TE-47

THE TRANSFORMATION OF A SERIES EXPANSION IN SOLID SPHERICAL HARMONICS UNDER TRANSLATION AND ROTATION OF COORDINATES

by

William Nelson Lee

N71-35678

NASA CR OR TMX OR AD NUMBER

FACILITY FORM 402

(ACCESSION NUMBER)

83

(PAGES)

CR-11514

(NASA CR OR TMX OR AD NUMBER)

(THRU)

G-3

(CODE)

9

(CATEGORY)
THE TRANSFORMATION OF A SERIES EXPANSION
IN SOLID SPHERICAL HARMONICS
UNDER TRANSLATION AND ROTATION
OF COORDINATES

by

William Nelson Lee

June 1971

Measurement Systems Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts

Approved: W. Marley
Director
Measurement Systems Laboratory
THE TRANSFORMATION OF A SERIES EXPANSION
IN SOLID SPHERICAL HARMONICS
UNDER TRANSLATION AND ROTATION
OF COORDINATES

by

William Nelson Lee
B A, Grinnell College
(1968)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF
SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June, 1971

Signature of Author

William Nelson Lee

Certified by

Stephen J. Vossler Jr.
Thesis Supervisor

Accepted by

Chairman, Departmental Committee on Graduate Students
THE TRANSFORMATION OF A SERIES EXPANSION IN SOLID SPHERICAL HARMONICS UNDER TRANSLATION AND ROTATION OF COORDINATES

by

William Nelson Lee

Submitted to the Department of Aeronautics and Astronautics on May 14, 1971, in partial fulfillment of the requirements for the degree of Master of Science

ABSTRACT

A formula for transformation of solid spherical harmonics under coordinate changes makes it possible to convert potential functions, expressed in a series of these harmonics, to representations valid in different coordinate systems.

Such a formula has several geophysical applications when the potential of a celestial body has been determined relative to one particular set of coordinates. A coordinate change may improve the convergence of the series in a given region, or such a change may be convenient for other reasons.

There are also applications to micro-gravitational interactions among non-spherical, but rotationally symmetric bodies, allowing the analytic calculation of quantities which depend on potential functions, such as gravitational forces and torques.

In this work the necessary transformation formulas are developed and applied to the task of analytically calculating the force between two homogeneous hemispheres. Two special cases are worked out in detail as examples where the coordinate changes involve both translation and rotation.

Thesis Supervisor: Stephen J. Madden, Jr
Title Lecturer
I wish to sincerely thank my thesis advisor, Dr. Stephen J. Madden, Jr., and Mr. Leonard S. Walk for their unfailing interest and support. Dr. Madden was responsible for the genesis of the thesis and provided invaluable inspiration and assistance.

I would also like to thank Mrs. Robert Preston for her efficient preparation of the final copy of the manuscript.

This research was supported by the Measurement Systems Laboratory under a National Aeronautics and Space Administration Contract, NAS 9-8328.

The publication of this thesis does not constitute approval by the National Aeronautics and Space Administration of the findings or conclusions contained therein. It is published only for the exchange and stimulation of ideas.
TABLE OF CONTENTS

Chapter 1 INTRODUCTION
1.1 Motivation 9
1.2 Objectives 10
1.3 Method 10
1.4 Other Applications 11

Chapter 2 TRANSFORMATION OF SOLID SPHERICAL HARMONICS DUE TO TRANSLATION OF AXES
2.1 Coordinate Systems 13
2.2 Solid Spherical Harmonics 15
2.3 Transformation of Harmonics Involving Powers of r^n 18
2.4 Transformation of Harmonics Involving Powers of r^{-n-1} 20

Chapter 3 TRANSFORMATION OF SPHERICAL HARMONICS DUE TO ROTATION OF THE COORDINATE AXES
3.1 The Rotation Matrix 25
3.2 The Transformation in Terms of a Set of Homogeneous Polynomials, $S_{m,k}^{n}$ 32
3.3 Evaluation of the Polynomial $S_{m,k}^{n}$ as a Function of the Rotation Parameters 36

Chapter 4 TRANSFORMATION OF A SERIES EXPANSION IN SOLID SPHERICAL HARMONICS
4.1 Explanation of the Transformation Formulas 45
4.2 Translation Transformation of a Series Involving powers of r^s to One with Powers of R^n 49
4.3 Translation Transformation of a Series Involving Powers of r^{-s-1} to One with Powers of R^{-n-1}, $R < 0$ 51
4.4 Translation Transformation of a Series Involving Powers of r^{-s-1} to One with Powers of R^{-n-1}, $R > 0$ 51
4.5 Rotation 52
Chapter 5 THE FORCE BETWEEN TWO HOMOGENEOUS HEMISPHERES

5.1 Potential Due to a Hemisphere

5.2 Force Between Two Hemispheres

5.3 Evaluation of the Force When the Limits of Integration Have no Azimuthal Dependence

5.4 Calculation of the Force for Two Special Cases

Chapter 6 CONCLUSIONS AND RECOMMENDATIONS

APPENDICES

Appendix A GENERATION OF THE SOLID SPHERICAL HARMONICS

(1) $h_n^m(r, \cos \theta, \phi)$ AND (2) $h_n^m(r, \cos \theta, \phi)$

Appendix B NUMERICAL RESULTS OF THE CALCULATION OF THE FORCE BETWEEN TWO HEMISPHERES

B.1 Separation Along the Polar Axis

B.2 Separation Along the Polar Axis and Rotation of One of the Hemispheres about the Center of its Base, in the Y-Z Plane
LIST OF ILLUSTRATIONS AND TABLES

Figure 2-1 Relationship Between Old and New Coordinate Systems

2-2 Definition of Spherical Coordinates

3-1 Euler Angles Associated with a Rotation of Coordinate Axes

4-1 Critical Sphere for a Transformation Due to Translation of a Series Involving Powers of r^{-s-1}

4-2 Definition of the Variables of Integration, r', θ', ϕ', ψ', for an Element of Mass at Q and a field point at P

5-1 Calculation of the Potential Due to a Hemisphere at a Point on Its Polar Axis

5-2 Geometry for Two Hemispheres

5-3 Positions of the Hemispheres for the Two Special Cases

5-4 Normalized Components of Force as a Function of Angle of Rotation when $\phi = 2\pi/2$

Table 3-1 Notation Used by Several Authors to Represent the Same Quantities

4-1 Notation Used for the Series Coefficients

4-2 Conversion of Series Coefficients Under Translation

5-1 Summary of the Five Cases Involved in Evaluation of the Force Integrals
CHAPTER 1

INTRODUCTION

1.1 Motivation

The motivation for this research was the need for a satisfactory method of calculating forces and torques caused by gravitational attraction among bodies on the laboratory scale.

Historically, the calculation of gravitational forces has been limited to relatively large forces - those involving celestial bodies, where all, or all but one of the masses, can effectively be treated as a point mass. Under these conditions, the calculations reduce to a simple gradient operation on the scalar potential.

Laboratory experiments which measure the magnitude of gravitational forces and torques using test masses, such as the Cavendish experiment, have in the past involved at least one spherical test body of uniform density. The problem again reduces to one of determining the potential and its gradient.

Currently, however, attempts are being made to greatly improve the accuracy of the Cavendish measurement in order to make a relativistic check of the dependence of the gravitational constant on the potential. The use of non-spherical test masses appears to be one way in which the sensitivity can be improved (Lee, 1970). Calculating the forces and torques in this case involves a triple integral, or the case of homogenous mass, a double integral over the volume or surface, respectively, of the passive mass,
\[F = \rho_d \int_{\text{volume}} V \cdot V \, dt \]

\[= \rho_d \int_{\text{surface}} V \cdot n \, ds, \quad (1-1) \]

where \(\rho_d \) is the mass density, \(n \) is the outward normal to the surface, and \(V \) is the potential due to the gravitating mass(es). In general this calculation is formidable - difficult to carry out analytically, and computer approximation schemes do not efficiently yield the accuracy required for a relativistic measurement.

1.2 Objectives

The purpose of this investigation is to develop an analytical method for calculating the gravitational interactions among rotationally symmetric bodies of uniform density, permitting the evaluation of the forces to the desired accuracy. Other quantities which depend on the potential, such as torques and partial derivatives thereof, can be treated in the same manner.

1.3 Method

To facilitate the evaluation of the surface integral in equation (1-1), the coordinate system is oriented to take full advantage of the symmetry of the passive body. The coordinates and coordinate system originally selected are best suited for expression of the potential function of the gravitating mass(es). Once the potential has been determined, the reference frame will, in general, have to be changed.
before permitting the integrations. Although the scalar potential re-
mains unchanged under such a transformation, individual terms in a
series expansion of the potential will change with the coordinate trans-
formation.

In this thesis a potential expansion in solid spherical harmonics
is transformed under translation and rotation of coordinates, permitting
the relatively easy evaluation of the surface integrals. The trans-
formation will involve one translation and one rotation, unless the
translation is limited to the direction of the axis of symmetry
of the gravitating mass, in which case two rotations are required in
addition to the special translation.

The transformation of the expansion requires the transformation
of the coefficients in the series, which in turn necessitates the
transformation of the solid spherical harmonics under the coordinate
change.

1.4 Other Applications

The transformation of a series expansion in solid spherical har-
monics appears to have several applications other than the one de-
cribed in 1.1. The potentials of the earth and moon, for example,
which are originally determined in terms of a particular coordinate
system, can then be written in any other coordinate system desired.
This may facilitate its evaluation in some regions, either because
the convergence is not satisfactory, or to capitalize on a particular
geometrical configuration.
CHAPTER 2
TRANSFORMATION OF SOLID SPHERICAL HARMONICS DUE TO TRANSLATION OF AXES

2.1 Coordinate Systems

A pure translation of the origin of the x, y, z coordinate system (Figure 2-1) to a new system (ξ, η, ζ) is represented by a translation vector ϱ. A field point P is located by the position vector \mathbf{r} in the old system and a vector \mathbf{R} in the new system.

![Figure 2-1 Relationship Between Old and New Coordinate Systems](image)

In spherical coordinates, the angles θ, λ, and α are the colatitudes, ϕ, γ, and β the longitudes, and r, ρ, and R the magnitudes of the three vectors \mathbf{r}, ϱ, and \mathbf{R}, respectively. The coordinates of \mathbf{r} are indicated in Figure 2-2 as an example.
Thus,

\[r = R + \rho , \]

where

\[
\begin{align*}
 r &= [x] = \begin{bmatrix} r \sin \theta \cos \phi \\ r \sin \theta \sin \phi \\ r \cos \theta \end{bmatrix} \\
 R &= \begin{bmatrix} \xi \\ \eta \\ \zeta \end{bmatrix} = \begin{bmatrix} R \sin \alpha \cos \beta \\ R \sin \alpha \sin \beta \\ R \cos \alpha \end{bmatrix} \\
 \rho &= \begin{bmatrix} \rho \sin \lambda \cos \gamma \\ \rho \sin \lambda \sin \gamma \\ \rho \cos \lambda \end{bmatrix},
\end{align*}
\]
and

\[0 \leq r, R, \rho \]

\[0 \leq \theta, \alpha, \lambda \leq \pi \]

\[0 \leq \phi, \beta, \gamma \leq 2\pi \]

2.2 Solid Spherical Harmonics

A solid spherical harmonic is defined as any homogeneous function \(f(x,y,z) \) of degree \(n \) which also satisfies Laplace's equation,

\[\nabla^2 f = 0 \quad (2-2) \]

If harmonics of the form

\[r^n P_n^m(\cos \theta)e^{im\phi} \quad n=0,1,2, \]

\[m=-n,-n+1,\ldots,n-1,n \]

are considered, then \(p \) must assume one of two values,

\[p = n,-n-1, \]

since \(P_n^m(\cos \theta)e^{im\phi} \) satisfies equation (2-2) (MacRobert, 1947, p 150)

The \(P_n^m \)'s are known as associated Legendre polynomials, defined by

\[P_n^m(v) = (-1)^m(1-v^2)^{m/2} \frac{d^m}{dv^m} P_n(v), \quad (2-3) \]
where the P_n's are the familiar Legendre polynomials. They can be determined from Rodrigues' formula

$$P_n(v) = \frac{1}{2^n n!} \frac{d^n}{dv^n} (v^2-1)^n.$$

Several important relationships among the P_n's are noted here for later use. The first relates a polynomial of negative order to the corresponding polynomial of positive order (Jackson, 1966),

$$P^{-m}_n(v) = \frac{(-1)^m (n-m)!}{(n+m)!} P^m_n(v) \quad m \geq 0 \quad (2-4)$$

Note that in the special case $m = 0$,

$$P^0_n(v) = P_n(v)$$

Other useful expressions are (Abramowitz, 1965)

$$P^m_n(v) = (-1)^{n+m} P^m_n(-v) \quad (2-5)$$

$$P^m_m(v) = \frac{(-1)^m (2m)!}{m! 2^m} (1-v^2)^{m/2}$$

$$P^m_{m+1}(v) = (2m+1) v P^m_m(v) \quad (2-6)$$

and the recursive relations

$$(n-m) P^m_n(v) - (2n-1) v P^m_{n-1}(v) + (n+m-1) P^m_{n-2}(v) = 0 \quad (2-7)$$

$$(n-m) (n+m+1) P^m_n(v) + 2 (m+1) v (1-v^2)^{1/2} P^m_{n+1}(v) + P^m_{n+2}(v) = 0 \quad (2-8)$$
Several $P_n(v)$'s and $P_n^m(v)$'s are evaluated for later reference,

\[P_0(v) = 1 \]
\[P_1(v) = v \]
\[P_2(v) = \frac{1}{2}(3v^2-1) \]
\[P_3(v) = \frac{1}{2}(5v^3-3v) \]
\[P_4(v) = \frac{1}{8}(35v^4-30v^2+1) \]
\[P_5(v) = \frac{1}{8}(63v^5-70v^3+15v) \]

\[P_2^1(v) = -(1-v^2)^{1/2} \]
\[P_2^2(v) = 3(1-v^2) \]
\[P_3^1(v) = -\frac{3}{2}(1-v^2)^{1/2}(5v^2-1) \]
\[P_3^2(v) = 15(1-v^2)v \]
\[P_3^3(v) = -15(1-v^2)^{3/2} \]

A well known and useful generating function for harmonics involving the P_n's (Erdélyi, vol 1, 1953, n 154) is

\[
\frac{1}{(1+h^2-2vh)^{1/2}} = \begin{cases}
\sum_{n=0}^{\infty} h^n P_n(v) & |h| < \text{smaller of} \\
\sum_{n=0}^{\infty} h^{-n-1} P_n(v) & |h| > \text{larger of}
\end{cases} \\

|v_{\pm}(v^2-1)^{1/2}| \\
\end{cases}
\]
and finally, the addition theorem of spherical harmonics, involving the angle ψ between two vectors r and r' (Jackson, 1966, p.67), is

\[
P_n(\cos \psi) = P_n(\cos \theta)P_n(\cos \theta') + 2 \sum_{m=1}^{n} \frac{(n-m)'}{(n+m)'} P_m(\cos \theta)P_m(\cos \theta') \cos m(\phi-\phi') ,
\]

where

\[
\cos \psi = \cos \theta \cos \theta' + \sin \theta \sin \theta' \cos (\phi-\phi')
\]

2.3 Transformation of Harmonics Involving Powers of r^n

In order to transform the coefficients in solid spherical harmonic expansions with powers of r^n and r^{-n-1}, the spherical harmonics themselves must be transformed in the opposite sense for each case. That is, the old harmonics must be found in terms of the new ones.

If the method developed by Aardoom (Aardoom, 1969) is adopted, use is made of the finite binomial expansion

\[
(u^T v)^n = \sum_{k=0}^{n} \binom{n}{k} (u^T R)^{n-k} (u^T v)^k ,
\]

where

\[
\binom{n}{k} \equiv \frac{n!}{(n-k)!k!} ,
\]
and \((u^T r)\) is the Hermitian scalar product of a special dummy complex vector \(u\), and \(r\). The bar over \(u\) indicates its complex conjugate and the superscript \(T\) stands for its transpose.

The vector \(u\) is defined in terms of a free parameter \(t\),

\[
\frac{u^T}{(u^T r)} = \begin{bmatrix}
1-t^2 \\
1+(1+t^2) \\
-2t
\end{bmatrix}, \quad t \neq 0,
\]

and the Hermitian scalar products can be identified with the generating function in equation (A-11) of Appendix A. Thus,

\[
(t u^T r)^n = \sum_{m=-n}^{n} (1)_{H_n,m}(r, \cos \theta, \phi) t^m, \tag{2-12}
\]

where

\[
(1)_{H_n,m}(r, \cos \theta, \phi) = \frac{(-1)^m (-2)^n n!}{(n+m)!} r^n \frac{d^m}{d \cos \theta} e^{im\phi}. \tag{2-13}
\]

Using equation (2-12) in three places in (2-11), and dividing by \(t^n\),

\[
\sum_{m=-n}^{n} (1)_{H_n,m}(r) t^m = \sum_{k=0}^{n} \sum_{h=-n+k}^{n-k} (1)_{H_{n-k,h}}(r) \frac{t^h}{h!} \frac{1}{j=-k} \frac{1}{H_{k,j}(p)} t^j \tag{2-14}
\]

With a redefinition of indices, (2-14) can be written as

\[
\sum_{m=-n}^{n} (1)_{H_n,m}(r) t^m = \sum_{p=-n}^{n} \sum_{k=0}^{n} \sum_{h=-n+k}^{n-k} (1)_{H_{k+p,h}}(r) \frac{t^h}{h!} \frac{1}{j=-k} \frac{1}{H_{k+p-j,n-k-p}}(p), \tag{2-15}
\]
where

$$S_{a}^{b} \quad \text{and} \quad L_{b}^{a}$$

are taken as the smaller and the larger, respectively, of the two quantities (a, b) beside the bracket.

Since t is a free parameter, the coefficients of t^{n} in equation (2-15) can be equated. In spherical coordinates, making use of equation (2-13), the result is

$$r_{n}^{m}(\cos \theta)e^{im\phi} = \sum_{k \geq 0}^{n} S_{k+n+m}(l)k_{n,m}(\rho, \cos \lambda, \gamma)R_{k}^{p}(\cos \alpha)e^{i\beta},$$

where

$$k_{n,m}^{l}(\rho, \cos \lambda, \gamma) = (n+m-k)_{m-k}^{n}R_{m-k}^{p}(\cos \lambda)e^{i(m-k)\gamma}$$

Note that $k_{n,m}^{l}$ is a function only of the transformation variables ρ, λ, and γ.

2.4 Transformation of Harmonics Involving Powers of r^{-n-1}

The transformation of the harmonics involving inverse powers of r is treated in a manner analogous to that used in section (2.3), beginning this time with an infinite binomial expansion,

$$(-1)^{n-1}uv^{n-1} = (\frac{uv}{R} + \frac{uv}{\omega})^{n-1}$$

$$= \sum_{k=0}^{\infty} (-1)^{k}(n+k)_{n}^{k}(\frac{uv}{R})^{n-k-1}(\frac{uv}{\omega})^{k}$$

$$|\frac{uv}{\omega}| < |\frac{uv}{R}|$$

$$= \sum_{k=0}^{\infty} (-1)^{k}(n+k)_{n}^{k}(\frac{uv}{R})^{n-k-1}(\frac{uv}{\omega})^{k}$$

$$|\frac{uv}{\omega}| > |\frac{uv}{R}|$$

(2-18)
Thus, the series takes one of two different forms, whichever will converge. The convergence criteria themselves are difficult to evaluate due to the involvement of the dummy vector \(\mathbf{u} \). In the special case of a translation along the \(z \) axis (\(\lambda = 0 \)), it can be shown that the criteria reduce to the question of \(\rho R \) being less than or greater than one. This has not been directly shown to be true in general, except that an independent derivation by Madden (Madden, 1971) of the transformation of the harmonics yields the same results as will be obtained here, with the criteria

\[
\rho \lesssim R
\]

holding in general. Hence, these convergence criteria are adopted.

The left-hand side of (2-18) can be identified with (A-13), so that

\[
(u^T x)^{-n} = t^{-n-1} \sum_{m=-n}^{n} (2)_{H_{n,m}}(r, \cos \theta, \phi) t^m ,
\]

where

\[
(2)_{H_{n,m}}(r, \cos \theta, \phi) = \frac{(n-m)!}{(-2)^n n!} r^{-n-1} p^m_n(\cos \theta) e^{im\phi}
\]

Making use of (2-12) and (2-19) and multiplying by \(t^{n+1} \), equation (2-18) can be expressed as

\[
\sum_{m=-n}^{n} (2)_{H_{n,m}}(r) t^m = \sum_{k=0}^{\infty} (-1)^k (n+k) \sum_{h=-n-k}^{n+k} (2)_{H_{n+k,h}} R \left[\theta^k \frac{1}{n} \right]_{j=-k}^{h} \left[\frac{\rho}{R} \right]_{j} t^j,
\]

(2-21)
where

\[
\begin{bmatrix}
a \\
b
\end{bmatrix} = \begin{cases}
a & \rho < R \\
b & \rho > R
\end{cases}
\]

Changing indices and equating coefficients of \(t^m \) on each side of (2-21) gives

\[
(2) H_{n,m}(r) = \sum_{k=0}^{\infty} (-1)^k (n+k) \sum_{\ell=m-k}^{m+k} (2) H_{n+k,\ell} \left[\begin{array}{c} R \\ \rho \end{array} \right] \left(\begin{array}{c} \rho \\ R \end{array} \right) \]

Introducing spherical coordinates and expressions of the form of (2-13) and (2-20) yields

\[
r^{-n-l} m \cos \theta \cos \phi = \sum_{k=0}^{\infty} \sum_{\ell=m-k}^{m+k} (2) K_{n,m}(\rho, \cos \lambda, \gamma)
\]

\[
\times \left[\begin{array}{c} R^{-n-k-1} \\ R^k \end{array} \right] \left[\begin{array}{c} \ell \\ k+n \end{array} \right] \left[m-\ell \right] \left[k \right] \left[\cos \lambda \right] e^{i \left[m-\ell \right] \gamma},
\]

(2-22)

where

\[
(2) K_{n,m} = (-1)^{k+m+\ell} (k+n-\ell) \left[\begin{array}{c} \rho^k \\ \rho \end{array} \right] \left[\begin{array}{c} m-\ell \\ n \end{array} \right] \left[\cos \lambda \right] e^{i \left[m-\ell \right] \gamma},
\]

(2-23)

and

\[
\begin{bmatrix}
a \\
b
\end{bmatrix} = \begin{cases}
a & \rho < R \\
b & \rho > R
\end{cases}
\]

In the special case when the translation is in the positive z direction (\(\lambda = 0 \)), equations (2-16) and (2-22) reduce to:
\[x^m r^n (\cos \theta) e^{i m \phi} = \sum_{k=0}^{n} \binom{n+m}{k} \rho^{-k} R^k \rho_R^m (\cos \alpha) e^{i m \beta}, \quad (2-24) \]

and

\[
x^{-n-1} r^m (\cos \theta) e^{i m \phi} = \begin{cases} \\
\sum_{k=0}^{\infty} (-1)^k \binom{k+n-1}{k} \rho^{-n-k-1} R^k \rho_R^m (\cos \alpha) e^{i m \beta} \\
\sum_{k=0}^{\infty} (-1)^{k+m} \binom{k+n}{k} \rho^{-n-k-1} R^k \rho_R^m (\cos \alpha) e^{i m \beta}
\end{cases} \\
p < R \quad (2-25) \\
p > R \quad (2-26)\]
CHAPTER 3
TRANSFORMATION OF SPHERICAL HARMONICS DUE TO ROTATION OF THE COORDINATE AXES

3.1 The Rotation Matrix

To effect a transformation of coefficients due to a rotation of coordinate axes (Chapter 4), the new harmonics are first determined in terms of the old ones. A particular rotation of axes defines a transformation matrix, M, such that

$$ R(R,\alpha,\beta) = M \cdot \mathbf{r}(r,\theta,\phi), $$

(3-1)

where M is formed by successive rotations through three Euler angles 1) Ω about the z axis, 2) I about the newer x axis, and 3) ω about the new z axis, all in a right-handed sense (Figure 3-1)

![Figure 3-1 Euler Angles Associated with a Rotation of Coordinate Axes](image)

$0 \leq \Omega \leq \pi$
$0 \leq I \leq \pi/2$
$0 \leq \omega \leq 2\pi$
Adopting the method of Courant and Hilbert (Courant and Hilbert, Vol 1, pp 535-545), a skew symmetric matrix, A, is constructed in terms of three parameters, \(q_1, q_2 \) and \(q_3 \),

\[
A = \begin{bmatrix}
0 & q_3 & -q_2 \\
-q_3 & 0 & q_1 \\
q_2 & -q_1 & 0
\end{bmatrix}
\]

(3-2)

Three additional parameters, \(q_4, \ w \) and \(v \), are introduced by

\[
w = (q_1^2 + q_2^2 + q_3^2)^{1/2}
\]

(3-3)

\[
v = (q_1^2 + q_2^2 + q_3^2 + q_4^2)^{1/2}
\]

(3-4)

where \(q_1, q_2, q_3 \) and \(q_4 \) are all real. The immediate objective is to show that the orthogonal matrix \(M \) can be expressed as

\[
M = (q_4I_M + A)(q_4I_M - A)^{-1}
\]

(3-5)

the exponent of minus one indicating the inverse of the matrix, and \(I_M \) representing the identity matrix.

Note that \((q_4I_M + A) \) and \((q_4I_M - A) \) commute. Hence, \((q_4I_M + A) \) and \((q_4I_M - A)^{-1} \) commute, since, in general, \(D^{-1}C = CD^{-1} \), if \(CD = DC \).

It follows that

\[
M^T = (q_4I_M - A^T)^{-1}(q_4I_M + A^T)
\]

\[
= (q_4I_M - A)(q_4I_M + A)^{-1}
\]

\[
= M^{-1},
\]
If A is skew symmetric (which has been assumed), and if the determinant of \((q_4 I_M - A)\) is different from zero, i.e., \(|q_4 I_M - A| \neq 0\)

From (3-2), the characteristic equation of \(A\) can be determined,

\[\lambda^3 + w^2 \lambda = 0 \]

Because a matrix satisfies its own characteristic equation,

\[A^3 + w^2 A = 0, \]

or

\[\lambda = -\frac{A^3}{w^2}, \quad w \neq 0 \] \hspace{1cm} (3-6)

From (3-5), again,

\[q_4 I_M + \lambda = M(q_4 I_M - A), \quad (3-7) \]

or, using (3-6) and (3-4), the left-hand side of (3-7) is

\[q_4 I_M + \lambda = q_4 I_M - \frac{A^3}{w^2} \]

\[= \frac{1}{v^2} \left(v^2 I_M + 2q_4 A + 2A^2 \right) (q_4 I_M - A), \quad v \neq 0 \]

Comparing the above with (3-7), it is found that \(M\) can always be defined by

\[M = \frac{1}{v^2} \left(v^2 I_M + 2q_4 A + 2A^2 \right), \quad v > 0, \] \hspace{1cm} (3-8)
although it has yet to be shown that \(M \) is necessarily orthogonal when \(|q_4 I_M - A| = 0 \).

From the characteristic equation the eigenvalues of \(A \) are found to be \(0, i \omega \), and \(-i \omega\). For the case \(|q_4 I_M - A| = 0 \), \(q_4 \) must be an eigenvalue of \(A \), but, since \(q_4 \) is real, it must be identically zero. In this case, (3-8) becomes

\[
M = I_M + \frac{2 \lambda^2}{\omega^2}, \quad \omega > 0,
\]

and, using (3-6), \(M \) can be solved for,

\[
M = \begin{cases}
I_M & \lambda = 0 \\
-I_M & \lambda^2 = -\omega^2 I_M
\end{cases}
\]

In either case, \(M^T = M^{-1} \), and \(M \) is orthogonal. This means that while (3-5) holds only for \(|q_4 I_m - A| \neq 0 \), equation (3-8) is valid for all \(\nu > 0 \).

At this point it is necessary to examine the matrix \(M \) in more detail. Since \(M \) is a rotation matrix, one of its eigenvalues (\(\lambda_1 \), for example) must be equal to unity. The corresponding eigenvector coincides with the axis of rotation, since it is not altered in the rotation.

It is also known (Hildebrand, 1965, p. 51) that
\[\lambda_1 \lambda_2 \lambda_3 = |M| \]
\[= 1, \quad (3-10) \]

and that
\[\lambda_1 + \lambda_2 + \lambda_3 = \text{trace}(M). \quad (3-11) \]

A second matrix, \(M' \), can be formed to perform the same rotation (Goldstein, 1950, p 123),

\[M' = \begin{bmatrix} \cos \psi & \sin \psi & 0 \\ -\sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix}, \]

where \(\psi \) is defined as the angle of rotation. Since only a similarity transformation is involved (Hildebrand, 1965, p 54),

\[\text{trace}(M) = \text{trace}(M') \]
\[= 1 + 2 \cos \psi \quad (3-12) \]

From (3-9), (3-10), (3-11) and (3-12),

\[2 \cos \psi = \lambda_2 + \frac{1}{\lambda_2} \]

Solving for \(\lambda_2 \) and \(\lambda_3 \), and using the results of (3-9),

\[\lambda_1 = 1, \quad \lambda_2 = e^{i\psi}, \quad \lambda_3 = e^{-i\psi}, \quad (3-13) \]
and, interestingly, it can be shown that the first eigenvector of M is simply

$$e_1 = \begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix}.$$

From (3-8),

$$M = \frac{1}{v^2} \begin{bmatrix} q_4^2 + q_1^2 - q_2^2 - q_3^2 & 2(q_1 q_2 + q_3 q_4) & 2(q_1 q_3 - q_2 q_4) \\ 2(q_1 q_2 - q_3 q_4) & q_4^2 + q_2^2 - q_1^2 - q_3^2 & 2(q_2 q_3 + q_1 q_4) \\ 2(q_1 q_3 + q_2 q_4) & 2(q_2 q_3 - q_1 q_4) & q_4^2 + q_3^2 - q_1^2 - q_2^2 \end{bmatrix},$$

so that

$$\text{trace}(M) = \frac{4q_4^2 - v^2}{v^2}.$$

Therefore, using equation (3-12),

$$\cos \psi = \frac{2q_4^2 - 1}{v^2}$$

$$\cos \frac{\psi}{2} = \pm \frac{q_4}{v}$$

$$\sin \frac{\psi}{2} = \pm (1 - q_4^2/v^2)^{1/2},$$

(3-15)

where the signs in the last two expressions depend on the quadrant, which is defined by the first equation.
The matrix M can also be expressed in terms of the Euler angles,

$$
M = \begin{bmatrix}
cos \omega \cos \Omega & cos \omega \sin \Omega & \sin \omega \sin \Omega \\
-cos I \sin \Omega \sin \omega & +cos I \cos \Omega \sin \omega & -cos I \cos \Omega \cos \omega \\
-sin \omega \cos \Omega & -sin \omega \sin \Omega & cos \omega \sin I \\
-cos I \sin \Omega \cos \omega & +cos I \cos \Omega \cos \omega & -cos I \cos \Omega \\
n \sin I \sin \Omega & -sin I \cos \Omega & cos I
\end{bmatrix}.
$$

(3-16)

A comparison of (3-16) with (3-14) yields the values for the q's in terms of the Euler angles,

$$
q_1 = v \sin(I) \cos(\frac{\Omega-\omega}{2})
$$

$$
q_2 = v \sin(I) \sin(\frac{\Omega-\omega}{2})
$$

$$
q_3 = v \cos(I) \sin(\frac{\Omega+\omega}{2})
$$

$$
q_4 = v \cos(I) \cos(\frac{\Omega+\omega}{2})
$$

(3-17)

Finally, it should be noted that the parameters ρ, σ and τ, used by Courant and Hilbert, and which will be used in section 3.3, are related to the Euler angles by

$$
\sigma = \frac{\Omega-\omega}{2} - \frac{\pi}{2}
$$

$$
\rho = \frac{\Omega+\omega}{2}
$$

$$
\tau = \frac{I}{2}
$$

(3-18)
or, alternatively,

\[\Omega = \sigma + \rho + \frac{\pi}{2} \]

\[\omega = \rho - \sigma - \frac{\pi}{2} \]

\[I = 2\tau . \]

3.2 **The Transformation in Terms of a Set of Complex Polynomials, \(s_{2n}^{m,k}(q,\nu) \)**

Two new complex variables, \(w_1 \) and \(w_2 \), are now introduced, and the coordinates \(x, y, z \) are mapped onto them by

\[w_1^2 = x + iy \]

\[w_2^2 = -x + iy \]

\[w_1 w_2 = z \quad , \quad (3-19) \]

where \(x^2 + y^2 + z^2 = 0 \) A transformation matrix, \(B \), can, in turn, be constructed to linearly transform \(w_1 \) and \(w_2 \), just as \(M \) transforms \(x, y \) and \(z \),

\[
\begin{bmatrix}
 w_1' \\
 w_2'
\end{bmatrix} = B
\begin{bmatrix}
 w_1 \\
 w_2
\end{bmatrix}
\quad (3-20)
\]

The matrix \(B \) has two special properties (Goldstein, 1950, p 110),

\[B B^T = I_M, \quad \text{and} \quad |B| = +1, \]
such that if

\[
B = \begin{bmatrix}
b_1 & b_2 \\
 b_3 & b_4
\end{bmatrix},
\]

then

\[
b_1 b_4 - b_2 b_3 = 1
\]

\[
b_1 \overline{b}_1 + b_2 \overline{b}_2 = 1
\]

\[
b_3 \overline{b}_1 + b_4 \overline{b}_2 = 0
\]

From these, and using (3-1), (3-14), (3-19) and (3-20), it can be verified that

\[
B = \frac{1}{v} \begin{bmatrix}
q_4 - i q_3 & -q_2 + i q_1 \\
q_2 + i q_1 & q_4 + i q_3
\end{bmatrix} (3-21)
\]

The new variables are also introduced into the left-hand side of equation (A-11) (through (3-19)) and expanded in a finite binomial series,

\[
(-1)^{2n} (\omega_2 + \omega_1 t)^{2n} = \sum_{\ell=0}^{2n} \frac{2n}{\ell!} \omega_2^{2n-\ell} (\omega_1 t)^{\ell}
\]

\[
= t^n \sum_{\ell=0}^{2n} \frac{2n}{\ell!} \omega_2^{2n-\ell} \omega_1^\ell t^\ell
\]

Matching the coefficients of similar powers of \(t^n\) with those in (A-11) yields
Making use of (3-20) and (3-21), an expression analogous to (3-22) can be written as

\[
(1) \ H_{n,m}(R) = \binom{2n}{n+m} w_1^{n+m} w_2^{n-m} \tag{3-22}
\]

where \(s = \frac{w_1}{w_2} \)

The next step is to introduce a new polynomial, \(S_{2n, k}(q_v) \), and a dummy variable, \(t \), through two expressions for a particular generating function, \(G_{2n}(q_v, s, t) \),

\[
G_{2n}(q_v, s, t) = \sum_{j=0}^{2n} \sum_{k=0}^{2n} (2n)^j \nu^{2n-j-n,k-n}(q_v)t^js^k
\]

\[
= [iq_3(1-st)+iq_1(s+t)+iq_2(s-t)+iq_1(1+st)]^{2n}, \tag{3-24}
\]

where, although it is not proved here (Courant and Hilbert, 1966, p 542),

\[
\frac{4}{\nu} \sum_{q_v=1}^{2n} S_{m,k}(q_v) = 0
\]

The right-hand side of (3-24) can be expanded in a binomial series, and the coefficients of powers of \(t \) equated with those on the left-hand side,
\[\sum_{k=0}^{2n} v^{2n} s_{2n}^{k} = \left[q_4 + i q_3 + s(q_2 + i q_1) \right]^{2n} \left[-q_2 + i q_1 + s(q_4 - i q_3) \right]^{2n} \]

(3-25)

Since \(s = w_1/w_2 \), and letting \(j = n+m \), the left-hand side of (3-25) is

\[\sum_{k=0}^{2n} v^{2n} s_{2n}^{k} = \sum_{k=0}^{2n} w_{1}^{k} w_{2}^{2n-k} \]

The right-hand side can be identified with part of (3-23), and, therefore, is equal to

\[(1) H_{n,m}(R) \left(w_{2}/v \right)^{-2n} \]

Hence,

\[(1) H_{n,m}(R) = \left(w_{2}/v \right)^{-2n} \sum_{k=0}^{2n} s_{n+m}^{k-n}(q) w_{1}^{k} w_{2}^{2n-k} \]

(3-26)

From (3-22),

\[w_{1}^{2n-k} = \left(1 \right) \frac{H_{n,k-n}(r)}{\left(2n \right)} \]

and inserting this into (3-26), followed by a change of summation index, gives

\[(1) H_{n,m}(R) = \sum_{k=-n}^{n} \frac{2n}{\left(n+m \right)} s_{2n}^{k-n}(q) \left(1 \right) H_{n,k}(r) \]

(3-27)

The transformation formula for the spherical harmonics themselves can be easily obtained from (3-27), using (A-12) and the fact that \(R=r \) under pure rotation. The transformation from the old harmonics to the new ones, in terms of the \(s_{2n}^{m,k} \)'s, is
\[
P^m_n(\cos \alpha)e^{i m \beta} = \sum_{k=-n}^{n} (-1)^{k-m} \frac{(n-k)!}{(n-m)!} S^m_k P^n_k(\cos \theta)e^{ik \phi}
\]

(3-28)

3.3 Evaluation of the Polynomial $S^{m,k}_{2n}$ as a Function of the Rotation Parameters

In section 3.2, the transformation of the spherical harmonics was formulated in terms of a set of polynomials, $S^{m,k}_{2n}(\theta,\phi)$'s, which have not, as yet, been evaluated. In this section, they will be determined as functions of the Euler angles associated with the rotation of coordinates.

Introduction of ρ, σ and τ, as defined by (3-18), allows the q's to be expressed as

\[
\begin{align*}
q_1 &= -v \sin \sigma \sin \tau \\
q_2 &= v \cos \sigma \sin \tau \\
q_3 &= v \sin \rho \cos \tau \\
q_4 &= v \cos \rho \cos \tau
\end{align*}
\]

The generating function $G_{2n}(q_1, q_2, q_3, q_4)$ can then be written (from the last part of (3-24)) as

\[
G_{2n}(\rho, \sigma, \tau, s, t) = v^{2n}[\cos \sigma e^{i \rho} + s \sin \tau e^{-i \sigma} \sin \tau e^{i \sigma} + s t \cos \sigma e^{-i \rho}]^{2n}
\]

This can be simplified by letting...
s* ≡ se^{-1}(p+\sigma), \quad t* ≡ te^{-1}(p-\sigma), \quad (3-29)

so that

\[G_{2n} = v^{2n} e^{12pn} [\cos (l+s*t*) + \sin \tau (s*-t*)]^{2n} \]

But, from the first part of (3-24), the same quantity can be expressed as

\[G_{2n} = \sum_{m=-n}^{n} \sum_{k=-n}^{n} (2n)_{n+m} v^{2n_{m,k}} t^{n+m+k} \]

Equating these two expressions yields

\[[(l+s*t*)\cos \tau + (s*-t*)\sin \tau]^{2n} \]

The left-hand side of (3-30) can be expanded in the familiar binomial series, and is

\[\sum_{m=-n}^{n} \sum_{k=-n}^{n} (2n)_{m+n} v^{m+n+k} t^{m+n+k} \]

The coefficients of powers of \(t^{n+m} \) in the above series and in (3-30) are equated and then multiplied by \(\cos^{n-m} \sin^{m+n} \), giving
\[
\cos^{n-m} \tau \sin^{n+m} \tau \sum_{k=-n}^{n} s^k \cos k \cdot \rho_{2n}^l (k+m) e^{l(k-m)}
\]

\[
= (\cos^2 \tau + s^* \cos \tau \sin \tau)^{n-m} (s^* \cos \tau \sin \tau - 1 + \cos^2 \tau)^{n+m}
\]

(3-31)

To further simplify equation (3-31) and what follows, let

\[a \equiv \cos^2 \tau\]

\[b \equiv \cos \tau \sin \tau\]

\[\chi \equiv s^* b\]

and apply Maclaurin's series in powers of \(\chi\) to the right-hand side of (3-31),

\[
\omega \sum_{p=0}^{\infty} \left\{ \frac{\chi^p}{p!} \frac{d^p}{d\chi^p} \left[(a+\chi)^{n-m} (a+\chi-1)^{n+m} \right] \right\}_{\chi=0}
\]

(3-32)

The evaluation of the quantity within the bracket is accomplished using a result of Hobson (Hobson, 1965, p 125),

\[
\left[\frac{\partial^k}{\partial \chi^k} \phi(a+\chi) \right]_{\chi=0} = \frac{\partial^k}{\partial a^k} \phi(a)
\]

In this case, let

\[\phi(a+\chi) \equiv (a+\chi)^{n-m} (a+\chi-1)^{n+m}\]
so that (3-32) becomes

\[
\sum_{p=0}^{2n} \frac{s^p}{p!} \cos^p \tau \sin^p \tau \frac{d^p}{d(\cos^2 \tau)^p} \left[\cos^2(n-m) \tau (\cos^2 \tau - 1)^{n+m} \right],
\]

since

\[
\frac{d}{ds} = \frac{\partial}{\partial a}
\]

Substituting the above series into the right-hand side of equation (3-31) results in a power series in \(s^*\) on both sides of the equation, so that the coefficients of \(s^{n+k}\) can be equated with this, \(s_{2n}^{m,k}\) can finally be solved for explicitly,

\[
s_{2n}^{n,k}(\rho, \sigma, \tau) = e^{-1(k+m)} \rho e^{-1(k-m)} \sigma \cos^{k+m} \tau \sin^{k-m} \tau \frac{1}{(n+k)!} \frac{d^{n+k}}{d(\cos^2 \tau)^{n+k}} \left[\cos^2(n-m) \tau (\cos^2 \tau - 1)^{n+m} \right]
\]

(3-33)

The derivatives in (3-33) can be related to the Jacobi polynomial \(J_n\), which, in turn, can be expressed as a hypergeometric series, \(\text{_2F_1}\).

In general (Courant and Hilbert, Vol 1, pp 90, 91),

\[
J_n(p,q,x) \equiv \frac{x^{1-q} (1-x)^{q-p}}{q!(q+1)!} \frac{d^n}{dx^n} [x^{q+n-1} (1-x)^{p+n-q}]
\]

\[
= \text{_2F_1}(-n,p+n,q,x) \quad q > 0, \quad |x| < 1
\]

Making the following identification of indices,

\[
n+k + n, \quad n+1-k + p+n, \quad l-m-k + q,
\]
equation (3-33) becomes, for \(m+k \leq 0 \) and \(\tau > 0 \),

\[
S_{2n}^{m,k} = (-1)^n m, n-m, e^{-i(m+k)} \rho e^{-i(k-m)} e^{\cos^{-m-k} \tau} \sin^{m-k} \tau
\]
\[
\times 2F_1(-n-k, n+1-k, l-m-k; \cos^2 \tau),
\]
\[\text{(3-34)}\]

where

\[
2F_1(a, \beta, \gamma, x) = 1 + \frac{\alpha}{1! \gamma} x + \frac{\alpha (\alpha+1)}{2! (\gamma+1)} x^2 + \ldots
\]
\[\text{(3-35)}\]

It can be shown that

\[
\bar{S}_{2n}^{m,k} = (-1)^m S_{2n}^{-m-k},
\]
\[\text{(3-36)}\]

so that for \(m+k \geq 0 \) and \(\tau > 0 \),

\[
S_{2n}^{m,k} = (-1)^n m, n-m, e^{-i(m+k)} \rho e^{-i(k-m)} e^{\cos^{m+k} \tau} \sin^{k-m} \tau
\]
\[
\times 2F_1(-n-k, n+1+k, l+m+k; \cos^2 \tau)
\]
\[\text{(3-37)}\]

In the special case when \(\tau = 0 \), \(S_{2n}^{m,k} \) can be evaluated directly from (3-31), all the polynomials are zero except for \(k = m \), where

\[
S_{2n}^{m,m}(\tau=0) = e^{-12m}\rho
\]

Using (3-18) again, the expressions for \(S_{2n}^{m,k} \) are written in terms of the Euler angles \(\Omega, I \) and \(\omega \),

40
When k assumes the value of zero, $s_{2n}^{m,k}$ is independent of Ω (and vice-versa), and $s_{2n}^{m,k}$ reduces to a function involving a Legendre function. From (3-39) for $k=0$ and $m > 0$,

$$s_{2n}^{m,0} = (-1)^{n-m} \binom{n+m}{n} e^{-\lambda m} \cot^m \frac{I}{2} {}_2F_1(-n+1, l+m, \cos^2 \frac{I}{2})$$

But in this case the hypergeometric function is of the form (Abramowitz, 1965, p 332)

$$F(-n, n+1, l-p, \frac{1-x}{2}) = \Gamma(l-p) \frac{(1-x)^p/2}{(1+x)^p/2} \frac{P^p_n(x)}{P^p_n}$$

Letting $x = -\cos I$ and $m = -p$, this becomes

$$F(-n, n+1, l+m, \cos^2 \frac{I}{2}) = m! \tan^m \frac{I}{2} P^{-m}_n(-\cos I)$$
Then, using (2-4) and (2-5), this is

$$F(-n,n+1,l+m,\cos^2 \frac{I}{2}) = (-1)^n m! \tan^m \frac{I}{2} \frac{(n-m)!}{(n+m)!} \cdot p^m_n (\cos I)$$

(3-42)

Substituting (3-42) into (3-41) yields the special result for $k = 0$, which is valid for all m,

$$s^m_{2n} = i^{-m} \frac{(n-m)!}{n!} e^{-im\omega} p^m_n (\cos I)$$

(3-43)

Due to the lack of standardization of the notation in the literature, Table 3-1 has been included to assist anyone researching the subject.
Table 3-1 Notation Used by Several Authors to Represent the Same Quantities

<table>
<thead>
<tr>
<th>Subscripts</th>
<th>Courant, Lee</th>
<th>Hilbert</th>
<th>Aardoom</th>
<th>Jeffreys</th>
<th>Goldstein</th>
</tr>
</thead>
<tbody>
<tr>
<td>order</td>
<td>(n)</td>
<td>(n)</td>
<td>(n)</td>
<td>(\ell)</td>
<td></td>
</tr>
<tr>
<td>degree</td>
<td>(l)</td>
<td>(s)</td>
<td></td>
<td>(m)</td>
<td></td>
</tr>
<tr>
<td>summation</td>
<td>(k)</td>
<td>(r)</td>
<td>(k, \ell)</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>Polynomials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>associated Legendre</td>
<td>(p_n^m)</td>
<td>((-1)^m p_n^{\ell, \ell})</td>
<td>(p_n^s)</td>
<td>((-1)^{\ell, m} p_n^{\ell})</td>
<td></td>
</tr>
<tr>
<td>transformation</td>
<td>(s_{2n}^{m,k}), (s_{2n}^{\ell,r})</td>
<td>((-1)^{s+\ell} s_{2n}^{n+s,n+\ell})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euler Angles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>longitude of ascending node</td>
<td>(\Omega)</td>
<td>(\sigma + \rho + \frac{\pi}{2})</td>
<td>(\mu + \frac{\pi}{2})</td>
<td>(\Omega, \eta + \frac{\pi}{2})</td>
<td>(\phi)</td>
</tr>
<tr>
<td>inclination</td>
<td>(I)</td>
<td>(2\tau)</td>
<td>(\theta)</td>
<td>(I)</td>
<td>(\theta)</td>
</tr>
<tr>
<td>argument of perihelion</td>
<td>(\omega)</td>
<td>(\rho - \theta - \frac{\pi}{2})</td>
<td>(\chi - \frac{\pi}{2})</td>
<td>(\omega, \chi - \frac{\pi}{2})</td>
<td>(\psi)</td>
</tr>
<tr>
<td>Old Coordinates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>colatitude</td>
<td>(\theta)</td>
<td>(\phi)</td>
<td>(\frac{\pi}{2} - \phi)</td>
<td>(\theta)</td>
<td></td>
</tr>
<tr>
<td>longitude</td>
<td>(\phi)</td>
<td>(\lambda)</td>
<td>(\lambda)</td>
<td>(\lambda)</td>
<td></td>
</tr>
<tr>
<td>radial distance</td>
<td>(r)</td>
<td>(r)</td>
<td>(r)</td>
<td>(r)</td>
<td></td>
</tr>
<tr>
<td>New Coordinates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>colatitude</td>
<td>(\alpha)</td>
<td>(\phi')</td>
<td>(\frac{\pi}{2} - \phi')</td>
<td>(\theta')</td>
<td></td>
</tr>
<tr>
<td>longitude</td>
<td>(\beta)</td>
<td>(\lambda')</td>
<td>(\lambda')</td>
<td>(\lambda')</td>
<td></td>
</tr>
<tr>
<td>radial distance</td>
<td>(r)</td>
<td>(r')</td>
<td>(r')</td>
<td>(r')</td>
<td></td>
</tr>
</tbody>
</table>

43
CHAPTER 4

TRANSFORMATION OF A SERIES EXPANSION IN SOLID SPHERICAL HARMONICS

4.1 Explanation of the Transformation Formulas

In chapters two and three, transformation formulas were developed for transforming solid spherical harmonics under changes of coordinate axes. Two classes of harmonics were treated because a general expansion of a harmonic function will involve either, or both, kinds. A function, \(V \), for example, in the old coordinate system, is of the form

\[
V(r, \theta, \phi) = \frac{GM}{a} \sum_{s=0}^{\infty} \sum_{t=-s}^{s} p^t_s(\cos \theta) \left\{ \left(\frac{a}{r} \right)^{s+1} [C_{st} \cos \theta + S_{st} \sin \theta]
+ \left(\frac{a}{r} \right)^{s} [E_{st} \cos \theta + F_{st} \sin \theta] \right\},
\]

(4-1)

where \(G \), \(M \) and \(a \) are all constants, along with the coefficients \(C_{st} \), \(S_{st} \), \(E_{st} \) and \(F_{st} \) (see table 4-1). As implied by the notation, \(V \) can represent a potential function in free space (Kellogg, 1953, p. 218). If \(V \) is a gravitational potential, \(G \) is the universal gravitational constant and \(M \) is the mass of the gravitating body. The form of the expansion in (4-1) is probably the more familiar, but a slightly different, more symmetrical form will be used here,

\[
V(r, \theta, \phi) = \frac{GM}{a} \sum_{s=0}^{\infty} \sum_{t=-s}^{s} F^t_s(\cos \theta) \left\{ \left(\frac{a}{r} \right)^{s+1} Re[(A_{st} + iB_{st})e^{-lt\phi}]
+ \left(\frac{a}{r} \right)^{s} Re[(T_{st} + iW_{st})e^{-lt\phi}] \right\},
\]

(4-2)
where Re stands for the real part of quantity enclosed by brackets

<table>
<thead>
<tr>
<th>Series</th>
<th>Old Coefficients</th>
<th>New Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\frac{a}{i} + l)</td>
<td>(\frac{R}{a} + l)</td>
</tr>
<tr>
<td></td>
<td>(\frac{r}{a})</td>
<td>(\frac{R}{a})</td>
</tr>
</tbody>
</table>

Asymmetric Form

- \(0 \leq t \leq s \)
- \(0 \leq m \leq n \)

Symmetric Form

- \(-s \leq t \leq s \)
- \(-n \leq m \leq n \)

Table 4-1 Notation Used for the Series Coefficients

Using (2-4), it can be seen from (4-2) that

\[
A_{st} + 1B_{st} = \frac{(-1)^s (s-t)}{(s+t)} (A_{st} - 1B_{st})
\]

Hence, the coefficients in the two representations are related simply by

\[
\begin{align*}
C_{st} &= 2A_{st} \\
S_{st} &= 2B_{st} \\
C_{s0} &= A_{s0} \\
S_{s0} &= B_{s0}
\end{align*}
\]

Analogous relationships hold for the other four sets of coefficients in Table 4-1
After translation and/or rotation, the new series will be, in general,

\[V(R, α, Φ) = \frac{GM}{a} \sum_{n=0}^{∞} \sum_{m=-n}^{n} P_n^m(\cos α) \left\{ \left(\frac{a}{R} \right)^{n+1} \text{Re} \left\{ (J_{nm} + iK_{nm}) e^{-lnB} \right\} \right. \]

\[+ \left(\frac{a}{R} \right)^{n} \text{Re} \left\{ \left[U_{nm} + iV_{nm} + l(V_{nm} - V_{nm}) \right] e^{-lmB} \right\} \]. \] \hspace{1cm} (4-4)

Once the coefficients are determined, they may be converted to the asymmetric series coefficients by (4-3), if so desired:

<table>
<thead>
<tr>
<th>Old Coefficients</th>
<th>C_{st}, S_{st}</th>
<th>E_{st}, F_{st}</th>
<th>A_{st}, B_{st}</th>
<th>T_{st}, W_{st}</th>
</tr>
</thead>
<tbody>
<tr>
<td>R>p</td>
<td>\rightarrow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R<p</td>
<td>\rightarrow</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New Coefficients</th>
<th>C'{nm}, S'{nm}</th>
<th>E'{nm}, F'{nm}</th>
<th>J_{nm}, K_{nm}</th>
<th>U_{nm}, V_{nm}</th>
</tr>
</thead>
<tbody>
<tr>
<td>R>p</td>
<td>\rightarrow</td>
<td>\rightarrow</td>
<td>\rightarrow</td>
<td>\rightarrow</td>
</tr>
<tr>
<td>R<p</td>
<td>\rightarrow</td>
<td>\rightarrow</td>
<td>\rightarrow</td>
<td>\rightarrow</td>
</tr>
</tbody>
</table>

Table 4-2 Conversion of Series Coefficients Under Translation

Nothing has been said, thus far, regarding the convergence of the various series expansions. The original series, whether it is in powers of \(r^n \) or \(r^{-n-1} \), or both, is assumed to converge. For special cases, the constant "a" can be associated with a characteristic length of the gravitating body, and convergence of the series linked to the ratio of \(r/a \).

The primary concern here is the convergence of the resultant series. In the case of a straight rotation of axes, as was seen in 3 2, there is no problem, as the \(A_{st}, B_{st} \)'s transform into the \(J_{nm}, K_{nm} \)'s and the \(T_{st}, W_{st} \)'s into the \(U_{nm}, V_{nm} \)'s. With a translation, however, the \(T_{st}, W_{st} \)'s transform into the \(U_{nm}, V_{nm} \)'s, while the \(A_{st}, B_{st} \)'s...
transform into \hat{u}_{nm}'s if $R<p$, or \hat{J}_{nm}'s if $R>p$ (See figure 4-1 and table 4-2)

In other words, the exact form of the series in the latter two cases depends on the ratio of the lengths of both the field and translation vectors. The critical sphere separating the two regions of convergence is of radius ρ, centered on the new origin, and passes through the old origin.

Field points, P_e', exterior to sphere dictate a new series in powers of R^{n-1}.

Field points, P_1', on interior of sphere dictate a new series in powers of R^n.

Figure 4-1 Critical Sphere for a Transformation Due to Translation of a Series Involving Powers of r^{s-1}

The various cases are treated separately in the following four sections of this chapter.
4.2 Translation Transformation of a Series Involving Powers of \(r^s \),

To One with Powers of \(R^n \)

In this section it is assumed that a function, \(V(r,\theta,\phi) \), has been expressed in terms of convergent series of solid spherical harmonics of the following form

\[
V = \frac{GM}{a} \sum_{s=0}^{\infty} \sum_{t=-s}^{s} \left(\frac{r}{a} \right)^s P^t_s(\cos \theta) \text{Re}[(T_{st} + iW_{st})e^{-lt\phi}], \tag{4-5}
\]

where the \(T_{st}'s \) and \(W_{st}'s \) are known. With a pure translation of the origin the same function is expressed in a new series in the new coordinate system,

\[
V(R,\alpha,\beta) = \frac{GM}{a} \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \left(\frac{R}{a} \right)^n P^n_m(\cos \alpha) \text{Re}[(U_{nm} + iV_{nm})e^{-1m\beta}], \tag{4-6}
\]

where the \(U_{nm}'s \) and \(V_{nm}'s \) need to be evaluated.

Equation (4-5) can be written as

\[
V = \text{Re} \left\{ \frac{GM}{a} \sum_{s=0}^{\infty} \sum_{t=-s}^{s} \left(\frac{r}{a} \right)^s P^t_s(\cos \theta) \text{Re}[(T_{st} + iW_{st})e^{-lt\phi}] \right\}
\]

Using (2-16) and (2-17), which transform the harmonics to the new coordinate system, this becomes

\[
V = \text{Re} \left\{ \frac{GM}{a} \sum_{s=0}^{\infty} \sum_{t=-s}^{s} (T_{st} + iW_{st})a^{-s} \sum_{k=0}^{\infty} \sum_{l=-L}^{L} (-1)^{k+s+t} \right. \left. \left[\frac{k}{s+t} \right] P^t_s(\cos \theta) \left. \right] e^{-l\phi} \right\}
\]

Switching the inner two summations to the outside, and changing notation, (4-7) can be written as
\[V = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \sum_{s=n}^{s-n+m} \sum_{t=n+m-s}^{s+n} \left(\frac{s+t}{n+m} \right)^{s-n} s_{n} \frac{s_{n+m}}{R^n} \]

\[\times P_{n}^{m}(\cos \alpha) P_{s-n}^{t-m}(\cos \lambda) \Re \left[(T_{ST} + iW_{ST}) e^{-1(t-m)\gamma} e^{-im\beta} \right] \]

(4-8)

The real part of the bracketed portion of (4-8) is

\[\cos m\beta [T_{ST} \cos (t-m)\gamma + W_{ST} \sin (t-m)\gamma] \]

\[+ \sin m\beta [-T_{ST} \sin (t-m)\gamma + W_{ST} \cos (t-m)\gamma] \]

(4-9)

Inspection of equation (4-6), the other expression for the potential, shows that the harmonics of degree \(n \), order \(m \), in the same variables, must match those in (4-8). The coefficients are then equated, where the real portion of the brackets in (4-6) is

\[U_{nm} \cos m\beta + V_{nm} \sin m\beta \]

Thus, (4-8) is

\[\begin{bmatrix} U_{nm} \\ V_{nm} \end{bmatrix} = \sum_{s=n}^{s-n+m} \sum_{t=n+m-s}^{s+n} \left(\frac{s+t}{n+m} \right)^{s-n} \frac{s_{n+m}}{R^n} \]

\[\times \begin{bmatrix} T_{ST} \cos (t-m)\gamma + W_{ST} \sin (t-m)\gamma \\ -T_{ST} \sin (t-m)\gamma + W_{ST} \cos (t-m)\gamma \end{bmatrix} \]

or using (2-4) and regrouping the quantities within the brackets,
\[
U_{nm} \text{ } V_{nm} = \sum_{s=n}^{\infty} \frac{s-n+m}{(m-n+s-t)'} \sum_{t=n+m-s}^{\infty} \frac{(-1)^{m-t}(s+t)'}{(m-n+s-t)'} \frac{D_{m-t}}{s-n} \times P_{s-n}^m (\cos \lambda) e^l(m-t)Y_{s+t}^{(m+t)} (4-10)
\]

4.3 Translation Transformation of a Series Involving Powers of \(r^{-s-l} \) to One with Powers of \(R^n, R<p \)

In this case, the coefficients \(A_{st} \) and \(B_{st} \) are assumed to be known in the expansion

\[
V(r, \theta, \phi) = \frac{GM}{a} \sum_{s=0}^{\infty} \sum_{t=-s}^{s} a_s^l R_p^t (\cos \theta) Re \{ (A_{st} + iB_{st}) e^{-ltd} \}
\]

(4-11)

The translation of the origin transforms the series into the form of (4-6), with the \(\bar{U}_{nm} \)'s and \(\bar{V}_{nm} \)'s unknown.

The method of solving for the coefficients is analogous to that of section 4.2, using equations (2-22) and (2-23) to substitute for the "old" solid harmonics in (4-11). The result is

\[
\bar{U}_{nm} \text{ } \bar{V}_{nm} = \sum_{s=0}^{\infty} \sum_{t=-s}^{s} \frac{(-1)^{n+m+t}(n+s-m+t)'}{(s-t)'} (n+m)'
\times \frac{D_{n-t}}{s-n} \frac{s+n+1}{p} P_{n+s}^m (\cos \lambda) e^l(m-t)Y_{s+t}^{(m+t)} (4-12)
\]

4.4 Translation Transformation of a Series Involving Powers of \(r^{-s-l} \) to One with Power of \(R^{-n-1}, R>p \)

Here the coefficients in the old series (4-11) are known, but the \(J_{nm} \)'s and \(K_{nm} \)'s are to be determined for the new series.
\[V(R, \alpha, \beta) = \frac{GM}{a} \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \left(\frac{a}{R} \right)^{n+1} P_n^{m}(\cos \alpha) \text{Re} \left((J_{nm} + iK_{nm}) e^{-im\beta} \right) \]

(4-13)

Again, the procedure is the same used in 4.2 and 4.3, equations (3-22) and (2-23) provide the transformation formulas for the solid harmonics. The result is

\[J_{nm+1}^{m+1} = \sum_{s=0}^{n} \sum_{t=L}^{s} \frac{(-1)^{n-s}(n-m)!}{(s-t)(n+m-s-t)!} \]

\[\times (\frac{a}{R})^{n-s} P_{m-t}^{s}(\cos \lambda) e^{i(m-t)\gamma} (A_{st} + iB_{st}) \]

(4-14)

4.5 Rotation

A slightly different approach is taken in the case of a rotation, since the new harmonics have been determined in terms of the old ones (3-28), instead of vice-versa, as for the translation. The two approaches are equally correct, the appropriate choice depends entirely on the direction in which the harmonics are transformed.

Because the magnitude of \(r \) remains unchanged under rotation, there is only one form for the transformation, as opposed to the three for the translation. Series involving \(A_{st}', B_{st}' \) and \(T_{st}', W_{st}' \) are, therefore, transformed by the same formula. The first case is worked out here.

The \(A_{st}' \) and \(B_{st}' \) are assumed to be known in the expansion

\[V(x, \theta, \phi) = \frac{GM}{a} \sum_{s=0}^{\infty} \sum_{t=-s}^{s} \left(\frac{a}{R} \right)^{s-1} P_s^{t}(\cos \theta) \text{Re} \left((A_{st} + iB_{st}) e^{-it\phi} \right) \]

(4-15)

But, as pointed out in 4.1, \(V \) can be considered as a potential function. Hence, it can be represented by an integral over the body generating the potential,
\[V(r, \theta, \phi) = G \int \frac{dm'}{M |r-r'|}, \]

where the primes indicate variables of integration, \(dm' \) being an element of mass, in the case of a gravitational potential

![Diagram](image)

Figure 4-2 Definition of the Variables of Integration, \(r', \theta', \phi', \psi' \), for an Element of Mass at \(Q \) and a Field Point at \(P \)

Using the law of cosines in terms of the angle \(\psi' \) between the field vector and the integration vector,

\[|r-r'| = (r^2+r'^2-2rr'\cos \psi')^{1/2} \]

Then, applying the generating function for Legendre polynomials (2-9), followed by the addition theorem (2-10), and using (2-4), the potential is
\[V(r, \theta, \phi) = \frac{G}{\lambda} \int \frac{d^3r}{\lambda} \sum_{n=0}^{\infty} \sum_{k=-n}^{n} \frac{(n-k)!}{(n+k)!} p^k_n(\cos \theta) \times p^k_n(\cos \theta') \text{Re}[e^{-ik(\phi-\phi')}], \]

where

\[r_n^* \equiv \begin{cases} \frac{r_i}{r} & \frac{r}{r} < 1 \\ \frac{r^*}{r^{n+1}} & \frac{r}{r} > 1 \end{cases} \]

Equating the coefficients of each harmonic \(p^n_s(\cos \theta) \) in (4-15) and (4-16) yields

\[\frac{a}{M} \int \frac{d^3r'}{\lambda} r^* p^n_s(\cos \theta') e^{i(s+t')} = \frac{(s+t)}{(s-t)} (A_{s+t} + B_{s-t}) \]

After the rotation, the "new" potential, \(V(R, \alpha, \beta) \), is of the form of (4-13). But it, too, can be written in terms of a volume integral in exactly the same way as \(V(r, \theta, \phi) \). Thus,

\[V(R, \alpha, \beta) = \int \frac{d^3r'}{\lambda} \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \frac{(n-m)!}{(n+m)!} p^n_m(\cos \alpha') \times p^n_m(\cos \alpha) \text{Re}[e^{-im(\beta-\beta')}], \]

or, equating the coefficients of the harmonics, \(p^n_m(\cos \alpha) \),

\[J_{nm}^{+1, K_{nm}} = \frac{a}{M} \frac{(n-m)!}{(n+m)!} \int \frac{d^3r'}{\lambda} r^* p^n_m(\cos \alpha') e^{i\beta'}. \]

54
Substituting for $P_n^m(\cos \alpha) e^{i m \phi}$ from (3-28), this becomes

\[
J_{nm+1K} = \sum_{k=-n}^{n} (-1)^{k-m} \frac{(n-k)'}{(n+m)'} \int e^{i m \phi} \frac{s^{m,k}}{2n} \int \frac{r^n}{2} P_n^k(\cos \theta') e^{i k \phi'}
\]

(4-19)

But, since $R=r$ and $R'=r'$, the integral (4-18) can be substituted for the integral in (4-19), resulting in

\[
J_{nm+1K} = \sum_{k=-n}^{n} (-1)^{k-m} \frac{(n+k)'}{(n+m)'} \frac{s^{m,k}}{2n} (A_{nk} + B_{nk})
\]

(4-20)

As pointed out earlier, the relationship between the U_{nm}, V_{nm}'s and the T_{st}, W_{st}'s is the same,

\[
U_{nm+1V} = \sum_{k=-n}^{n} (-1)^{k-m} \frac{(n+k)'}{(n+m)'} \frac{s^{m,k}}{2n} (T_{nk} + W_{nk})
\]

(4-21)

and note that only coefficients of the same degree (n) are used to determine the new ones

Finally, as a matter of completeness, it is possible to indirectly solve for the old spherical harmonics in terms of the new ones (under rotation) using (4-20) and (3-28). In chapter three the harmonics were transformed in the opposite order - the new ones in terms of the old

With the method developed in 4 2, it can be easily verified that

\[
P_s^t(\cos \theta) e^{i t \phi} = \sum_{m=-s}^{s} (-1)^{t-m} \frac{(s+t)'}{(s+m)'} \frac{s^{m,t}}{2s} \frac{P_s^m(\cos \alpha) e^{i m \phi}}{2s}
\]

(4-22)

Comparison of this with (3-28) reveals their similarity, except that in this case the complex conjugate of S_s^m is involved, and it is summed over the first superscript as opposed to the second in (3-28)
CHAPTER 5

THE FORCE BETWEEN TWO HOMOGENEOUS HEMISPHERES

5.1 Potential Due to a Hemisphere

One of the primary objectives of this thesis is to demonstrate the applicability of the transformations developed in chapters 2-4 to problems involving volume integrals of bodies possessing rotational symmetry. As an example, the force between two bodies A and B can be calculated from

$$ F = \rho_d \int_{\text{volume of } B} V d\tau, $$

where ρ_d is the mass density of A, and V is the gravitational potential of A. If B is homogeneous this can be expressed, using the gradient theorem, as a surface integral involving V,

$$ F = \rho_d \int_{\text{surface of } B} V \hat{n} dS, \quad (5-1) $$

where \hat{n} is the outward normal to the surface.

In the evaluation of the integral in (5-1) it is desirable to make the integrand as simple as possible. This is accomplished by selecting the appropriate type of coordinates - in this case spherical - and orienting the coordinate system to take full advantage of the symmetry of body B. But V also has to be determined in the coordinate system best suited for body A. Hence, once V has been calculated, the coordinates are translated and rotated for the evaluation of the integral in (5-1). As shown in chapter 4, the potential V is expressed in
the new system with a set of transformed coefficients.

This method is ideally suited for two homogeneous hemispheres, due to their simple shapes. The potential of a hemisphere along its axis of rotation can be found from (see Figure 5-1),

\[
V = \rho d G \int_{\phi=0}^{2\pi} \int_{\theta=\pi/2}^{\pi} \int_{r=0}^{a} \frac{d\tau}{s^2} \tag{5-2}
\]

\[V(z) = \frac{2}{3} \pi \rho G \frac{a^3}{z} \left\{ 1 + \frac{3}{2} \left(\frac{z}{a} \right) + \left(\frac{z}{a} \right)^3 - \left[1 + \left(\frac{z}{a} \right)^2 \right]^{3/2} \right\} \tag{5-3}
\]
The off-axis potential is determined by expanding (5-3) in powers of
\((z/a)^n\) or \((z/a)^{-n-1}\) and substituting \((r/a)^n P_n(\cos \theta)\) or \((r/a)^{-n-1}P_n(\cos \theta)\), respectively (MacMillan, 1958, pp 360-362). This gives

\[
V(r, \cos \theta) = \frac{2}{3} \pi \rho d \frac{a^2}{a^2} \left\{ \left\{ \frac{3}{2} \frac{3}{a} P_1(\cos \theta) + \left(\frac{\xi}{a} \right)^2 P_2(\cos \theta) \right\} \right. \\
- \frac{3}{8} \left(\frac{\xi}{a} \right)^3 P_3(\cos \theta) + 3 \sum_{n=2}^{\infty} \frac{(-1)^n(2n-3)}{2^{2n-1}(n+1)'(n-2)'} \left. \left\{ \frac{\xi}{a}^{2n+1} P_{2n+1}(\cos \theta) \right\} \right. \\
0 \leq r \leq a \\
(5-4)
\]

or

\[
V(r, \cos \theta) = \frac{2}{3} \pi \rho d \frac{a^2}{a^2} \left\{ \left\{ \frac{a}{r} - \frac{3}{8} \frac{\xi}{r} \right\}^2 P_1(\cos \theta) \\
+ \frac{1}{16} \frac{\xi}{r}^4 P_3(\cos \theta) - 3 \sum_{n=2}^{\infty} \frac{(-1)^n(2n-1)'}{2^{2n+1}(n+2)'(n-1)'} \left\{ \frac{\xi}{r}^{2n+2} P_{2n+1}(\cos \theta) \right\} \right. \\
\left. \right. \\
r \geq a \\
(5-5)
\]

5.2 Force Between Two Hemispheres

The force exerted by a hemisphere on a second identical one is calculated using (5-1), (5-4) and (5-5). The center of the face of the second is located by the vector \(p\) relative to the first (Figure 5-2(a)).

The force vector \(F\) is determined relative to the new coordinate system \(\xi, \eta, \zeta\), or \(R, a, \beta\). In this system \(n\) dS is
\[n \, ds = \begin{cases}
\begin{bmatrix}
0 \\
0 \\
-1
\end{bmatrix} R \sin \alpha \, dR \, d\beta & \text{flat surface} \\
\begin{bmatrix}
\sin \alpha \cos \beta \\
\sin \alpha \sin \beta \\
\cos \alpha
\end{bmatrix} R^2 \sin \alpha \, d\alpha \, d\beta & \text{spherical surface (} R=a \text{),}
\end{cases} \]

so that (5-1) is comprised of two integrals

\[F = F_r + F_s \]

\[= \rho_d \int_{\text{flat surface}} V(\alpha=\pi/2) \begin{bmatrix} 0 \\
0 \\
-1 \end{bmatrix} 0 \, dR \, d\beta \]

\[+ \rho_d a^2 \int_{\text{spherical surface}} V(R=a) \begin{bmatrix} \sin^2 \alpha \cos \beta \\
\sin^2 \alpha \sin \beta \\
\sin \alpha \cos \alpha \end{bmatrix} d\alpha \, d\beta \quad (5-6) \]

From (4-4) the potential of hemisphere A in the two cases, after coordinate transformations, is

\[V(\alpha=\pi/2) = \frac{GM}{a} \int_0^{\infty} \sum_{n=0}^\infty \sum_{m=-n}^n \left\{ \left(\frac{R}{a} \right)^{n+1} \left[J_{nm} \cos m\beta + K_{nm} \sin m\beta \right] \\
+ \left(\frac{R}{a} \right)^n \left[U_{nm}^* \cos m\beta + V_{nm}^* \sin m\beta \right] \right\}, \quad (5-7) \]
\[V(R=a) = \frac{GM}{a} \sum_{n=0}^{\infty} \sum_{m=-n}^{n} P_n^m(\cos \alpha) \left[(U_{nm} + V_{nm} + W_{nm}) \cos m\beta \right. \]
\[+ (K_{nm} + V_{nm} + W_{nm}) \sin m\beta \] (5-8)

Although the extreme limits of the integration variables in (5-6) are specified,

\[0 \leq R \leq a \]
\[0 \leq \alpha \leq \pi/2 \]
\[0 \leq \beta \leq 2\pi, \]

the particular limits corresponding to the region of convergence for determination of the coefficients in (5-7) and (5-8) is somewhat complicated, depending on the relative positions of the two bodies.

In general there are five distinct cases for evaluating (5-6)

The first is the case when the two hemispheres are face-to-face with no separation, i.e., \(\rho = 0 \). Since all surface points relative to the old origin, \(r_s \), are equal to the radius, and since all \(R_s \) are greater than \(\rho \), the integration of (5-6) involves only the coefficients of the \(U_{nm}, V_{nm}'s \) or the \(J_{nm}, K_{nm}'s \), but not both.

The second case is distinct because for every surface point, either \(r_s < a \) or \(r_s > \rho \). The integral, therefore, involves only \(U_{nm}, V_{nm}'s \) and \(J_{nm}, K_{nm}'s \). This includes all \(\rho \) up to \(\rho_1 \), where \(\rho_1 \) is the radius of the sphere centered at the new origin, passing through the old origin, and reaching out to the first intersection of the surface of hemisphere.
In general, Hemisphere B is rotated through Euler angles Ω, I, ω.

Figure 5-2 Geometry for Two Hemispheres
Case	Criteria	Valid for These ρ	Either Flat or Spherical Surface Integrals, or Both, Involve These Coefficients
I | $r_s = a$ and $R_s > \rho$ | $\rho = 0$ | $U_{nm}, V_{nm}'s$ or $J_{nm}, K_{nm}'s$
II | $r_s < a$ or $R_s > \rho$ | $0 < \rho < \rho_1$ | $U_{nm}, V_{nm}'s$ and $J_{nm}, K_{nm}'s$
III | general case | $\rho_1 < \rho < \rho_2$ | $U_{nm}, V_{nm}'s$ and $J_{nm}, K_{nm}'s$ and $\hat{U}_{nm}, \hat{V}_{nm}'s$
IV | $r_s < a$ or $R_s < \rho$ | $\rho_2 < \rho < \rho_3$ | $U_{nm}, V_{nm}'s$ and $\hat{U}_{nm}, \hat{V}_{nm}'s$
V | all | $\rho_3 < \rho$ | $\hat{U}_{nm}, \hat{V}_{nm}'s$

Critical ρ's:

- $a/2 \leq \rho_1 \leq a/\sqrt{2}$
- $a \leq \rho_2 \leq 2a$
- $a \leq \rho_3 \leq 2a$

Table 5-1 Summary of the Five Cases Involved in Evaluation of the Force Integrals
B with the sphere of radius a centered at the old origin (Figure 5-2(b)). Examination of the geometry shows that $0 < \rho < \rho_1$ and $a/2 < \rho_1 < a/\sqrt{2}$.

The third case will be discussed after cases four and five. The fourth case is special because it includes integrals of only the $\hat{u}_{nm}, \hat{v}_{nm}$'s. From Figure 5-2(c) it can be seen that hemisphere B must lie within the sphere of radius a centered at the old origin, or within the sphere of radius ρ centered at the new origin. In this case either $r_s < a$ or $R_s < \rho$. From Figure 5-4, $\rho_2 < \rho < \rho_3$, where

$$a < \rho_2 < 2a \quad \text{and} \quad a < \rho_3 < 2a$$

Due to the overlapping of the possible limits of integration, this case may not always be applicable.

The fifth case applies when all $R_s < \rho$. The integral, therefore, involves only the coefficients $\hat{u}_{nm}, \hat{v}_{nm}$'s, and $\rho_3 < \rho$.

Case three is the general case and includes everything not covered in cases 1, 2, 4 and 5. In order to evaluate integrals over both the flat and the spherical surfaces, all the coefficients are used.

5.3 Evaluation of the Force when the Limits of Integration Have No Azimuthal Dependence

For a particular orientation of the hemispheres the force can be calculated after determining the appropriate limits of integration from the geometry. In this section it is assumed that there is no dependence on β, the azimuthal angle. This includes two cases which will be worked out in detail—separation of the hemispheres along the z axis, without
rotation, and a case involving rotation when \(p > 2a \hat{z} \), where \(\hat{z} \) represents a unit vector in the positive z direction. In this case, \(\beta \) can be integrated from 0 to \(2\pi \), and (5-6) becomes

\[
F_f = -\rho \int_0^{2\pi} R a \int_0^\infty \frac{GM}{r} \sum_{n=0}^{\infty} \sum_{m=-n}^{n} P_n^m(0) \left\{ \left(\frac{R}{a} \right)^n (\frac{R}{a})^m \right\} \left[J_{nm} \cos m\beta + K_{nm} \sin m\beta \right] + \left(\frac{R}{a} \right)^n \left((U_{nm} + \hat{U}_{nm}) \cos m\beta + (V_{nm} + \hat{V}_{nm}) \sin m\beta \right) \right\} \frac{1}{\zeta} \, d\beta \, dR.
\]

All of the terms involving \(m\beta \) integrate to zero, except for \(m=0 \), leaving

\[
F_f = -2\pi \rho \int_0^\infty \frac{GM}{r} \sum_{n=0}^{\infty} P_n(0) \int_{R=R_{\text{min}}}^{R_{\text{max}}} \left[\left(\frac{R}{a} \right)^n J_{nm} + \left(\frac{R}{a} \right)^{n+1} (U_{nm} + \hat{U}_{nm}) \right] dR.
\]

The polynomials \(P_n(0) \) are obtained by Robin (1957, p. 75),

\[
P_{2n}(0) = \begin{cases}
1, & n=0 \\
\frac{(-1)^n (2n-1)!}{2^{2n-1} n! (n-1)!}, & n=1, 2, 3
\end{cases}
\]

where the polynomials of odd degree are all zero. Those of even degree can be evaluated from

\[
P_{2n}(0) = -\frac{(2n-1)!}{2^n} P_{2n-2}(0), \quad n \geq 2
\]

With this, equation (5-9) becomes
\[
P_r = -2\pi \rho \frac{GM}{\Sigma_c^2} \left\{ R_{00} + \frac{R^2}{2a} (U_{00} + U_{00}^*) \right\}
\]
\[
+ \sum_{n=1}^{\infty} P_{2n}(0) \begin{bmatrix}
\frac{2n-1}{n-2} J_{2n0} \left(\frac{R}{a} \right) + \frac{2(n+1)}{2(n+1)} (U_{2n0} + U_{2n0}^*) \\
\end{bmatrix}
\]
\[
\text{max} \quad \text{max}
\]
\[
\text{min} \quad \text{min}
\]

Over the spherical surface (5-6) is

\[
P_s = a^2 \rho \int \int \frac{GM}{a} \sum_{n=0}^{\infty} \sum_{m=-n}^{n} P_n^m(\cos \alpha) [J_{nm} + U_{nm} + U_{nm}^*] \cos \beta \sin \beta \]
\[
+ \left[\sin^2 \alpha \cos \beta \sin^2 \alpha \sin \beta \right] \sin \alpha \cos \alpha \sin \alpha \cos \alpha \sin \alpha \cos \alpha \]

This time all of the terms with \(|m| > 1\) drop out when \(\beta\) is integrated from 0 to \(2\pi\). Consequently,

\[
P_s = 2\pi \rho GM a \sum_{n=0}^{\infty} \int_0^{\pi} d\alpha \frac{P_n(\cos \alpha) \sin^2 \alpha (J_{nl} + U_{nl} + U_{nl}^*)}{P_n(\cos \alpha) \sin^2 \alpha (K_{nl} + V_{nl} + V_{nl}^*)}
\]

When the hemispheres are separated along the \(z\) axis, or for rotations when \(\beta > 2\pi\), equation (5-12) is integrated from \(0 < \alpha < \pi/2\). This involves two separate integrals of the form.
\[
\int_{0}^{\pi/2} p_n^1(\cos \alpha) \sin^2 \alpha \, d\alpha \quad (5-13)
\]

and
\[
\int_{0}^{\pi/2} p_n(\cos \alpha) \sin \alpha \cos \alpha \, d\alpha \quad (5-14)
\]

The integral in (5-14) is evaluated by Robin (1957, p 26). If \(C_n \) is defined as the integral (5-14), then

\[
C_{2n} = \begin{cases}
1/2 & 2n = 0 \\
1/3 & 2n = 1 \\
1/8 & 2n = 2 \\
\frac{(-1)^n(2n-3)}{2^{2n-1}(n+1)(n-2)} & n = 2, 3,
\end{cases} \quad (5-15)
\]

or recursively,

\[
C_{2n} = \frac{3-2n}{2(n+1)} C_{2n-2}, \quad n \geq 3
\]

The integral in (5-13) can be expressed as
\[
\int_{0}^{1} (1-v^2)^{1/2} p_n^1(v) \, dv, \quad (5-16)
\]

but from (2-3) it can be seen that
\[p_n^1(v) = -\frac{1}{2}\left(1-v^2\right)\frac{d}{dv} p_n(v), \]

so that (5-16) is

\[-\int_0^1 \frac{d}{dv} p_n(v) dv + \int_0^1 v^2 \frac{d}{dv} p_n(v) dv \]

Evaluation of the integral above yields

\[\int_0^1 (1-v^2)^{1/2} p_{2n}(v) dv = p_{2n}(0) - 2C_{2n} \]

The force due to the integration over the spherical surface (5-12) can now be evaluated, and is equal to

\[F_s = 2\pi \rho_0 GMa \left\{ \begin{array}{c}
-\frac{2}{3}(J_{11} + U_{11} + \dot{U}_{11}) \\
-\frac{2}{3}(K_{11} + V_{11} + \dot{V}_{11}) \\
\frac{J_{00}}{2} + \frac{U_{00}}{2} + \frac{\dot{U}_{00}}{2} + \frac{1}{3}(J_{10} + U_{10} + \dot{U}_{10}) \\
+ \sum_{n=1}^{\infty} \left\{ (p_{2n}(0) - 2C_{2n}) (J_{2n1} + U_{2n1} + \dot{U}_{2n1}) \right\} \left\{ (p_{2n}(0) - 2C_{2n}) (K_{2n1} + V_{2n1} + \dot{V}_{2n1}) \right\} \\
C_{2n} (J_{2n0} + U_{2n0} + \dot{U}_{2n0}) \end{array} \right\} \]

5.4 Calculation of the Force for Two Special Cases

The results of 5.3 are applied to two cases - when the hemispheres are separated along the polar axis, and when a rotation of hemisphere
B is performed in the Y-Z plane through an inclination I (Figure 5-2)

For these positions case 4 (from Table 5-1) does not apply, and the first case is a derivative of the second, so that only one of cases two, three and five needs to be evaluated, depending on the value of \(\rho \). Because the rotation will be carried out for \(\rho = 2a \), only case three is involved. The equations developed in 5.3 are therefore applicable, as the integration over \(\alpha \) and \(\beta \) are independent of the translation and rotation.

\[F = (F_{s2} + F_{s3} + F_{r2} + F_{r3} + F_{r5}) \hat{r}_z + P_{s5} \]

The geometry dictates that the critical values of \(\rho \) are \(\rho_1 = a/\sqrt{2} \) and \(\rho_2 = a \), and the limits of integration for the various cases are

Figure 5-3 Positions of the Hemispheres for the Two Special Cases

Except in the case of the rotation, the force will have only a \(\zeta \) component, hence the total force may be broken down as
Thus, from equation (5-17) and Table (5-1),

\[
F = \pi \frac{M_{pd} a}{(a^2 - \rho^2)^{1/2}} \left[J_{00} + \frac{2}{3} J_{10} + 2 \sum_{n=1}^{\infty} C_{2n} J_{2n0} \right],
\]

and

\[
F = \pi \frac{GM_{pd} a}{(a^2 - \rho^2)^{1/2}} \left[\begin{array}{c}
- \frac{4}{3} \frac{a}{R} \nabla_{11} \\
- \frac{4}{3} \frac{a}{R} \nabla_{11} \\
\hat{U}_{00} + \frac{2}{3} \hat{U}_{10} + 2 \sum_{n=1}^{\infty} C_{2n} \hat{U}_{2n0}
\end{array} \right].
\]

Similarly, the forces evaluated over the flat surface are, from (5-11) and letting \(R_1 = (a^2 - \rho^2)^{1/2} \),

\[
F = -\pi \frac{GM_{pd} a}{(a^2 - \rho^2)^{1/2}} \left\{ J_{00} \left(1 - \frac{2R_1}{a} \right) \left. + \frac{R_1}{a} \right) \frac{2}{3} J_{10} - \frac{2}{3} \sum_{n=1}^{\infty} J_{2n0} \left(C_{2n} + \frac{P_{2n}(0)}{2n-1} \left(1 - \frac{a}{R_1} \right)^{2n} - 2 \right) \right\},
\]

and

\[
F = -\pi \frac{GM_{pd} a}{(a^2 - \rho^2)^{1/2}} \left\{ \frac{2}{3} J_{10} + \frac{2}{3} \frac{P_{2n}(0)}{2n-1} \left(1 - \frac{a}{R_1} \right)^{2n} - 2 \right\} U_{00}
\]

\[+ \left(\frac{R_1^2}{a^2} + \frac{R_1}{a^2} \right) \frac{2}{3} \sum_{n=1}^{\infty} \frac{2n+2}{2n+2} J_{2n0} - \frac{2n+2}{2n+2} J_{2n0} \left(\frac{R_1}{a} \right)^{2n+2} U_{2n0}
\]

and

\[
F = -2 \pi \frac{GM_{pd} a}{(a^2 - \rho^2)^{1/2}} \left\{ \frac{2}{3} \hat{U}_{10} + \frac{2}{3} \sum_{n=1}^{\infty} \hat{U}_{2n0} \left(\frac{P_{2n}(0)}{2n+2} - C_{2n} \right) \right\}.
\]

70
The preceding equations were programmed for a digital computer and evaluated for various ratios of \(\rho/a \). The results are tabulated in Appendix B and agree very well with the results of an approximation scheme previously developed by the author (Lee, 1970). The first non-dimensionalization of the force is included because it follows directly from the equations. The second is independent of the size of the masses V in this instance denotes the volume of one hemisphere.

For the case of the rotation (\(\rho=2a \)), the components of force were evaluated and then transformed back to the \(x,y,z \) coordinate system by the matrix multiplication

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & \cos I & -\sin I \\
0 & \sin I & \cos I
\end{pmatrix} \begin{pmatrix}
F(x, y, z)
\end{pmatrix} = \begin{pmatrix}
F(\xi, \eta, \zeta)
\end{pmatrix}
\]

The results are plotted in Figure 5-7 and tabulated in Appendix B.

Note that due to symmetry the \(x \) component is always zero and

\[
F_y(-I) = -F_y(I), \quad F_z(-I) = F_z(I), \quad \text{and}
\]

\[
F_y\left(\frac{\pi}{2} + I\right) = F_y\left(\frac{\pi}{2} - I\right)
\]
Figure 5-4 Normalized Components of Force as a Function of Angle of Rotation when $\mu = 2a_{yz}^2$
CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

As is demonstrated in chapter 5 with the example of two hemispheres, the force between two bodies can be efficiently and accurately calculated after performing the necessary integrations analytically. Except for relatively simple cases, however, the integrations still involve a considerable amount of work. The method of this thesis therefore appears to be best suited for a particular problem, where a high degree of accuracy is required, as opposed to applying it to situations with widely varying geometrical parameters.

It should be noted that only potential functions expressed in spherical harmonics have been considered here, but analogous procedures may be applicable to functions expressed in spheroidal or ellipsoidal harmonics. This is a question for further investigation.
APPENDIX A

GENERATION OF THE SOLID SPHERICAL HARMONICS \(n(r, \cos \theta, \phi) \) AND \(m(r, \cos \theta, \phi) \)

Because all solid spherical harmonics satisfy Laplace's equation

\[\nabla^2 \psi = 0 \]

it is useful to examine expressions which satisfy equation (A-1) in order to generate a particular set of solid spherical harmonics. In this case, solutions of the form

\[\psi_{\lambda} = (ax + by + cz)^{\lambda} \quad \lambda = 0, 1, 2, \]

are examined.

Applying (A-1), it is apparent that \(\psi_{\lambda} \) is a solution whenever the constants \(a, b, c \) satisfy

\[a^2 + b^2 + c^2 = 0 \]

By substitution into (A-2), it can be easily verified that the following choice of \(a, b, c \) satisfies (A-2)

\[a = 1 - t^2 \]

\[b = -1(1+t^2) \]

\[c = -2t \]
where t is a free parameter. Hence,

$$\psi_L = [(x-iy)-(x+iy)t^2-2zt]^L \tag{A-3}$$

Consistent with Figure (2-2), x, y, z are related to r, θ, ϕ by

$$x = r \sin \theta \cos \phi$$
$$y = r \sin \theta \sin \phi$$
$$z = r \cos \theta$$

With these substitutions, equation (A-2) becomes

$$\psi_L = [r \sin \theta e^{-i\phi}-r \sin \theta e^{i\phi} t^2-2rt \cos \theta]^L \tag{A-4}$$

With the definition of three new variables s, ω, μ (Courant, Hilbert, 1966, Appendix to Ch 7)

$$s = t e^{i\phi}$$
$$s = e^{i(\omega/2)}$$
$$t = e^{i(\omega/2-\phi)}$$
$$\mu = \cos \theta$$

equation (A-4) is

$$\psi_L = \left(\frac{rt}{s}\right)^L [1(\mu^2-1)^{1/2}(1+e^{2i\omega})-2\mu e^{i\omega}]^L,$$

or

$$\psi_L = (-2rt)^L \chi_L(\omega), \tag{A-6}$$
where

\[f_k(\omega) \equiv [\mu - \cos \omega (\mu^2 - 1)^{1/2}]^k. \] \hspace{1cm} (A-7)

Since \(f_k(\omega) \) is an even function of \(\omega \), and for \(k \) integer, (A-7) can be expanded in the following Fourier series

\[f_k(\omega) = \frac{a_0}{2} + \sum_{m=1}^{\infty} a_m \cos mw, \]

where

\[a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f_k(\omega) d\omega \]

\[a_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f_k(\omega) \cos mw d\omega \quad m = 1, 2, 3, \ldots \]

By Laplace's first and second integrals for \(\mu > 0, n = 0, 1, 2 \), (MacRobert, 1947, pp. 125-129),

\[\int_0^\pi [\mu - (\mu^2 - 1)^{1/2} \cos \omega]^n \cos mw d\omega = \frac{(\mu^{1-n} \Gamma_{1-n} \Gamma_n(\mu))}{(n+m)^r}, \] \hspace{1cm} (A-8)

and

\[\int_0^\pi [\mu - (\mu^2 - 1)^{1/2} \cos \omega]^{-n-1} \cos mw d\omega = \frac{\Gamma_n(\mu) \Gamma_{n-m} \Gamma_{n-1}}{n^r}, \] \hspace{1cm} (A-9)

These are the two integral equations which are necessary for the Fourier expansion of \(f_k(\omega) \) when \(k = n \) in the first case, and \(k = -n-1 \) in the second case.

The result of applying equation (A-8) to (A-7) \((k = n)\) is

\[(1) f_n(\omega) = P_n(\mu) + 2 \sum_{m=1}^{\infty} \frac{\Gamma_n(\mu) \Gamma_{n-m} \Gamma_{n-1}}{(n+m)^r} P_m(\mu) \cos mw \] \hspace{1cm} (A-10)
The range of subscripts can be extended to include negative values
\((-n \leq m \leq n)\), noting that (Jackson, 1962, p 65)

\[
p_n^m (\mu) = (-1)^m \frac{(n-m)!}{(n+m)!} p_n^{m}(\mu),
\]

and thus \(\psi_n^m(\omega)\) is an even function with respect to \(m\). Further, since

\[
\sin m\omega = -\sin (-m\omega),
\]

and

\[
p_0^0 (\mu) = p_n (\mu),
\]

equation (A-6) can be written as

\[
\psi_n = (-2\pi \tau)_n \sum_{m=-n}^{n} \frac{(-1)^m}{(n+m)!} p_n^{m}(\cos \theta) e^{i m \omega}
\]

But

\[
t e^{-\phi} = e^{i \omega \tau / 2},
\]

or

\[
e^{i n \omega} = t^n e^{i n \phi} e^{-m}
\]

So, finally,

\[
[(x-i y) - (x+i y) t^n t^2 - 2z \tau]^n
\]

\[= t^n \sum_{m=-n}^{n} \frac{(-1)^m}{(n+m)!} p_n^{m}(x, \cos \theta, \phi) t^m, \quad (A-11)\]
For the set of solid spherical harmonics involving powers of r^{-n-1},

\[\lambda = -n-1, \]

and equation (A-9) yields the coefficients in the Fourier expansions, such that

\[\langle (x^2-y^2)^{1/2}\cos \omega \rangle^{-n-1} \]

\[= \sum_{m=-n}^{n} \frac{(2)^{m(n-m)}}{\sin n} \sum_{m=-n}^{n} (2)_m \cos \omega \]

With treatment analogous to that for the first case, it is found that

\[[(x-ly)-(x+ly)t^2-2zt)^{-n-1} \]

\[= t^{-n-1} \sum_{m=-n}^{n} (2)_{H_{n,m}(r,\cos \theta,\phi)t^m}, \quad \text{(A-13)} \]

where

\[(2)_{H_{n,m}(r,\cos \theta,\phi)} \equiv \frac{(n-m)^{m}}{(-2)^{n+1} n} r^{-n-1} F_{n}^{m}(\cos \theta)e^{im\phi} \quad \text{(A-14)} \]
APPENDIX B

NUMERICAL RESULTS OF THE CALCULATION
OF THE FORCE BETWEEN TWO HEMISPHERES

B 1 Separation Along the Polar Axis

<table>
<thead>
<tr>
<th>ρ/a</th>
<th>$F_z/GM\rho_d^3$</th>
<th>$F_z/C\rho_d^2V^{4/3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 007937</td>
<td>-1 554</td>
<td>-1 214</td>
</tr>
<tr>
<td>0 01</td>
<td>-1 549</td>
<td>-1.211</td>
</tr>
<tr>
<td>0 01587</td>
<td>-1 537</td>
<td>-1 201</td>
</tr>
<tr>
<td>0 02381</td>
<td>-1 521</td>
<td>-1 189</td>
</tr>
<tr>
<td>0 05002</td>
<td>-1 468</td>
<td>-1 148</td>
</tr>
<tr>
<td>0 1000</td>
<td>-1 376</td>
<td>-1 075</td>
</tr>
<tr>
<td>0 2</td>
<td>-1 214</td>
<td>-0 9485</td>
</tr>
<tr>
<td>0 3996</td>
<td>-0 963</td>
<td>-0 753</td>
</tr>
<tr>
<td>0 5</td>
<td>-0 87</td>
<td>-0 68</td>
</tr>
<tr>
<td>1 998</td>
<td>-0 2473</td>
<td>-0 1933</td>
</tr>
<tr>
<td>10 0</td>
<td>-0 01799</td>
<td>-0 01406</td>
</tr>
</tbody>
</table>
Separation Along the Polar Axis and Rotation of One of the Hemispheres about the Center of its Base, in the Y-Z Plane

Angle of Rotation

<table>
<thead>
<tr>
<th>I (in deg)</th>
<th>(\frac{F_y}{GMP_{da}})</th>
<th>(\frac{F_z}{GMP_{da}})</th>
<th>(\frac{F_y}{G_p 2V^{4/3}})</th>
<th>(\frac{F_z}{G_p 2V^{4/3}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>0 0</td>
<td>-0 2470</td>
<td>0 0</td>
<td>-0 1930</td>
</tr>
<tr>
<td>22.5</td>
<td>0 01698</td>
<td>-0 2529</td>
<td>0.01327</td>
<td>-0 1977</td>
</tr>
<tr>
<td>45 0</td>
<td>0 03314</td>
<td>-0 2711</td>
<td>0 02590</td>
<td>-0 2119</td>
</tr>
<tr>
<td>67.5</td>
<td>0 04597</td>
<td>-0 3019</td>
<td>0.03593</td>
<td>-0 2359</td>
</tr>
<tr>
<td>90 0</td>
<td>0 05110</td>
<td>-0 3416</td>
<td>0 03994</td>
<td>-0.2670</td>
</tr>
<tr>
<td>112.5</td>
<td>0 04597</td>
<td>-0 3814</td>
<td>0 03593</td>
<td>-0.2981</td>
</tr>
<tr>
<td>135 0</td>
<td>0 03314</td>
<td>-0 4121</td>
<td>0 02590</td>
<td>-0 3221</td>
</tr>
<tr>
<td>157.5</td>
<td>0.01698</td>
<td>-0 4304</td>
<td>0 01327</td>
<td>-0 3364</td>
</tr>
<tr>
<td>180 0</td>
<td>0 0</td>
<td>-0 4363</td>
<td>0 0</td>
<td>-0 3410</td>
</tr>
</tbody>
</table>
BIBLIOGRAPHY

83

This report is published in the belief that it constitutes an improvement in the state of the art. In particular, pages 9 through 82 are referenced.