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SUMMARY

It is possible to construct migratory dynamo waves in a

prismatic volume of a conducting fluid, as it exists in the solar

convective zone. Such waves can explain the principal features of

the observed solar magnetic activity, particularly the sunspots.

LIST OF SYMBOLS

Symbol

A

B

D

eE
J
E

f

F

H

I

J

k

K

L

p

q
Q

S

t

Definition

vector potential

magnetic induction

electric induction

unit vector in E -direction
electric field strength

measure for the violence of cyclones

Lorentz force

magnetic field intensity

line integral

conduction current density

wave number

constant

separation of periphery from a line C

hydrostatic pressure

electric charge density

rate of addition of heat per unit mass

cross section

time



Symbol	 Definition

	

T	 temperature

	

U	 internal energy per unit mass

	

v	 velocity of fluid

	

X	 external force of nonelectromagnetic origin

	

r	 periphery of S

	

(b E	 Cartesian coordinate system

	

E	 dielectric constant

	

71	 coefficient of viscosity

	

K	 heat conductivity

	

X	 magnetic diffusivity

	

µ	 magnetic permeability

	

P	 density of fluid

	

v	 electric conductivity

	

W	 angular frequency

	

St	 expression for angular frequency

L INTRODUCTION

Certain motions of electrically conducting fluids are capable

of maintaining various magnetic field configurations, such as the
magnetic fields of the Earth and of the Sun. These mechanisms

of fluid-magnetic field interaction are called hydroma►gnetic dynamos.

This paper demonstrates by means of appropriate wave equations

that there could exist a plasma fluid-velocity v having a magnetic

field B which would be maintained by the mutual, interaction of magnetic

field and plasma. The wave equations constitute a hydromagaetic



dynamo model. The model is shown to relate to observed sunspot

formation and activity, and accompanying solar magnetic phenomena.

II, THE EQUATIONS OF MAGNETOFLUID DYNAMICS

The behavior of the solar plasma is governed by the equations

of fluid dynamics and Maxwell's electrodynamic equations. They
are defined as follows:
A.	 Fluid Dynamic Equations

(1) equation of continuity

a P	 + div(PV) = 0
at

(2) equation of momentum

p[at + (v-®)v^=PX+F- Qp

4+ 3 il© (div v) + 11 V2v (1)

(3) equation of energy

rauP	 + (v.© )U 	 =-pdivv+KO2T+ aat

+ PQ + n[Vzv2 - 2div(vX curly} +furl-v)2
-	 2- 2;(  V div ;) - 3 (dive)

al

B.	 Maxwell's Electrodynamic Equations

curl E _ - Wat (2)

curl H = J + aD/at (3)

div B	 = 0 (4)
E	 div D	 = q, (5)

for which constitutive equations are

8 = µ H (b)

1) - € E (7)

J - a (E + v X B). (8)
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C. Assumptions

The following simplifications are made so that a practical

model can be obtained.

1. The solar plasma is considered as an electrically con-

ducting single-component fluid.

2. The magnetic permeability, µ , of photosphere and

chromosphere in assumed to be that of free space, µo , and is,

therefore, a constant (µ = µo = constant).

3. Viscous forces are neglected (i. e. , the last two terms

of Equation ( 1) are set equal to zero).

4. The displacement current, aD/at ( in Equation 3), and

vE (in Equation 8) are neglected, ^s well as other electric field

action on free charges, as in Equation (9).

D. Deriviation of the Equation of Motion

Starting with simplified equations, an equation of motion

is next derived for the convective and magnetic forces which

dominate action of the hydromagnetic dynamo model.

The force per unit volume exerted by an electromagnetic

field on a current, neglecting the action of the electric field on the

free charges ( i.e. , neglecting the term qE), is

F=JXB.	 (9)

In order that the equation of motion for the magnetic field

may be obtained, E is eliminated between Equations (2) and (8).

Then Equation ( 3) is introduced and the identity

curl curl B = V div B- V N

4
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is applied. When Equations (3) and (5) are used, the equation of
motion is obtained in the form:

8  = curl (v X B) + --L 	 B .	 (10)t	 Cr

The equation of motion of an electrically conducting fluid

is obtained through substitution of Equation (9) in the simplified
equation of motion (1):

J	 J J ^
p d =p at + (v.0 )v = - vp+ pX+JXB.	 (11)

III. DYNAMO EFFECTS

Fluid velocity v and magnetic field intensity H are

determined by a solution of Equations (4), (b), (10), and (11). The
i

question to be answered is whether the conduction current J, pro-
J

duced from field B according to Equation (8), can generate the
field B according to Equation (2) by which J originated. When such
action does occur it is called a dynamo process. By making the
following substitutions of terms in Equation (10)

^ = 1
vµ

curl A = B.

Equation ( 10) may be expressed in the form:

2A = v X curl A + A 42 A .	 { 12)
at

According to a theorem by Cowling, a magnetic field
symmetric about an axis cannot be maintained by a fluid motion
symmetric about the same axis. To show this, let C be a line
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on which B = 0 and about which the lines of induction form closed

loops which encircle C in the same direction everywhere. Let

S be a meridian section of C whose periphery t is a closed line

of induction surrounding C, and let L denote the maximum separation

of r from C. When Stokes theorem and Equations (3) and (8) are

applied to r , the following result is obtained:

^B dI` = fcurl —B • dS = u fJdS = 1f(;XS)d'S'

therefore,

B• d r:S-m x f B d S.	 (13)

In Equation ( 13) vmax denotes the maximum value of v anywhere

in the solar volume, and the incremental area dS, lying between

the lines of induction L and L + dL, cannot in the limit exceed

Bd t dL in area. If I(L) denotes the line integral of B over r, it

follows from Equation ( 13) that

I(L) vm^ax f L I(1) dl .
0

The line integral I(L) is a continuous function of the maximum

separation L, so that I tends to zero as L tends to zero. Let Lb

denote the point of the interval ( 0, L) where I attains its maximum

value; when Equation (13) is applied to L O , the result is:

I(L0 ) ^ 
v
max LO I(LO).

If I(Lo) * 0, the following relationship is obtained:

- LO
°•max
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But L is arbitrary, and if it is assigned a value less than X /vmax'

a contradiction has been established. Therefore, the induction field

B cannot be maintained in the neighborhood of C.
i =	 For a complete solution of the dynamo problem it would

be necessary to solve the fluid dynamic and electromagnetic equations

simultaneously. Because the difficulties of a complete solution

are too great, the more restricted problem is usually investigated

to establish whether a motion exists which can maintain a magnetic

field.

A magnetic field which is everywhere perpendicular to

meridional planes is called "toroidal, " and a magnetic field whose

field lines are everywhere in meridional planes is called "poloidal.

A rectangular Cartesian coordinate system (6, E, 4) will be

applied to the fluid. The vector potential A is considered to extend

in the E -direction. Writing A for the E -component of A, we can

express Equation (12) in the form:

at= fB+A42A.	 (14)

It will be assumed that a moving fluid rotates about the

-axis. Dynamically, such a fluid motion is related to the cyclones

and anticyclones observed in the Earth's atmosphere. Such a

cyclonic motion results when the Coriolis force component adds

to the primary driving force of radial convection. Similarly,

deflection along the length of a vertically rising and diverging

column of solar plasma would tend to produce a cyclonic configuration.

T he Lic tor f in Equatic~. (14) is a measure of the violence of such

cyclonic motions.
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If fluid motion is present:
rv = efvj

then, representing the nonuniform rotation by Equation (10), the

toroidal field B is generated as a function of the magnetic field

potential A:

at = ©X[vx(vxA)I + X ©29.

Since A and v are independent of E and have only F -

components,is in the E -direction, and the last equation
reduces to:

aBav aA - Av aA + 
kt72 B.	 (15)at = a4 as	 as a;)

In order to solve the dynamo Equations (14) and (15), we assume
uniform shearing. If v varies linearly with f,

av= K = constant, and ^ 5 = 0.

Then Equation (15) .reduces to the form:

	

aB = K a b + 1k ©2 B.	 (16)

If the cyclones are distributed uniformly throughout the

space, K is a constant, and the dynamo equations reduce to two

simultaneous linear equations with constant coefficients.

The following trial solutions are made regarding the

solutions of Equations ( 14) and (16):

A = A. ei(wt+kb)

B = B0 ei(wt+k 6) .	 (17)
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After substitution of Equations (17) into Equations (14) and (16),

the following results are obtained:

Ao =(iw +Xk4)-Bof=0

and

-AoikK + BO (iw + A kZ ) = 0.

Setting the determinant of the coefficients equal to zero yields the
result:

(iw + A	 i k K	 f= 0,

which can be expressed in the form: i
	i w + A )e = t (i k K f)2	 (1 i);

therefore,	 1
_
 (

kKf12
2 1 '

iw =(SZ-Ak2)tin,

and

AO = -Body jlfi^
kK

We now use" a last two equations with the trial solutions (Equations 17)
of the dynamo equations (Equations 14 and 15) to obtain equations
describing the migratory dynamo waves:

B = Be ( 3l - Akz)t ei(k 6 f Qt)

a

A= -A ^ (1 t i) e( SZ - A k2 )t ei(k 6 t SZ t) i
kK

The solar dynamo, if it exists, would be located in the convective

zone in a shell sufficiently thin ( F-- 10 km) that its curvature may be
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neglected. Application of the dynamo equations to such a flattened
space yields just the migratory dynamo.

Dynamo waves migrate from the polar to the equatorial

regions in the convective zone just below the surface of the Sun.

Because the liquid-dense photosphere has a relatively high sonic

and magnetic conductivity in comparison with the adjacent gaseous

chromosphere, the dynamo waves are constrained from diffusing

into the chromosphere. Thus only in regions of most intense

cyclonic motions or of nonuniform rotation will significant wave

strands be carried beyond the normal radial limit of the photosphere.

It is in such regions that sunspot activity would be observed.

The Sun's magnetic field is composed of traveling magnetic

waves. The traveling wave is assumed to consist of two components,

toroidal and poloidal, as indicated diagramatically in Figure 1.

The sense of the latitudinal toroidal bands alternates from one band

to the next. The poloidal field components are in meridional planes

rotated 90 degrees from the planes of the toroidal components.

In each hemisphere, there are two or three toroidal bands

at any one time. About 22 years are required for migration of a

band from pole to equator, so that new bands approach the equator

at 11-year intervals. The poloidal component of the traveling wave

predominates from pole to middle latitudes, the toroidal component

dominates below the middle latitudes, and both components vanish

at the equator.
An occasional strand of plasma, as a result of particularly

intense local wave amplification, moves to or above the surface
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of the photosphere, but the main field configuration remains

essentially unaffected. Sunspot activity peaks at 11-year intervals,

as new toroidal bands in each hemisphere move into the region in

the lower latitudes of most intense field amplification. Strands

thrown out below the middle latitudes are predominantly a result

of action of local toroidal field intensification, while strands

occurring nearer the pole result from local poloidal field buildup.

Below the middle latitudes the spots occur in pairs. These

paired spots correspond to the exit and entrance locations of in-

verted U-shaped distortions of the toroidal flux tubes which have

been pushed above the normal radial limit of the photosphere.

The east-west orientation of the sunspots in the lower
latitudes results from the east-west direction of the dominant

toroidal component of the flux tube. The migration of a spot toward

the equator from its region of formation is a result of the migration

of the associated toroidal field. The reversal of polarity of the paired

spots corresponds to the alternation of field each half cycle (that
is, with each successive toroidal band).

IV. RESULTS AND CONCLUSIONS `

The explanation of the Sun's magnetic field given in this

paper is derived from studies by E. N. Parker, and may be

•	 summarized in the following way.

The Sun's magnetic field is generated by, and moves in

unison with,the electrically conducting solar plasma. Hence,

fields of major intensity are confined to the convective zone.
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Field and moving plasma continuously interact to modify their

interdependent configurations. The field is azimuthal at low

altitudes, and progressively changes toward a meridional plane

near the poles.

The field is maintained as a result of nonuniform axial
rotation of successive layers of the Sun's fluid mass and

vortex effects in the convecting plasma. The nonuniform rotation

amplifies the azimuthal component of the force field. Vortex

effects in the convecting plasma produce field components in

poloidal planes. The net effect is to twist the azimuthal field

loop by a process of reenforcing the loop on one side and reducing

field density on the other. Simultaneously, the dynamo effects

intensify the field. Similarly, the magnetic force-field differential

causes surface loops to move toward the equator and subsurface

loops to move toward the pole while dynamo effects act to intensify

the fields.
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