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Abstract

The steady state heat conduction equation representing

the diurnal variations in the upper atmosphere are

numerically integrated with extreme ultraviolet radiation

as the only source of energy input. Two models of vertical

flow are assummed and horizontal flow is neglected. The

results yield a maximum at 1800 local time. Other dynamical

effects are discussed.
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INTRODUCTION

The diurnal variation of the upper atmosphere at heights above	 200 km

has been well established by satellite drag observations. During the morning, the

density increases until a maximum is reached at about 14:00 hours local time.

Then it decreases rather rapidly in the afternoon and evening, followed by a

slower rate of decrease during the night till about 04:00 hours local time. This

is observed for all levels of solar activity.

Models of this variation have been constructed by various authors (Jacchia

(1965), Harris and Priester (1962)) relating temperature variations and density

variations (through the hydrostatic law). In all these models, the temperature

and density +, ariations are in phase above 200 km.

The model of Harris and Priester (1962) was a time dependent one which produced

the observed variations by considerations of the effects heat conduction, solar

extreme ultraviolet heating and an adjustable artificial heat source. The time

dependent heat conduction equation in one dimension: was integrated assuming

hydrostatic equilibrium at every instant. Their theory also included a model of

vertical convective heat transport. Horizontal conduction and convective trans-

port was assumed to be negligible. It was found necessary to introduce a second

artificial heat source in order to obtain a maximum at 14:00 hours local time.

With E. U. V. heating alone the maximum would appear at about 18:00 hours local

time with an -amplitude too large (with the ratio of the diurnal maximum to
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minimum in temperature greater than two, instead of the modelproduced ones

of 1.3 or 1 .5). Lagos and Mahoney (1967) has obtained similar results with

E. U. V. heating (though with a smaller variation). They also calculated lati-

tudinal variations, by allowing for zenith angle variations with latitude, but still

only integrating the one dimension time varying heat conduction equation.

In this paper, the three dimensional heat conduction equation is integrated.

Essentially similiar results are obtained for the latitudinal and longitudinal

variations as those derived by integrating the time dependent one dimensional

equation without the extra heat source. It is concluded that dynamical effects

are sizeable, so that their inclusion will be necessary (and hopefully sufficient)

to bring about agreement. with observation.

Steady State Heat Conduction Equation

The time dependent heat conduction equation is

aT	 .. ^^, +	 K ITT ^`f" v 7YP t

where is the heat sources and sinks, U. the convective flow velocity, Cr the

specific heat at constant pressure, K the thermal conductivity and Q the density.

The diurnal variation appears to be a steady state phenonemon, though its

amplitude and mean value may vary due to varying levels of solar activity. Thus

in a frame of reference fixed with respect to the sun the atmosphere appears to

have a bulge displaced about thirty degrees from the earth-sun line towards the

2



low

i
1

evening side, though the atmosphere may rotate rigidly with the earth. Thus in

the steady state, we may take the term on the left side as zero, and we are left

with the three dimensional heat conduction equation. But to an observer on the

earth, there appears to be dynamical variations. To obtain the appropriate form

of the heat conduction equation for an observer on the earth, we must first trans-

for m equation (1) to a frame rotatinv with the earth and then take the limit to

steady state. Let be the longitude in the fixed frame and # the longitude in

the rotating frame, and let L̀  be the time in the rotating frame. Then the

transformation equations are

r

where w is the angular velocity of the earth. 	 t 1

	

.:	 The partial derivative with respect to longitude becomes

la

and the partial derivative with respect to time is

	

yr f	 ^,

In the steady state we can let the partial derivative with respect to time go to

zero and thus obtain the following relationship between the local time variations

and the longitudinal variations for an observer on the earth

	

73	 f	 .
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(vector quantities may similiary be transformed (see Bshenazi (1967)).

Once one has obtained a solution as a function of t^, one can obtain the

general solution by replacing the argument ^'^ with	 CareCare must be

exercised when this relationship is used; in particular, one must not try to

describe transient phenomena usingng equations based upon this relationship...,
.,

Boundary conditions imposed upon the equations must be consistent with the

assumption of steady state if such a relationship is used (see Volland (1966).

The heat conduction equation, upon the assumption of steady state, becomes an

elliptic type with the periodicity in the longitudinal coordinate (or local time) as

an essential boundary condition. The solution will be completely determined

by imposing boundary oonditiona at the lower and upper boundaries in altitude,

together with the knowledge of the heat sources and sinks.

It is to be noted that the solutions of the tidal equations (Chapman and

lA ndZen (1970)) that would correspond to steady state are those for which the

parameters f and s in tidal theory have the ratio one half.

For the heating due to the extreme ultra -violet radiation, we tape, 	 tr;	
r

a

PoKokJ
r

where a is the optical depth.
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As we are interested in along latitudinal variations, the plane earth approxima-

tion used by Harris and Friester is no longer valid. Care must be exercised

here in the calculation of the optical depth so that one obtains the corre at phase

of the heating source as a function of latitude and local time. After numerous

tests of various methods, the following approach was adopted for the caloulations
k

of the optical4spth. ^ Consideration had to be given to thb speed of calculation

and memory size available in the computer. The technique yielded an accuracy

of about 2% in the calculation of the optical path for critical values of the

optical path (values between S and .002. This gives yielded a maximum numerical

error of about 7 % in the calculation of the heating. Variations of the density
t

along the optical path due to local time variations could be ignored (test showed

that this caused an error of at most a fraction of a percent. Thus densities

corresponding to the local time and latitude at which the heating was being onlou-

fated were used in the calculation of the optical path. The technique is at follow:

In the numerical integration of the heat conduction equation, altitude steps of

one km were used. For the calculation of the optical depth, a seven point Gauss-

Laquerre type integration formula was used, using as a scaling factor the

scale height of the constituent. Linear interpolation was performed for the 	 .;
S

densities whroa the aboissas of the integration formulafenbetween the altitude
g

steps. As the soils heights ranged in values from 25 km and up no lost in
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accuracy was obtained by this procedure. For zenith angles greater than 88

degrees, the procedure was modified by breaking the integral into two parts.

The first part covering a range of altitudes from the point at which the absorption

Is being calculated) to a height of one scale height was calculated by a Gauss-

Chebyshev type integration formula, and then the remainder by

Gauss -Laquerre type.

The cooling due to the reradiation on the Infra-red from atomic oxygen was

Included. It is sufficient for this type of calculation to take the entire extreme

ultraviolet flux as composed of two flux lines (see Mahoney (1666), Harris and

Priester (1962)) with the following cross sections; 1.5 x 1 0 r cm'` for nitrogen

and nolecular oxygen, 1.2 x 10 " cm" for atomic oxygen. The total flux used

i.n the E.UV range was 1.2 ergs/cm a. sec and 0.5 ergs/orn"* sec of satiation in

the Shuman-Runge region. The initial number densities at 120 km were 4 x 10 10

cm-^, 7.5 x 10 /cm and 7.6 x 10 p /cm sfor nitrogen, molecular oxygen and

atomic oxygen respectively. The calculation of the thermal vonduction coefficients

and specific heats was as performed by Harris and Priester (1962).

For a complete solution of the problem one should also include the Navier-

Stokes equation together with the continuity equation and the equation of state.

This will not be attempted here. instead, we shall use a phenomological approach,

making reasonable physical assumptions and see what conclusions can follow.

As the approach to hydrostatic equilibrium Is rather rapid compared to the time

6
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scale of the phenomenon we shall be interested In (see Thomas (1969)), we shall

^. Y +

r

w

assume hydrostatic equilibrium In the steady state. We are Interested in the

steady state solution so we shall fallow the procedure discussed by replacing

time derivatives with longitudinal derivatives or vice versa, in a system rotating

with the earth,

where D fDt is the total convective derivative, i.e, we have

4 P14 
4- "'VP G'	

(a)

where a is the flow velocity. Ignoring horizontal flow and mailing use of hydro-

static equilibrium	 ^►
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we have (where W is the vertioal flow velocity and 9 the acceleration of gravity

and (P the density.

) Pl = v4 zS I

or

( RT/3) t ^.^ P

where R is gas constant. Making use of the hydrostatic law again, we have

from

	

=	 r ( 1/14) dr + C

where H is the pressure scale height and tw the lower boundary and r the

altitude we Rare at, we finally have

Thus we have the final form for the heat conduction equation

^T ) ^ ,	 ^ 	 ^T^ pl ^...I4 .^- CsIn a iT }
C a^^'Ot +V ^ar	 r dr'	 J V- 	 ►̂ a	 r ^^► /C^ P

•

I

s ,

+ t
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(b^

Here Cp is the specific heat at constant pressure, h the vertical Ustnce f^mn

the center of the earth, k tiie thermal conductivity, 0 the oolatitude;r the local
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time or longitude, to the angular velocity of the earth. The calculations of

the heat sources and sinks have been discussed. The construction of the finite

difference equation and other numerical procedures are given in the appendix.

An alternate model of the vertical flow can be derived from the following

considerations. It has been convenient in studies of fluid flow to assume

Incompressibility and its implication dive rence-free flow. In the upper

atmosphere the incompressibility condition cannot be utilized; but it may be,

because of frictional effects (ion drag, viscosity), that the steady state of the

fluid can be such where the flow may be regarded as divergenoe-free, i.e.

V .f	 Z

We shall explore the results of this assumption 
	 w

e^p	 together with hydrostatic 	 t

equilibrium in the steady state (again ignoring horizontal transport).

From the continuity equation

we have

ha

wbereWD- is now the vertical flow velocity. From the perfect gas law we have	 r rn

gg

9
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W	 ^` ^^t .r t^/ '^ °PAZ " P/T 1VA z	
(68)

Malting use of hydrostatic equilibrium and using the expression forW, we obtain

(where H is the scale height)

14/1 
JTf z^
	

+ H/T aT/1 1-)	 (6b)

Thus the heat conductivity equation becomes

D r)	 47)
101/at +	 (7)

where Cv is the specific heat at constant volume (as the flow Is divergence-free).

One may expect different solutions from this form as compared to the earlier form

IT as now the local time derivative has a coefficient down by a ratio of the specific

heats; and thus the solutions should follow the local time variations of the heat

source more closely than the previous ones.

The two solutions are compared in Figure 1; where the equatorial exospheric

temperature is plotted for the 
same 

heat Input at the equinoxes. It is seen that

the diverence free solution has a greater amplitude (as expected because of the

smaller heat capacity), but the maximum is only slightly shifted with respect

to the solution of the first equation (5). In both cases the maximum appears close

W sunset not at fourteen hours local time.
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I In Figure 2, there is given the solution corresponding to the first case, where

the convective derivative of the pressure is zero. Curves of constant exospheric

temperature are plotted for latitude versus local time. It is seen that there is

decided latitude variation (as contrasted to the drag results given by Jacchia

and Slowey (1967)). This is mainly due to the variation of zenith angle as Lagos

and Mahoney (1967) has found by integrating the time dependent one dimensional

equation. There appears to be a shift at high latitudes towards noon where the

heat input is low.

In Figure S. the solution is given for the solstice case (in all solutions the
F

Incident heat flux is the same). Thus these solutions give a decided seasonal

variation which again is not observed from the satellite drag measurements.

Discussion of Horizontal Flow:

The complete solution for the heat transport problem in the upper atmosphere

would involve the solution of the Navier-Stokes equation for the horizontal

flow velocities, together with the heat oonductUrity equation. In addition, any

coupling with the lower atmosphere has to be considered. Horizontal flow has

been calculated by several researchers from the diurnal variation as given by

various atmospheric models. In these calculations gross simplification of

the Navier-Stokes equations have been made. The importance some of these

simplifications can be estimated.
x'

S	 x
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The Navier-Stokes equation in the form we shall consider in the rotating

frame is

t.tc Vu r" xC "'^a)#-.L r^ x tM _ — U PS -r2 1-.Fr ^'Fr
a^

where e is the density, p the pressure, the acceleration due to gravity, FL the

ion drag and Fv the viscous drag.

We shall assume steady state and to mare estimates of the order of magnitude

of various terms, we shall consider the horizontal flow velocity along the equator

during equinox conditions. Furthermore, we shall assume that the vertioal flow

velocity is given by W.

Letting V be the horizontal flow velocity at the equator the Navier-Stokes

equation becomes under these assumptions.

^	 ^.Y c^^ vat i- rr'i'^	 ^ r'yr v d	 _.	 ^, 1	
(9)

a•C

At the equator we may ignore Coriolios and the centrifugal term. We shall

consider what velocities may be obtained from a linearized treatment ignoring

drag terms, i.e. when we have

a^	 P

Tat - - rte,	 J a
a^	 r^

^` 4J
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where V® , Pc are some reference velocity , and pressure at some point on the

equator. As an estimate, we may set In (p/p ) to unity, cat, equal to 450 m/sec

and N to 50 km. Then v - v. is about 1000 m/sec, much greater than that given

by the earth's angular velocity. With such velocities, it is difficult to understand

how a steady state condition could be obtained.

If we were to include the non-linear term, i.e. ^/^ ^ then the solution would

be

V - VQ	 r	 -1	 I — < z /wa^ ^^ p^ Pu^

f 
(10)

where we would choose the positive square roots in order to obtain the linearized

result for small pressure gradients. This then implies that for a steady state

to exist we must have

s	 ,

^ r	 (11)	
}

Thus to obtain steady state conditions in the upper atmosphere, with the pressure

gradients that exist, we must include the other terms neglected, i.e. ion drag,

viscosity etc.

For the form of the ion drag, we may take

•^. 	 ti	 J

a

1s
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(see Geissler (1966)), where	 is the ion density which we shall assume to be

fixed to the field Ines, 4, the effective collision frequency. Geissler uses a

value for /Iy (where N is the number density) of 5.2 x 10	 cTbs/sec.

Stubbe (1968) has calculated an improved value for the case of atomic oxygen

of about a factor two greater, but we shall use the smaller value in order to
_s

underestimate the effect of ion drag. For the ion density, we shall use 2 x 10

em3 a rather low value. For an estimate of the velocity, let us choose a value

given by the earth's angular velocity, for it is only magnitudes comparable to

this value that can cause appreciable heat transport to effect the diurnal varia-

tion, i.e. u = tolo. We shall calculate the ratio of the ion drag to the driving force,

the pressure gradients. The pressure gradient can be approximated by

For 3/ ^^^' we may use a value of 1/4 x 16'* , assuming that the logarithm of the

pressure changes by unity in a half of a day (this is an overestimate). R may be

taken to be 50 km. Then the ratio of the ion drag to the pressure gradients

_	 h

1	 c^	 (18)

-'	 becomes 4.5/3 > 1.

It is to be noted that the above ratio is an underestimate. Thus for velocities

comparable to the earth's rotational velocity, the ion drag force is comparable

a t^

l

t
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to the pressure gradients. Thus velocities much smaller than that given by the

earth's rotational velocity are to be expected. But for the convective horizontal

transport to be effective, it must have a value comparable to the value of the

local time derivative in the heat conduction equation.

Lt	 JN T a bT/',,r 	 (14)
I
{

Here v,, is the horizontal velocity, VO the horizontal gradient of the temperature.

For the horizontal gradient of the temperature (at the equator) we may take it

to be (again assuming steady state and for equatorial conditions at the equinox

given by the local time variations end the lafthand side of the above equation

becomes

a {.

which as seen implies velocities comparable to the earth's angular velocity in

order for the above expression to be comparable to the left hand aide of (14).

Another source of energy input into the upper atmosphere are gravity waves,

	

4s	 It has been suggested that these may propagate upward with sufficient energy that

	

• w _	 it can be comparable to the E. U. V. heating. This implies a dynamical coupling

between the upper atmosphere and the mesosphere. In the steady state, these

motions must occur repeatedly. Such an energy input is not inconsistent with the

assumption of steady state and hydrostatic equilibrium. We can incorporate this

possibility in the method utilized here.
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Let us again ignore horizontal flow and assume hydrostatic equilibrium,

and let W be the vertical upward velocity. Using the following expression

for `W

then the total corrective derivative of the pressure may be expressed as

u^	 a

The heat conductivity equation becomes

f	 ^ t7

where we can regard the terms containg W•U as a correction to equation

(5). The expression for W identically vanishes at the lower boundary

(120 km) and the value of U at this lower boundary will be determined

by the propagation of tidal motions from the lower atmosphere to this

altitude.

An estimate of this additional term to the right handside of the

heat conductivity equation can be made as follows. If we assume that

U does not change appreciably over one seals height, so that we may

take the difference W-U as a• constant U,, , then we may integrate

this term over the altitude and obtain an estimate of the pear flux

due to tidal motions from the lower atmosphere into the upper atmosphere.

a

•
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Thus we obtain

There N is the press'j1e at the lower boundary about equal to 2.6 x 10 -2

dynes /emz . Thus a decimal varying velocity at the lower boundary of

less than 1m/sec vould represent an energy input ccmyarable to the E.U.V.

flux. Harris and Priester (,1962) have shown that an additional heat

source of this Aagnitude can be adjusted so as to obtain agreement with

satellite drag ®beervat one.

Lindzen and Blake (1970) have shown that the semi-decimal ccnent

of the lower atmospheric tides may propagate to the upper atmosphere

with a flux in agreement with the above estinate.

For a fuller descri ption of the steady state of the upper atmosphere

one needs a model of the tidal motions at the lower boundary together

with the integration of the Navier-Stokes equation for horizontal flow.

Though longitudinal flog may be decreased by ion-drag, the numerical

results presentee here (which have large latitudinal temperature gradients)

indicate that convective transport towards the poles )for which ion drag is

less important can be significant. But such a flow is strongly coupled to

the longitudinal flog due to the non-linear and Coriolis terms in the

Wavier-Stokes equation. The calculations are more involved and work toward

developing a numerical procedure is in progress. In such a procedure, it

is a prerequisite the successful integration of the three dimensional heat

conduction equation, e.g. by a method described in this paper.
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Figure Captions:

Fig. 1. Equatorial exospheric temperatures for two models of vertices, floor.

Fig. 2. Latitudinal and local time variations of the exospheric temperatures

for equinox conditions.

Fig, 3. Latitudinal and local time variations of the exorpheric temperatures

for solstice conditions.
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APPENDIX

i

.1

Derivation of the Difference Equations

The steady state heat conduction equation in three dimensions in spherical

coordinates is

1	 r	 J XTJ- s). (r
 
K Tr } h^ n A a®^s ^n ^^ ^1a } r Sir^'^E?	

K ^i"

+=	 ^ W	 4-

Here r is the radius vector, a the colatitude, ^ the longitude, Q the heat sources

and sinks as given by equation two,Wthe vertical flow velocity as given by

equation (4) or (6b), Q the mass density, K the thermal conductivity.

The development of the difference equations will start will the procedure
M +	 A

given in Varga (1862) on the derivation of difference equations for elliptic

equations in more than one dimension. We divide the three dimensional space

to increments Ar , A8 , At and denote the various values of r by the subscript

of 6 by the subscript k, and of (or local time) by the subscript or super-

4	 subsccipt t . For points not on the boundary let us consider the elementary
r:

volume which is a six sided parallspiped centered around the point (vS , ek, 04

whose corners pass through the points given by the set of values ( r, + Ate'

r-.4%/-X)./^.). The term involving the thermal conductivity may be

A-1

r	 ^r

1
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Integrated over the elementary volume and expressed as surface integrals by

R	 means of Greens theorem. Then the surface integrals are performed by replacing

the values of the various quantities by their values at the center of the surfaces.

The term containing	 is integrated by evaluating its coefficients at the

center of the elementary volume. All other terms are integrated by assuming

their values at the center of the elementary volume. Then the first derivitives

of the temperature with respect to h, 8, at Its, K are replaced by central

difference formuaae. The values of the physical quantities at jr L, rct are cal-

culated by taking their mean vlaues at jt , Atl appropriately. Aside from

the matrix elements that arise from the condition that the temperature should

be periodic in longitude the matrix of the coefficients of the difference equation

can be arrange to that one would have tridiagonal matrix whose elements are

,n- â,. rY r• 	 ^T	 ^ 1-	 matrices. Also the term Yj^ should dominate over the term %^k /ft•}

a _.
if the latter term weren't prey ent the heat conduction equation in steady state

. y would be of parabolic type. Thus a,.n iterative method in terms of discrete, e

approximation to a parabolic differential equation, (Varga (1962)) where wo

Pw

Iterate until a periodic solution in longitude is obtained would appropriate. To

} ^	 obtain such a method we express the temperature at the point t +^%;,^ in terms of

-.	 points at tt t 1 t=.t, i.e. (writing now the index t as an superscript)
r

A-2

s	 ^`

3
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J a K	 ct r

and the longitudinal derivative of the temperature
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Finally one obtains the following difference equation s for points not on

the boundary.
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where
J

= T a, K
	 T: a k Ta 1 K	 a

and we have taken the thermal conductivity (so as to linearize the equations at

the point i to be ,given by
d !KCT^I^ (TT,,k J

Also we have made use of the fact that the major dependence of the thermal

conductivity on temperature is of the form proportional to the square root

of the temperature, so we may make use of this to obtain the following approx-

Imation

^ C^, era t ._ I^ (
	 ^	 t	 t" T•` — T`h 

).TT

Similary the terms q(,T` , C^, are evaluated by using the projected values of
^K

the temperatures Tr k, Thus only a slight error is introduced by not iterating

the ah	 Aations in order to obtain the values of V Q, and

For the boundary condition on r we used that at ziN , the maximuin

value of j , 4T/air = , and at S= i., `^'(rse)z , for all latitudes. The upper

boundary of the elementary volume for the point j da Is taken to pass through

t;N and integrating as before one obtains
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where by ^ O k );,, ^w we mean expression (A5) 1e evaluated with a = ,IN.

i

Similiary one obtains from the boundary conditions at the lower boundary

CL	 0	 K	 ik"I OK 	 lA	 ))k)jVI	 (

For the boundary conditions on latitude one may take the temperatures at

the poles to be the average over boundary of the temperatures at the latitude

immediately adjacent to the poles. Alternatively one may obtain the temperatures

at the poles by integrating the one dimensions-t heat conduction in altitude at the

poles. Both procedures were used. Both procedures yielded temperatures at

`i

^X

the poles within tea percent of each other and less than a couple of percent at

all other latitudes. The term representing vertical flow was evalutated wiplic-
r

itily in term of T - and 7- and added to R^^ Calculations were performedJK

with and without this term and at most fifty degrees difference in the exospheric

temperatures where obtained. There was no shift in the peak with local time

of the exospherio temperatures.

Care had to excerised in choosing the proper increment in longitude and

latitude, otherwise numerical instability would developed, for the latitude

nearest the pole. Thd.s instability can attributed to the teem proportfonal. to

AO- in P%A which would change sign unexpectedly, due to the low value of Q .

It was found that this method of deriving difference equations tended to yield

difference equation which were rrwre stable against this type of instabitlity than

straight forward differenoing would yield.
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The matrix of the coefficients of equation Al (including their values at the

boundary points) can be structured into block form in which the sublocke are

labeled by the index 3, and the rows and columns within the blocks by the index

K. Then the matrix considered in block form is tridiagonal and direct inversion

was performed to obtain a solution (Varga (1962)).

Calculations were performed at nine and eleven latitude increments with

an increment in local time of fifteen and thirty minutes. The calculations with

nine and eleven latitudes agreed well with each other. The results for fifteen

minutes local time increment raise the peak exospheric temperature slightly

and slightly narrowed the peak as expected. The results presented are for

fifteen minutes local time and eleven latitudes. The increment in altitude	 9

<

chosen was one kilometer.
sA4

The initial temperatures profiles required for the iterations procedures,

T an and ^',,,^ , were set equal to the lower boundary (120 km) value of 335°k,

for all values of d and k. Rapid convergence was obtained, i.e.T^	 - ^T^k,0^

decreasing by 	 gayrou	 Y , where 96 corresponds to the number of increments

,. of longtitude in twentyfour hours, when a fifteen minute integration step was

<. used in local time. To speed up the calculation one can used one hourpe	 integration

r. steps for two days and then reduced it to fifteen minutes. Widely different

initial profiles were used and they all converged to the same results.
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