal dependence of gok relative to gSJ Thus, only

the single deflection angle x,5 1is needed as a parameter of the collision.
Knowing Xos s8¢+ and using symmetry considerations one can find the velocity

of the particles after the collision in the center-of-mass reference frame.

These same arguments also apply for the other inelastic (superelastic)
collisions discussed in this paper.




The number of electrons lost to the set vs,clvs in unit Elme per un1t
volume as a result of superelastic collisions described by (vs,vnk - V1:Vn )
is

j
3 3
fS d stnkd Vnkgskcsk(gsk’xls)dgls (6)

ogk(gsk,xls)dﬂ is the differential cross section for this super-

elastic encounter. The angles are measured in the center-of-mass reference
frame relative to g sk* The number of electrons lost to the set per unit

Here

time per unit volume is then the sum of (5) and (6).

Similarly, the number of electrons gained by the set per unit volume per
unit time as a result of the inverse encounters represented by

>
(vo,vnk - Vs,an and vl, J - S,vnk) is
3 3 j
fo d Vofnkd Vnkgokgok(gok’xos)dgos (7)
and
3 3 k 2
£, d vlfnj(1vnjgljolj(glj,xls)dﬂls (8)

Expression (7) is the (superelastic) inverse of (5). Expression (8) represents
the ianrse gf (6). Typically the relative velocity 8ok 1s defined by
gok B vO - Vnk

A simplified expression is obtained for the net gain of electrons to the
set per unit volume for the reaction given by (2) if the principle of detailed
balancing is applied to the inverses among expressions (5), (6), (7), and (8)
before the integrations are made over scattering angles and particle velocities.
Applying this principle, we equate (5) and its inverse (7) at thermodynamic
equilibrium to obtain

k j
3 3 = ] 3 3
(fsfnj)qustsj(gsj’Xos)d Vé(ivnj (?ofnk)quokook(gok’xos)d Vod'Vnk (9)

The equilibrium distribution function for fg 1is given as

~-mgvZ/2kT
Me 372 meVS/2
(fs)Eq = (ne)Eq zﬂkT) (10)
2 ' : by v d ' .
To be consistent these angles should be labeled Xso’dﬂso and Xs1’d951’

however, it is easy to deduce that for inverse collisions as described here
> - > -
Xso = Xos 2nd Xg, = X

so 0os 1s°




where T is the equilibrium temperature, with corresponding expressions for
fo, fnk’ and f,.. The relative populations of various excited levels of an

atom at equilibrium are given by the Boltzmann distribution

n w -A.. /KT
(L‘k) _ Ktk D
E

np W,
q

J
where w, and wy are the atomic degeneracies associated with the states

j and k of the neutral particles. The differential velocity elements in
equation (9) can be related via their Jacobian as

Eok
a3vy, d3v. = (2X)d3v,,. d3v 12
nk o (gsj nJ S ( )

Then the combination of equations (10), (11}, (12), and (3) with (9) yields the
following detailed balancing result:

w.

2 ] -3 2
gokcok(gok’xos) B W) 853 Sj(g Xos) (13)

A similar detailed balancing analysis with (6) and (8) yields

2

200 (8, 5%, ) (14)

. w.
2 ) - _J
gskdsk(gsk’xls) - Wy 8
The differential velocity elements for this encounter are related by

g
dvy, dvg = <g5k)d3vn d3v (15)

1
1j j

If the electron Veloc1tles before a superelastic and an inelastic
encounter are denoted by VS and VI, respectively, it is easy to show that

equations (13) and (14), relating the differential cross sections, can both be
written as the following general detailed balancing result:

(.Uj k

J g2

2 J -
8515k (BgkoX) =
The terms g5k and ng in equation (16) are defined as

gsx = 1Vs ~ Vny

and



(17)

Equations (12), (13}, (14), and (15) can be combined with (5), (6), (7),
and (8) to yield an expression for the net number of electrons gained by the
set V d.v by the reactions represented by (v vnk<—*vs,vn ) and

(vl,vnjfﬁ-vs,vnk) When the resulting expression is then 1ntegrated over all

possible scattering angles and heavy particle velocities, the following expres-
sion is obtained for the net gain of electrons to the set per unit volume per
unit time for the reaction given by expression (2):

9 f) ws k
els 3 3 ] 3
—_— d?ve = d°v f f —= - fof, . Jg. .0 . do dv
< ot Ex ] S ./ﬂo ny Wy nJ) sjsj os nj
j<—>k
N I | P S J o By (18)
1ny stny ) 8sk%sk ©9s n

The sum of (18) over the various neutral species and states of these neutral
species divided by d3vg is

3. .f W .
e s J k 3
—_— = f f — - f.f o.. d0 d

< it >Ex | //(0 Mk e TS “j>g53053 0s” 1y

n,k,j

6]
k j 3
+ j(yq%lfnj 6; - fsfn;>gskoskckﬁsd Vi (19)

In this equation the first collision operator represents the superelastic gain

and the inelastic loss to the electron set S,d.vs for all possible species

n and for all possible values of j and k. The second collision operator
represents the inelastic gain and the superelastic loss to this set for all
possible species n and for all possible values of j and k.



Ionization and Three-Body Recombination Encounters

In this section collision integrals are developed for the conservation of
electrons in the set Vs,d3vs during collisional ionization and three-body
recombination encounters. A typical reaction in this case can be represented

by

e + (Atom)J e+ e + (Ion)2 (20)
n < n

Here, as previously, the subscript n corresponds to the type of neutral atom,
and the superscripts j and & signify the state of the neutral atom and its

related ion, respectively.

When the way that electrons enter or leave the set Vs,dsvs is of
concern, the energy equations for this type of encounter become:

1 > 1 2 1 2 1 2 1 2
> MeVg® + §-mnvnj = 5 MeVy,™ + 5 mv,” + E—mivi2 + AJ.2 (21)

when the ionization is caused by a vg electron and

1 2
+ §'mivi2 + Aj2 (22)

2 2

3

1 2 1 2 1
~2— mevl + -2— mnvnj = *2— meVS

1
+—2—meV
when the ionization results in an electron in the set. In these energy equa-
tions m; and V. are the mass and velocity, respectively, of the ionized

i i,

type n neutral atom in the state distinguished by the subscript £, and

Aj2 is the ionization potential of the atom from its jth state of excitation
to its related ion in the &th state. In equation (21) V, and 34 are the
velocities of the two electrons resulting from the ionization. Making use of
the principle of indistinguishability (ref. 15) we will not distinguish
between bound and unbound electrons during an ionization or three-body recom-
bination encounter. Thus, the electron that corresponded to the ionizing
electron after the ionization will not be specified; it will merely be stated
that two electrons result from the ionization. Likewise in a recombination
encounter, no attempt is made to identify which of the two free electrons
becomes bound and which remains free. Similarly, in equation (22) a v,
electron caused an ionization which resulted in two electrons, one with veloc-
ity VS and the other with velocity 23. It should be noted that the ¥,
appearing in this section is not the v; that appears in Section III (p. 3).
They are distinguished by the type interactions being considered.

The number of electrons lost to the set chﬁvs in unit time per unit
volume as a result of ionization encounters with neutrals, such that the
following transition occurs

> > > > >
(Vsyvn. - VZ’VL;:V]'_Q‘)



is

3 3 2( . > )3 23
fg d stnj d'vnjgsjqSj gsj’xzs’VHZCM d V”2CM szs (23)

£ > 3 . . . .
. .3 Q def d the diff tial '"'cross
Here GSJ(gSJ’XZS’V”ZCM)d VHZCM(i ,g is defined as ifferentia

. - . . . >
section" for an ionization encounter between electrons in the set vs,d3vs
and neutrals in the set Vp., d®vy. resulting in two electrons, their veloc-

ities given by V,, d3v, and Vi, d3v,, and an ion in the state % with its
velocity range and state signified by Viz,dsviz. Here the semicolon in the

argument of the cross section separates before collision parameters from after
collision parameters. The angle x,5; 1is measured relative to the direction

of gsj in the center-of-mass frame. The velocity V”ZCM is defined by

(VQCM,YQZCM), where X“ZCM is the direction of v, measured relative to vy

in the center-of-mass frame. The center-of-mass subscript CM is used here
to avoid confusion with non-CM velocities.

Again symmetry arguments have been used to arrive at the above choice of
cross-section parameters. As presented, sufficient information has been
specified that the velocities of the particles after the encounter can be
determined when symmetry considerations are included with the conservation
equations and the initial velocities. There is no single 'correct'" way to
designate a differential cross section of this complexity. For example, let
us examine qualitatively the dynamics of an ionizing collision as regards a
choice of parameters for the cross section. Consider the interaction of a
monoenergetic beam of electrons with a monoenergetic beam of neutrals which
results in ionization of the neutrals. Before the ionization encounter
between an electron and a neutral particle, the two particles lie in a single
plane in their center-of-mass reference frame. After the encounter, however,
the resulting three particles are not restricted to move in a single plane in
this reference frame. Averaging all such encounters in the beams will still
give a symmetry of sorts about the relative velocity vector Esj; that is, the

resultant momentum vector of any two of the scattered particles (say the elec-
Erons)from a single collision can be found equally likely in any azimuth about
gsj as will the momentum vector of the third particle. These momentum vec-
tors, that of the above resultant and that of the third particle, are equal,
antiparallel, and lie in a plane which has the same symmetry about Esj as

the particles on page 4 after an excitation collision. This symmetry can be
represented here if any of the three velocity vectors is allowed to be arbi-
trarily located in an axial sense with respect to Esj' We choose VZCM

to have this symmetric character and thus only specify X,q in Oij' The

collision is then completely described by specifying the velocity of one of
the remaining particles relative to vZCM' We picked V, for this distinc-

tion. It is important to note the arbitrariness of these choices. Thus some
other choice of parameters could have been made. It may appear from the above
choice that the "created" electron must have the velocity vV,. This is not
the case. Consistent with the principle of indistinguishability we have




merely stated the velocity of one of the resulting particles without
specifying which particle it was prior to the encounter.

The number of electrons lost to the set ?S,’avs in unit time per unit
volume as a result of three body recomblnatlon encounters with ions and other
electrons such that the (vs,v3,v1£ > Vl:Vn ) transition occurs is (ref. 15)

3y £. ddv. 3 ]
fs dvsfy, d Vlzfé(iv3gszg32[6s32( sz’gaz’x .85 X1s )dQ]s

J > .
0532(232@52ngsg3,X13)d§213;| (1 + 6;3’35) (24)

The relative velocities are defined as

gS,Q, = ]VS - vlg]'
and
_ > >

Two cross sections appear in expression (24)3because there are two ways in
which electrons can be lost to the set Vs,d'vS by the (VS,V3,V12 - Vl,_> J)

reaction. That is, on momentarily distinguishing between electrons, either
the vg electron can become bound to the ion and the v3 electron becomes
the v; electron or the vg electron can become the v; electron while the
vy electron becomes bound to the ion. Thus 03 dQ is the ”differential

cross section' for the recombination encounter in wh1ch s -~ 1 and 03 2 dQl3

is the "differential cross section' for the recombination encounter in which
3 > 1. From the principle of indistinguishability we can say

J B R
9534 g “3sg i) 5

Thus, expression (24) becomes

3 3y £ dBvs j > .
Zfsd"sfsd"sflxz,dVlzgszgazcsaz<gsz’g32’xg3gs’X15>d915(1 * 6\73,75) (25)

5348
for this recombination collision. After this encounter the remaining free
electron is scattered into the angle xls,dQls measured relative to VSCM'

The angle between §32 and g is given by ¥ . Again, the choice of
sg £38¢

We have taken o (gsz,g32,§é g ;Xls)dﬁls as the "differential cross section"
3°s

argument for the recombination cross section is not unique, and also we do not

10



specify which of the two free electrons becomes bound (the cross section is
symmetric in the subscripts s and 3). The delta function 6> > is included

Va,V
3>Ys
in (25) to account for the case when both electrons part1c1pat1ng in the
recombination encounter are in the set Vs,d‘v This function is defined as
follows:
> >
0 ; Vy # Vg
55,3 =
3’5 . -—)_—)
1 ; vV, = Vg

Thus, for any smooth finite function K(VS)

3
K(V,)6s> = dv, =0
f 3 V3,VS 3

so that for practical purposes the delta function can be omitted. 1In an
analogous manner, the number of electrons gained by the set per unit volume
per unit time as a result of the inverse recombination (Vz,vq,v12 - vs,vn )

and ionization (vl,an -> vs,v3,v12) interactions are, respectively, ]
3 3 3. oJ > )
f2 d szl; d Vufiz d Vlﬂgzzng 240 (g22 1g42 :nggZ’XSZ)dQSZ (26)
and
3y £ a3 L . > 3
2f, d vlﬂ%jd angljclj(glj’Xsl’V3SCM>d951 d V3SCM 1+ 633’35> (27)

In expression (27) the coefflclent 2 accounts for the two ways in which elec-
trons can enter the set via the (vl,vn - vs,v3,vll) interaction, that is,

either v1-+vs and the bound electron becomes v3,or V1 - v3 and the bound

= . . N
electron becomes Vg, and the cross sections for these reactions, which are

symmetric in the subscripts s and 3, have been set equal on the basis of
indistinguishability arguments. As a result of the collisions being inverses,
and the symmetry discussion following expression (23), the scattering angles
in (26) and (27) are the same as those for the direct collisions and will sub-
sequently be treated accordingly. Note that the angles are measured relative
to velocity sets and not relative to particular particles. The delta function
in (27) is to account for the possibility of the ionization resulting in two
electrons entering the set.

As in the previous section we will derive a simplified expression for the
net gain of electrons to the set per unit volume for the reaction given by

(20) through the principle of detailed balancing. Applying this principile
expression (23) and its inverse (26) are equated at equilibrium to obtain

3 3, 43y = , J 3 3 3
(Estn )Eq 537 Vaz gy, s 47y, - (fzqulQ)quug”oz% adv, dv, dv;  (28)

11



At equilibrium the distribution functions are Maxwellian:

2
372 -Bvp

(fn)gq = (edgg (£) e , m=s, 2,4 (29)

where B = mg/2kT, with corresponding expressions for fnj and fiz' The

number densities of the ions, the neutrals and the electrons are related at
equilibrium via the Saha equation, which can be written

(me) oz gy e oy

ny .

In equation (30) W and w, are the degeneracies for the type n atom in its

jth excitation level and its related ion in the 2th excitation level. Com-
bining equations (21), (29), and (30) with (28) the following detailed
balancing result is obtained:

I 38y, $Bv a3 _ 2. 3 3 3
g22g420242(1V2C1V4d'V12 = HgSJ S VHZCM d°vg d vnj (31)
where
H = ' Y
“ o 3 2w,
me [

A similar detailed balancing analysis with expressions (25) and (27)
yields

I 3By By $PBv. - L 3 3y d3v.
g52g320532d'%5d ng Vo Hgljoljd V3SCM d vy d V3 (32)

As for inelastic and superelastic encounters, equations (31) and (32) can
both be included in a single expression. If subscript Z denotes the elec-
tron causing the ionization and subscripts R and B denote the electrons
resulting from the ionization, equations (31) and (32) can, consistent with
previous notation, be included in the following equation:

d3vR d3vB vy % d3vBRCM ddv, ddv, (33)

J
ER28B1°RBY

Since the following relations between the differential velocity elements hold:

3 3 3 3
v dv &v = %6 d7gp, Pgg,

3As written equation (30) includes the approximation that m; = m,.
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and

d3v_ d3

where G 1is the velocity of the center of mass, equation (33) can be written
as

i 33 3 _ 2 3 3
8re8Bo Re 48Ry BBy = H875975 T VBRI 825 (34)

Equations (31) and (32) can be combined with (23), (25), (26), and (27)
to yleld an expression for the net number of electrons galned by the set
Vs,civs as a result of the interactions represented by (Vs,VnJ"“+V2’Vu’V )

and (VS, —V

5 1 12V J). This resulting expression can then be 1ntegrated

over all possible scattering angles and heavy particle velocities to obtain

Pefs adv_ = d3 £ Ff. H - fof ot oan &3 asy
3t Jion 9 Vs T ¢Vs ( 2tuty BT ts nj)gSj sji Pos @ Vuoom © VN
j(»j?,
-1 3. 3
. ZﬂﬂflfnjH - £ f le) gng%oS?)Qdledv By 2] (35)

This equation represents the net gain of electrons to the set per unit volume
per unit time for the reaction given by expression (20).

Now, on summing over the relevant neutral species and the excited states
of the neutral species and its ion and dividing by d3vs, we obtain the follow-
ing collision integral for the net gain of electrons to the set per unit
volume of phase space per unit time as a result of collisional ionization and
three-body recombination encounters:

Pefs - 6,61 H - fof, an B a3
 Jion (2 “iing T 7S )gSJ sj Tos ©Vuzey ©Vn;
]

3

-1 . j 3, 43
* Zj,/]f fp H7 - fsf3f1n2)gslg320532 o d vyd VinI (36)

Here the first collision integral represents the galn by three-body recombina-
tion and the loss by ionization to the set v d.VS; the second collision
integral represents the gain by ionization and the loss by three-body
recombination to the set.

13



Photoionization and Two-Body Recombination Encounters

The remaining nonelastic collision term is that associated with
photoionization. Physically, a photon of energy hv is absorbed by an atom
in the state j, resulting in an ion in the state £ and a free electron.

The reverse reaction is when a free electron and an ion combine with the
emission of radiation. A typical reaction for this case can be represented by

e + (Ion)i 7 (Atom); + photon (37)

In terms of the relative velocity ESQ the energy equation for this
encounter 1is

1 2
hv = 5 MiBgq * Ajl (38)

where My is the reduced mass defined by memi/(me + mi). We consider only

nonrelativistic electrons in this analysis and neglect the momentum of the
photons relative to the momentum of the electrons or the heavy particles.

Then in the center-of-mass reference frame the direct encounter (photoioniza-
tion) will result in an electron and an ion moving in an antiparallel direc-
tion arbitrarily oriented relative to the direction of the incoming photon.

If we consider the interaction between a monoenergetic photon beam and a cloud
of neutrals in the state j in the center-of-mass frame which are not polar-
ized by an external magnetic field, then by symmetry arguments we can conclude
that the collision probabilities will be independent of the ''scattering' angle
of the recoiling particles. Thus, in any direct collision v would be the
only parameter needed, in addition to the conservation equations, to determine
the velocities of the resulting ion and electron in a particle direction.

2 . . . . .
Let Q.(v)dQg represent the differential cross section for the ioniza-

tion of a neutral atom in state j and set V. By by the absorption of
nj oo

radiation of frequency v resulting in an electron being emitted into the
angle dfg measured from some arbitrary reference axis w1th the speed vg, dvg.

The resulting ion will be in the state & with velocity v d'v i The

solid angle associated with the ion motion will be -dfg in the center-of-mass
frame. The number of electrons gained by the set vs,d3vS per unit time per
unit volume as a result of photoionization can then be represented by

£
0 d3vnj?R(v)dchj dog (39)

In (39) R is the photon distribution function per unit frequency per unit
volume; it is normalized on the photon number density and is related to T(v),
the specific intensity of v radiation integrated over all solid angles, by

(ref. 17)
Ry = 1O (40)

chv
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T(v) is proportional to the radiant energy density at this frequency. Here,
and in the previous expression, ¢ is the speed of light. It plays the role
of the relative speed in expression (39). Note that we cguld have included
exp11c1t1y here the direction of propagation of photons ¥, and worked with
fR(v, xv)dv de,, rather than TR(v)dv. This will be done in the discussion on
radiative exc1tat10n and de-excitation in the following section. These
distribution functions are related by

L
= sf £R(v,%,)da,
o}

where d©,, is the solid angle centered about ;v'

Two-body recombination, the inverse of the above encounter, results in a
depletion of electrons from the set. An examination of the dynamical equa-
tions in the center-of-mass frame will reveal that the only parameter needed
to determine the frequency of the radiant energy is the relative speed gg,.

Then, defining ﬁg(gsg) as the differential cross section for radiative cap-

ture (two-body recombination) of an electron in the velocity range VS, d3vS
-5

by an ion in the set Vigs d3 Vi, which results 1n the emission of a quantum
of radiation hv and a neutral atom in the set an, a3 Vy., an expression for
3

the number of electrons lost by radiative capture for the reaction represented
by (37) can be written as

£s divgfy d3vig’gszl_3?& (ggy) (41)

Electron captures result in both spontaneous and stimulated emission.

Thus ?% can be written

Bl (ggy) = 4mad (gy) + TOIB) (ag ) (42)

where the first term on the right-hand side is the contribution from sponta-
neous capture and the remaining term is the contribution from induced capture.

In order to obtain a simplified expression for the collision integral
associated with (37) we apply the principle of detailed balancing and equate
(39) and (41) at equilibrium. Utilizing (42) and (40) with this equality we
obtain

s . [fn: I(V)]
(fsfiQ)Eq gsz{4wa§+ [I(\))]Eq B%}d%s ddv; JT—% Q. (v)d3an dv deg

(43)

At equilibrium the distribution functions are Maxwellian and are given by (29).
The equilibrium specific radiation intensity, given below, is Planck's black
body intensity:

15



- 8rhv3 1
101, = :2 (ehv/kT - 1) (44)

The Saha equation (30) relates the number densities in equation (43). Com-
bining equations (29), (30), and (44) with (43), we obtain

-1 j -hv/kT 2hv3\  -hv/kT_j 2 2v2
H ggp {OLJ( - e )+ (T) e 82 d3vs d3vi2 = Qj v) =z df"vnj dv dag

2
(45)
Since this equation must be independent of the temperature, the following
relations must hold:
j _ 2hv3 j
o (8ge) = o2 By (8sg) (46)
and
L 3 _ oyl €2 J 3 3
Qj(v)dQS dv d an = H E;j—gslaz(gsz)d vg d Viz 47)
The differential elements in equation (47) can be related through the
Jacobian of the following transformation:
dog dv d3vnj = [J]d3vg d3viQ (48)

To evaluate IJ] we make use of ‘the following differential relationship, which
holds for our photoionizing model:

= d3g_, d3v,.

d3v, 43
se j

S VlQI
When this relation is combined with (48) the result can be reduced to

dog dv = |J{d3gg, (49)

since d3g ., = ggz dg., d9_, equation (49) can be written as

d\) = |Jlg§2 dg52

so that
] = 52
Bsy “8sy

Then using (38) we can find the following relationship
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3V Higsy

ags2 h
Thus the Jacobian becomes
.
5] = o
gse
and (48) can then be written
3 ui 3 3 ( )
dQ_ dv d°v = d°v _ d°v. 50
S nj  hggg S 1y

With equation (50) and the definition of H, equation (47) can be reduced to

2 /20 m g2 .
[ _ MmeC [AY SETAN
GO =1 (wj >( 2 > 2 (852) b

where u; has been replaced by m,. The variable g, on the right-hand side
of (51) is related to v by equation (38). Equations (46) and (51) are the
detailed balancing relations for this photoionization encounter.

When these expressions are introduced into the gain expression (39) and
the result combined is with the loss expression (41) and then integrated over
all possible ion velocities,

<aefs> a3 a3 £ TR Py £ £ Bl g3 (52)
Vg = 47V nit o T i, ] 8se Vi
ot Jpop ° S 7 amv?p) R i L

jes

With the aid of equations (40) and (46) we can rewrite (52) as

7o)
defs I8y =3
ddv. = d3v_ [[£,. —% - £.£. )g. PP d3v. (53)
( ot >Ph ® S\l T ) TSR
j++2

This equation represents the net gain of electrons to the set 75, d3vS per

unit volume per unit time for the reaction represented by (37). On summing
over all possible species and states, we obtain the following collision
integral for photoionization:

TaJ
aefs> IBQ =j
“ets) o fr., — - £.f; P d3v, (54)
< 9t /pn "l T LY
n,%,j
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IV. COLLISION INTEGRALS FOR NONELASTIC PROCESSES AFFECTING
THE TRANSFER EQUATIONS OF THE HEAVY PARTICLES
AND THE PHOTONS

In an energetic plasma the heavy particles as well as the electrons are
influenced by nonelastic collisions. Although this effect on the heavy parti-
cles manifests itself primarily as a change in species concentration, momentum,
and energy density rather than a change in the heavy particle distribution
function itself, it will prove useful in the section on rate expressions to
have at hand a convenient collection of nonelastic collision operators for the
heavy particles as well as for the photons and the electrons.

We will consider here radiative excitation and de-excitation reactions
(indicated by subscript Ra) in addition to those reactions considered in the
previous section. This reaction proves important in any calculation of number
densities and energy transfers for the heavy particles and the photons and
thus affects the electron distribution function in a coupled problem (ref. 9).

The collision operators we will be considering in this section are
indicated symbolically as follows:

(1) Neutral species:

(589, - (52, (520, - (2, 62,
%t /e T Jex %t Jion %t Jra \ 7 Jpp
(2) Ionic species:“
. o _f. .1
<aef{2&> - (.f_i2&> s <_S_i3&> (56)
ot - ot ot
NE Ion Ph
(3) Photons:
B EN 3o ER 3 B
a3t =\ ot "\ (57)
NE Ra t /ph

In this section, except for the development of the radiative excitation and
de-excitation terms, we shall rely on the previous section for details and
merely apply those results to the present formulation.

“Collision integrals for ionic excitation or ionization can be deduced
directly from the appropriate terms in equation (55) and will not be presented
here.
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Neutral Species

As equation (55) indicates, the nonelastic collisions being considered
that involve neutral species are: collisional excitation and de-excitation,
collisional ionization and three-body recombination, radiative excitation and
de-excitation, and photoionization and two-body recombination. AIll of these
interactions except for radiative excitation and its inverse have been con-
sidered in detail in the previous section. Hence by inspection or by follow-
ing a development similar to that outlined in the previous section we can
write the excitation and de-excitation collision operator for a neutral

species in state
[
- % 3 k 3
= //(irsvfnk o fsfnj>gsjoSj dQs's d vy
Ex X

MZC

#J k#j (58)
Note that in this expression k is not restricted to being greater than j
and the subscript s' 1is used for the electron involved in the gain term in
(58). Of course (58) could have been written with two collision operators on
the right-hand side; one for k > j and one for k < j, for which s' would
be replaced by a 0 and a 1, respectively, consistent with equations(3) and
(4) with subscripts nj and ny interchanged.

We can also follow a development similar to that outlined in the previous
section and write for the collisional ionization and three-body encounter:

defn. 3 f X
<‘at 3) = ffff qul H- £ f j>gsjosj A3Vyp oy A0 A3V,
Ion &——d Ion

L
yok (59)
From Section III (p. 17) we can also deduce
aefnj aefnj Tﬁg : gilh
. = 2 = .- _*\n)
3T = 5t = fsflz fn. __j pQ, T dv dQS
Ph J WP i
Ph . Y 2
2 j>2 3 (60)

for the photoionization and two-body recombination encounters.

Radiative excitation and de-excitation.- For the radiative excitation and
de-excitation process we shall follow the development associated with photo-
ionization and two-body recombination encounters (pp. 14-17), accounting for
the differences between the "discrete' spectrum associated with this bound-
bound transition and the continuous (above a limit) spectrum associated with
the bound-free phot010n12at10n transition. Here however, the development
will be carried out with fR rather than TR for the photon distribution
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'
function. A typical reaction for this case can be represented by

(Atom)i + photon (Atom)ﬁ (61)

The energy equation for this encounter is

1 1 2
E—mnv%. + hy = Q'mnVnk + Ajk ) (62)

Let Qk(v) represent the cross section for the radiative excitation of a
neutral atom from state j to state k as indicated in equations (61) and

(62). The number of atoms in the set an, d3vn which are excited to

j
?nk’ a3 Vp ~atoms per unit time per unit volume as a result of radiative exci-

tation can be represented by
R > k k
3
fnj d anf (v,X,)dv dvaj(v)cQj (63)

In equation (63) wk(v) is a line-shape factor, which accounts for the fact

that the frequency over which the absorption occurs is_not prec1se but varies
over a narrow range. The number of atoms in the set Vny s a3 Vny that relax

by radiative de-excitation to an, d3 VnJ atoms per unit time per unit volume

can be represented by

£ d3vnkPﬂwﬂ(v)dv dq, (64)

g
As in expression (41) the differential cross section for relaxation

Pﬂ(v,?v)wﬂ(v)dv dQ,, has spontaneous and stimulated components. Thus we can
write

i _ A > g
Pk - Ak(\)) + I(\):X\))Bk(\)) (65)
where the first term on the right corresponds to spontaneous relaxation and
the remaining term corresponds to the induced relaxation. The differential
elements dv d@, Trepresent the range and direction of the emitted photon.

The line-shape factor for emission wk will be assumed to be the same as the

line-shape factor for absorptlon thus wk w?.

Applying the principle of detailed balancing we can equate (63) with (64)

and (65) at equilibrium and obtain «

. . Qo
i, il ]
() o [ (0, (Fnp),, g i (66)

SThis assumptien is strictly true for Local Thermod&hemie Eeuiiibfium--
(L.T.E.) and usually is assumed to hold for situations in which collisions con-
tribute predominately to the excited state population distribution (ref. 18).

20



In obtaining (66) equation (40) was used to replace fR by I in (63). Also
used was the differential volume element relation d3vnj = d3vnk which

follows directly from a momentum balance and the fact that the momentum of the
photons is neglected. Now using

_ 2hv3 1

(I)Eq Y (ehv/kT

and the relations given by (10) and (11) of Section III (p. 3) we find
from (66)

- 1)

. 2h3 .
-2 e (67)
and
k Yk c? j
C o K 68
%G =y N (68)

The cross section Q? in (63) could be replaced by an Einstein coeffi-

cient for absorption B? such that (63) would be written as

s

k
£, d3v,.B.y.I dv dQ
nj nj Jw v

-

This suggests the following relationships
k
kK _ Y
By = Ry

2

and

the latter being well known.
When these detailed balance expressions are introduced to the appropriate

gain expressions and the result combined with the loss expression and inte-
grated over the photon range and direction, one obtains

I k
e "k 3. _ 3 1B i
( St >R ddvpy = d vnkylyfgnj—i - fn, Pic v dv (69)
a Pk

jk

K
-
e a3y, = ddy £ - f EEQ- piyK dq, dv (70)
5t Jpa nj n; Ny ny o3 ) kY5
k

jek

or

a
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On carrying out the integration over the solid angle and summing over states
we obtain

-k
3 f 3. f B
ofny (e nk) j .
< ot )Ra A\ 2t /Ra bopl Tk
jox 3

k>3 3
j<k j<k
or
(aef“j\ <aef“j> > B
- , - £ -y, —|Plys av (72)
% JRa " Jra L\ 3 PR
i<k K jek K
j<k j<k

Note that by definition f[vJ dv = 1 (ref. 17).
k

If we want to account for either excitation or de-excitation from a
single state we combine (71) and (72) and write

defh. defh. defn.
3t : =\ 3t : T\t : (73)
Ra Ra Ra

j<k i >k

For the second term on the right-hand side of (73) we would use (71) with
k and j interchanged.

Tonic Species

The two interactions indicated by (56) have been considered in detail in
Section III (pp. 8-17); thus by a slight intuitive extension of that work we

can write directly:
9,1t
<e 12)
ot Ton

9.f;
[S] 12
ot
] s
= t e  H DD fff e o) da d3v, da3v (74)
1%n; st3i, )BseB3g%s30 s s 3
j

Ion

for the rate of change of the distribution function for ions of species n in
state £ as a result of collisional ionization and three-body recombination,

and
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3 _f: 3afs 7]
e+1i etl I8 .
[ ~ 2 _ 2 . %) 3
AR 9

. i __J
. jeL .

J
for the rate of change of this ionic distribution function as a result of

photoionization and its inverse.

It is fairly easy to establish upon a change of variables of integration
between (60) and (75) that

a_.f defy
e n; 2
J d3va. = - (————— d3v; (76)
ns i
< ot )Ph 3 ot >Ph 2

j<—>2, j<—->9,
This fact will prove useful in Section V.
Photons
In a direct manner one can deduce from Section III (pp. 14-17) that the

net gain to the photon distribution function per unit volume per unit time per
unit frequency range as a result of photoionization encounters is

- —R 1 2 —-j
def ; 9t hgslpg i B 2 3
—_— = fsfi " fnf cQ. dQS d°vy.

ot Ph : ot
— J 2
- £ f £ Py I 8sa” da. d3
= s ig - nj = 2 T Qg d°vy | (77)
. HP) i j
)

2,3 jere 2,73
From the preceding work in Section IV (pp. 19-22) we can write

R k
o Y [P IS BN
°t Jra Pk T RN T
jok :
k>j

from which we find

=k
R R
a.f 3. IB. .
© = ; _e - E - “dVsi kg3
< AT ) ( 3T ) = fnk fnj ﬁj Pkwj d vnj (78)
Ra AN Ra k

J,k jok 3,k
K > k>j
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for the rate of change of R per unit volume per unit frequency as a result
of radiative excitation and its inverse,

It should be noted here that to the extent that the internal energy state
of a particle is independent of its translational energy we can integrate over
the heavy particle velocity in equation (78) directly and obtain

deE § 'Sk =k Kk
a J K

k>j
V. RATE EXPRESSIONS

The rate of change of any electron property ¢(3S) as a result of non-
elastic collisions can be designated as

> defs _ Be(neE)
_[‘1’("5) ( 3t )NE v = [ 3t ]NE (80)

where ¢ is the mean value of ¢. Similarly, the rate of change of any
property of the neutral species ¢(3nj), the ions ¢(Vi2), or the photons

¢R(v) as a result of nonelastic collisions can, respectively, be written as

8efn- ae(nn-gn.)
¢ (¥p) (——J> d3vy, [————‘J_ J.. (81)
f ny ot NE nJ ot NE

with corresponding expressions for the ions and the photons. When equa-
tions (1), (55), (56), and (57) are combined with the above expressions,

[%(nea)“ : ’ae(ne@J , [ae(ne@] \ [ae(ne@] )
5ty L ot Jpyx 5t Jion ot Jpn
ae(nnj$hj)ﬂ _ Fae(nnthj) . ae(nnjEAj) . ae(nnj¢nj) . ae(nnj¢nj)
9t INE ot Ex ot Ton 9t Ra ot h
(83)
ae(niﬁizf [0 (n1,93,) de(ny,1,)
3t = ot ] * T (84)
JNE L Ion Ph
[ae (nRﬁ)] 2 (nRHBR)J [ae (nRER)}
_— = f——— + _— (85)
% he | %% Jra T




In regard to equations (83) and (84) we can sum over states and obtain

[%e(nngh)] _ ;E:: [ae(nnj$hj)] (86)
ot g ot NE

j

iy [
ot NE ot NE

To check the consistency of the formulation of the collision integrals, in
this section the terms on the right-hand side of equations (82)-(85) will be
evaluated for various forms of the property functions. It will be demon-
strated that equations (82)-(87) with the collision operators developed in the
preceding sections will yield nonelastic expressions that agree with the usual
conservation equations. In particular, for the reactions considered herein,
if ¢(V¥g) = 1 it will be shown that

9N
elle
<_§E*> =0

Ex

deNe dele deNe deMip deMNy
) () () T ), e

NE Ton Ph n NE n NE

and

and

The last two terms in the above equality are the rate of creation and destruc-
tion of ions and atoms, respectively. Equations (88) state that excitation
and de-excitation type collisions do not result in any net creation of elec-
trons but that ionization and photoionization and their inverses are the only
terms contributing to a net production of electrons. In addition, of course,
the net rate of increase of free electrons equals the net rate of creation of
ions which also equals the rate of destruction of neutral particles. It will
also be demonstrated that if ¢(VS) = (1/2)mev52,

1
ae(i-nemevez) aennj aennj aennj
ot - Bk \ 7ot * Biaf\ ot R
Ex | Ion Ph

NE 'n,j,k jeok  m,3,2 jert jr

energy gained by neutrals, ions, and photons
for the Ex, Ion, and Ph reactions
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where (1/2)meve2 is the mean translatory kinetic energy of the electrons.
This expression shows that the net gain of thermal energy by the electrons
during the encounters considered are a result of the following:

(a) The net relaxation of excited states (that is, (aennj/at)Ex,j++k is

the net production of state-j species from state-k species (k > j) and

('a(_Jnnj/at)EX,J_Hk = - (aennk/at)Ex,ij) s

(b) The net production of neutral species, at the expense of the ions,

(c) The net gain of photon energy, as a result of neutral species
production, (aennj/at)Ph,j++k, and

(d) The net loss of thermal and radiant energy, respectively, of the
heavy species and photons involved in the encounters.

- > . « . .
The case when ¢(vg) = mgvg 1is not as interesting as the preceding cases

and is briefly treated separately in the momentum transfer part of Section V.

Inelastic and Superelastic Collisions

Equation (19) can be used to write

9a (ngd) 3of
e\lle > els 3
[ 3t ] ﬁ’(vs) <at> d*vg
Ex Ex
v (£ % K dq. . adv.. a°
¢ (vg) Ofnk w sfnj £53%s fos an Vs

n,j,k

> wk J
3
+ /]/¢(VS) (flfnj w—J— - fsfnk 2519k dQlS d Vnk d3vs (90)

For ¢(3s) =1 a typical term of equation (90) can be expanded:
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J 3 3
‘_[Z];thkgSkcsk dle d Vnk d vy 91)

Combining the detailed balance relations, (13) and (14), and the relations
between the differential velocity elements, (12) and (15), of Section III with
this expression yields

Yelle f j 3 3
=t - = j:[ fofnkgokcok dQOS d vnk d v,
j«>k
-:11]} fh.8 .ok do_ d3vy d3v
$Nj%sj"sj os 7 S
+ f f,.g ok. do.  ddv,. d3v
1715=1371] 1s nj 1

3 3 3
_ffffsfnkgskosk d@,5 d Vnk d v, (92)

By this change of variables (vnj,vs > vnk,vo and Vnk,vs > vnj,vl) in the first

and third terms of (91), respectively, the threshold energy dependence of the
first set of integrals on the right-hand side of (91) has been removed and a
threshold energy dependent cross section has been introduced into the third
set of integrals of this equation. Now, since the subscripts associated with
the electrons can be changed without affecting the value of the integrals, the
first and second terms in equation (92) will cancel with the fourth and third
terms, respectively. That is, if in the first and second terms of equa-

tion (92) we consistently change s ~ 1, 0 - s and use the fact that

dQSl = dle we will recreate the negative of the fourth and third
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integrals.6 Thus, when ¢(;s) =1, (aene/at)EX jeok = 0 which implies:

aene>
=0 (93)
(52)

This is as expected since excitation and de-excitation encounters do not
create or destroy electrons.

For ¢(35) = (1/2)mevs2 a typical term of (90) can be expanded by
making use of detailed balancing expressions, energy equations, and variable
transformations to obtain

1 2
ae(g‘nemeVe )
ot
Ex
j<—>k

- 1 2 , 1 2 2 ] 3 3
= fff[z mVe® *+ 5 mn(vnk - an> + Ajk fofnkgok 9ok dQOS d vnk d Vo
1 2 k 3 3
_fff7 meVg fsfnjgsjosj o d an d vg
1 o 1 2 2 k 3 3
4;[1]{é-mevl + j-mn<ynj - vnk) - Ajk]flfnjgljclJ dQlS d an d vy
1

2 j 3 3
_ fff§ mevs st a1y, Ay dvn OV (94)

In this equation, in a manner analogous to that leading to equation (93),
the first term in the bracket of the first set of integrals cancels with the
last set of integrals, and the second set of integrals cancels with the first
term in the bracket of the third set of integrals. Thus,

6A change of variables of integration to a center of mass and relative
velocity dependence will explicitly illustrate this equality.
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1 2
36(—-nemeve .
2 = A j 3 3

_ffﬁlfnjgljclij dQlS d3vnj davl]

*l[II%'mnVﬁkfofnkgokggk s o d3Vnk ddv,
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Again if the variables and dummy subscripts are changed and the results of
detailed balancing are used this expression can be written as

1
89(7 nemevez> (aen“j> fl 2 (aefnk> 43
= A -1 15 myvy \—— v
k n'n n
3t i i\3E ), 2 K\ Ot /g k

3k jek jk

f 8efl’l
1 2 j 3
+ |5 mpvy . —————) d3vy, . (96)

where here we recall that k > j. The first term on the right-hand side of
(96) is obtained from equations (58), (81), and (83) when ¢,, =1 for a two-

state atom (say j and k). It is easy to show, via detailed balance relation-
ships and dummy variable changes, that for this particular j <> k type
excitation and de-excitation reaction

3 . del
e™in; = - 3 (97)
ot Ex ot Ex

j<k j<k
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as expected. The bracketed terms on the right-hand side of equation (96) are
obtained from (58), when k > j, and the last four terms in equation (95). If
now the states and species are summed and equations (58) and (86) are used,

1 — 1 2
de(7 nemeve? ) Pen; ' [2e(g najmavn;)
= Bx\ 5% - 5t
ot ‘ J E . Ex
EX 5n R kon ook
k > j k #7]
1 N
deMy . ae(f'nNmNVN )
- A J - (98)
jk 3t Jr at
. Ex
T,kn ek
k>3

Equation (98) is interpreted as follows: The net gain of kinetic energy by
the electron gas as a result of inelastic-superelastic encounters is equal to
the gain of energy from a net de-excitation of excited species minus the net
gain of kinetic energy by the neutral particles involved.

The last term on the right-hand side of (98) is obtained via the
following sequence of equalities:

1 2
ol )

(1 2
ae ? nnjmnVn. )

J =
ot at
i Ex Ex
n,j,k jek n,j k J<k
k #7 k #3j
3 (l-n mp V. )
_ el nJ nVn
- 3t
Ex
n,j
[:Se(lnm;——)
2 n*nvn
- ot
Ex
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where

Z

|
::5
5

and

Ionization and Three-Body Recombination Encounters
—
The rate cf change of an electron property ¢(vg) as a result of

collisional ionization and three-body recombination encounters can be
expressed as

de(n E) > 3t
(2] -frea(se) e

Ion Ton

- E : > L. 3 3 3
= LII]~¢(VS)(f2f4fiQH_'fsfnj)gSjGSJ dQZS d V”2CM d vnj d vy

n,%,j

7 -1 X j 3 3y. 43
+2fffﬁ(vs) (flfnjH - £ )8y Bq00,, A2, v, d v d vs]

(99)

Before equation (99) is evaluated for various values of ¢(3S), it will prove
helpful to have at hand expressions for the collisional rate of change of num-
ber density of the heavy particles involved as a result of this type of colli-
sion. If we set ¢nj = ¢12 = ¢, = ¢in = 1 1in equations (83)-(87) (and make

use of (55), (56), (59), and (74)), we find the following expected results:

aenn. aeni
- J = (— %
Ion Ion
j<——>,Q j<—>52,
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and

9N deNy
e’'n e'li
-2 -G (101)
Ion
That is, the net rate of creation of ions is equal to the net rate of destruc-
tion of neutral atoms. These results follow directly once the variables are
changed in equation (59) by the following detailed balance result

Ion

£ 43 3 3 - j 3 3 3.
Hgsjcsj d Vo om d®vg d vnj = 2,908,090 d v, d v, d vlg
and the dummy subscripts s, 2, 4 are changed in the resulting equation to
1, s, and 3, respectively, and use is made of the fact that dle = dQg, .
For ¢(35) = 1 it 1is fairly easy to show by equations (59), (74),

(81) (eq. (81) applied to the ions as well as to the neutrals), (55), and (56)
that from a typical term of (99) we obtain

o.n Benn. aeni
e’'e _ J £
( ot ) - ( 3t ) v 2 < 3t ) (102)
Ton Ton Ton

je>L je>2 e

Equation (102} in combination with (100) yields the expected

= (" = - (103)
ot Ion ot Ion ot Ion

e j2 j<>2

Similarly, on summing over all states and species, we find

aene = ? _a_e_n_}_ = - _?.?_I_l_ll 104
ot Ion ot Ton ot Ton ( )
n n o

Equations (103) and (104) illustrate that for this type of encounter, the rate
of creation of electrons equals the rate of creation of ions or the rate of
destruction of neutral particles.

For ¢($s) = (1/2)mevg® a typical term of equation (99) can be
expanded by making use of equations (21), (22), (31), and (32) to obtain
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1 2 L 3 3 3
1 2 24, 1 2 miviﬁ I3 3 3
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L 2 j 3 3
i Zﬂﬂ? MeVs fsfafi 808500550 s 47V5 d7Vs (105)

Close inspection of equation (105) when the dummy character of the electron
subscripts are accounted for reveals that the sets of integrals containing
(1/2)me(v22 + v,?) and —2[(1/2)mev52] are equal in absolute value and
therefore cancel each other.

Using the following equality

2

m;Vj

1 2 2 1 2 1°1g
ZLZ]ne(Vl - Vo) o+ i-mnvnj - Aj2 -

2

mivs
__1 2 2 1 2 1719 1 2
= i—me(v1 - v34) + > m vnj - Ajl -5 + 5 MV

in the third set of integrals in (105) and recalling that the ionization
cross section is symmetric in the subscripts s and 3 we find that the
remaining terms in (105) containing electron kinetic energies cancel each
other. We are finally left with
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(106)

If the electron subscripts in the first set of integrals in the first of
the above bracketed terms are changed from 2, 4, and s to s, 3, and 1,
respectively, and the detailed balancing result given by equation (32) is used
along with dQlS = dQg,, this bracketed term becomes equal to

‘(aenig/at)Ion,j++2 or —(aene/at)lon’j++2. In a similar manner the second

bracketed term in (106) can be shown to equal —‘ae[(1/2)ni£miv§£]/at}Ion ey

The third bracketed term in equation (106) can be shown to equal

5 . . . .
- ae[(l/Z)nnjmnvnj /at Ton, <8 when the subscripts in the first part of this

bracketed term are changed from 1, s, 3 to s, 2, 4 and the appropriate vari-
able changes through equation (31) are made. Thus equation (106) can be

written as

1 2 1 2
ae(§'nemeVe2) Bl ae(f‘nigmivig)
et S RN I T
Ton Ton Ion
je, jert jere
2
ae(j'“njmnvnj)
o R T (107)
Ion
s
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On summing over states and species and using (103) we obtain

1 .
3 e(i‘ nemeVez ) 3 ennj
T - bsg \ ot )
Ion AR Ton
jst,n jes

ot
Ion
where
nI = Z ni
n
_ 1
n
and

7 - 1 a2
Vit = — :;: njmjv;

1 2
ae(i-nImIVI )

Ion

(108)

The sum over n here is interpreted as a sum over the ionic species of type
n. Equation (108) illustrates that the net gain of kinetic energy by the
electron gas as a result of collisional ionization and three-body recombina-
tion encounters is equal to the net gain of ionizational energy due to recom-
bination minus the net gain of kinetic energy by the heavy particles involved.

Photoionization and Two-Body Recombination Encounters

As a result of photoionization and two-body recombination encounters,
changes in an electron property ¢(vg) can be accounted for on a rate basis by

the following equation:
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N def
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- 2
n,2,j

Again it is convenient to have expressions at hand for the rate of change of

number density of the heavy species and the photons involved in this reaction.
From equation (60), (75)-(77), and (81) (eq. (81) applied to ions and photons
as well as to neutrals), it is immediately apparent that when ¢“j =¢il::¢R::l

the following results are obtained:

deNp . deni BenR
j = (= - (110)
T it ) oy 5t ) o

J<—>,Q, JH,Q J<——>,Q,

which obviously extends to:

deNy _ deni _ SenR
ot I T T\ ot (111)
Ph Ph Ph

That 1is, photons and neutrals are created at the same rate by radiative
capture.

For ¢(3S) = 1 a typical term of equation (109) when compared with (75),
(81) (eq. (81) applied to iomns) and (110), will yield

. R

g . Benl2 ) aennj . dgh 1

9t - ot B Y I WY (112)
Ph Ph Ph Ph

j>2 g j>2 jL

which extends to

R
(3935) - <3Efi> - - <8enn> - - <aen > (113)
9 /pn N\ Pt Jpp ot /ph 7t /on
This expression can be summed over states to yield equalities similar to

equation (104).
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For ¢(3s) = (1/2)mevs2 in the form of the energy equation for this
encounter, that is,

1 2 -
5 MeVg

a typical term of (109) yields

36(1 NeMeVe? IBJ
2 e d3 . d3
at hv fn *:.— - foll gSJZ,P VlSL VS
<——>Q,

J
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2
o
I8
1 2 2
- = m;vi (fn. —= - fof; Pdv d3
[fz mivi, ny ) s*i, 8525y Vg
2
a_n
e
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et

When equation (50) is substituted into the first set of integrals in equa-
tion (114) and the result is compared with (77) and (81) (eq. (81) applied to
photons), we see that this set of integrals is equal to

3. (nRhv) 3 R
- [ﬁe it } = - < gt > (115)
Ph

Ph
e j2

which is defined as the negative of the rate of change of radiant energy per

unit volume, uR, resulting from this interaction. The radiant energy density
of the photon gas is defined by (ref. 17) uR Ef'h\)fR dv.

Similar comparisons of equations (50), (59), (75), and (81) (eq. (81)
applied to ions and neutrals), with the second and third sets of integrals of
equation (114), reveal these integral sets to be

1
ae(2 nnJmnV%J )
ot
Ph
jer
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and

1 2
86(7 nizmiviz )
ot Ph
L
Thus equation (114) reduces to
1 R 1
3e<§'nemeve2) Beu Be(§~nnjmnvnj)
3t I WY - 3t

Ph Ph Ph
JjeR jek L

1 2
ae(i_nizmiviz dehg
- - AjQ

5t 5t (116)

Ph Ph
jer j<>8

This expression can be interpreted for this interaction as: The net rate of
loss of electron kinetic energy per unit volume is equal to the sum of net
gain of energy by the photons, the neutrals, the ions plus the ionization
potential times the net rate of production of electrons. This statement may
appear to be misleading unless it is noted that when the net production rate
of electrons is positive, the net rate of change of radiant energy will be
negative.

On summing over states and species we can write for equation (101)

1 2 1 2
ae(f-nemeve ) BeuR 3e<§‘nNmNVN )
ot -\ et B ot
Ph Ph Ph
1 2
3 (—»n m.v ) a.n
N B VA U - A, (28 (117)
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Ph . .
J,Q':n JH,Q,
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Radiative Excitation and De-excitation

The rate of change of a property of the neutral species as a result of

radiative excitation and its inverse can be expressed as (see eqs.

(71)-(73)):

— . \
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P J J
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k
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For ¢,. = 1 we obtain from a typical term in (118)
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(81},

(118)

(119)
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From a typical term in equation (119) or from equations (69) and (70), we can

deduce
<3efnj> _ aefnk
ot Ra ot Ra

j<—>k j+—>k

since
= 43
d3vnj = dvp,
This leads directly to the following simple conservation of species

expression:
<aenn_ Bennk
J = - | (120)
ot > Ra < ot >Ra

jok jk

Applying these expressions to equation (119) yields

dehy . aenn_ dghy .
J — J J
( ot > - 2 : < ot > * 2 ot (121)
Ra k Ra k Ra
j<k jok gk ko]

On summing over all states j we now obtain

d.n deNp
() -2 5 - 22

Ra j Ra

That is, the total number density of a species does not change as a result of
radiative excitation and de-excitation type, encounters. In obtaining equa-
tion (122) we made use of d3vnj = d3vnk, wj = wi, and expressions like (120)

for both j < k and k < j. (Since k and j range over the same number of
states, there is always an even number of terms in (122) that will cancel in
pairs according to equation (120).)

If ¢R = 1 in the first term on the right-hand side of equation (85) is
combined with (78), and the result is compared with the first moment of equa-

tions (71) and (72),
ot Ra ot Ra ot Ra

jek jook jeok
k>3 k>j k>3j
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which extends to

3 onR _ aennj _ ;E:: deNpy
at - 3t T 3t
Ra 3,k Ra j,k Ra
k>j jek k>j jerk

That is, the net rate at which photons are created is related to the net rate
at which excited particles are destroyed.

For ¢n3 = mnvn a typical term in (118) can be written

—k
ae(nnjmnvn ] T8, Sk o
ot Mn¥n Ty oy K
k

8J
+ mn$n- fa —:%—— fn. ﬁgwk dv d3vn, (123)
i\ "koopt i 373 j
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For a two-state encounter, making use of the momentum balance mnzn. = mn;n
; J k
yields
O R X
S S 4 = - kn Tk (124)
ot ot
Ra Ra
jek jek

On summing over all states j, making use of (124), the momentum balance for
each specific encounter, and the relations used in obtaining (122) we conclude
that the momentum of the neutral species does not change as a result of these
nonelastic encounters; that is,

(n nVn) :;>> 3e(nnjmn€;;)

= % =0 (125)
Ra &——d Ra
J
For ¢nj = mnvﬁj/Z we can use the energy equation (62) and write a

typical term in equation (118) as
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Substituting these expressions into equation (126) yields
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Now on summing over states j the last two sets of sums on the right-hand

side are symmetric and
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With these expressions, equation (131) when summed over the j states becomes
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The first two sums on the right-hand side of (132) can, on comparison with
(71) and (72), be written as
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These two terms can be combined, via equation (73), to obtain

1 2 1 2 1 2
de\nNp, 5 MpVp delnp, 5 mpvp de(ny, 5 MpVn
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This result can be combined with equation (132) to yield
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Equation (133) shows that the net gain of kinetic energy by the neutral

species is equal to the net loss of energy by the photon gas and the net loss
of internal energy from the upper excited states.

Momentum Transfer

If ¢(35) = me3s in the above rate expressions, and the appropriate
momentum equation is used for each interaction, it is relatively easy to show
that the momentum lost by the electrons in each type of nonelastic collision
i1s gained by the heavy particles involved. We can summarize this result
briefly as follows:

Inelastic and superelastic encounters.- The momentum expressions for the
reaction given by equation (2) which correspond to equations (3) and (4),
respectively, are:

> -> > >
MeVs * MnVny = MeVo *+ MpVny
or
> -> > -
mev, + mnan = MeVg + MpVp,

Whgn these equations are substituted into the rate equation (90) with
p(vg) = mevs and appropriate variable changes are made,
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:,
where N = (1/my) Z: m,v,. This expression illustrates the momentum exchange
between the electrons and the neutral particles.

Ionization and three-body recombination.- Here the relevant momentum
equations are

> - > - >
MeVg + mnan = :neVZ + meVL* + mlvlz

- -> - - ->
mevl + mnvnj = meVS + meV3 + miVi,Q/

When these expressions are combined with the momentum form of equation (99)
and appropriate variable changes are made,

ae(nemeig) B 8e(nImI;;I) 3e(nNmNgg) (135)
3t T 3t - 3t
Ton Ton Ion

]

where vy = (1/m1)2: mizi. The electron has exchanged momentum with both the
neutrals and the ions.

Photoionization and two-body recombination.- When the momentum of the
photons is neglected, the momentum equation for this reaction is

- - -
mnvnj = Mivi, + MeVs

On substitution into the momentum form of equation (109) and changing
variables there remains

(n m %-) 39 (nImlig) 9 (nNmN%g)
gte e - € e - _E__EET_*Af (136)
Ph Ph Ph

Again the electrons have exchanged momentum with both heavy species.

Nonelastic Terms in the Equations of Motion

Thus far in this section the rate expressions associated with various
nonelastic collision operators have been developed. Here the preceding
results will be summarized with the following relations between nonelastic
terms that might appear in the equations of motion of a plasma composed of
electrons, ions, neutral species and photons:
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Species conservation:
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Mass conservation (pe Z nNgMg, etc.):
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Momentum conservation (neglect photon momentum):
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Energy conservation:
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- . B e
The last term in equation (137) represents (aenN/at)Ion + (aenN/Bt)Ph.
This sum can also be represented by (aenN/at)NE (used in eq. (138)} since
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These expressions agree with the usual macroscopic species conservation
equations (ref. 19).

If we sum over species such that

pPEPyte, e
iy o > S
PV = pNVN * PV * PeVe
and
2 - 2 2 2 R
oV = ONVN + pIVI + peVe + Uu
we find
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Equations (143) also agree with the usual macroscopic (ref. 19) conservation
equations when the right-hand side is identified as the nonelastic rate of
change of the average internal energy of the gas mixture.
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Radiative Energy Loss

A common phenomenon accompanying nonelastic collisions in plasmas is the
loss of radiative energy to the boundaries of the plasma. The amount of radi-
ative energy lost to the plasma depends on many factors such as the plasma
density, its optical characteristics, its geometrical characteristics and the
type of transition. This energy loss mechanism affects, in a coupled fashion,
the electron distribution function and the species number densities as well as
the plasma thermal energy.

Physically, in a plasma in which the electrons are redistributing their
energy among the other species the following might be expected:

(1) Energetic electrons collisionally excite or ionize heavy particles.

(2) These heavy particles in turn either undergo the inverse to the
preceding encounters or relax radiatively, emitting photons. (The method of
relaxation depends upon the relaxation rates for each process. This will be
discussed in the next section.)

(3) The resulting photons are then either absorbed by or lost to the
plasma, depending upon the opacity of the system to the frequency of the
emitted radiation.

A loss of photons manifests itself in at least two significant ways:

(1) The excited states of the heavy particles, from which the radiative
relaxation occurs, tend to become depopulated.

(2) The electron gas looses energy equivalent to the volumetric radiant
energy lost from the plasma.

Analytically the expressions developed in the preceding and subsequent
sections remain valid. However, in application one must solve the equation of
radiative transfer, coupled with the appropriate equations of motion, to find
the local rate at which photons and the radiant energy leave the plasma.

The rate at which photons are lost from the plasma can be related to the
rate at which excited states of the heavy particles are depopulated as can be
seen from the radiative transfer equation (ref. 17) and the results of
pages 35 to 45. 1In addition the energy moment of the radiative transfer equa-
tion yields a relation between the temporal and volumetric changes in the
photon energy density and the collisional term given by equation (142).

Detailed accounting of radiative losses is a formidable task. To
circumvent some of the difficulties Holstein (ref. 20) introduced and others
(ref. 9) used local, frequency-dependent, energy loss factors. Holstein, in
particular, evaluated radiation-escape factors for resonance radiation for a
few geometric shapes.

These local radiation-escape parameters are defined for each transition
as unity minus the ratio of photon absorption to photon emission. Thus, the
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difference between the emission and absorption terms appearing in the
preceding expressions would be replaced by the product of the particular
radiation-escape parameter and the appropriate emission term. The value of
these parameters (between 0 and 1) determines the local opacity of the plasma
to a particular frequency of radiation.

Reaction Rate Coefficients
The usual reaction rate coefficients for a reaction which proceeds in a
forward K¢ or backward K direction can be obtained directly from the
preceding results. For example, consider the collisional ionization-three-
body recombination reaction described by equation (20): The local net rate of

change in electron number density as a result of this reaction is determined
by an equation of the form

d,n
ce _ 2
(}5€—> = KIonnenN - KRecne nI (144}

Ion

From equations (74) and (104) we can deduce that

Yele = (f£.f R ) o) g d3v, d3v. a3
3t N 17 n; stati JBseB3p %530 s CTVs TVs CVi
Ton 570 n

(145)

A comparison of (144) and (145) yields

=1 % -1 j 3 3 3y.
Kion = n_ny ,.llI]ElfnjH 850835% 3y dQlS d?vy d°vg d v12
j,%,m

and
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KRec - n.%n .111];Sf3f12g52g320832 dle d V3 d Vs d Viz
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If desired the detailed balancing expression given by equation (32) can be
used to obtain Kg and/or K in terms of ionization cross sections rather
than recombination cross sections. These expressions clearly show the
dependence of the reaction rate coefficients upon the distribution functions
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and the cross sections. In addition one can deduce that the macroscopic
detailed balance result, KIon/KRec = (nenI/nN)Eq, does not hold in general but

does hold at equilibrium.

In a like manner rate coefficients for the other reactions considered
herein can be obtained. Such coefficients for unidirectional reactions are
particularly useful when competing reactions have dominant terms. In these
cases one needs to consider only the rate coefficients for the dominant
processes rather than the complete nonelastic collision integrals.

VI. CONCLUDING REMARKS

Collision integrals have been developed for some nonelastic processes
that are important in plasma dynamic problems. On taking moments of these
collision integrals, we have also demonstrated compatibility between these
results and the nonelastic terms of the macroscopic equations of motion.

The collision integrals developed here may prove to be unwieldy in their
present form for many plasma dynamic analyses. Many simplifications are
possible to make the collision integrals more tractable. The particular sim-
plification employed depends upon the problem at hand. A few of the more
successful simplifications, that is, the small electron mass approximation,
the spherical harmonic expansion of the electron distribution function, the
use of Maxwellian distribution functions, and the use of isotropic cross
sections for nonelastic processes, are treated in some detail in the first
16 references.

It is hoped that the development presented herein allows a clearer
understanding of the physics implicit in many less detailed treatments of
nonelastic collision integrals.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, April 7, 1969
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This is a partial alphabetical listing of the present nomenclature.

VII. APPENDIX

NOMENCLATURE

symbols are defined locally in the text where they are first used.

J
Ay

J
By

T(v)

7]

K1ion>KRrec

My

ne,nh

I
Po(ggy)
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coefficients for radiative de-excitation and excitation
(eqs. (65)-(69))

speed of light
electron

electron velocity distribution function, f(Vp)

photon distribution functions (eq. (39))

velocity distribution function for heavy particle h

a > >
relative speed |vy - vp|

h

3 s
parameter associated with Saha equation —5——$L
e

sz

=

Planck's constant

specific intensity of v-radiation integrated over all solid

angles
Jacobian of a transformation, usually defined locally
reaction rate coefficients defined on page 50
Boltzmann's constant
electron mass
mass of heavy particle

number densities: electrons, heavy particles

differential cross section for radiative capture (eqs. (41)
and (42))

All




coefficient of differential cross section for radiative
de-excitation (eqs. (64) and (65))

distribution functions associated with photionization and radiative

excitation cross section (eqs. (39) and (63))

equilibrium temperature
radiant energy density
velocity of electrons, velocity of heavy particles

electron velocity defined by (vm’;mm')

coefficients for spontaneous and induced radiative capture (eq. (42))

m
parameter defined by, EET

excitation or ionization potential associated with a particular
transition (egs. (3), (21), (38), and (62))

delta function defined on pages 8-13

MelMy

me+m-l

reduced mass,
radiation frequency

mass densities defined on pages 46-48 (pe = Ny, etc.)

angular distribution functions associated with inelastic and
superelastic differential cross sections (eqs. (5) and (6))

distribution functions associated with ionization and three-body
recombination cross sections (eqs. (23) and (24))

property of electron gas, ¢(3m)

property of heavy particles, ¢($h)



Xmm !

¥

>

-

ki
Vi

wk,wj ,(1)2

)

.k, 2

CM

Eq
NE

Ex,Ion,
Ra,Ph
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property of photon gas, ¢R(v)

angle of '"deflection'" of electrons

. . >
angle between relative velocity vectors g and E
3

sl 2

line shape factors for absorption and emission

solid angle used in describing particle direction
degeneracies associated with states of an atom (wj,wk) and its
ion (wz)
Superscripts
averaged quantity; velocity averaged or averaged over angles

see subscripts j,k,2

Subscripts
association with electron of speed v, (m =s, 0, 1, 2, 3, 4)
association with electron of speed v’
neutral species of type n
neutral particles of type n in states j, k
ion associated with type n mneutral
ion in state & associated with type n neutral

heavy particle, i, n, n;, ny, ig, I, N, and states j, k, &

J
ion mixture
center-of-mass coordinates
equilibrium

quantities associated with nonelastic encounters

association with collisional excitation and de-excitation encounters,
collisional ionization and three-body recombination encounters,
radiative excitation and de-excitation encounters, and photo-
ionization and two-body recombination encounters



( )Ion

ik,

particular nonelastic encounter and its inverse which results in the

heavy particle changing between a neutral in state j to a
neutral in state k or an ion in state ¢

states of a neutral particle (j,k) and its ion (&)

Miscellaneous

atom of type n in state j

rate of change of quantity per unit volume in phase space as a
result of collisions

volume elements in velocity space
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10.

11.

12,
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