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OPTIMAL DESIGN PROCEDURE FOR TWO-LEVEL FRACTIONAL FACTORIAL 


EXPERIMENTS GIVEN PRIOR INFORMATION ABOUT PARAMETERS 


by Steven M. S id i k  a n d  A r t h u r  G. H o l m  


Lewis Research C e n t e r  


SUMMARY 

In many cases in practice an experimenter has some prior knowledge of indefinite 
validity concerning the main effects and interactions which would be estimable from a 
two-level full factorial experiment. Such information should be incorporated into the 
design of the experiment . 

This report presents a method for incorporating such knowledge when the prior in­
formation can be expressed a s  prior probabilities that each main effect or interaction 
will be nonzero. 

A review of fractional factorials, blocking of factorial designs, and telescoping se­
quences of blocks is presented. It is shown how, by using these techniques, the experi­
mental design problem may be posed a s  a finite decision problem. Then for the finite 
decision problem, Bayes and mini-max strategies a re  developed and their application 
to the design problem illustrated. The major computational step is the evaluation of all 
possible matchings of physical variables to the abstract variables of all potential de­
signs. 

The technique of telescoping sequences of blocks permits the consideration of ex­
periments to be performed and analyzed in stages. 

INTRODUCTlON 

Confounded f u l l  and fractional factorial experimental designs have become a widely 
used and valuable experimental tool since their development by Fisher (ref. 1) and 
Finney (ref. 2). They are often used where there are several factors (independent varia. 
bles) which may jointly influence the level of a response (dependent variable). The as­
sumed relation between the dependent variable Y and the independent variables XA, 
XB, . . . is of the form 

. ,  . 



+ - - + P A  BC . . .  XAXBXC . . . + 6 

where for repeated observations the 6 a r e  independent random variables with mean 
zero and finite variance, and the p's are unknown parameters some of which the ex­
perimenter wishes to estimate. (All symbols are defined in appendix A .) 

If a fractional replicate of a fu l l  factorial experiment is run, not all the parameters 
whose existence is implied by equation (1) can be estimated. Instead, only certain linear 
combinations of these parameters can be estimated. 

For example, a one-half replicate experiment on four independent variables would 
provide eight estimates which might (depending on the fractional plan chosen) be esti­
mates of paired combinations of parameters as follows: 

PI + PABCD b + PABC 

PA + PBCD PAB + PCD 

PB + PACD PAC + PBD 

Pc + PABD PAD + PBC 

From such estimates, nothing can be inferrek about any s ingd parameter w thout mak .ng 
assumptions about, or having prior information about, the other parameter of a paired 
combination. 

In the general situation the experimenter often has some prior beliefs about which 
parameters a re  nonzero, and he can state such beliefs with varying shades of convic­
tion, according to the particular parameter being considered. If pressed, he should 
state those odds that he would be willing to take on either side of a bet that a particular 
parameter is nonzero. If his odds are w:z that an interaction between X2 and X3 is 
nonzero, his subjective prior probability that P23  is nonzero is p = w/(w + z). 

The experimenter could match his physical variable names X1, X2, X3, X4 to the 
design variable names XA, XB, Xc, XD SO that the lower prior probability param­
eters of the paired combinations could be dropped, under the following conditions. The 
experimenter's prior probabilities of nonzero three- and four -factor interactions were 
all less than 0 .01 .  He believed that prior probabilities of nonzero two-factor inter­
actions between X1 and any other independent variable and X2 and any other indepen­
dent variable were less than 0.05. This matching is as follows: 
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x1 =xc 

x2=xD 

x3 =xA 1 
If the experiment is performed and numerical values are computed for the maxi­

mum number of parameter estimates, the equation for Y could be written 

Y = bo + b3X3 + b4X4 + blXl + b2X2 + b34X3X4 + b31X3X1 + b32X3X2 

Equation (3) thus represents a combination of the experimenter's prior knowledge with 
the information that could be extracted from the one-half replicate experiment. 

A s  illustrated by the preceding example, the experimenter can maximize the infor ­
mation obtained about parameters while minimizing the number of experimental units 
performed, if he uses a judicious matching of the physical variables X1, X2, X3, . . . 
to the design variables XA, XB7Xc7 . . . Thus, one problem of constructing an opti­
mal design is to find a "best" matching for a given design. 

After presenting a survey of some pertinent topics such as fractional factorials, 
blocking and telescoping blocks this report establishes definitions for "best" designs 
and methods for finding the best or nearly best designs. Appendix B contains an illus­
trative example. 

The reader is assumed to have a knowledge of two-level factorial designs as might 
be found in Davies (ref. 3) Peng (ref. 4) or Kempthorne (ref. 5) .  Some results from 
elementary decision theory and game theory a r e  used. Some references on this subject 
a r e  Raiffa (ref. 6), Raiffa and Schlaifer (ref. 7), and McKinsey (ref. 8). 

A method for systematically comparing the possible combinations and choices of in­
terest and a computer program for performing some of the calculations have been devel­
oped and a r e  presented in Sidik (ref. 9). 

STEPS IN THE DESIGN OF FACTORIAL EXPERIMENTS 

The decisionmaking in the design of an experiment can be subdivided into steps as 
follows : 
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(1)What quantities to  vary: The quantities that will enter into the investigation as 
controlled independent variables must be decided upon. In taking this step, there should 
be no intention that other variables will be added later. The fu l l  list of potentially im­
portant variables should be incorporated into the initial experiments so that interactions 
among the variables can be observed. 

(2) In what way to vary the variables: The variables are sometimes introduced 
through linearizing transformations. For example, the velocity of a fluid is the depen­
dent variable and differential pressure is an independent variable. Then the levels of 
the differential pressure chosen for the investigation might be a uniform sequence of 
values of the square root of the differential pressure. Thus approximately linear re­
sponse would be achieved on that particular independent variable. 

(3) Starting region of the experimentation: This is specified so that the midpoint of 
the values of the independent variables is located at the point in the experimental space 
that is thought to be of the greatest interest or importance. 

(4)Amounts by which the independent variables are varied: The increments between 
successive levels of the independent variables are ideally large enough so that the depen­
dent variable will lespond by an increment significantly larger than the random er ror .  
On the other hand, the increments of the independent variables should be small enough 
so that the resulting observations will not be too irregular to  be fitted to the intended 
model (e. g. , eq. (1)). Furthermore the increments should be small enough so that the 
independent variables do not leave the range of the experimental space that is of prac­
tical interest. 

(5) Number of levels for the independent variables: In this connection the composite 
designs that were closely studied by Box and Hunter (ref. 10) are known to be highly effi­
cient in providing the data for fitting model equations of considerable usefulness. The 
beginning point of the composite design is the full or regular fraction of the two-level 
factorial experiment. 

(6) Block size: One approach to designing experiments so that they will have good 
statistical properties and still be no larger than necessary is to design them as tele­
scoping sequences as in Addelman(ref. 11)and Holms and Sidik (ref. 12). In such se­
quences the first block is conveniently one that is just large enough to estimate all the 
coefficients of a first-degree model equation. (Physical limitations might occasionally 
dictate that a smaller block size must be used.) 

(7) Choice of defining contrasts and matching of physical variables to design varia­
bles: This is the main subject of this report.-
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BASIS OF DESIGN OF TWO-LEVEL FACTORIAL EXPERIMENTS 

Notations for  Treatments, Contrasts, Parameters, and Estimates 

A two-level factorial experiment with n independent variables XA, Xg, Xc, . . . 
is an experiment in which the response or dependent variable is assumed to  depend upon 
the independent variables as indicated by equation (1)of the INTRODUCTION. 

A combination of the levels of the independent variables is called a treatment com­
bination or just a treatment. A treatment represents an experimental condition under 
which an observation might be made. If there are n independent variables and the 
variables are restricted to assuming only two possible values, there are 2n possible 
treatment combinations. If observations are made at each of the 2" treatment com­
binations, all the parameters of equation (1)can be estimated. 

The values of the independent variables can be coded so that they take on the values 
+1 or -1 only. The "upper" level or "high" level is represented by XA = +1, 

XB = +1, and so forth. The "lower" or t'low'' level is represented by XA = -1, 

Xg = -1, and so forth. Since a treatment combination is a specified combination of the 

levels of the independent variables, a treatment combination may be identified as a vec­

tor of +l's and -l?s;for example, 


Another frequently used notation involves the use of combinations of the lower case let­
t e r s  of the alphabet. The presence of a letter denotes that the independent variable 
having the associated upper case of that letter as a subscript is at its high level. The 
symbol (1) is used to denote the low level. Thus, the preceding treatment combination 
may be written 

(XD, Xc ,  Xg,  XA) = (-1, -1, +1, -1) = (l)(l)b(l)  = b 

A second example is 

(XD, Xc, XB, XA) = (+l,+1, -1, -1) = dc(l)(l) = dc 

In what follows it is convenient to be able to order the treatment combinations and 
parameters in a standard order. For convenience, the independent variables are or­
dered alphabetically from right to left as XE, XD, Xc, Xg, XA. This order is the 
opposite of that used in the INTRODUCTION and SUMMARY and is used in the remainder 
of this report. 
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Let the vth treatment combination be denoted 

tv=tmnmn-l .  . . m1 

The subscript on the right is v written as a binary num-er. Then tv is identified as 
the treatment combination which has the ith independent variable (from the right) at its 
low level if mi = 0 and has the ith independent variable at its high level if mi = 1. 
Thus the preceding examples can be written 

(XD7X c ,  X g ,  XA) = (-1, -1, +1, -1) = (l)(l)b(l)  = b = toolo t 2  

Table I presents the design matrix for a 23 factorial. The column labeled "Treat­
ment" gives both the tv and alphabetic notation for the eight treatment combinations. 
The column labeled "Observed response'' gives the eight y values observed. The 
remaining columns give the values of XA, XB, Xc, and their products. 

The same kind of ordering as has just been developed for the treatment combinations 
can be developed for the parameters of a model equation for a factorial experiment. In 
fact, it can easily be seen that the terms of equation (1)are already arranged in stan­
dard order with the parameters having alphabetic subscripts. Suppose the independent 
variables are ordered from right to left. Then let the vth parameter be denoted 

where the subscript on the right is v written as a binary number. Then if mi 
1, 


m. 	 . . ., m. designate the digits that equal 1, pv is the coefficient of the k-factor 
'2' 'k 

interaction between the i17 i2, . . ., ik independent variables, recalling that they a r e  
ordered from the right. An interaction represents the fact that the effect of the change 
of level and some independent variable on the response might depend upon the levels of 
other independent variables. A two-factor interaction between two independent variables 
(e.g. , XA and XB) indicates that the amount by which a change in XA changes the de­
pendent variable depends upon the particular value of Xg . Likewise, the amount by 
which a change in the level of Xg changes the dependent variable depends upon the par­
ticular value of XA, Interaction among three or more independent variables is defined 
similarly. The only difference being that there a re  dependencies on more variables. 

To estimate the parameters of equation (1) the method of least squares may be used. 
In this special case of two-level factorial designs the method of least squares leads to a 
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simple rule: the parameter associated with the heading of a column (such as in table I) 
is estimated by the linear combination of the y's  indicated by the +l's and -1's in 
that column divided by the number of observations. For example, from the data of 
table I ,  the estimate of pA is 

All  the columns are linear combinations and are called contrasts. In a fu l l  two-level 
factorial design there is a one-to-one correspondence between the contrasts and the 
parameters. 

Use of Elementary Group Theory 

Some elementary notions from group theory a re  useful in simplifying the notation 
and later discussions. 

A group is a set G of elements and an operation @ defined upon any two elements 
from G which satisfies the following properties: 

(1)If acG and bEG, then a@bcG. 

(2) If aEG,  bcG, and CEG,then (a@b)@c = a@(b@c). 

(3) There is some element of G denoted a s  (l),such that a@(l) = (l)@a = a for 


all acG. 
(4)For every aEG,  there is some element we denote a s  a-l such that a 8 a - l  

= . - l o a  = (1). 
Let T = { tv} represent the full set of treatment combinations and B = { pv} represent 
the fu l l  set of parameters. A group structure may be imposed upon both sets  by intro­
ducing the product @ defined by 

pmn.  . . m,@& n '  . . kl = pj,. . .  j l  

j l  1and 

where 

ji = (mi + ki)(mod 2) 



This notation is completely analogous to the more common notations using the let­
ters of the alphabet where, for the treatments, 

m 
a ' b m 2 . .  .@a 

kl 
b 

k2 . . . = a
jl

b
j2 . . . 

Note that this notation does not imply that parameter values are to be multiplied but is 
used to indicate the relations between parameters, treatments, and contrasts. 

Suppose n = 4. Then we may use the alphabetic notation for T to illustrate how T 
and @ form a group by showing that the properties 1to 4 hold. T contains all possible 
combinations of the four letters a, b, c ,  d including the "combination" (1) where none. .  i i  
a r e  present. Thus we may say T ={k4c13b 2a ':i.

J 
= 0 or 1 in all possible combina­

tions1and define ao = b0 = c0 = d0 = (1). Then any two elements w1 and w2 of T 

will be of the form 

i4 i3 i2 il 
w l = d  c b a 

w 2 = d
j4 

c
j3

b
j, jl

a 

and 

(i4+j4)(mod 2) (i3+j3)(mod 2) (i2+j2)(mod2) (il+jl)(mod 2) 
w1@w2 = d C b a (5) 

It is clear that since the exponents are reduced modulo 2, no new combinations of letters 
other than those in T can be formed. This satisfies the first requirement of a group. 
The second requirement is clearly true by the way 0was defined. Now note that since 
(1)= docoboao, multiplying any element by (1) will not change the values of the expo­
nents so that (1)Ow = w. Thus the third requirement is satisfied. Suppose 

w=di4ci3bi2ail is any arbitrary element of T.  Then w o w  = d
2i4(mod 2) 

C 
2i3(mod 2) 

b2i2(mod 2, a 2il(mod= docoboao = (1). Thus every element serves a s  its own inverse2, 
and the fourth requirement is satisfied. 

A subgroup of a group is a subset of the full set which is also a group under the 
same operation. For example, consider the set { (1),a }  which is a subset of { (1),a,b, 
ab} . It can be verified that under the operation 0as previously defined, { (1),a }  is a 
group and { ( l ) ,a ,b ,ab} is a group and hence { ( l ) , a}  is a subgroup of { ( l ) ,a ,b ,ab} . 
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Let G* be a subgroup of G under the operation @ Let w be some arbitrary 
element of G and let w@G* denote the set of elements { w@tl, w@t2, . . ., 
w@tn}, where the ti are the elements of G* . Such a set is called a coset of G* . 

Two elements of a group will be called orthogonal if in their alphabetic representa­
tions they have an even number of letters in common. They will be orthogonal also if in 
the binary subscript notations they have an even number of 1's in common locations. 

Thus, pcBA is orthogonal to pDCB, dcb is orthogonal to  dca, and tll10 is or­
thogonal to  tOll1. Orthogonality may also be defined between different groups so that 
for example, pcBA = polll is orthogonal to dca = tllO1. 

Fractional Factorials 

It is often impractical to  perform all 2n treatment combinations of a full factorial 
experiment. In many cases in practice there a re  seven or eight or more independent 
variables so  that the full factorial with 2n treatments might be too expensive to per­
form. Also, it is often assumed that only some of the possible parameters of equa­
tion (1)are nonzero. In particular, it is generally assumed that higher order interac­
tions either do not exist or else are associated with effects of small magnitude. Thus, 
it is of interest to determine how the number of observations and the number of esti­
mated coefficients can be reduced from a full factorial in a manner consistent with the 
experimenter's objectives . 

A common way of reducing the number of treatment combinations is to perform a 
regular fractional replicate. A regular fractional replicate is any coset of a subgroup 
T1 of T. The subgroup TI  is sometimes referred to a s  the treatment subgroup or  
principal fraction. 

Finney (ref. 2) has shown that for every subgroup T1 of T there exists a subgroup 
B1 of B called the complete orthogonal subgroup which contains every element of B 
which is orthogonal to every element of T1. The complete orthogonal subgroup will be 
referred to as the defining parameter group (d.p.g.) and its elements called the defining 
parameters. It is also true that for every subgroup B1 of B there is a subgroup T1 
of T such that T1 contains every element of T which is orthogonal to  every element 
of B1. 

It has been previously stated that if  a regular fractional replicate is performed, not 
all the parameters of equation (1)can be independently estimated. Only certain linear 
combinations of the parameters can be estimated. If there are 2n-r observations in a 
regular fraction, there can be only 2n-r contrasts that are linearly independent. Each 
of these contrasts is an estimator of a linear combination of the parameters appearing 
in a single coset of the complete orthogonal subgroup. 
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All subgroups of T will have 2' treatment combinations in them for some 
q = O , l ,  . . ., n. If a 2-r fractional factorial is performed, it will consist of 2n-r 
treatment combinations and there will be 2n-r cosets each containing 2r parameters. 

A s  an  example of these points consider a one-half replicate of a 23 experiment 
with defining parameter group B1 where 

Then by the "rule of even numbers" (ref. 3), it can readily be shown that 

A summary of this experiment is given by the first four lines of table 11. Let us 
apply the simple estimation rule previously stated for the fu l l  factorial case but simply 
ignore the observations not available. That is, the parameter associated with the head­
ing of a column (contrast) is estimated by the linear combination of the available y's 
indicated by the +1's and -1's in that column divided by the number of observations; 
for example, 

However, note that 

Y 1  - Y 2  -Y3+Y4 
bCB = 4 

= -bA 

Actually, (-yl+ y2+y3 - y ) -1 estimates PA - PCB. If PA is assumed to be zero, it
4 4  
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may be said that the preceding linear combination of y's estimates -PCB. If PCB is 
assumed to  be zero, it may be said that the linear combination estimates PA. The name 
assigned to  the estimator depends upon the assumptions made. Thus, in a simplified 
sense it may be said that each independent estimator may be assigned more than one 
name. This situation arises in the following way. For a full factorial design, the con­
trasts which estimate each parameter are linearly independent of each other. When a 
regular fractional replicate is performed, there will be a reduced number of linearly 
independent contrasts. Each of these contrasts will provide an estimate for a linear 
combination of certain of the parameters. This was illustrated previously where the 

1contrast z(-yl  + y2 + y3 - y4) estimates PA - PCB. It was shown by Finney (ref. 2) 
that the linear combination of parameters that a given contrast estimates will contain 
all the parameters in the complete orthogonal subgroup or one of its cosets, and no 
other parameters. This may be illustrated as follows: 

1 
(1)z ( y l  + y2 + y3 + y4) estimates 4 - PCBA 

(3) T ( - Y ~- ~2 + ~3 + ~ q )1 estimates PC - PBA 
as can be readily checked from table 11. 

For each parameter in a 2" factorial there can be uniquely associated one contrast 
which estimates it from the data of a full factorial. From a fractional factorial there is 
a smaller number of observations. If the components of the contrasts corresponding to 
the observations not made are dropped, each parameter in a coset will have the same 
contrast of the available observations (except for possibly a change of sign). The d.p.g.  
"defines" the experiment in the sense that the treatment subgroup (or some coset of the 
treatment subgroup) which contains every element of T which is orthogonal to  every 
element of the d.p.g. will constitute a regular fractional replicate of the fu l l  factorial. 
The alias sets resulting from the estimation rule given previously will be cosets of the 
d.p.g. 

Blocked Factorial Designs 

A problem often encountered in practice is that of maintaining uniform experimental 
conditions throughout the period of experimenting. A method called block confounding 
was developed (ref. 1)to help minimize biasing the parameter estimates of a factorial 
experiment when it is known or suspected that certain conditions which are not of par­
ticular interest or not readily measurable change. 

Suppose an experimenter wishes to perform a 2-r fractional factorial experiment 
on n independent variables, but cannot assure that conditions will be uniform for all 
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2n-r treatment combinations. He can assure, however, that 2w (w < (n - r)) treatment 
combinations can be run under the same conditions. 

The procedure for constructing a blocked fractional factorial is as follows: Choose 
a subgroup Bl of B that defines a fractional replicate with 2n'r treatment combina­
tions. Let these treatment combinations be a subgroup Tl  of T.  Choose a subgroup 
B2 of B containing B1 so that B2 defines a fractional replicate with 2w treatments. 
Let these treatments be a subgroup T2 of T such that T2 is a subgroup of T1, Then 
the subgroup T2 and its cosets a r e  called blocks. The expectation of the population re ­
sponses over a block is called the block mean. It was  shown in Holms and Sidik (ref. 12) 
that the estimators for those alias sets  which contain parameters which a r e  elements of 
B2 but not elements of B1 a re  also estimators of linear combinations of the block 
means. All other estimators a r e  linearly independent of the block means. An aliased 
set  of parameters whose estimator also estimates a block effect (linear combination of 
block means) is said to be confounded with blocks. 

A s  an example of this confounding, consider the experiment summarized in table 11, 
where n = 4, r = 0, and w = 2. The two blocks a r e  the sets of treatment combinations 
{ ( l ) ,ba ,ca ,cb}  and {a ,b ,c ,cba} .  It can be shown that the d.p.g. for the fractional 
replicate corresponding to those treatments in block 1 is B2 = { PI, PCBA} . In this ex-

.ample, B1 = { p ~ }  Thus the estimator for PCBA is confounded with any block effect. 
This may be easily seen by recalling the previously stated estimation rule that 

A 

where pi  is the estimated block mean of block i. More detailed developments of this 
aspect can be found in references 3, 4, 5, and 12. If a 2n factorial is divided into a 
2"-' fractional factorial and then further divided into blocks with 2w (w < (n - r)) 
treatments per block, there a r e  2n-r-w blocks in the fractional factorial. 

Telescoping Blocks 

The previous two concepts of fractional replication and blocking of factorial experi­
ments can be combined to provide a means of sequentially adding blocks to the factorial 
while retaining the property of orthogonal blocking. This technique is called telescoping 
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and a description of double and multiple telescoping is given by Holms and Sidik in ref­
erence 12. Addelman (ref. 11) has tabulated many single telescoping designs. 

An experimenter may begin experimenting with a very small fractional replicate as 
one block. The treatment combinations used and the alias sets  available a re  defined by 
a choice of defining parameter group B1. This is a subgroup of B, the fu l l  parameter 
group. When the experimenter completes the first block, he has the option to continue 
experimenting or to stop. If he stops, he has a small number of estimators each of 
which is associated with a large alias set. If he elects to continue with regular frac­
tional replicates, he must at least double the current size of the experiment. He may 
do this by choosing a subgroup B2 of B1 and performing a second block of treatment 
combinations. The added treatment combinations are given by those which are ortho­
gonal to B2 but have not already been performed. In addition to a reduction in the var­
iance of the estimates, the gain from continuing to the new stage will be that there will 
be twice a s  many estimators available and each alias set  will have only one-half as many 
elements as the alias sets of the one-block experiment. An important fact is that one 
estimator will be confounded with the block difference between blocks 1 and 2.  

In general, suppose experimenting is started with a 2" replicate and that it is also 
a single block. Then an experiment will be said to be at the Z t h  stage if it contains
2z -1 blocks. Let the treatment group at the Z t h  stage be written as T(Z) and the 
d.p.g. at the Z t h  stage a s  B(Z). Let T(r  + 1) be the f u l l  treatment group and B(0) be 
the f u l l  parameter group. The number of elements of B(2) is one-half that of B(Z - 1) 
and the number of elements of T(Z) is twice that of T(2 - 1) .  The parameters con­
founded with blocks at any stage a re  given by the elements of B(l) that a re  not elements 
of B(Z). This rule is valid only for single telescoping. More complex rules a re  indi­
cated in reference 12 for the case of multiple telescoping. 

USE OF GAME AND DECISION THEORY 

Estimability of Parameters 

An estimator for an alias set  is generally useless unless all except one parameter 
in the alias set  a r e  known. The conventional rules for estimability use the basic as­
sumption that the response function is "smooth" to justify assuming all the high-order 
interactions a re  zero. Thus, common practice is to assign the estimator to the param­
eter in the alias se t  which represents the lowest order interaction. If there a r e  ties, 
the estimator is either discarded or assigned to a particular parameter based upon other 
considerations. Thus, for example, the estimator for { PA, PEDCB, PCB, PEDA} would 
normally be assigned to PA, whereas specific prior knowledge would be required for 
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the estimator for { pD, pECBA, PDCBA, pE} to be assigned to or pE. 
Suppose now that the experimenter has some knowledge which enables him to assign 

a prior probability to each parameter. The prior probability measures his prior degree 
of belief that the parameter is nonzero. This knowledge may have been obtained from 
experiments in more or less similar situations, or it may be in the form of some theo­
retical relations he knows of. Such knowledge can indicate which parameters are more 
likely to be nonzero than others. 

Consider the problem of matching estimators and parameters at the hth stopping 
point. The d.p.g. is B(h), and the alias sets are all those distinct cosets of the form 

, . . ., pi,}. Let P (pii # 0) = pi . If the estimator for the alias 
. "  i 

set pi@B(h) is assigned to the parameter p. , then assuming independence, the prior
'k 

probability that the estimator will be unbiased is 

This probability is used to help find a "best" matching of estimators to parameters. 

Formulation of t h e  Problem 

All  the preceding discussion concerning fractional factorials, blocking, telescoping 
designs, and estimability of parameters from these designs can now be put together to 
represent the steps of the design and performance of an experiment as a finite game be­
tween nature and the experimenter. 

The experimenter is free to choose any of the parameters in an alias set to be as­
signed the estimator. The experimenter is also free to choose the design-variable-to­
physical-variable matching. It is very likely that different matchings will obtain differ­
ent values to the experimenter since changes in the physical-design variable matching 
will cause changes in the elements of the alias sets. 

The experimenter is free to choose a telescoping design. This involves the choice 
of initial d.p.g. and the sequence of subgroups (or he might choose a multiple tele­
scoping design with branch point decisions restricted by nature). Thus the decision 
space for the experimenter is composed of the choice of initial d.p.g., choice of se­
quence or sequences of subgroups, choice of physical-design variable matching, and 
choice of parameter -estimator matching. 
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Nature has the choice of which of the p's will be nonzero and the choice of the path 
and the stopping point of the telesco2ing. 

A decision "tree" is a graphical representation of the possible sequences of choices 
the experimenter and nature can make. A decision tree representing all the preceding 
choices would, in general, be much too large to  be conveniently represented. A flow 
diagram is presented in figure 1which indicates the sequence of choices to be made by 
the experimenter and nature. 

It should be noted that the order of presentation shown in figure 1of the choices of 
nature and the experimenter are not necessarily in temporal order. The choice of 
d. p.g. and physical-design variable matching are interchangeable but must be made be­
fore the actual execution of the experiment. Nature's choice of the parameter values 
would normally be made prior to anything the experimenter does. However, it does no 
harm to conceive of nature being permitted to choose the parameter values after the ex­
periment is performed. In fact, this concept is more convenient in describing the Bayes 
decision procedure for the experimenter. 

In order to  evaluate all these possible outcomes, the relative value of each possible 
outcome to the experimenter should be specified. These relative values are defined a s  
utilities. 

Once given the structure of a game or a decision problem and the utilities of the out­
comes, the statistician must devise a method for choosing the possible alternatives s o  
that a desirable outcome is finally attained. The possible methods for making decisions 
a r e  called strategies. More precisely, a strategy for the experimenter is a set  of rules 
which specify what choice is to be made from the alternatives available as a function of 
all previous choices at every possible point where a choice is to be made. 

There a re  two general principles by which strategies are ordered which are in cur­
rent use. One is called the Bayes principle and the other is called the mini-max prin­
ciple. 

The Bayes Solution 

The Bayes procedure assumes that nature is an indifferent participant in the game. 
Thus, the choices that nature makes are independent of the choices available to the ex­
perimenter, but instead are made according to a specified probability distribution. Any 
information the experimenter may have concerning the strategy (specified probability 
distribution) nature will follow is useful information that should be incorporated into the 
decision procedure. The strategy which maximizes the utility given the assumed 
strategy for nature is called the Bayes strategy. Thus, let us assume the experimenter 
has prior information which he can express as probabilities of each parameter being 
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nonzero and probabilities of stopping exactly at a given stage of the experiment. Let 
pv be the vth parameter in the standard ordering and let P(& # 0) = p,. Let 

Experiment is terminated 
P at exactly the hth = phsistopping point 

Let us restrict  the utilities so that qi(h) is the utility of obtaining an unbiased estimator 
for pi at the hth stopping point and assume ui(h) = 0 if the estimator is biased. We 
allow it to be some finite value greater than or equal to zero if the estimator i s  not 
biased. 

Suppose a t  the box in figure 1 marked with a star (*), 2 stages have been completed. 
Then there are 2n-r+z-l alias sets of the form pi@B(2) = p.

l1
,p.
l2

, . . - 9  Pi,}, 
where m = 2r-2+1. From each alias set, one parameter may be chosen to be assigned 
the estimator. Independently of these assignments, nature now chooses which of the 
parameters are zero. By the previously s k t e d  assumptions, the experimenter cannot 
be sure what nature will do for this particular instance, but he does know with what prob­
abilities the parameters will be nonzero. Thus, the proper thing to do is to  compute the 
expected utility for each possible assignment from the alias sets. 

Let the utility placed upon an unbiased estimate of pi at the hth stopping point be 
denoted by ui(h). Let the expected utility to the experimenter gained by assigning the 
estimator for the alias set pi@B(h) to  the parameter 4 be denoted by U(i, k). Then 

U(i,k) = uk(h) (1 - pj)
jeS(i, h) 

The experimenter should thus assign the estimator to the parameter & which maxi­
mizes this quantity. A special case requires separate discussion. Suppose that an alias 
set is confounded with some block effect. In this case there are 2'-'+'+ 1 param­
eters  in the alias set. Assume that prior probabilities can be assigned to the event that 
each block effect will be nonzero and assume the utility of an unbiased estimate can be 
specified. Then this information can be incorporated into the decision procedure by 
computing the m + 1 expected utilities: 
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U(i, b) = ub (9)
jcS(i, h) 

where 

g,= P {the block effect # 0 )  

and ub is the utility of an unbiased estimate of the block effect and U(i,b) is the ex­
pected utility gained by assigning the estimator for Pi@B(h) to  the block effect. 

Since the alias sets are disjoint and the estimators for each alias set are indepen­
dent of each other, it follows that the choice of parameter from one alias set need not 
influence the choice from another alias set. Thus, the restriction on the utility function 
that sets it equal to zero for biased estimators and the use of the expected utility imply 
that the number of choices at the boxes marked with a * and a * is (2'-'+l)(2 n-r+Z -11 
= 2", where Z is the number of stages comprising the ha stopping point. This is the 
number of alias sets times the number of choices that could be made from each alias 
set, and is equal to  the number of factorial parameters, ignoring block parameters. 

Thus, let the total utility to the experimenter at the hth stopping point be denoted 
U(h) = z U ( i , k ) ,  where the summation is over all the distinct cosets at the hth stopping 
point. Let 

Then U represents the expected utility over all stopping points for a fixed choice of 
initial d. p. g. , telescoping sequence or sequences, and physical-design variable match­
ing. The formal Bayes solution to the decision problem would then be to compute the 
value U for each of the possible choices of initial d.p.g. ,  naming, and telescoping 
sequences, and then choose the combination which gave the maximum U. This involves 
a large number of alternatives. 

Modified Bayes Solution 

A s  a practical procedure, it seems highly unlikely that all the possible d. p. g .' S  will 
be evaluated. There would be far too many alternatives to compute the formal Bayes 
solution in many problems. Common sense may, however, indicate some reasonable 
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ways to reject certain types of d.p.g. 's depending upon the given utilities and proba­
bilities. 

Many experimental situations satisfy the condition that the higher the order of inter­
actions, the greater the probabilities of their being small or absent, and therefore the 
smaller their expected utilities. This is the typical situation and it seems likely that the 
"best" design in this case will be one of the designs derived on the basis of resolution 
level. (For a given number of independent variables, these kinds of designs occur at the 
beginnings of the lists in Addelman (ref. 11) .) 

A different situation might conceivably arise when there are essentially two sets of 
independent variables under consideration. One of these sets is known to contain ele­
ments interactive among themselves. The second set, however, is known to have first-
order effects upon the dependent variable; but these elements do not have much tendency 
to interact. (For such situations, the appropriate designs might occur at the ends of the 
lists in Addelman (ref. 11).) 

Mini-Max S01 ution 

To derive a mini-max strategy, the statistician assumes nature to be an aggressive 
player who will choose alternatives available to her which will minimize the maximum 
utility the statistician may gain. Thus the experimenter is the maximizing player, and 
nature is the minimizing player. 

A strategy for nature involves two component choices: the choice of which param­
eters will be nonzero and the choice of the path and stopping point of the telescoping. 
One choice available to nature which the experimenter has no influence upon is the choice 
of nonzero parameters. In fact, it is possible that nature may choose to let every pa­
rameter be nonzero. In this instance it will not be possible to obtain unbiased estimates 
for any parameter until the fu l l  replicate is run. If the utility function is restricted to be 
zero when the estimator is biased, there is zero utility except for the full replicate. 
Thus, the only possible way for the experimenter to obtain a gain is to design for the full 
replicate. However, nature also may choose the stopping stage; and so to minimize the 
experimenter's utility, any stage other than the fu l l  replicate may be chosen. Thus, any 
strategy at all that the experimenter uses will be a mini-max strategy, for nature can 
always assure that the experimenter will receive zero utility. 

Two less aggressive strategies for nature a re  conceivable. The first assumes that 
nature will still choose to have every parameter nonzero but will stop the experiment a t  
one of the stages according to prior probabilities known by the experimenter. Then the 
only reasonable approach for the experimenter is to choose a design which maximizes the 
utility of the full factorial. Clearly, this only involves minimizing losses due to block 
confounding. 
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The second of these less aggressive strategies allows that nature will choose the 
parameters to be nonzero according to probabilities known to the experimenter but will 
choose the stopping stage so as to minimize the experimenters maximum utility. To 
find the mini-max strategy, the tree form of the game can be reduced to the form of a 
rectangular game, and the technique of linear programming can be applied to determine 
the optimal strategies. Considering the size of the tree in this problem, it does not 
seem likely that this approach would be computationally feasible. 

It is true that mini-max strategies are in general randomized strategies. Rather 
than adopting such a randomized strategy it may be more desirable to adopt what might 
be called a security strategy. This would be the strategy of the experimenter which 
maximizes the minimum possible utility. This could be done by examining the expected-
utilities at each of the stopping points and would involve much the same computations as 

I the Bayes procedure. 

Assignment of Utility Functions 

The utility function is a function defined upon the space of all possible outcomes of 
a decision problem. This function describes the absolute or relative value to the deci­
sionmaker of each of these outcomes. Methods of specifying the utility function based 

1 	 upon the axioms of utility theory are given in Raiffa (ref. 6) and DeGroot (ref. 13) .  
These methods involve choices of lotteries and would be extremely impractical and cum­
bersome for the current problem. An alternative procedure is often used which attempts 
to place some common evaluation upon each outcome, such a s  the monetary value, man-
years of expended energy, and s o  forth. This approach also seems unlikely of being ap­
plicable in the present problem. In fact, in only the most trivial of experiment design 
problems does it seem likely that a utility function can be specified which will completely 
describe the relative values of each outcome. This does not at all imply that the deci­
sion theory approach to statistical decision problems is worthless. A s  in almost any 
branch of applied mathematics, concessions a re  made to practicality, and a utility func­
tion is chosen which is both mathematically tractable and at  least roughly representative 

I* of the decisionmaker's preferences. For example, two such concessions used in the 
theory of estimation a re  the absolute-error and squared-error loss (negative of utility) 

s functions. 
In keeping with the preceding comments, the following five utility functions are of ­

fered as being both practical and somewhat representative of the decisionmaker's pref ­
erences in the appropriate instances: 

1 if estimator unbiased 
(1)Ui(h) = 0 if  not 
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This is a utility function which simplifies the expected utility to be the probability of 
getting an unbiased estimate of the parameter. This might be a useful utility function in 
the more basic scientific exploration where relative evaluations of the importance of 
specific parameters are not possible. 

(2) q - 4  = {Pi if unbiased0 
if biased 

This simple utility function can be thought of as representing the prior probability that 
an estimator will be unbiasedly estimating a nonzero quantity. Such a utility function 
might be used in response surface or optimum seeking experiments. This is true be­
cause a zero parameter contributes nothing toward being able to change the response by 
changing the levels of the independent variables. 

( 0 if biased 
where nn is the number of treatment combinations at the hth stopping point. This 
utility function could be useful in the situation where the experimental e r ror  is large and 
the cost of many observations is not much more than the cost of a few observations. The 
rationale for this is that the variance of an estimator is proportional to the inverse of the 
number of observations. Thus, one way to weight the value of an unbiased estimate is to 
weight it proportionately to the inverse of the standard deviation, that is, to &.{: if  unbiased 

(4) Ui(h) = 
if  biased 

In the opposite situation to function (3), suppose the experimental e r ror  is negligible 
but the cost of each observation is large so that the cost of a stage is a first-degree func­
tion of the number of treatments. Then this utility function would weight the estimators 
more heavily at the early stages of the experiment and penalize the later stages. 

if unbiased 

(5)Ui(h) = 

if biased 
This is an elementary combination of functions (3) 
where both the costs of the observations a r e  large 

Further simple utility functions might consist 
with one of (3), (4), or (5). 

and (4) and is intended for situations 
and the experimental e r ror  is large. 
of multiplicative combinations of (2) 
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CONCLUDING REMARKS 

The two-level fractional factorial designs represent a class of designs of experi­
ments yielding a large number of estimates of first-degree effects and interactions for 
a small amount of experimentation. The main disadvantage of this class of designs is 
that the estimates are always estimates of aliased combinations of parameters. To 
make conclusions about single parameters it is necessary to  have some information 
about the parameters from a source other than the experiment. If such information is 
available before the experiment is performed, it may be incorporated into the design of 
the experiment. 

There are many situations in practice in which an experimenter may have varying 
amounts of information concerning the variables he wishes to  investigate. This report 
has developed some optimal design procedures to be used when the prior information is 

(1) For each parameter the experimenter states his prior probability that it is not 
zero 

(2) For each parameter the -experimenter states what it is worth to him to obtain an 
unbiased estimate of it 

The information and decisions were formulated as a finite decision problem, and Bayes 
and mini-max procedures were developed. 

The main components of the problem were (1) the choice of estimator-parameter 
matching, (2) the choice of physical-design variable matching, and (3) the evaluations of 
all possible defining parameter groups and sequences of subgroups. 

Modified Bayes and mini-max procedures which are computationally feasible were 
developed, and some potential utility functions were presented. 

The procedures presented herein should prove to be of considerable value in appli­
cation since the information required is of a nature that is easily specified and the com­
putations required a re  amenable to being programmed for a digital computer. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, July 21, 1971, 
129-04. 
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APPENDIX A 

SYMBOLS 

B 

B(h) 

B17B2 
bA, ... 
bl , .  .. 
G 

G* 


h 

n 

nh 

pb 


Pht 

phs 

Pi 
r 

tV 

complete set of parameters or coefficients 

subgroup of B used at the hth stopping point of experiment 

subgroups of B 

estimates of parameters PA, ... 
estimates of parameters p l , .  .. 
group 

subgroup of G 

stopping point of experiment 

stage of experiment 

number of factors (independent variables) 

number of treatment combinations at hth stopping point 

prior probability of a block effect not being zero 

conditional probability of proceeding to the h c 1 stopping point given 
that the hth stopping point is reached 

probability experiment terminates at exactly hth stopping point 

prior probability that pi # 0 

first stage contains 2n-r treatment combinations; it is a (1/2)r frac­
tional factorial 

set of standard-order subscripts of elements of pi@B(h) 

complete set of treatment combinations 

subgroup of T used at hth stopping point of experiment 

subgroups of T 

vth treatment combination when treatment combinations a re  arranged in 
their standard order 

total expected utility for a given strategy 

total expected utility of hth stopping point for a given strategy 

expected utility gained by assigning estimator for pi@B(h) to the block 
effect that alias set is confounded with 

e 
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expected utility gained by assigning the estimator for Pi@B(h) to  & 
utility assigned to an unbiased estimate of pi at hth stopping point of 

experiment 

V 


W 


xi 
Y 

standard-order subscript of a parameter or treatment combination for a 
fu l l  factorial experiment 

there are 2w treatments in a block 

used to  denote abstractly some combination of the letters a,b, c, ... 
independent variables (design) 


dummy independent variables which are identically equal to 1for all 

treatment combinations 


independent variables (physical) 


random response (dependent variable) 


observed value of Y 


parameters of a model equation in design variables 


constant terms of model equation 


parameters of a model equation in physical variables 


coset obtained by multiplying all elements of B(h) by pi 

element of 


random er ror  


group operation 


treatment combination with all independent variables at their low levels 


23 

I 




APPENDIX B 

A HYPOTHETICAL EXPERIMENT WITH FIVE FACTORS 

Consider a five-factor experiment involving 

XI = temperature 

X2 = pressure 

X3 = time 

X4 = velocity 

X5= angle 

Suppose that the experimenter's facilities are such that he can only perform four treat­
ment combinations at one time and be reasonably sure that experimental conditions are 
homogeneous. Thus his experiment should be designed as a blocked factorial design 
with blocks of size 4. Assume also that he has enough materials at one time to perform 
eight treatment combinations but no more and that batches of uniform material are not 
available in quantities that will supply more than eight treatment combinations. Then the 
blocks of the experiment might be as shown in the following illustration, where the two 
columns represent two different test facilities and the four rows represent four different 
batches of r a w  material. 

Column blocks 
(test facilities) 

A 

r 1  2 '  

Row blocks 
(batches) I3 13,1113,21 
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The differences between the first  block and the second block in a row a r e  due to perform­
ing the experiment in two different test facilities. The differences between rows a r e  due 
to possible effects of new batches of materials. Suppose the experimenter feels that 
there is a probability of 0.50 of there actually being a test facility block effect. Let the 
probability of there being an effect due to differing batches of raw materials be 1.0. 
Assume further that probability of an interaction between these block effects is specified 
as zero. The stopping points of the experiment a re  after completion of 

(1)Stage one: block (1,l) 
(2) Stage two: blocks (1,l), (1,2) 

I 
I 

il 

i 

(3) Stage three: blocks (l,l),(1,2), (2,1),  (2,2) 
(4) Stage four: the full factorial 

Let pht be the conditional probability of going on to the next stage, given that the hth 

stage has been completed. Based upon his available resources and upon past histories 
of some similar projects the experimenter has worked on, the following probabilities 
a r e  thought to be appropriate: 

plt = 0.90 

p2t = 0.80 

p3t = 0.70 

pqt = 0.0 
h-1 

Then the probability of stopping at the hth stage is given by phs = (1 - pht) TT pjt,
0 i=n 

where pot = 1.0 and the symbol 	 I I is taken to be 1.0. Then 
j=O 

plS = (1 - 0.90) = 0.10 

p2s = (1 - 0.80)(0.90) = 0.18 

pQS= (1 - 0.70)(0.80)(0.90) = 0.216 

p4s = (1- 0.0)(0.70)(0.80)(0.90) = 0.504 

Based on past experience and physical considerations, the experimenter claims the fol­
lowing: 
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Coefficient Standard- Prior 
of - order probability 

subscript of being 
nonzero 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

12 

13 

16 

17 

20 
~ 

All  the other coefficients have zero prior probability. All  that remains to be specified 
is the choice of utility function. Let us assume the investigation is basic research of an 
exploratory nature so that there are no clearly defined consequences of making inappro­
priate estimates. In this case, it seems reasonable that the experimenter should simply 
try to maximize his probability of making correct decisions. The utility function 

1 if unbiased estimateui(h) = i0 if biased 

* 
will serve the purpose. It is assumed that the purpose of the experiment is to determine 
the effects of changes in the levels of the independent variable and not necessarily the 
mean response. Thus Po is assumed to have zero utility. 

Rather than investigating all the possible nonequivalent d. p.g. 's and their tele­
scoping options, only the following three will be investigated for the best matching of 
physical to design variables. 
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(1)Design I: 

B(3) = {h,PEDBA) 

B(4) = { P I }  

Using the rules presented in reference 1 2 ,  it may be seen that the following assignment 
of treatment combinations to the blocks of the experiment will have the block confounding 
a s  follows: 

Treatments 

(l),dca, ecb, edba 

ba, dcb, eca, ed 

db, cba, edc, ea 

da, c ,  edcba, eb 

a ,  dc, ecba, edb 

b, dcba, ec ,  eda 

dba, cb, edca, e 

d ,  ca, edcb, eba 

(a) A t  stage 2 - The estimator for the alias set {PDA, PDCB, PECA, PEB} is 
confounded with the test facility block effect which has prior probability 0.50. 

(b) At stage 3 - { PDA, PEB} is confounded with the test facility block effect. 
e { pcBA, PEDC} is confounded with the r aw material block effect which has prior proba­

bility 1 .0 .  
? (c) At stage 4 - { PDA} is confounded with the test facility block effect. { PCBA 1 ,  

{ pEDBA}, and { pEDc } a re  confounded with the raw material block effect. 
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Table I11 shows the matching between the physical parameters and the design param­
eters  and the appropriate probabilities when the matching of independent variables is 

x1 = XD 

x3 = x  c 

For the utility function chosen, computation of the expected utility for each 
parameter-estimator matching need not be performed. The choice that yields the maxi­
mum utility will be to assign the estimator to the parameter which has the largest prior 
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probability of being nonzero. If there is more than one parameter in an alias set with 
the same largest prior probability, it is immaterial which is chosen since each will 
result in the same expected utility. The specification that po has zero utility and 
P(po # 0) = 1.0 also assures that the estimator for the d.p.g. will always have zero 
expected utility. Thus the computations need not be done for the d.p.g. 

Tables IV to  VI present the results of the computations for each of the first three 
stages of the experiment. The d.p.g. for each stage is l i s ted  the cosets, the elements 
of each of the cosets, and the appropriate probabilities. The element pK to  which 

max 
the estimator for each coset should be assigned is footnoted. The expected utility for 
this assignment is given for each coset as computed from e.quations (8) and (9), and the 
total expected utility for each stage is then given. 

For stage 4, note that there will be one unit of utility for each estimator except for  
the estimator of po and those estimators which a re  confounded with blocks. The esti­
mator for pDA is confounded with a block effect with probability 0 . 5 0 .  Hence, the 
utility of that estimator is 0.50. The estimators for pcBA, pEDBA, and PEDC are 
confounded with a block effect with probability 1.0;  and, hence, they have utility zero. 
The estimator for Po has zero utility. The remaining 27 estimators all have utility of 
1 . 0 .  Thus 

U(4) = 27.00 + 0 . 5 0  = 2 7 . 5  

The total expected utility according to  equation (10) is then 

4 
u(h)phs = u(1)(0.10) f u(2)(0.18) + U(3)(0.216) + U(4)(0.504) 

= (0.148)(0.10) + (3.40)(0.18) + (13.5)(0.216) + (27.5)(0.504) 

= 17.4028 

The calculations just illustrated a re  quite straightforward but tedious. Further­
more, the three designs proposed are not equivalent under any permutation of the letters 
since they have different numbers of parameters with the same length subscripts. Thus, 
just to evaluate these three designs would involve 3X5! = 360 such computations. The 
program NAMER in reference 9 was developed to  perform the permutations and to eval­
uate them for a given choice of d.p.g. and telescoping sequence. The three designs 
given previously were run on NAMER, with the results summarized in table VII. For 
each of the three designs under consideration is presented a table which shows the 
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physical-design variable matchings which optimize the total expected utility over all 
stages and the matchings which optimize the expected utilities of each of the stages. 

The modified Bayes solution with respect to these three designs would then be to use 
the matching shown in the column headed "Total" for either design 2 or  design 3 .  The 
reason is that the total expected utility for either of these is 17.4298, which is greater 
than the maximized total expected utility for design 1. 

A modified mini-max solution may also be found. In table VI1 the minimum in each 
column corresponding to each stopping point is footnooted. The maximum among these 
is seen to be 0.510 and occurs under the matchings for stages 1, 3, and 4 of design 3 
(all of which a re  the same for this particular example). Thus the matching for stage 1 of 
design 3 may be used as a security strategy. 
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TABLE I. - DESIGN MATRIX FOR A z3 FULL FACTORIAL EXPERIMENT 

Treatment IObserved I Values of independent variables --- -response 
xC
XA XB X ~ X ~  x ~ x ~ x ~  

ba 

-- -

(1) Y 1  +1 -1 -1 +1 -1 +1 +1 -1 

a y2 +1 -1 -1 -1 +1 +1 
b y3 -1 +1 -1 +1 -1 +1 

C y5  -1 -1 +1 +1 -1 +1 

y4 +1 +1 +1 1 -1 -1 

ca '6 +1 -1 -1 +1 1 -1 

cb y7 -1 +1 -1 -1 +1 -1 

cba y 8  v +1 +1 +1 1 +1 +1 +1 
~ ~ ~~ 

TABLE II. - DESIGN MATRIX FOR A z3 FACTORIAL RUN IN TWO BLOCKS 

[Each block is a one-half replicate of the ful l  factorial. 

Treatment I Observed I Values of independent variables 
responseA 

Block 1 
~ 

-1 -1 

+1 

ca +1 

cb -1 1-1 +1 

-

Block 2 

-1 +1 

-1 

+1 


+1 
~ 
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TABLE III. - MATCHING BETWEEN PHYSICAL PARAMETERS AND DESIGN 

PARAMETERS AND APPROPRIATE PRIOR PROBABILITIES WHEN 

MATCHING OF INDEPENDENT VARIABLES IS X1 = XD, 

x2 = XB, x3= x c ,  x4= XE, x5 -- xA 

Physical- Design- Parameter Physical- Design- Parameter 
variable variable prior variable variable prior 

parameters parameters probability parameters parameters probability 

. 

pr h 6  PA 1 . 0 0  

b P17 PDA . 4 0  

PB Pia PBA 0 

b B  P19 ~ B A  0 

PC P20 PCA . 3 0  

PDC P2 1 b C A  0 

PC B 022 PCBA 
PDCB P23 ~ C B A  

PE P24 PEA 
PED P2 5 PEDA 
PEB O26 PE BA 

PEDB P27 PEDBA 
PE C P2 a PECA 
PEDC O29 PEDCA 
PECB O30 PECBA 
PEDCB P31 PEDCBA 
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cp 


TABLE IV. - EVALUATION AT STAGE 1 

PCB = 06 9~~~~ = P23 b = P1 PEDCA = Pz9 
0.80 0.00 0.80 0.00 

0.20 1 .00  0.20 1 .00  

PCA = P20 PDC = P5 PDBA = Pic  PEDCB = 015 
0.30 0.80 0.00 0.00  

0.70 0.20 1.00 1 . 0 0  

PBA = P i  8 Pc = P4 b C A  = P2l PDB = P3 PEDCBA = hi 
0.00 0.80 0.00 0.80 0.00 

1.00 0.20  1 .00  0.20 1.00 

(a) 

aDenotes the element  ljK to which es t imator  f o r  each coset  should b e  assigned. 
max 

PEDA = P25 PE = 4-1 PECBA = 40 
0.00  1.00 0.00 

1 .00  0.00 1.00 0.028 

(4 

PED = Pg PEA = 024 PECB = 4 4  
0 .50  0.00 0.00 

0.50 1 .00  1.00 0.100 

0.028 

0.100 


U(1) =xU(i,kmm) = 0.148 



I '-

Element 

'j 
1 - p.

1 

Element 

'j 
1 - P. 

1 

Element 

'j 
1 - p.

3 

Element 

p j  
1 - p.

3 

Element 

pj 
1 - p.

J 

Element 

p j  
1 - p.

J 

Element 

pj 
1 - p.

3 

aDenotes the element 4 
%ax 

I -

TABLE V. - EVALUATION AT STAGE 2 

[B(2) = {h,k B A *  PEDC' PEDBA] = {PO7 622, P13' 

Elements and probabilities 
~ 

PCB = P6 PEDCA = Pz9 PEDB = P i 1  
0.80 0.00 0.00 

0.20 1.00 1.00 

OCA = PZO PEDCB = Pi5 PEDA = P25 
0.30 0.00 0.00 

0.70 1.00 1.00 

~~ 

Pc = P4 PEDCBA = 631 PED = 09 
0.80  0.00 0.50 

0.20 1.00 0.50 

(a) 

PDCBA = 023 PEC = P12 PEBA = Pzs 
0.00 0.50 0.00 

1.00 0.50 1.00 

PDCB = 07 PECA = 028 PEB = Pi0 
0.80 0.00 0.00 

0 .20  1 .00  1.00 

(a) 

PDCA = hi DECB = 614 PEA = 024 
0.00 0.00 0.00 

1.00 1.00  1.00 

PDC = O5 PECBA = b o  PE = P8 

0 .80  0.00 1.00 

0.20  1.00 0.00 

(4 

P2'7].] 

T(1 - ~ j )  
~~ 

0.20 

I 

0.70 - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _1 0.70 

I 

0.50 

0.50 

0.60 (0.50)(0.60)=0.30 0.30 

1.00 

0.20  

to which the estimator for each coset should be assigned. 
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TABLE VI. - EVALUATION AT STAGE 3 

k(3)= ( PEDBA] = ( P O y  P27}.] 

Elements  and probabilities T ( 1  - P 
~ ~ 

pj 1 -
pj 

1 ­

1.0 0.01 0.0 1.01 1 .00  

I~~ 

0 . 8  0.21 0.0 1.01 1.00 

~ 
~ ~ 

0.0 1.O( 0 . 5  0. 51 1 .00  

I 

I 
0 . 8  0.2(  0.0 1.0(  1.00 

0.31 0 . v  0.0' 1.O( 1.00 

~~ 

0 .  81 0.2c 0.01 1.o t  1 .00 

I ~ 

O.O( i . o a  0.41 0.6C 1.00 

L 

0. 8( 0.20 D.O( 1.00 1.00 

0.4( 3.60 3.0( 1.00 1.00 

I 

0. 8C 1.20 I .  O( 1.00 1.00 

~~ 

0 .oc 1.00 1.oc 1.00 1.00  

~ 

D. 80 ) .20 ). oa 1.00 1.00 

I 
~~ 

3.00 ..00 ).00 ..00 1.00  

I 

I. 80 1.20 1.00 ..00 1.00  

~~ 

1.00 .00 8 . 50 1 .  50 1 .00  

U(i ,kmw) 

1 .00  

1.00 


~~ ~ ~ 

1.00 

1.00  

1 .00  

1.00 

0.00 

1.00 

0.50 

1.00  

1 .00  

1.00 

1.00 

1.00  

1 .00  

U(3) = 1 3 . 5  

aDenotes the element P, to which est imator  for each coset should be assigned. 
max 
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TABLE VII. - OPTIMAL MATCHING3 

(a) Design 1 

Physical variable 

___. .-

Temperature 
Pressure 
Time 
Velocity 
Angle 
.- . - ~  

Stage 

Total 
1 
2 

! 3 
4 

- -. 

D A D 
B C A 
C D B 
E B C 
A E E E 

17.4028 17.1851 17.2062 
.148 " .221 '. 144 

3.400 ,347 3.93 2.90 
13.50 12.40 12.15 
27. 50 27.50 27.50 

~ . ~ _. 

(b) Design 2 
. ~-._ 

Physical variable - T o t a l l S t a ?  1 1 Stage 2 [
-__ 

Physical-design variable matchings which 
optimize the expected utilities 

-	 ~. - ~ ~ .-ITemperature C C 
Pressure D A 
Time E D 
Velocity B B 
Angle A E 

Stage 
-

Total 17.4298 16.9979 17.0578 
1 .148 a . 221  a.19 
2 3.55 3.75 4.10 
3 13.50 11.30 11.30 

4 27.50 27.50 27.50 
-~ ~-

B D 
A E 

17.4298 16.9963 
a.148 a.1243:q­
3.795 

13.50 11.30 
27.50 27.50 

aMinimum in each column corresponding to a single stage. 



TABLE VII. - Concluded. OPTIMAL MATCHINGS 

(c) Design 3 

1 Istage 2 IStage 3 I Stage 4 

Physical-design variable ma tch im which 
optimize the expected utilities 

Temperature C C A 
Pressure D D B 
Time A A C 
Velocity B B D 
Angle E E E 

~ 

Stage Expected utilities of matchings 
I 

Total 17.4298 17.4210 17.4298 17.4210 
1 .148 '. 510 '. 148 '. 510 
2 3.55 3.30 3.55 3.30 

3 13.50 13.50 13.50 13.50 

4 27.50 27.50 27.50 27.50 


~ 

aMinimum in each column corresponding to a single stage. 

L 

A 
B 
C 
D 
E 

17.4210 
a .510 
3.30 
13.50 

27.50 

-
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