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THE TRANSFORMATION OF A SERIES EXPANSION
IN SQLID SPHERICAL HARMONICS UNDER TRANSLATION
AND ROTATION OF COORDINATES

by
William Nelson Lee
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May 14, 1971, i1n partial fulfillment of the requirements for the degree

of Master of Science
- ABSTRACT

A formula for itransformation of solid spherical harmonics under
coordinate changes makes 1t possible to convert potential functions,
expressed in a series of these harmonics, to representations wvalid
in different coordinate systems

Such a formnla has several geophysical applications when the po-
tential of a celestial body has been determined relative to one parti-
cular set of coordinates A coordinate change may i1mprove the con-
vergence of the series in a given region, or such a change may be con-
venient for other reasons

There are also applicaticns to micro-gravitational interactions
among non-spherical, but rotationally symmetric bodies, allowing the
analvtic calculation of guantities which depend on potential functions,
such as gravitational forces and torgues

In this work the necessary transformation formulas are developed
and applied to the task of analytically calculating the force between
two homogeneous hemispheres Two special cases are worked out in de~
tail as examples where the coordinate changes involve both translation
and rotation

Thesis Superviscr. Stephen J Madden, Jr
Trtle Lecturer
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CHAPTER 1

INTRODUCTION

1 1 Motivation

The motivation for this research was the need for a satisfactozry
method of calculating forces and torgues cansed by gravitational at-
traction among bodies on the laboratory scale

Historically, the calculation of gravitational forces has been
limited to relatively large forces - those involving celestial bodies,
where all, or all but one of the masses, can effectively be treated
as a point mass Under these conditions, the calculations reduce to
a simple gradient operation on the scalar potential.

Laboratory experiments which measure the magnitude of gravitational
forces and torques using test masses, such as the Cavendish experiment,
have 1n the past involved at least one spherical test body of uniform
density The problem again reduces to one of determining the potential
and 1ts gradient

Currently, however, attempts are being made to greatly improve
the accuracy of the Cavendish measurement in order to make a rela-
tivistic check of the dependence of the gravitational constant on the
potential The use of non-spherical test masses appears to be one
way 1in which the semsitivity can be improved (Lee, 1970) Calculating
the forces and torques in this case rnvolves a triple aintegral, or the
case of homogenous mass, a double integral over the volume or surface,

respectively, of the passive mass,



= pd _/. v VvV dr

volume

[

[l

pd f v n das, (l—l)

surface

where is the mass density, n 1s the outward normal to the surface,

Pa
and V 1s the potential due to the gravitating mass (es) In general
this calculation i1s formidable - dirffaicult to carry out analytigally,
and computer approximation schemes do not efficiently yield the

accuracy required for a relativistic measurement.

1l 2 Objectives

The purpose of this investigation 1s to develop an analytical
method for calculating the gravitational interactions among rotationally
symmetric bodies of uniform density, permitting the evaluation of the
forces to the desired accuracy Other guantities which depend on the
potential, such as torgues and partial derivatives thereof, can be

treated in the same manner

1 3 Method

To faeilitate the evaluation of the surface integral in equation
{1-1), the coordinate system 1is oriented to take full advantage of the
symmetry of the passive body The c¢oordinates and coordinate system
originally selected are best suited for expression of the potential
function of the gravitating mass(es). Once the potential has been

determined, the reference frame will, in general, have to be changed

10



before permitting the integrations. Although the scalar potential re-
marns unchanged under such a transformation, individual terms in a
series expansion of the potential will change with the coordinate trans-
formation

In this thesis a potential expansion in solid spherical harmonics
1s transformed under translation and rotation of coordinates, permititing
the relatively easy evaluation of the surface integrals The trans-—
formation will involve one translation and one rotation, unless the
translation 1s limited to the direction of the axis of symmetry
of the gravitating mass, in which case two rotations are reguired in
addition to the special translation.

The transformation of the expansion reguires the transformation
of the coefficients in the series, whaich i1n turn necessitates the
transformation of the solid spherical harmonics under the coordinate

change

1 4 Other Applications

The transformation of a series expansion 1in solid spherical har-
monics appears to have several applaications other than the one des-—
cribed in 1.1 The potent:ials of the earth and moon, for example,
which are originally determined in terms of a particular coordinate
system, can then be written 1n any other coordinate system desired
This may facilitate its evaluation in some regions, either because
the convergence 15 not satisfactory, or to capitalize on a particular

geometrical configuration

11
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CHAPTER 2

TRANSFORMATION OF SOLID SPHERICAL

HARMONICS DUE TO TRANSLATION OF AXES

2 1 Coordinate Systems

A pure translation of the origin of the %, y, z coordinate
system (Figure 2-1} to a new system (£,n,Z)} 1s represented by a trans-
lation vector p A field point P 1is located by the position vector

r in the old system and a vector R in the new system

New System

Y
0ld System

Figure 2-1 Relationship Between 0ld and New Coordinate Systems

In spheriecal coordinates, the angles 8, A and ¢ are the co-
latitudes, ¢, vy and B the longitudes, and r, p and R the magnitudes
of the three vectors r, p and R, respectively The coordinates of

r are indicated in Figure 2-2 as an example

13
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T r(r,8,¢9)
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|

Figure 2-2 Definition of Spherical Coordinates

Thus,
r=R+p ,
where
X r sin 9 cos ¢
r = Yy = ¥ sin O sin &
z r cos O
[ £ R sin ¢ cos B
R=| nj=| Rsin a sin B
[ R cos o
[
p Sin A cos ¥
p = P Sin A sin Y
P Cos A
by *

14
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and

2.2 8Solid Spherical Harnmonics

A solxzd spherical harmonic 1s defined as any homogenecus func-

tion £(x,v,z) of degree n which also satisfies Laplace's equation,
V°f = 0 (2-2)

If harmonics of the form

erﬂ(cos B)elm¢

n=0,1,2,
m=-n,-n+l, (n-1,n
are considered, then p must assume one of two values,

Fa

D = n,~n-1,

since P (cos 0)e™™®  satisfies equation (2-2) (MacRobert, 1947, p 150)

The Pﬂ's are known as assoclrated Legendre polynom:ials, defined by

m _ p_qamg. 2 m/2 dm _
PI(V) = (-1)7(1-v) M—mPn(v), (2-3)

15



where the Pn's are the familiar Legendre polynomials They can be

determined from Rodrigues' formula

n
1 4 (v2~1)n.
2nn' dvn

Pn(v) =

Several important relationships among the Pﬂ's are noted here for
later use The first relates a polynomial of negative order to the

corresponding polynomial of positive order (Jackson, 1966},

m H
M) = (Rl loom’ iy, m> 0 (2-4)

pO(v) = 2_(v)

Other useful expressions are (Abramowitz, 1965)

m — f_qyntmom., -
PR(V) = (-1} (-v) (2-5)
m L]

PMv) = (1) (2m) ! (l_\)Z)m/Z

m P

PR (V) = (2mel)v BR(v) (2-6)
and the recursive relations

(n-m) PR (v}~ (20-1) v B} () +(n4m-1) BT (v) = 0 (2-7)

~1/2 m+l
Pn

(n-m) (n+m+1) BT () 2 (m+l) v (1-v2) (v)+p§+2(u) =0

(2-8)

16



Several Pn(v)'s and Pg(V)'s are evaluated for later reference,

PO(\)) = 3 Pi{\)) = —(l—V2)1/2
Pl(\)) = v P;’(\)) = _3(1_.\,2}1/2\’
2 _ 2
Pylv) = %(3v2-1) P5(v) = 3(1-v%}
1 _ _ 3 2,1/2 2
Py(v) = %(5v3~3v) P30V} = - 5(1-v) /2 (5v2 1)
1 4 2 Pz(v) = 15(l—v2)v
P4(v) = 3(35v ~30v°+3}) 3
3 - 2,3/2
Pg(v) = %(63v5—70v3+15v) P3(v) = -15(1-v%) 3/

A well known and useful generating function for harmonics involving

the P 's (Erdélyi, Vol 1, 1953, o 154) is

? thn(v) |[h| < smaller of
1 _ = fo+ (v2-1)1/2]
(1+h2-2vn) /2 .
) h—n_an(v) |h] > largexr of
=t lvs (v2-1) /2
(2-9)

1%



and finally, the addition thecrem of spherical harmonics, involving

the angle § between two vectors r and r' (Jackson, 1966, p.67): 1S

Pn(cos Py = Pn(cose)Pn(cos ")

n T
+2 m__f_l 'Eg:_;‘;..n‘%“r Pr::(cos G)P;a(cos 8'}Ycos m(d=0') ,

(2-10)

where

cos P = cos B cos B' + sin B sin 6' cos {($-4')

2 3 Transformation of Harmonics Involving Powers of 2

In order to transform the coefficients in solid spherical harmonic
expansions with powers of r* and r © ©, the spherical harmonies them-
selves must be transformed in the opposite sense for each case That
1s, the old harmonics must be found in terms of the new ones

If the method developed by Aardoom (Aardoom, 1969) i1s adopted, use 1s
made of the finite binomial expansion

— p— n — p—y —
@™ = [WRate)” = Zo(ﬁ) @'r)" kaToyk, (2-11)
k=

where

~~
o=
1
q
T
i~

18



and (Q?g) 18 the Hermitian scalar product of a special dummy complex
vecter u, and r. The bar over u indicates i1ts complex conjugate and
the superscript T stands for 1ts transpose

The vector u 18 defined in terxms of a free parameter t,
- 2
E__: 1(1‘}'1:) t#or

and the Hermitian scalar products can be adentified with the generating
function in eguation {A-1l1l) of Appendix A Thus,
-7 .n n % (1)
(@ =t ] (x,cos 0,0)t" , (2-12)
- = & n m
n=-1
where

_ (=)™ (-2)"n"

(l)H {r,cos 6,¢) = i

n.m imé -
n,m r'P (cos 8)e™ 7. (2-13)

Using eguation (2-12) in three places in (2-11), and daviding by

n n n-k

m=--11 ' k=0 h=-n+k j—~k
(2-14)
With a redefinition of indices, (2-14) can be written as
{k
n —k+n+p
] Wa e § 273 @y I Wy @y g (o),
m=-n n,m - p=-n k=0 2 — n—k,p-!& —_
= L{k+p -n
(2-15)

19



where

are taken as the smaller and the larger, respectively, of the two

quantrties (a,b) beside the bracket. i
Since t 15 a free parameter, the coefficients of £® in equation

(2=15) can be eguated In spherical coordinates, making use of aqua-

tion (2-13}, the result is

k
n ;-—k+n+m
rnPg(cos B)elm¢ = 7 ‘ 1 k g(p cos A,Y)R P (cos u)elzB ’
=0 -k
where
’ = L -2
(1} ffm (preos A, y) = (7)o" kp PP (cos ayet (m-2ly (2-17)

Note that Kg i 1s a function only of the transformation variables 0, A

and ¥

2 4 Transformation of Harmonics Involving Powers of r 1 =

The transformation of the harmonies invelving inverse powers of
r 1s treated in a manner analogous to that used ain section (2 3),

beginning this time with an infinite binomial expansion,

L}

(E?E)—n-l - (E?B+§Tg)—n-l
z L * O @R TR T K 5% < |5%R|
kz R N G e N T 12%p] > |37R|
(2-18)

20



Thus, the series takes cne of two different forms, whichever will con~
verge. The convergence criteria themselves are dxfficult to evaluate
due to the involvement of the dummy vector u In the speclal case of
a translation along the 2z axis (A=0}, 1t can be shown that the cri-
teria reduce to the question of % being less than or greater than one.
This has not been directly shown to be true in general, except that

an independent derivation by Madden (Madden, 1971) of the transforma-
tion of the harmonics vields the same results as will be obtained

hera, with the criteria

holding in general Hence, these convergence criteria are adopted

The left-hand side of (2-18) can be i1dentified with (A-13), so

that
—_—— —— I
@t =" Y mHn m (ErCOS 8,0t (2-19)
m=-I '
where
-— t —
(ZJHnIm(r,cos 8,9) = “—(—(Izl)glln- r B lPl::(cos 9)e™  (2-20

Making use of (2-12) and (2-19) and multiplying by tn+l, equation

{2-18) can be expressed as

n w n+k R k p
(2) m _ k ,ntk (2) =|.h (1) 3
H ()t = - H t H t

mE—n n,m = kEO n h=-§—k n+k,h P jz-k k.3 R
(2-21)

21



where

a a p <R

b b p > R

Changing indices and equating coefficients of t™ on each side of (2-21)

gives
«© k R p
(2) k o+k, M55 (2) Rim 23
H (x) = § (-1 ] H H
n,m-"= K=o n gk ntk, % o k,m-2 R

Introducing spherical coordinates and expressions of the form of (2-13)

and (2-20) yields

« mtk
r ? lPﬂ(cos B)elm¢ = 7 (2)K§’i(p,cos 2,
k=0 L=n-k !
-n-~k-1 A L
® K P[m_z](cos c:t)el[m_’L]B
Rk k+n !
k
(2-22}
where
ok -2 1[ -21
(2) K, % - , ., k+m+2 kin-2 3 %
Kovm & 1) — k-1 (7 k (cos A)e * (2-23)
k+n
and
a a p < R
b b o >R

In the special case when the translation 1s in the positive z

direction {X=0), eguations (2-16) and (2-22) reduce to :

-

22



nPﬁ{cos e)elm¢ { (n+m n-k k m(cos u)elmﬁ' (2-24)

and

k k+n Iy, k n-k-l m 11

(cos a)e

I(l)
p <R (2~25)

o -lpm amd _

(cos Ble

k+m kin,  -n-k-1 k imB

ZO(-I) (k+m)p P (cos d)e

p >R {2-26)

23
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CHAPTER 3

TRANSFORMATION OF SPHERICAL
HARMONICS DUE TO ROTATION OF

THE COORDINATE AXES

3 1 The Rotation Matrix

To effect a transformation of coefficients due to a rotation of
coordinate axes (Chapter 4), the new harmonics are first deter-

mined in terms of the old ones A particular rotation of axes defines

a transformation matrix, M, such that
B(R;U,B) =M £(rter¢) ) {(3-1)
where M 1s formed by successive rotations through three Euler

angles 1) @ about the 2z axis, 2) I about the newer x axis, and

3) w about the new z axas, all in a right-handed sense (Fiqure 3-1)

o
| A
o)
| A
=]

m/2

n

[=J =
{A
=l
| A

| A
=4
A

27

Figure 3-1 Euler Angles Associated with a Rotation of Coordinate Axes

25



Adopting the method of Courant and Hilbert (Courant and Hilbert,
Vol 1, pp 535-545), a skew symmetric matrix, A, 18 constructed in

terms of three parameters, dyr 95 and 3

o 93 9
A= —q3 0 ql (3-2)
. 92 S o .

Three additional parameters, Gy ¥ and v, are introduced by

W= (qi + qg + qg)l/2 (3-3}
v=ta+ad+alrddt’?, (3-4)

where Qyr 9y 93 and q, are all real. The immediate objective 1s to
show that the orthogonal matrix M can be expressed as

M= (q,T, + B (gI, - A", (3-5)

the exponent of minus one indicating the inverse of the matrix, and Iy
representing the identity matraix

Note that (q4IMfA) and (q4IM—A) commute Hence, (q4IM+A) and
(q4IM~A)“1 commute, Since, 1n general, pleo = CD_l, 1f CD = DC

It follows that

u' = (q,T, - A5 T(a,1, + AT
= (q,I, - B)(q,I, +2a)~L
gty 4 M
= M_l'

26



1f A 1s skew symmetric (which has been assumed), and 1f the determinant
of (q4IM—A) 1s different from gero, 1 e ., |q4IM~Al # 0
From (3-2)}, the characteristic equation of A can be determined,

13 + wzk =0

Because a matrix satisfies 1ts own characteristic equation,

1
+
S
b
]

‘O

oxr

23
A= -3y, w# 0 (3-6)
W

From (3-5}, again,

q4IM + A M(q4IM - A}, (3-7)

or, using (3-6) and (3~4), the left-hand side of (3-7) is

A3
q4IM+A=q4IM“W“‘2'
1 2 2
=v—2(VIM+2q4A+2A)(q4IM_A)' v#D0

Comparing the above with (3-7), it i1s found that M can always be

defined by

2 2
M= =5 (v Iy + 2q4A + 2a%), v > 0, {3-8)

27



although 1t has yet to be shown that M 1s necessarily orthogonal when
]q4IM—Af = 0.

From the characteristic eguation the eigenvalnes of A are found
to be 0, 1w, and -iw For the case fq4IM—A| =0, qy must be an eligen-—
value of A, but, since Gy 1S real, 1t must be 1dentically zerc In

this case, (3-8) becomes

M=1I, + =, w > 0,

M= (3-9)

In erther case, M = ML, and M 1s orthogonal  This means that while

{(3-5) holds only for |q4Im - a| # 0, eguation (3-8) 1s valid for all

v >0

At this point 2t 18 necessary to examine the matrix M in more
detaill Since M 1s a rotation matrix, one of 1ts eigenvalues (ll, for
example) must be equal to unity The ceorresponding eirgenvector coincides
with the axis of rotation, since it 1s not altered in the rotation

It 15 also known (Hildebrand, 1965, p 51) that

28



Arorg = M}
=1, (3-10)
and that
Al + Az + A3 = trace (M). (3-11)

A second matrix, M', can be formed to perform the same rotation

(Goldstein, 1950, p 123),

cos ¥ sin Y 0
M = -s1n cos ¢ 0 '
0 0 1

where P 1s defined as the angle of rotation Since only a similarity

transformation 1s involved (Hildebrand, 1965, p 54),

(il

trace (M) trace (M')

1L+ 2 cos (3-12)

From {3-9), (3-10}, (3-11) and (3-12),
2 o8 Y9 = A, +
Solving for hz and 13, and using the results of (3-9},

Ay =1, A, = e, A, = e Y, (3-13)

29



and, interestingly, 1t can be shown that the first exrgenvector of M is

simply
93
_ 1
& T w9 .
93
From (3-8),
2,2 2 2
q4+ql'q2_q3
M=1 2 (g 9,~a,9,)
v2 192 =374
L?(q1q3+q2q4)
so that
4qi - 2
trace (M) = 5
v

Therefore, using eguation (3-12),

cos ¥

cOs

X

sS1n

VRS

where the signs

2q3 -1
=—--2-_
v
d
-V
- (L - qi/vz 1/2

r

2(qy9,+949,)
2

2 2 2
q4+q2_ql-q3

2{q,q93+9,9,)

2,2 2 2
q4+q3—ql_q2

(3-14)

(3-15)

in the last two expressions depend on the quadrant,

which 15 defined by the first equation.

30



The matrix M can alsc be expressed in terms of the Euler angles,

cos o cos R cos w sin Q sin w sin I
-cos I Sin £ sin w +cos I cos € sin o
M= -sin o cos Q@ ~sin W sin §} cosS w sin I
-co05 I san 0 cos w +cos I cos O cos w
sin I san & -sin I cos cos I
(3-16)

A comparison of (3-16) with (3-14) yields the wvalues for the ¢g's in
terms of the Euler angles,
Q-

v 51n(%) cos (—5—

q;

v 51n(%) sin (E%E

W
X
It

44 =V cos(%) sin (E%E

Qg =V cos(%) cos (9%9) (3-17)

Finally, it should be noted that the parameters ¢, ¢ and T, used
by Courant and Hilbert, and which will be used in section 3 3, are

related to the Euler angles by

_ -0 _ o7
CT T T3
i+
=5
T=3% (3-18)
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or, alternatively,

Sz=<:1f-1-p+-"21
m=p-c—-127—
I= 2t .

3 2 The Transformation in Terms of a Set of Complex Polynomials,

m,k
Szn (qv)

Two new complex wvariables, w, and Wy, are now introduced, and the

1
coordinates X,¥Y,2z are mapped onto them by

2 _
Wy = X + 1y
2—-—
W, = —xtly
WW, =2 o (3-19)

2

where x2+y +z2 0 A transformation matrix, B, c¢an, ain turn, be con-

structed to linearly transform wq and W, Just as M transforms x, ¥

and z,

o

£
=
F

(3-20)
The matrix B has two special properties (Goldstein, 1950, p 110},

B BT = I, and IB| = +1,
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such that 1f

then

From these, and using {(3-1), (3~14), (3-19) and (3-20}, 1t can be

verified that

Q4“lq3 "q2+lq1
-1
B3

q2+lql q,+1dy {3-21)

The new variables are also introduced into the left-hand side of

equation {A-11) ({through (3-19)) and expanded 1n a finite binomial

series,

2n
_14, 20 2n _ 2n, 2n-% 3
S %n (2n)w2n—2w2t2-n
2 2 1

2=0

Matching the coefficients of similar powers of t? with those 1in

(a-11) yields
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2n ) ntm o n-m (3-22)

Making use of (3-20) and (3-21), an expression analogous to (3-22) can

be written as

(1} _ 4,2n 'n+m _'n-m
Hn,m(B) . (n+m)wl Y2

2n

n+m
n+m }s]

w2 2n
= )(F‘) [-gp+rqy+(a -2d,

x g +iqq+(qy+agy)s1™ (3-23)

where s = wl/w2
The next step 1s to introduce a new polynomial, S%ék(qv),

and a dummy variable, t, through two expressions for a particular

generating function, Gzn(qv,s,t),

2n 2n
_ 2n, _2n_3-n,k-n 1.k
Gy (2, S,t) = Jzo kzo (CHvs) Hr g tds

= [1q3(l—st)+1q1(s+t)+q2(S—t)+ql(1+st}]2n:
(3-24)

where, although 1t 1s not proved here {Courant and Hilbert, 1966, p 542),

4 2
3 m,k
7 8. g3 =0
v=1 Bquz 2n v

The right-hand side of (3-24) can be expanded in a binomial series, and

the coefficients of powers of £3 equated with those on the left-hand

side,
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Z v2n33 nkTn \,)sk = {q4+1q3+5(q2+lql)12n_3 [~a,t1q,+s (qd-1q3)33

(3-25)

Since s = Wl/W2, and letting j = n+m, the left-hand side of (3-25) is

2n
2 k -
Z vehg m n(qv)wngk

The right-hand side can be identified wath part of (3-23), and,

therefore, as equal to

-2n
(1) - R (WZ/V)
n,m — 2n )
nim
Hence,
(1)H (R) = (2n ) %n Sm,k—n( )wszn k (3-26)
n,m =" ‘ntm 20 2n 172
From (3-22),
(1)
k 2n-k Hn,k-n(E)
hER = 2n '
(k )

and inserting this into (3~26), followed by a change of summation

index, gives

1)y a (ﬁim) m,k (1)
B o = Z IRy Son (4y) Hy x(x) (3-27)
-n k%n !

The transformation formula for the spherical harmonies themselves
can be easily cobtained from (3-27), using (A-12) and the fact that R=r
under pure rotation The transformation from the old harmoniecs to the

bl k‘s

new ones, in terms of the s , 18
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n '
e B Tl N I

m
Pn(cos tle
=1

{3-28)

k

3 3 Evalunation of the Polynomial Sgﬁ as a Function of the

Rotation Parameters

In section 3.2, the transformation of the spherical harmonics was
formulated an terms of a set of polynomials, Sgﬁk(qv)'s' which have
not, as yet, been evaluated In this section, they will be determined
as functions of the Euler angles associated with the rotation of

cooxrdinates

Introduction of p, 0 and t, as defined by (3-18), allows the q's

to be expressed as
g; ==V $in 0 sin T
4, = V cos 0 sin T
d3 = V S1n p cos T

9y = V ©os p cos T

The generating function GZn(qv;s,t) can then be written (from the

last part of (3-24}) as

Gzn(p,U,T,S,t) = vzn[cosr elP+s sint e~ 7

2n

g —
-t sint e C+st cosT e lp]

This can be simplified by letting
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-1 (p—~C} (3-29)

- e-l(p+0} , % = te ,

s% = g

so that

c - v2ne12pn

2n [cost {l+s*t*)+sintT (s*—t*)]2n

But, from the first part of (3-24), the same quantity can be expressed

as

n n

2n 2n.m,k, n+m_k+n
G, = ) ¥ (EN yveleneftet g
2n Zh ke-n RTW 2n
n n
= 3 y (20 )VZnel(k+m)pe1(knm)Gt*n+ms*n+k3210nsm,k
me-n k=-p BN 2n

Equating these two expressions yields

[(1+s*t*)cos T + (s*—t*)sin 1] "

n n
2 k k+ k-m)o + +k
- Z Z (mﬁn) Sgﬁ el( m)pel( m) Lalitm_,n . (3-30)

m=-n k=-n

The lefit-hand side of (3-~30) can be expanded in the familiar

binomial series, and ais

n
Z t*1:;—1-1*1(21‘1

+ —
p+n){s* COS T-sSin T)p n(cos T+s* sin T)n P

p=-n

t*n+m

The coefficients of powers of in the above series and in (3-30)

- +
an M-Il

are equated and then multiplied by cos sin T , giving
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n
+m ) s*n+ksg£ke1(k+m)pe1(k-m)u

k=-n

- n
CDSn mT s1in

2 n- *
=(cos"T + s*cos T sin T) m(s*cos T sinT -1 + coszr)n m

(3-31)

To further simplify equation (3-31) and what follows, let

a z cos'T

o
]

S COS T S1n T
X:S*b,

and apply Maclaurin's series in powers of ¥ to the right-hand side
of (3-31),
oy P P -
I {5 S5 a0 Manen ™ (3-32)
p=0 ax ¥=0
The evaluation of the guantity within the bracket i1s accomplished

using a result of Hobson {(Hobson, 1965, p 125),

ok gk

$ (a+y) = —— ¢(a)
] k Bak
X x=0

In this case, let

olaty) = (ary) P M(atx-1)0
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so that (3-32) becomes

an _.p P -
} £ cosPt sinPe g [eos? (MM (oog2r-1)0*M
p=0 P a(cos“1)¥
since
4 .3
da ea

Substituting the above series into the right-hand side of eguation

(3-31) results in a power series in s* on both sides of the equation,

m,k

go that the coefficients of s*n+k can be eguated With this, §,°

can finally be solved for explicitly,

dn+k

d(coszT)

—1(k+m)pe—:.(k—m)cco k+m

m,k - k-m_ 1
52n {p,o,T) = & s T Sin THFR)

n+k
-}
[c:osz(n M (coszT—l)n+m]
{3-33)
The derivatives in (3-33) can be related to the Jacoba polynomial
Jn' which, in turn, can be expressed as a hypergeometric serlies, 2Fl

In general (Courant and Halbert, Vol 1, pp 90,91),

J_(p,a,x) = ¥ 3a-n P & el g g
gqi{g+l) . (g+n-1) ax
2Fl(—n,p+n,q,x) g > 0, jx] <1

Making the follow:ing ldentafication of aindices,

n+k + n, n+l-k -+ pin, 1-v-k + q,
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equation (3-33) becomes, for mtk < 0 and 1 > 0,

m,k _ n+m n-m, -I(m+k)p_ -1{k-mlo -~T-k m-k
SZI;. = (-1) (Tl+k)e e cos T Sin T

% 2Fl(—n—k,n+1—k,1—m—k;cos2—r), (3«34)
where

a B, o {o+l) 8 (B+1) <24

2F (%, 8,y,x) =1 + Iy ¥ STy (y+1) . -
(3-35)
It can be shown that
s m,k _,_, mtk,~m-k _
San =(-1) Son p {3-36)
so that for mtk > 0 and 1 > 0O,
Sm,k - (“1)n+k(n+m)e-1(m+k)pe—l(k—m)ucosm+kT Slnk—mT
2n n-k
b 2F1(—n+]g,n+l+k,l+m+k,cosz'r) (3-37)

m,k

opn Can be evaluated directly

In the special case when v = 0, S

from (3-31), all the polynomials are zero except for k = m, where

MM, __=12mp
S2n (t=0) = e

m,k

Using (3-18) again, the expressions for 525 are written in

terms of the Euler angles £, I and w,
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(_1)n+m(§;§)e—l(m—k)w/ze-l(mm+kn)cos-m-k % SLHm—k %

x 2Fl(-n—k,n+l—k,l-m—k,cosz D, mk 20, IT#0, (3-38)

n+k(21§)e-1(m~k)ﬁ/2e—l(mm+k9}cosm+k % slnk—m %

x 2Fl(-n+k,n+l+k,l+m+k;cos?‘ %—), mik > 0, T # 0, (3-39)

-1

m,k _
2n

e~1m(m+ﬂ)

'
Il

m, I =0,

Il
o

When k assumes the value of zero, Sm'k

2n
gﬁk reduces to a function involving a Legendre func-

15 independent of & (and
vice-versa), and S

tion From (3-39) for k=0 and m >0,

Sm,O - (_1)n1-m(n+m)e—1mm m

I 21
on n cot 5 F. (-n,n+1,1+m, cos 5)

271

(3-41)

But in this case the hypergeometric function 1s of the form (Abramowitz,

1965, p 332)

1-% (1—X)P/2
2 7

F(-n,n+l,1-p,~->=) = I'(1l-p) PP (x)
{l+x)P 2 n

Letting x = -cos I and m = -p, this becomes

F(—n,n+l,1+m,cos2
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Then, using (2~4) and (2-5), this 1s

F(—n,n+l,1+m,c052

Substituting (3-42) intc (3-41) yields the special result for k = 0,

which 1s valid for all m,

m,0 —m -m) ' _~1imi
s0 =y loom)’ gmam P"(cos I) (3-43)

Due to the lack of standardization of the notation in the litera-

ture, Table 3-1 has been included to assist anyone researching the

subject
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Table 3-1 Notation Used by Several Authors to Represent the Same
Quantities
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PRTCEDING PAGE BLANK NOT FILMED

CHAPTER 4

TRANSFORMATION OF A SERIES EXPANSION

IN SOLIP SPHERICAL HARMONICS

4.1 Explanation of the Transformation Formulas

In chapters two and three, transformation formulas were developed
for transforming solid spherical harmonics under changes of coordinate
axes Two classes of harmonics were treated because a general expansion
of a harmonic function will involve either, or both, kinds A fune-

tion, V, for example, in the old coordinate system, is of the form

o =
Vir,8,¢) = 2% ] ] pf(cos )

{ (g) s+4]
g=0 t=0 r

Ecstcos t¢+sst51n td]

jvi]

S

+ (i) [Estcos t$ + F_ . sin td:]}, {4~-1)

t

where G, M and a are all constants, along with the coefficients cst'

B and Fst (see table 4-1) As implied by the notation, V can

Sst' st
represent a potential function in free space (Kellogg, 1953, p 218)
If V 1s a gravitational potential, G 18 the universal grawvitat:ional
constant and M s the mass of the gravitating hedy The form of the
expansion in (4-1) 1is probably the more fam:rliar, but a slightly dif-
ferent, more symmetrical form will be used here,

+1

ey s t { ;a2 s
520 tE_SPs(cos 8)1(5) Re[(Astﬂ.Bs

V(r,6,4) = o 1" 0

t

z)® -1t -
+E) Rel (z_ +aW e 20| (4-2)
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where Re stands for the real part of quantity enclosed by brackets

Qld Coefficients New Coefficrents
a, s+l r.s a,n+l R, n

Series (r) (a) (R) (a)
Asymmetric
Form * . % \

€. /S .. .F c' ,s8! E! (F SE s Fon
0 <t<s st’ st stf st nm’ nm nm’ " nm’ nm’ n
0 <m<n
Symmetric
Form x *

A _,B T.,W J _.,K u._,v.__ U,V
s <t <s st’ st st’ st nm’ o nm nm’ nm' nm’ nm
-n <m<n

Table 4-1 Notation Used for the Series Coefficients
Using (2-4), 1t can be seen from (4-2) that

_ -1 %(s-p) " i}
PoetiBoy = Trererr - Peee s

Hence, the coefficients in the two representations are related simply

by
Cst = 2Ast
t > 0
Sge = 2Bgy
csO = AsO
t=20
Sso = Bgp (4-3)

Analogous relationships hold for the other four sets of coefficients in

Table 4-1
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After translation and/or rotation, the new series will be, an

general,
<« n
V(R,0,¢) = S ] ] Piicos a) t(g}n+lae[(anm+1xnm)e mfy
n=0 m=-n
* -
+ (g)nRe{[Unmenmfl(Vnm+§nm)]e lms}}. (4-4)

Once the coefficients are determined, they may be converted to the asym-

metric series coefficients by {4-3}, rf so desired

Asymmetric Form Synmetric Form
0ld Coef- C [ F
ficients st'¥st Est’ st Ast'Bst Tst'wst
R>p R<p R>p R<p
New Coef- | C!_,S! E_,F E' ,F! I LK % U
Firorlents am’“nm nm’ " nm nm’ nm nm’ nm nm’ “nm nm'vnm

Table 4~-2 Conversion of Series Coefficients Under Translation

Nothing has been said, thus far, regarding the convergence of the
various Serles expansions The original series, whether 1t 15 1in
powers of ™ or r_nwl, or both, 1s assumed to converge For special
cases, the constant "a" can be associated with a characterastic length
of the gravitating body, and convergence of the series linked to the
ratio of r/a

The primary concern here is the convergence of the resultant
serires In the case of a straight rotation of axes, as was

seen in 3 2, there 1s no problem, as the 2 's transform into the

st‘Bst

T 1)
s into the Unm’vnm s With a translation,

K _'s and the T

Jnm’ nm st’Wst

W_.'s transform into the U

however, the Tst’ st

r T
nm,th s, while the Ast’Bst s
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K 's 1f R>p (See figure 4-1

* *
' <
transform into Unm’v s 1f R<p, or J am

nm nm
and table 4-2)
In other words, the exact form of the series in the latter two
cases depends on the ratio of the lengths of both the field and trans-—
lation vectors The critical sphere separating the two regions of con-

vergence 1s of radius p, centered on the new origin, and passes through

the old origin

field points, Pe'
exterior to sphere

dictate a new series

-1

new
in powers of R

‘(///’orlgln

field points, Pl, n

on interior of
sphere dictate a
new series 1n POWers

of R®

critical
sphere

old origin

Figure 4-1 Critical Sphere for a Transformation Due to Translation

of a Serires Involving Powers of r_S—l

The various cases are treated separately in the following four sections

of this chapter
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4 2 Translation Transformation of a Series Involving Powers of rs,

to One with Powers of RY

In this section 1t 15 assumed that a functaion, V{r,9,4), has been
expressed in terms of convergent serles of solid spherical harmonics

of the following form

—1t¢]

] S
= G r, .t _
v=o" ] 1 () Pg(cos 8)Re[(T  +aW  )e ,  (4-5)

=0 t=-s8 st

where the Ts 's and W 's are known With a pure translation cof the

t t
origin the same function 1s expressed in a new series in the new

coordinate system,

[+
GM

o R 2.m —-1mB
V(R,e,B) = — Lo mE_n(a) P (cos a)Re[ (U  +1V, e 1,

(4-6)

T )
where the Unm s and th s need to be evaluated

Equation (4-5) can be written as

)
] Peicos 8)(5)® Tt

V = Re { y
0 t=-s

gk
le~18

(Tst+1Ws le

s t

Using (2-16) and (2-17), which transform the harmonics to the new

coordinate system, this becomes

M 2 T S[kk+
vare ! ¥ T (7_ +w_)aS {=kstt
ta s=0 t=-s5 st st k=0 2=L1~k
lk+t-s

% (s+t s—ke—1(t~2)YPZ:£

k —-18B8.% |
k+£)p k(cos MRe Pk(cos a)]

(4-7)
Switching the inner two summations to the outside, and changing nota-

tion, (4-7) can be written as
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: 1 S ST ahe on,p.s-n.n
I T 1 1 gihaTE) Sy
n=0 m=-n s=n t=n+m-s nrm a

"2

m t-m -2 {t-m)y_-imf
x Pn(cos a)Psﬁn(cos A}Re[(Tst+1Wst)e e 1

(4-8)
The real part of the bracketed portion of {4-8) is
cos ms[TStcos (t-m)y + Wst51n (t-m) vy}
+81n ms[—Tst51n (t-m}y + Wgc0S {(t-m) vl (4-9)

Inspection of eguation (4-6), the other expression for the poten-
tial, shows that the harmonics of degree n, order m, in the same
variables, must match those in (4-8) The coefficients are then

equated, where the real portion of the brackets in (4-6) 1s
Unmcos mp -+ th sin mB

Thus, (4-8} is

4] o sS—n+m s5-n
M= T G ET PE M eos 1)
s=n t=n+m-s

T ,cos (t-m)y + Ws sin (t-m)y

st +
~Tyisin (E-m)y + W_, cos (t-m) ¥ ,

or using (2-4) and regrouping the quantities within the brackets,
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; s=n+m
U _+1V =
nm nm s=n t=n+m-s

()™ F(stt)' o s-n
{m-n+s-t} ' (ntm)*' ‘a

x BU7E (cos M)et ™Yz saw_ ) (4-10)

4 3 Translation Transformation of a Series Involving Powers of

r™5"L iy One with Powers of R}, R<p

In this case, the coefficients As and Bs are assumed to be

t t

known in the expansion

«© s
Vi(r,0,4) = & 7§ s+l

~1t¢
3 1

a t
() P_lcos B)Re[(A_ +1B_, Je

s=0 t=-s
{4-11)
The translation of the origin transforms the series into the form of
* *
—— ] 1
(4-6), with the Unm s and Vnm s unknown
The method of solving for the coefficients 1s analogous to that
of section 4 2, using equations (2-22) and (2-23) to substitute for the

"01ld" sclid harmonies in (4-11) The result 1s

s n+mtt

* * pad
- (-1 (nts-m+i)’
Ut Vnm = 520 tz—s 53-8 (nm}"
s+n+l
a m-t 1(m—-t)y
X (p) Pn+s(cos Ne (Ast+1Bst)

(4-12)

4 4 Translation Transformation of a Saries Involving Powers of

-s-1

T to One with Power of R_nnl,

R>p

Here the coefficients in the old series (4-11) are known, but

the Jnm's and Knm's are to be determined for the new series

51



© n
GM
T 1

m —1ml
Pn(cos a)Re[(JnmflKnm)e ]

{4-13)

V(R,a,8) = (@

n=0 m=-n
Again, the procedunre is the same used in 4 2 and 4 3, eguations

{3-22) and {2-23) provade the transformation formulas for the solad

harmonics The result is

s
% s}n+m—s (—1)n_s(n—30'

J__+1K =
nm nm L L |-s {z-t) (n+m-s~t).
s=0 t_I'L;+In--n
2. %% _m-t 1 (m-t)y
x {2) P___f(cos Me (Ao taB ) (4-14)

4 5 Rotation

A slaghtly different apprcach 1s taken in the case of a rotation,
since the new harmonics have been determined in terms of the old ones
(3~28), instead of vice-~versa, as for the translation The two
approaches are equally corresct, the appropriate choice depends entirely

on the direction in which the harmonics are transformed

Because the maghitude of r remains unchanged under rotation, there
1s only one form for the transformation, as opposed to the three for the

translation Series anvolving A St's and Tst’wst's are, therefore,

st'B

transformed by the same formula The farst case 1s worked out here
3

The Ast's and Bst's are agssumed to be known in the expansion
e s
M -
Vir,8.6) = 25 ] ) (Hpf(cos )rel(a_ 1B ) MY
= _ st st
=0 t=-s (4-15)

But, as pointed out in 4 1, V can be considered as a potential func-
tion  Hence, 1t can be represented by an integral over the body

generating the potential,
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Vir,8,6) = of am'

where the primes indicate variables of integration, dm' being an element

of mass, in the case of a gravitational potential

R
o(x',8",97)

b P(r,6,4)

{2

Figure 4-2 Definition of the Variables of Integration, r',08’,¢',¢*,

for an Element of Mass at @ and a Field Poaint at P

Using the law of cosines in terms of the angle ' between the field

vector and the integration wvector,

[z-z' | = (£2+r'2-2rr' cos $')1/2

Then, applying the generating function for Legendre polynomials (2-9),

followed by the addition theorem (2-10), and using (2-4), the potential

1s

53



o n T
vi{r,8,%) = G'[Idm.nzor;lkz ) %If—:))‘r Pi(cos 8)

-— A |
x BX(cos er)Re[e R (0=0") (4-16)
where
r' r'
n+1  ° 1
r! =
n (4-17)
n
x ' 1
r,n-t-l r

Equating the coefficients of each harmonic P:(cos §) 1n (4-15) and

(4-16) yields

a . wo1td' _ {s+t)! -
I _{;dm’rSPS(cos 8'le = ts=6)" (Ast-i-:LBSt) (4-18)

After the rotation, the "new" potential, V(R,a,B), 18 of the form
of (4-13) But 1t, too, can be written in terms of a volume integral

in exactly the same way as V(r,8,¢) Thus,

@ n
- )I m
V(R,u,B) = fdm‘ fr BT pMieos o)
! M neo B pe-, (oM n

—1m(B-B')]’

X PE (cos a)Rele

or, equating the coefficients of the harmonics, P?:(cos o),

a (n-m}’ ampB’

— ' m T
Jnm+iKnm i W _/b;dm R;an(cos o )e
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T
Substaituting for Pﬂ(cos a'}elmB from (3-28), this becomes

n ]

_a _1 k- (n-k)’ m,kf io1 ok oy 1k
Tt ¥on = & k£—n( 1) AT S2n Mém R P (cos 8')e
{4=-12)

But, since R=r and R'=r', the integral (4-18) can be substituted Ffor

the integral in (4-19), resulting in

n
o % epkm lnH gnk
Tnm ¥y = ki—n( L )+ S2n PpxtrEy

x! (4-20)

As pointed out earlier, the relationship between the Unm, Vnm's

and the Tst,Ws ;'8 1s the same,

t

n
g kem (k)" oom,k
1 (-0 s (Tnk+1Wn

m+m)' “2n (4-21)

Unm+lvnm = k)’

=1}

and note that only coefficients of the same degree (n) are used to
determine the new ones

Finally, as a matter of completeness, 1t 15 possible to indirectly
solve for the o0ld spherical harmonics in terms of the new ones (under
rotation) using (4-20) and (3-28) In chapter three the harmonics were
transformed 1n the opposite order - the new ones 1n terms of the old

With the method developed in 4 2, 1t can be easily verified that

5 _
P:(cos S)elt¢ = Z (—1)t m %g;%%T SZE'th(cos a)elmB

m=-s
(4-22)
Comparison of thas with (3-28) reveals their similarity, except that an
m,t

this case the complex conjugate of S25 1s nvolved, and 1t is summed

over the first superscript as opposed to the second ain (3-28)
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CHAPTER 5

THE FORCE BETWEEN TWQ HOMOGENEOUS HEMISPHERES

5 1 Potential Due toc a Hemisphere

One of the pramary objectives of this thesis 1s to demonstrate
the applicability of the transformations developed in chapters 2~4 to
problems involving volume integrals of bodies possessing rotational
symmetry As an example, the force between two bodies A and B can be

calculated from

F =04 S w ar,

volume
of B

where Pg 18 the mass density of A, and V 1s the gravitational potential
of A If B 1s homogeneous this can be expressed, using the gradient

theorem, as a surface integral involving V,

Z 7 Pg f n 8s, (5-1)

surface
of B

|
|

where n 15 the outward normal to the surface
In the evaluation of the integral in (5-1} 1t i1s desirable to

make the integrand as simple as possible This is accomplished by se-
lecting the appropriate type of coordinates - in this case spherical -
and orienting the coordinate system to take full advantage of the
symmetry of body B But V also has to be determined in the coordinate
system best sulted for body 2 Hence, once V has been calculated, the
coordinates are translated and rotated for the evaluation of the inte-

gral in (5-1) As shown in chapter 4, the potential V 15 expressed in
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the new system with a set of transformed ccefficients.
This method 1s 1deally suited for two homogeneous hemispheres, due

to their simple shapes The potential of a hemisphere along 1ts axis

of rotation can be found from (see Figure 5-1),

27 T a
V=°dG_/;> f f %1; (5-2)

=0%g=m/2 “ R=0

o — -

——a— —

Figure 5-1 Calculation of the Potential Due to a Hemisphere
at a Point on Its Polar Axis

Evaluation of (5-2) yields

-

3 3 , 2.3/2)
V(z) = % mp 6 {1+%(§)+(§) e @1y
(5-3)
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The off-axis potential 1s determined by expanding (5-3) in powers of

(z/a)® or (z/2) ™! ang substituting (r/a)nPn(cos 8) or (r/a)_n-an

{cos &), respectively (MacMillan, 1958, PP 360-382) This gives

V(r,cos 8) = %ﬂpdGaz % - % §P1(cos )+ (E)ZPz(cos 6}
3,x,3 °z° (-1)%(2n-3) "
-5(z)"P,{cos 8) + 3 —
8'a 3 n=2 2211 1(n+1)'(n—2)'
2n+l l
x(a) P2n+l(cos 8) j 0 <r < a, {5~4)
ar
V{r,cos 8) = %WpdGaZ g - g (g)zPl(cos 8)
1 a4 v (-1 (2n-1)
+ 3= (2) P, (cos 6)-3 ]
6 & 73 n=2 22142y 1 (p-1y
a, 2n+2
x(]—:) P2n+l(cos e)}, r>a (5-5)

5 2 Force Between Two Hem:ispheres

The force exerted by a hemisphere on a second identical one 1s
calculated using (5-1), (5-4) and (5-5)} The center of the face of the
second 1s located by the vector p relative to the first (Fiqure 5-2(a))

The forece vector F 1s determined relative to the new coordinate

system £, n, §, or R, o, B In thais system n 45 1s
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0

Cf R sin o 4R 48 flat surface
(v = 1/2)
-1

e

4 —

sin o cos B

-~

2

sin ¢ s1n 8| R"sin ¢ do 4R spherical surface
(R=a),
cos o
so that (5~1) 23 comprised of two integrals
E = Ef + ...F..S
0
= pg f V(e = m/2) 0 |dR dp
flat
surface -R
51n20 cos B
+pda2 Jr V{R=a) 51nza sin B lda dB {(5~6)
spherical
surface sSln ¢ COS O

From (4-4) the potential of hemisphere A in the two cases, after coordi-
nate transformations, 1s
+1

-] n n
m a
nzo mznn Pn(U) {(E) [Jnmcos mp + K pS1n mB]

"2

Vig = n/2) =

R.on * * ]
+(5) [Unm+Unm)cos mg + (vnmfvnm)Sln mB]i , (5-7)
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and

GM ¢ % m *
V(R=a) = — n——ZO m__z__nPn(cos «) [ (T +U _+U )cos mp
*
+(E_ _+V__+V__)sin m8] {5-8)

nm nmn nm

Although the extreme limits of the 1ntegration variables in (5-6)

are specified,

0 <o < 7/2

o
ia

w
fA

27,

the particular limits corresponding to the region of convergence for
determination of the coefficients in (5-7) and (5-8) 1s somewhat com-
plicated, depending on the relative positions of the two bodies

In general there are five distinct cases for evaluating (5-6)
The first 1s the case when the two hemispheres are face-to-face with no

2

separation, 1. e , p =0 Since all surface points relative to the old

origin, r_., are equal to the radius, and since all RS are greater than
p, the integration of (5-6) invelves only the coefficients of the

r 1
U v = or the Jnm'Knm s, but not both

nm’ nm
The second case 1S distinct because for every surface point, elther

V. s

Ty < a oxr RS > p The integral, therefore, involves only Unm’ hm

]
and Jnm’Knm S This i1ncludes all p up to Py where py 1S the radius
of the sphere centered at the new origin, passing through the old origin,

and reachaing out to the first intersection of the surface of hemisphere
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Hemisphere B

in general,
Hemisphere B
15 rotated
through Euler
angles Q,I,w

Hemisphere A

5-2(a) Coordinates 5-2(b) Case 2

5-2(c) Case 4 5-2(d) Case 5

Figure 5-2 Geometry for Two Hemispheres
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Case Criteria
I r_=a and
Rsip
i1 r <a or
>
RS P
IT1 general
case
Iv r <a or
s .
<
Rs o]
v all
r ra

Critical p's

a/2 < py

a < P,

| A

Erther Flat or Spherical Sur-

Valid for face Integrals, or Both, In-
These P volve These Coefficients
— H 1
p=0 Unm’ nm = °F Jnm’Knm S
) T
0<pipl Unm,vnm g and Jnm'Knm s
» ”*
< 1 ' 1
P1<PZPy Unm' nm ° and Jnm’Knm s and Unm' nm
L] * kid r
Py PPy Unm'vnm s and YamsVom S
< * e '
P3 P Unm'vnm s
< a/ V2
2a
2a

Table 5-1 Summary of the Five Cases Involved in Evaluation of the

Force

Integrals
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B with the sphere of radius a centered at the old origan (Figure
5-2(b}) Examination of the geometry shows that 0 < p < p, and
a/2 < pq < a/vV2
The third case will be discussed after cases four and five The
fourth case as special because 1t includes integrals of only the
+*

*®
V. 'sand U__,V_ _'s From Figure 5-2(¢) 1t can be seen that

Unm’ nm nm’ ‘nm

hemisphere B must lie withazn the sphere of radius a centered at the
0ld origin, or within the sphere of radius p centered at the new ori-
gin In this case eaither rg < a or RS < p. From Figure 5-4,

Py <p < Par where

Due to the overlapping of the possible limits of integration, thas
case may not always be applicable
The fifth case applies when all Ry < p. The integral, therefore,

%*
v

*
involves only the coefficients U nm‘s' and Pg < p

nm’
Case three 1s the general case and includes evervthing not covered
in cases 1,2,4 and 5 In order to evaluate integrals over both the flat

and the spherical surfaces, all the coefficients are used

5.3 Evaluation of the Force when the Limits of Integration Have No

Azimuthal Dependence

For a particular orientation of the hemisphexes the force can be
calculated after determining the appropriate limits of integration from
the geometry In this section it 15 assumed that there 1s no dependence
on B, the azimuthal angle This 1ncludes two cases which will be worked

out i1n detail - separation of the hemispheres along the z axis, without
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~ o
rotation, and a case involving rotation when p > 2az,, where i, repre-

sents a unit vector in the positive z direction

In this case,

B can
be integrated from 0 to 2w, and (5-6) becomes

27 o
GM
F=—pff )
=f d r/g=0 2

n+l
m a
n=0 mz-n P (0) I(f) [J_,cOS mB+K  sin mB]

R.n * x
+ BP0, ) cos me+ (v +Y )sin mgl | 2, @B aR.

All of the terms involving mf integrate to zerpo, except for m=0, leaving

-~ hog meax a R n+l ”
Fe = -2MpaGM 1, E R0 J [(R) Tpum™ 3) (U 0 ) 1dR
n=0 E=R
min
(5-9)
The polynomials Pn(O) are obtained by Roban (1857, p 75},
1 n=0
Pont0) = n
("1) (2!'!."1) n=l,2'3 (5_10)
2n-1 !
2 n' (n-1)"'
where the polynomials of odd degree are all zero Those of even degree
can be evaluated from

- - {2n-1)
P, (0) = g Py p(0),  m22

With this, equation (5~9) becomes
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2 i
- - A R *
F. = 2“DdGM£; RJ00+ 73 (UOO+UOO)

£
a 2n-1 R 2{n+l) Rmax
o @ 5, & )
v L (O =zt 2T P2no*Uano’
len
(5-11)

Over the spherical surface (5-6) 1s

GM
= a%p ff Z P (cos a)[T__+U__+U. )cos mB
= d n—O m=—n nm nm nm

51n2a cos B
% 2
+(R +V +V )sin ml [ sin“c sin B | dR do

Sin d4 Cos o

This time all of the terms with |m| > 1 drop out when B 18 integrated

from 0 to 2w Consequently,

(cos a)31n o (J l+U l+U 1)

5 = 5 [

(-]
F, = 2mp,GMa ngoﬁlﬂda {cos a)51n u(K +V l+V l)

*
LPn(cos a)sin o cos a(Jn0+Un0+Vn0)

(5-12)
When the hemispheres are separated along the z axis, or for rota-
tions when p > 2a, eguation (5-12) 1s integrated from 0 o< m/2

This involves two separate integrals of the form
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/2 1 )
f Pn(cos a)sin“o do {(5-13)
o

and

w/2
./‘ Pn(cos aY¥sin o cos o dg (5-14)
0

The integral in (5-14) 1s evaluated by Robin (1957, p 26) If C, 18

defined as the integral (5-14)}, then

1/2 2n =0
1/3 2n = 1

C2n = {(5-15)
1/8 2n = 2

n '
:_(-1) (211“3) n = 2r3r
2n-1
2 (n+1) ' (n~-2)"
or recursively,
_ 3-2n
Con = 27m+D7 Con-2- n 23

The integral in (5-13} can be expressed as
1 2.1/2.1
{(1-v7) Pn(v)dv, {5-16)
0

but from (2-3} 1t can be seen that
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2)1/2 d

1
Pn(\)) = = (1-v I Pn(v) ’

so that (5-16) is

1 1
d 24
_.[)' I pn(u)d\; +_/0. VT I Pn(v)d\)

Evaluation of the 1ntegral above yields
2n

I
L2172 _
Jﬁ (1-v7) Py, (Widv = P2n(0) - 2C

The force due to the integration over the spherical surface

{5-12) can now be evaluated, and 1s egual to

2
F(Jy1¥03440,5)
F_ = 27p.GMa 2 R, .+ )
Fq a 3K 14V,
3 u i
00 . Yoo , Yo . 1 x
L5t g P 3V F Upg ¥ Ul -

I *
(PZn(D)—ECZn) (J2nl+U2nl+U2n1)

= *
+ £ (PZn(O)—zczn)(K2n1+v2nl+v2n1) {5~17)

E 3
L C2n T2n0*Y%2n0*Y2n0) i

5 4 Calculation of the Force for Two Special Cases

The results of 5 3 are applied to two cases - when the hemispheres

are separated along the polar axis, and when a rotation of hemisphere
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B 1s performed in the ¥-2 plane through an inclination I (Figure 5-2)

For these positions case 4 (from Table 5-1) does not apply, and the

first case 15 a derivative of the second, sc that only one of cases

two, three and five needs to be evaluated, depending on the value of

P Because the rotation will be carried out for p = 2a, only case three
1s involved The equations developed in 5 3 are therefore applaicable,

as the integration over o and 8 are independent of the translation and

rotation

(a) (b)

Figure 5-3 Positions of the Hemispheres for the Two Special Cases

Except 1in the case of the rotation, the foree will have only a ¢

component , hence the total force may be broken down as

F=(F, +F, +F; +F

+F_ )i+ F
2 3 2 £ —s

£

3 5

The geometry dictates that the cratical values of p are Py = a/vZ

and Py = 2, and the limits of integration for the varilous cases are
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2 1/2

R=10, (a —p2) and a Thus, from egquation {5-17) and Table (5-1},
2 -]
F, =T Mpyaldg, + 35 Jip *+ 2 ) Condano 17
2 n=1
F =F
S3 Sy
4 *
- 2V w©
3 Y11 ) *
+2 Jc, .V
_ _ 40X L. ~2nY2n0
FSS— ﬁGMpda 3 Vyq ‘ n=1 i
* 2 % *
Ugo + 5 Vet 2 1 Can¥sng
n=1
Similarly, the forces evaluated over the flat surface are, from (5-11)

and letting R, = (a2~92)1/2:

f 2Rl Rl 2 2
Fe,= "TMPg? 990 (1 57 )T Upem 5 Ty
Rl 2n+2
_ E 5 . + P2n(0) (1—(3—)2n~l)}- Pzn(o)(g—) o
2n0""2n 2n~1 R 2n+2 2n0 4’
n=1 1
|2 o R1,2
Ff3= —-'nGMpda i “‘§ J10+ (1-2 E)J00+ (a—-) UOO
2 R 2 o
1 #
+ (&) + (=) U, +2 T
a a 00" "5
Rl 2n+2
c e 3 ) Pzn(O) 5 [1_(5)2n—1]+ Pzn(O)(E—) .
2n 2n0 2n-1 “2n0 0 2n+2 2n0
Pzn(O) I(2)21'1-!-2_(5-];)211-!-2]6
2n+2 a a 2no
and
0})
~ ‘._l * @ P2n( . |
Fe, = T2mOMeg? |73 Uig* 2 Yanolmer Canl|
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The preceding equations were programmed for a digital computer and
evaluated for various ratios of p/a The results are Eabulated in
Appendix B and agree very well with the results of an approximation
scheme previously developed by the author (Lee, 1970} The first non-—
dimensionalization of the force 1s included because 1t follows directly
from the equations The second 1s independent of the size of the masses
V 1in this instance denotes the volume of one hemisphere

For the case of the rotation (p=2a), the components of force were
evaluated and then transformed back to the x,v,z coordinate system by

the matrix maltipiication

[~ 1 0 0
Fx,v,2) = 0 cos I ~sin I F(E,N.T)
L 0 sin I cos I |

The results are plotted in Figure 5-7 and tabulated in Appendix B

Note that due to symmetry the x component i1is always zero and
Fy(~I) = -F (D), F,(-I) = F (1), and

I = T_
I‘y(-z- + I) = Fy(z 1)
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+0 1

. L : | . I .

-0 4
0 90 180 270 360
Inclination, 1n Degrees
Figure 5-4 Normalized Components of Force as a Function of Angle of Rotation

when p = 2a1,



CHAPTER 6

CONCLUSIONS AND RECOMMEMDATIONS

As 1s demonstrated in chapter 5 with the example of twe hemispheres,
the force between two bodies can be efficiently and accurately calcu-
lated after performing the necessary integrations analytically
Except for relatively simple cases, however, the integrations still
involve a considerable amount of work The method of this thesis
therefore appears to be best suited for a particular problem, where a
high degree of accuracy 15 required, as opposed to applying 1t to
situations with widely varying geometrical parameters

It should be noted that only potential functions expressed in
spherical harmonics have been considered here, but analogous procedures
may be applicable to functions expressed in spheroidal or ellipsoidal

harmonics This is a question for further investigation
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APPENDIX A
GENERATION OF THE SOLID SPHERICAL
HARMONICS "MV H™(r,cos 6,0) AND
(Z)Hﬂ(r,cos 8.4

Because all solid spherical harmonices satisfy Laplace's equation
Y¥=90, {B-1}
it 1s useful to examine expressions which satisfy equation (A-1l) 1in
order to generate a particular set of solid spherical harmonics In
this case, solutions of the form
= 4 =
?z = (ax+by+tcz) 2 =20,1,2,
are examined
Applying (A-1), 1t 1s apparent that ?1 318 a solution whenever the
constants a,b,c satasfy

aZ+b%4c? = 0 (a-2)

By substitution into {(A-2}, 1t can be easily verified that the following

choice of a,b,c satisfies (A-2)

a = l*tz
b = -1(1+t2)
e = =2t
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where t 1s a free parameter Hence,

¥, = [ (x-1y) - (x+1y) t2-22¢] © (-3}

Consistent with Figure (2-2), x,v,z are related to r,8,¢ by

b
I

r sin B cos ¢

vy =1r san 0 sin ¢

r cos @

N
I

With these substitutions, equation (A-2) becomes

Wg = [r sin ee"l¢—r s1in Bel¢t2—2rt cos B]R (A—4)

With the definition of three new variables s,w,|, (Courant, Hilbert, 1966,

Appendix to Ch 7)
s = tel¢
¢ = ol (w*1/2) = ot (0HT/270) (3-5)

B cos ©
equation (A-4) 15

re, L

, = ESa?n 2 gae?r

]
|

y-21pe2%1%

oxr

<
!

(-2rt) £ (w), (3-6)
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where
£,(0) = [u - cos w?-1)1/%t (a-7)

Since fz(w) 1s an even function of w, and for & integer, (A-7)

can be expanded in the following Fourier series

ag 2
fg‘(m)=-§—~+ Ea cos mw

m=1 ©
where
T
_ 1
a, = o f £, (w)dw
-
1 w
a_ = —-I' f. ({w)cos mw dw m=1,2,3, L
m T J g 2

By Laplace's fairst and second integrals for W > 0, n = 0,1,2,

{MacRobert, 1947, pp. 125-129),

v 2 _.1/2 o 1"mﬂn‘P§(u)
f [p—{u“-1) cos ©] cos mw dw = 7 : ' (a-8)
o n+m§
and

m 2 ..1/2 -n-1 A" (n-m' 23 ()
f [~ (u~1) cos w] cos M dw = (B~9)
]

nl

These are the two integral equations which are necessary for the
Fourier expansion of fz(m) when £ = n in the first case, and £ = -n-1
in the second case

The result of applying equation (A-8) to (A-7) (&= n) s

nl

n'® = Fpt¥ m;ll (n+m

pﬂ(u)cos mm (A~10)
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The range of subscripts can be extended to include negative values
(-n £ m £ n), noting that (Jackson, 1962, p 65}

(-1)" (n~m) *

m
n+m Pn(u)’

—m _
B oWy =

and thus (l)fn(m) i1s an even functiron with respect to m. Further,

since
s1n mw = -sin{-mw),

and

0 -
Pn(u) = Pn(u),
equation (A-6) can be written as

Wy = (c2re)® E 1 'n’ Pl 9yt
n ety @AmM)T Tploes BIE

But
tel¢ - elwelﬁ/2 ,
or
elmw - tmel.md)l—m
So, finally,
_ 2 n
[ (x-1y) ~ (xt1y)t“ -2zt)
n T (1) m
=t 7 H {r,cos 8,0)t", {A-11)
m=—n !
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where

Il m
(l)Hn'm(r,cos 0,$) = iZElTéE%%TEl =2 (cos 6)e

md a-12)

For the set of solid spherical harmonics involving powers of r"n_l,

£ = -n-1,

and equation (A-9) yields the coefficients in the Fourler expansions,

such that

[u—(uz—l)ljzcos m]—n-l

% 1m(n—m)’

= ™
= Pn(u]+2 o Pn(u)cos mw

m=1

With treatment analogous to that for the first case, 1t 1s found that

[(x~1y)—(x+1y)t2-2zt]_n_l
-n-1 % (@ m
=t ) H _(r,cos 8,41t (A-13)
m=-n ’
where
(Z)Hn o (¥scos 8,6) = ?15:%%%—— "n"lpﬂ (cos 8)e™™®  (a-14)
¥ _2) nt
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APPENDIX B

NUMERICAL RESULTS OF THE CALCULATION
OF THE FORCE BETWEEN TWO HEMISPHERES

B 1 Separation Along the Polar Axis

Normalized Normalized
Separation Force
gii FZ/GMpda Fz/Gp§V4/3
0 007937 -1 554 -1 214
00 -1 549 -1.211
0 01587 -1 537 ~1 201
0 02381 -1 521 -1 189
0 05002 -1 468 -1 148
0 1000 -1 376 -1 075
02 -1 214 -0 9485
0 3996 -0 963 -0 753
05 -0 87 ~0 68
1 %98 -0 2473 -0 1933

10 0 -0 01799 -0 01406



B 2

Angle of
Rotation

I (in deg )

82

Separation Along the Polar Axis and Rotation of One of the

Hemlispheres about the Center of 1ts Base, in the ¥-Z Plane

22
45
67
90
112
135
157

180

o U o

[ = v Y - |

0

0

01698
03314
04597
05110
04597
03314
. 01698

0

Normalized Components

F

of Force

Z

GMpda

-0 2470

2529
2711
3019
3416
3814
4121
4304

4363

F

Pdv

060

0.01327
0 02590
0.03593
0 03994
0 03593
0 02590
0 01327

00

G 2,473

Pdv

-0 1930

~0 1977
-0 2119
-0 2358
~0.2670
-0.2981
-0 3221
-0 3364

-0 3410
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NEW TECHNOLOGY APPENDIX

This report 1s published in the belief that 1t constitutes
an lmprovement in the state of the art In particular, pages

9 through 82 are referenced



