CONSTRAINED CHEBYSHEV APPROXIMATIONS TO SOME ELEMENTARY FUNCTIONS SUITABLE FOR EVALUATION WITH FLOATING-POINT ARITHMETIC

by Paul Manos and L. Richard Turner

Lewis Research Center
Cleveland, Ohio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D.C. • MARCH 1972
Approximations which can be evaluated with precision using floating-point arithmetic are presented. The particular set of approximations thus far developed are for the function TAN and the functions of USASI FORTRAN excepting SQRT and EXPONENTIATION. These approximations are, furthermore, specialized to particular forms which are especially suited to a computer with a small memory, in that all of the approximations can share one general purpose subroutine for the evaluation of a polynomial in the square of the working argument.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>GENERAL CONSIDERATIONS</td>
<td>2</td>
</tr>
<tr>
<td>CONSEQUENT RESTRICTIONS ON FORMS USED</td>
<td>4</td>
</tr>
<tr>
<td>CURVE FIT</td>
<td>5</td>
</tr>
<tr>
<td>DISCUSSION OF SPECIFIC APPROXIMATIONS</td>
<td>5</td>
</tr>
<tr>
<td>Logarithm</td>
<td>5</td>
</tr>
<tr>
<td>Exponential</td>
<td>7</td>
</tr>
<tr>
<td>Hyperbolic Sine and Hyperbolic Cosine</td>
<td>8</td>
</tr>
<tr>
<td>Hyperbolic Tangent</td>
<td>10</td>
</tr>
<tr>
<td>Sine and Cosine</td>
<td>12</td>
</tr>
<tr>
<td>Tangent and Cotangent</td>
<td>13</td>
</tr>
<tr>
<td>Inverse Tangent</td>
<td>14</td>
</tr>
<tr>
<td>Inverse Sine and Inverse Cosine</td>
<td>16</td>
</tr>
<tr>
<td>RESULTS</td>
<td>17</td>
</tr>
<tr>
<td>APPENDIX - STRATEGY OF ARGUMENT REDUCTION</td>
<td>65</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>68</td>
</tr>
</tbody>
</table>
CONSTRAINED CHEBYSHEV APPROXIMATIONS TO SOME ELEMENTARY
FUNCTIONS SUITABLE FOR EVALUATION WITH
FLOATING-POINT ARITHMETIC

by Paul Manos and L. Richard Turner

Lewis Research Center

SUMMARY

Approximations which can be evaluated with precision using floating-point arithmetic are presented. The particular set of approximations thus far developed are for the function TAN and the functions of USASI FORTRAN excepting SQRT and EXPONENTIATION. These approximations are, furthermore, specialized to particular forms which are especially suited to a computer with a small memory, in all that of the approximations can share one general purpose subroutine for the evaluation of a polynomial in the square of the working argument.

INTRODUCTION

The need for approximations of known quality to the mathematical functions commonly found in the function libraries of higher level computer languages, such as FORTRAN, has existed for some time. Approximations from the recent collection in the SIAM Series in Applied Mathematics (ref. 1) fill a large part of this need. These approximations have been somewhat optimized for speed, but they generally require that their evaluations be performed with some amount of precision beyond that which is required of the result.

In situations where it is desirable, for whatever reason, to evaluate the approximations using floating-point arithmetic with the precision of the result, the approximations of reference 1 prove to be not well conditioned for the minimization of the errors inherent in floating-point arithmetic.

It is the purpose of this report to present a family of approximations which can be evaluated with good precision using floating-point arithmetic. The particular set of approximations thus far developed are for the function TAN and the functions of USASI
FORTRAN excepting SQRT and EXPONENTIATION. These approximations are, furthermore, specialized to particular forms which are thought to be especially suited to a computer with a small memory, but which has an efficient method of reference to subroutines.

GENERAL CONSIDERATIONS

In general, these approximations are designed so that when the coefficients of a selected approximation are expressed in the floating-point representation of any computer and the given algebraic form is evaluated using the floating-point arithmetic of that computer then the accuracy of the implemented approximation is limited by the given nominal value of relative error or by the precision of the floating-point arithmetic used. Hence, these approximations are designed to avoid certain important sources of error that are inherent in the use of floating-point arithmetic where recourse to an occasional step of arithmetic with greater than nominal precision is overly difficult or slow. This is usually the situation when "double precision" versions of the approximations are being implemented.

The most pervasive source of these errors is a property of floating-point multiplication and division. It can be shown that these operations cannot produce ONTO mapping in the sense of Matula (ref. 2). This has two relevant consequences. The first, and probably more important, occurs when a change of scale is used to facilitate argument reduction. This situation is illustrated for the sine function when the argument is changed to "circle measurement" by multiplying by $4/\pi$.

For every argument x and number base β such that $\pi\beta^{-n}/4 < x < \beta^{-n}$ the value of the multiplied argument lies in the interval $\beta^{-n} < y < 4\beta^{-n}/\pi$. The effect is that the exponent part of y is one unit greater than the exponent part of x and an average of $\pi\beta/4$ successive values of x are represented by a single value of y. Necessarily then, the same result is generated for each of these successive values of x. For at least one of these successive values the magnitude of the error in the result cannot be less than one-half the difference of the correct values of the sine function at the extremes of this small interval or approximately $1/2 \cos(x) \text{Ceil}(\pi\beta/4)$ units of the value of the least significant bit of the result even with no other sources of error. The symbol $\text{Ceil}(t)$ denotes the smallest integer greater than t; hence, for a base sixteen computer this error is approximately 6.3 units (2π). Examples of this large an error have been observed in a case where a change in scale of the argument was used during argument reduction. For this reason, a change in scale of the argument during argument reduction should be avoided.

The second consequence of this defect occurs when a floating-point multiplication or division is used as the final step of any evaluation. Small but systematic reduction in
error is achieved by writing all odd functions, the logarithm function, and the noncon-
stant terms of the exponential function as \(y + yf(y) \) rather than \(y(1 + f(y)) \). Sometimes
an extra step of arithmetic is added to the algorithm by this organization. If a method
of argument reduction which changes the scale of the independent variable is used, the
benefits of this organization will be negligible.

The approximations to be described are all some form of the Chebyshev approxima-
tion constrained to algebraic forms that terminate with an operation of addition or sub-
traction. It is typical of previously reported Chebyshev approximations of these ele-
mentary functions with relative error weight functions for extremes of relative error to
occur at the end points of the domain of derivation and for the relative error to increase
very rapidly outside this domain of derivation. This property of the previously reported
approximations imposes quite severe restrictions on the choice of integer multiplier for
the argument reduction. Each of the current approximations is constrained to take on
the value of the function at the end point of the domain of the approximation. This has
the effect of widening the valid domain somewhat beyond the nominal domain used for
derivation of the coefficients; hence, the restrictions on the correct choice of integer
multiplier for argument reduction are relieved. The details of the precision require-
ments for a reduced argument to stay well within this extended domain are discussed in
the appendix.

This constraint on the approximation's value at the boundary of its nominal domain
has also been imposed when no argument reduction is required. The effect of this con-
straint is that weak monotonicity can easily be achieved and continuity satisfactorily
simulated at a point where two different approximation segments must be joined. This
is realizable even for approximations whose accuracy is low compared to the nominal
precision of the floating-point arithmetic in use.

A further source of errors arises from the impossibility of representing arbitrary
real numbers in any finite length floating-point notation. Algebraic forms for the ap-
proximations presented here were selected so that those coefficients in which truncation
could produce sizable error in the final approximation would, if unconstrained, be very
nearly equal to integers or half integers. These more important coefficients are con-
strained to these generally representable integer or half integer values, and the remain-
ing coefficients are calculated subject to these constraints. Specific details of these
constraints as applied to each approximation are given in the DISCUSSION OF SPECIFIC
APPROXIMATIONS section.

These absence of optionally rounded floating-point arithmetic or the failure of weak
monotonicity or "continuity" can in some cases be compensated for by modification of
the values of selected coefficients. Such "fudges" are machine, word length, and num-
ber base dependent and no attempt has been made to include any.

Given some approximation \(R \) to a function \(f \), the relative error function for this
approximation is defined by
\[
ER(x) = \left| \frac{R(x) - f(x)}{f(x)} \right|
\]

wherever \(f(x) \neq 0 \). If within the domain of validity of the approximation \(f(x) = 0 \), the relative error can be defined for that point by

\[
ER(x) = \lim_{t \to x} \left| \frac{R(t) - f(t)}{f(t)} \right|
\]

One measure of the quality of an approximation is its extremal relative error; that is the least upper bound of the magnitude of \(ER(x) \) for all values \(x \) from the domain of validity of the approximation:

\[
\overline{ER} = \operatorname{lub} \left| ER(x) \right| \quad x \in D
\]

A term often used in describing the quality of an approximation is its precision; this is taken to be the negative of the logarithm of the extremal relative error:

\[
\text{Precision} = -\log_\beta(\overline{ER})
\]

Its value is very nearly equal to the minimum of the number of correct digits in the base \(\beta \) representation of the value of \(R(x) \) for any argument \(x \) from the domain of validity of the approximation.

CONSEQUENT RESTRICTIONS ON FORMS USED

The current set of Chebyshev approximations was developed to avoid serious errors from the previously mentioned sources. Hence, each approximation incorporates these characteristics:

1. The final arithmetic operation is always the addition of an exact term to an approximate term of smaller magnitude.
2. The coefficients are jointly constrained so that the approximation takes on the value of the approximated function at the boundary points of its nominal (reduced) domain.
3. The coefficients with most the influence on error are constrained to values that can be exactly represented in any computer's floating-point number system.

Because of a specific interest in their use in a computer which has a small memory, the forms used for these approximations are limited to those involving the use of a single polynomial in the square of an appropriately reduced argument.
It is expected that the theoretical value of extremal relative error of each approximation will be increased by observing all these constraints. Empirically this effect is small and fortuitously has not required the use of more elaborate approximations in any case that has been implemented.

CURVE FIT

The rational form used for any approximation presented is formally equivalent to one of the following: \(P, yP, (P + y)/(P - y), \) or \(y^3/P \). The symbol \(P \) represents a polynomial of degree \(N \) whose independent variable \(y^2 \) is the square of the reduced argument; the symbol \(Q \) will also be used. Some of the coefficients of \(P \) (or \(Q \)) are constrained to given values; all are constrained to give the theoretically correct value for the joining point. The coefficients are computed subject to these constraints by a slightly modified version of the second algorithm of Remes (ref. 3) using especially constructed error weighting functions so that each resulting approximation is uniform throughout the nominal domain. A known restriction on the use of such rational approximations is that they be pole-free. All the approximations, as generated, turned out to be so without specific attention to the problem. The coefficients presented in this report were computed on an IBM 7094-II computer using floating-point arithmetic with 140 binary digits in the fractional part of the floating-point number. Subroutines to perform this extended precision arithmetic and to evaluate many of the elementary functions using it have been provided by C. L. Lawson (ref. 4).

DISCUSSION OF SPECIFIC APPROXIMATIONS

Logarithm

For any \(x > 0 \) the natural logarithm can be defined in terms of its values over a limited domain as

\[
\ln(x) = n \ln(2) + \ln(y); \quad \frac{\sqrt{2}}{2} < y < \sqrt{2}
\]

The form of equation (1) implies the use of base two arithmetic in that the values of \(n \) and \(y \) are then obtained without error from the representation of the argument \(x \). The rational approximation selected for \(\ln(y) \) in the basic domain is
\[
\ln(y) \approx 2v + \frac{v^3}{Q(v^2)} \quad (2)
\]

\[
v = \frac{y - 1}{y + 1}; \quad \frac{\sqrt{2}}{2} < y < \sqrt{2}
\quad (3)
\]

When floating-point arithmetic is used the term \(y + 1 \) cannot be calculated exactly if the representation of \(y \) has a low order digit of one. The multiplier of any error in \(v \) is reduced from 2.0 to at most 0.395 by the use of the identity \(2v = (y - 1) + v(1 - y) \) to convert equation (2) to the recommended form

\[
\ln(y) \approx (y - 1) + v \left[1 - y + \frac{v^2}{Q(v^2)} \right] \quad (4)
\]

As far as is known, further reduction in error can come only from using extended precision arithmetic.

The quantity \(n \ln(2) \) should be calculated and used in two parts: The more significant part, \(A \), is calculated using only that number of leading digits of \(\ln(2) \) that give an exact product with any value of \(n \) which can occur in an implementation; the less significant part, \(B \), is calculated using the best representation of the remainder of \(\ln(2) \). The various terms of the approximation should be summed starting from the right in approximation (5):

\[
\ln(x) \approx A + (y - 1) + B + v \left[(1 - y) + \frac{v^2}{Q(v^2)} \right] \quad (5)
\]

Optimal use of rounding is quite difficult to achieve because of the large number of changing criteria. For most values of \(n \neq 0 \), the most important operation to be rounded is the left-most (final) addition of approximation (5). For \(n = 0 \), the second addition from the left is most important.

A change of scale of the independent variable to use logarithms of other than the natural base is not recommended because of the floating-point multiplication property unless the implementer is prepared to use somewhat extended precision arithmetic in the evaluation. In that case, an approximation from reference 1 should be applicable.

Coefficients for the approximations (2), (4), or (5) are identified according to the degree \(M \) of the polynomial \(Q(v^2) \) involved as \(\text{LOG}(\sqrt{2}, 0, M) \).
For any argument \(x \) the exponential function can be defined as
\[
ex = 2^n e^y
\]
in terms of its values over a base domain. Ideally, the integer \(n \) and the working argument \(y \) are selected so that
\[
y = x - n \ln(2) \quad |y| \leq \frac{\ln(2)}{2}
\]
A rational approximation
\[
e^y \approx 1 + \frac{2y}{2 - y + y^2 p(y^2)}
\]
is then used within the basic domain. The approximation described here is best implemented in base two arithmetic; the multiplication by \(2^n \) in equation (6) can be done exactly, and the final addition of approximation (8) leaves a digit that can be used for rounding.

Because \(\ln(2) \) is irrational it is not possible to guarantee computing the correct integer \(n \), as defined by relation (7), except by completing the indicated reduction and verifying the containment \(|y| \leq \ln(2)/2 \). The need for such care is avoided because the approximations for \(e^y \) are constrained to take on as nearly as possible the correct values at the joining points, \(y = \pm \ln(2)/2 \). This insures that the attainable, weaker, containment \(|y| < \ln(2)/2 + \Delta \) is sufficient. (See the appendix for details.)

For negative values of the reduced argument the approximation (8) is not weakly monotonic. This is an artifact of floating-point representation in any number base \(\beta \) and is very similar to a situation discussed by D. W. Matula in reference 5. He pointed out the nonmonotone behavior of any floating-point implementation of \(f(y) = y/(2 + y) \) for arguments \(y \) approaching 1.0 from below. The behavior is similarly nonmonotone for arguments that approach many of the positive fractions \(\beta^{-k} \). In a floating-point implementation of approximation (8) the ratio \(2y/[2 + y^2 p(y^2)] - y \) exhibits a similar failure of weak monotonicity for negative arguments. As the representation of \(y \) increases from some negative value to the next available value this ratio increases instead of decreasing.

This increase is sometimes sufficient to cause the sum to decrease producing a failure of weak monotonicity. The approximation can be restated in the algebraically
equivalent form

\[e^y \approx 1 + y + \frac{y[y - y^2 P(y^2)]}{2 - [y - y^2 P(y^2)]} \]

(9)

The use of expression (9) is recommended whenever high accuracy is required; it avoids the previously described computational difficulty at the cost of one extra storage operation and one operation of addition.

Coefficients for the polynomial \(P(y^2) \) of degree \(N \) used in approximation (8) are given the identification \(\text{EXP(ln}(2)/2, 0, N + 1) \).

Hyperbolic Sine and Hyperbolic Cosine

The formal definition

\[\sinh(x) = \frac{e^x - e^{-x}}{2} \]

(10)

of the hyperbolic sine function suggests the implementation as

\[\sinh(x) = \frac{\text{sgn}(x)}{2} \left(e^t - \frac{1}{e^t} \right) \quad t = |x| \]

(11)

Direct use of equation (11) is computationally unstable for small arguments because of the addition of values with opposite signs and nearly equal magnitudes.

For small arguments the rational approximation

\[\sinh(x) \approx x + \frac{x^3}{Q(x^2)} \quad |x| < b \]

(12)

is used. The joining point \(b \) is selected to satisfy precision requirements of the approximation related to (11) which is used for large arguments.

A different difficulty exists for some large arguments. For any number base \(\beta \) direct implementation of approximation (11) is somewhat unstable whenever \(\sinh(t) < \beta^n < e^t/2 \) because the significance of one or more digits is lost by cancellation during the subtraction. Since \(\sinh(t) = s \geq 0 \) is equivalent to \(t = \ln \left(s + \sqrt{s^2 + 1} \right) \) we have this instability occurring whenever
\[
\ln(2\beta^n) \leq t < \left(\ln \beta^n + \sqrt{\beta^{2n} + 1} \right)
\]

(13)

The most elegant known resolution of this difficulty was obtained from Mr. Hirondo Kuki in a private communication. Choose a value \(v \) large enough so that if \(t \) is any magnitude from one of the intervals (13) then, for \(y = t - v \), \(e^{y/2} \) has the same exponent part as \(\sinh(t) \). From this point of view suitable values are given by

\[
v \geq \ln \left(\beta^n + \sqrt{\beta^{2n} + 1} \right) - \ln(2\beta^n) = \ln \left(\frac{1 + \sqrt{1 + \beta^{-2n}}}{2} \right)
\]

(14)

The value of \(v \) is further selected to have a sufficient number of zero low order digits in its machine representation that no error is introduced in the subtraction \(t - v \) for any magnitude \(t \) such that \(\sinh(t) \) can be represented. An algebraic restatement of equation (10) leads to the approximation

\[
\sinh(x) \approx \text{sgn}(x) \left[e^{y} + \left(\frac{e^{v}}{2} - 1 \right) e^{y} - \frac{e^{-v}}{2} e^{-y} \right] \quad y = |x| - v
\]

(15)

In a situation where rounding is available the condition \((e^{y/2}) - 1 < 1/\beta \) is desirable in order that the addition provide a nearly correct rounding digit.

Another possible difficulty with the direct use of approximation (11) would occur for any magnitude \(t \) near the upper limit for which the value \(\sinh(t) \) can be represented in whatever floating-point number system is used. The required value \(e^{t} \) fails to be representable and a machine error condition would result from attempting its calculation. The computational scheme of approximation (14) is found to prevent this whenever \(v > \ln(2) \) without requiring any test except that the value \(\sinh(x) \) be itself representable.

At the joining points of the approximation segments, \(x = \pm b \), the rational approximations are constrained to take on the values obtained by evaluation of the formal definition (10) using high precision arithmetic. It may be necessary for an implementation that the coefficients of the rational approximation be adjusted so that its values at the joining points match the values actually produced by the approximation (14) used for large arguments. A reasonable selection of the joining point is the end of the first positive interval (13) for which the instability of a direct implementation of approximation (11) is avoided. For base two this means \(n = -1 \) and \(b = \ln[(1 + \sqrt{5})/2] \); for any larger base use \(n = 0 \) and \(b = \ln(1 + \sqrt{2}) \).

Polynomials \(Q(x^2) \) for use in the rational approximation (12) and tailored to base two arithmetic are valid in the domain \(|x| < \ln[(1 + \sqrt{5})/2] \). The coefficients for the polynomial of degree \(M \) are identified as \(\text{SINH} \{ \ln[(1 + \sqrt{5})/2], 0, M \} \) and the value selected for \(v \) of approximation (15) must satisfy \(\ln(2) \leq v < \ln(3) \). Approximations
using the coefficients identified as \(\text{SINH} \left[\ln(1 + \sqrt{2}), 0, M \right] \) are valid in the domain \(|x| < \ln(1 + \sqrt{2}) \). These are given for use with number bases other than two; the associated value of \(v \) must satisfy \(\ln(2) \leq v < \ln(2.125) \).

The hyperbolic cosine function is defined as

\[
\cosh(x) = \frac{e^x + e^{-x}}{2}
\]

A straightforward implementation would be valid for small and most large arguments. For arguments whose magnitude is near the upper limit for which \(\cosh(x) \) can be represented \(\cosh(x) \approx |\sinh(x)| \). The approximation

\[
\cosh(x) \approx e^y + \left(\frac{e^y}{2} - 1 \right) e^y + \frac{e^{-y}}{2} - y
\]

\[y = |x| - v \]

which is similar to approximation (15) and uses the same value of \(v \) is effective for all arguments for which \(\cosh(x) \) is representable.

Hyperbolic Tangent

The hyperbolic tangent function is defined as

\[
\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}
\]

This equation is not suitable as the basis for an evaluating algorithm: both numerator and denominator contain exponential terms that must be approximations, neither the sum nor the difference required can be precisely calculated and finally the computation ends with a division. The form

\[
\tanh(x) = \text{sgn}(x) \left(1 - \frac{2}{e^{2y} + 1} \right)
\]

\[y = |x| \]

is algebraically equivalent to (18). It is sufficiently well adapted to floating-point arithmetic to be used as the basis for an approximation to \(\tanh(x) \) for large arguments (\(|x| > b \)). The value of \(b \) is selected so that precision requirements of the approximation (19) can be satisfied. For small values of the argument \(x \) both equations (18) and (19) require the addition of values with opposite signs and nearly equal magnitudes;
hence, neither is satisfactory. The rational approximation

\[
\tanh(x) \approx x - \frac{x^3}{3.0 + x^2 Q(x^2)}
\]

(20)
is used therefore when \(|x| < b\).

It is desirable to round the result of the final arithmetic operation of either approximation; hence, a rounding digit must be generated during that final operation. This is assured if the floating-point exponent of the smaller term is less than that of the result. For large arguments using equation (19) this requires

\[
\frac{2}{e^{2b} + 1} < \frac{1}{\beta}
\]

which gives

\[
b > \ln\left(\frac{2\beta - 1}{2}\right)
\]

(21)

For small arguments using approximation (20) the rounding digit is generated if the floating-point exponent of \(x^3/[3.0 + x^2 Q(x^2)]\) is smaller than the floating-point exponent of \(x\) for every \(x \leq b\). Only for \(\beta = 2\) can both requirements be satisfied; with any other number base the floating-point representation of the value of the smaller term will not extend far enough to include the needed rounding digits.

The accuracy of the rational term of approximation (20) can be marginal near the limits of its domain; hence, the constant term of the denominator is constrained to the precisely representable value 3.0 which eliminates error from one important source. An equally important source of possible error is the calculation of \(x^3\); any available error reducing steps, such as rounding, should be used here.

When an implementation is for a number base greater than two, the floating-point representation of the value \(2y\) can be in error, whether calculated as \(y + y\) or as \(2y\), hence the form

\[
\tanh(x) = \text{sgn}(x) \left[1 - \frac{2}{(e^y)^2 + 1} \right]
\]

(22)

should be used for equation (19) to avoid an unnecessary loss of accuracy due to the representation of \(2y\).

Coefficients for the approximation (20) are identified according to the degree \(M\) of the denominator polynomial involved as \(\text{TANH}[\ln(3)/2, 0, M]\).
Sine and Cosine

The sine and cosine functions can be defined by Maclaurin series as

\[
\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots
\]

(23)

\[
\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \ldots
\]

(24)

for all values of the argument \(x \). Direct implementations of equations (23) and (24) are not satisfactory as approximations because the functions are periodic and have repeated zeros for large arguments.

This difficulty is overcome by limiting the nominal domain of definition of the approximations to \(|x| < \pi/4\). The evaluation algorithms then become

\[
x = (4n + j) \frac{\pi}{2} + y \quad |y| \leq \frac{\pi}{4}
\]

(25)

\[
\sin(x) = \begin{cases}
\sin(y) & \text{if } j = 0 \\
\cos(y) & \text{if } j = 1 \\
-sin(y) & \text{if } j = 2 \\
-cos(y) & \text{if } j = 3
\end{cases}
\]

(26)

\[
\cos(x) = \begin{cases}
\cos(y) & \text{if } j = 0 \\
-sin(y) & \text{if } j = 1 \\
-cos(y) & \text{if } j = 2 \\
\sin(y) & \text{if } j = 3
\end{cases}
\]

(27)

The polynomial approximations used for \(\sin(y) \) and \(\cos(y) \) are

\[
\sin(y) \approx y + y^3 P(y^2)
\]

(28)

\[
\cos(y) \approx 1.0 + y^2 \left[-0.5 + y^2 P_1(y^2) \right]
\]

(29)

In approximation (28) the term \(y^3 P(y^2) \) has several sources of computational error: the value of \(y^2 \), the multiplication of \(y \) by \(y^2 \), and the truncated values of the coeffi-
Rounding can help reduce these errors. When the implementation uses floating-point arithmetic with small number base (\(\beta \leq 12\)), the alignment shift prior to the final addition of approximation (28) both attenuates the effects of these computational rounding errors in the rational term and produces a rounding digit.

Coefficients for the polynomial \(P(y^2)\) of degree \(N - 1\) used in approximation (28) are identified as \(\text{SIN}(\pi/4, N, 0)\). These approximations for \(N = 2, 3, \ldots, 7\) are comparable to approximations 3040, 3041, \ldots, 3045 of reference 1. The loss of nominal precision of the approximations (28) caused by imposing the boundary point value constraint is less than 0.14 decimal digit in all cases.

In approximation (29) for the cosine series the term \(y^2[-0.5 + y^2P_1(y^2)]\) can have a magnitude somewhat greater than 0.25; hence, only use of base two arithmetic ensures that the floating-point exponent of this term is less than that of the result. Even so, reduction in the effect of computational errors in that term may be marginal as may the accuracy of the rounding digit. The leading coefficients are constrained to precisely 1.0 and -0.5 so that no error is introduced by truncating their values for storage. The use of appropriate rounding is recommended.

Coefficients for the polynomial of degree \(N - 2\) used as approximation (29) are identified as \(\text{COS}(\pi/4, N, 0)\). These approximations for \(N = 3, 4, \ldots, 8\) are comparable to approximations 3820, 3821, \ldots, 3825 of reference 1. The loss of nominal precision of the approximations (29) caused by imposing the boundary point value constraint and the coefficient constraint is not overly large: in all cases it is less than 0.49 decimal digit.

Tangent and Cotangent

The tangent function can be defined in continued fraction form as

\[
\tan(x) = \frac{x}{1 - \frac{x^2}{3 - \frac{x^2}{5 - \frac{x^2}{7 - \ldots}}}}
\]

for any value of the argument. The tangent function is periodic, but any direct implementation of equation (30) valid for the entire cycle about the origin is impractical because of the large number of terms that would be required near the poles at \(\pm \pi/2\). The identity

\[
\tan(x) = \frac{1}{\tan(\frac{\pi}{2} - x)}
\]
is used to construct an evaluation algorithm in terms of the values of the tangent from the domain $|x| \leq \pi/4$.

$$x = (2k + j) \frac{\pi}{2} + y \quad |y| \leq \frac{\pi}{4}$$ \hfill (32)

$$\tan(x) = \begin{cases}
\tan(y) & \text{if } j = 0 \\
\frac{-1}{\tan(y)} & \text{if } j = 1 \text{ and } y \neq 0
\end{cases}$$ \hfill (33)

The rational form used for the basic approximation is

$$\tan(y) \approx y + \frac{y^3}{3.0 + y^2 Q(y^2)}$$ \hfill (34)

Because the cotangent function is the reciprocal of the tangent, the same argument reduction and basic approximation can be used, with trivial modifications to equation (33), to evaluate the cotangent.

The magnitude of the rational term of approximation (34) can be almost 0.25; hence, only with the use of arithmetic of base four or less will an alignment shift occur before the final addition. When the implementation must use arithmetic of some larger number base, computational error in the rational term will not have its effect on the final result attenuated and no digit will be available for rounding. Because the accuracy of the rational term can be marginal, its constant term is constrained to the precisely representable value 3.0 so that no error is introduced by truncating that constant for storage. Another important source of error is the calculation of the numerator y^3; any possible error reducing steps, such as rounding, should be included in an implementation.

Coefficients for the approximation (34) are identified according to the degree M of the denominator polynomial involved as $\text{TAN}(\pi/4, 0, M + 1)$. The approximation using $\text{TAN}(\pi/4, 0, 2)$ is comparable to approximation 4283 of reference 1.

Inverse Tangent

For any argument x the principal value of the inverse tangent function can be defined as

$$\arctan(x) = \frac{x}{1 + \frac{x^2}{3 + \frac{4x^2}{5 + \ldots + \frac{k^2x^2}{(2k + 1) +}}} \ldots}$$ \hfill (35)
This continued fraction is not an economical computational algorithm for arguments with large magnitudes because of the number of terms required in the computation. The transformation

\[
\arctan(x) = \frac{\pi}{2} \text{sgn}(x) - \arctan(y) \quad y = \frac{1}{x}
\]

(36)

can be used whenever \(|x| > 1\) to reduce the domain for which the basic approximation used need be valid. Further reduction can be obtained by applying

\[
\arctan(x) = \text{sgn}(x) \left[\frac{\pi}{6} + \arctan(y) \right] \quad y = \frac{|x|\sqrt{3} - 1}{|x| + \sqrt{3}}
\]

(37)

whenever \(\tan(\pi/12) < |x| \leq 1\). The use of transformation (36) or (37) can introduce error both in calculating \(y\) and in subsequently calculating \(\arctan(x)\) using the value \(\arctan(y)\). For some arguments both must be used. Implementing the following elaborated scheme can avoid the cascading of these effects:

\[
\arctan(x) = \begin{cases}
\arctan(y) & \text{if } |x| < \tan\left(\frac{\pi}{12}\right) \\
\text{sgn}(x) \left[\frac{\pi}{6} + \arctan(y) \right] & \text{if } \tan\left(\frac{\pi}{12}\right) < |x| \leq 1 \\
\text{sgn}(x) \left[\frac{\pi}{3} - \arctan(y) \right] & \text{if } 1 < |x| < \frac{1}{\tan\left(\frac{\pi}{12}\right)} \\
\frac{\pi}{2} \text{sgn}(x) - \arctan(y) & \text{if } |x| > \frac{1}{\tan\left(\frac{\pi}{12}\right)}
\end{cases}
\]

(38)

The form selected for the basic approximation is

\[
\arctan(y) \approx y - \frac{y^3}{Q(y^2)}
\]

(39)

This approximation need be valid only for the domain \(|y| \lesssim \tan(\pi/12)\) and is in fact quite stable there even when implemented in floating-point arithmetic of any commonly used number base.

Coefficients for the polynomial \(Q(y^2)\) of degree \(M\) used by approximation (39) are identified as \(\text{ATAN}[an(\pi/12), 0, M]\). The approximation using \(\text{ATAN}[an(\pi/12), 0, 1]\)
is comparable to approximation 5050 of reference 1. The imposition of the boundary point value constraint causes a loss of 0.19 decimal digit of nominal precision.

Inverse Sine and Inverse Cosine

For any argument \(x \) with \(|x| < 1 \) the principal value of the inverse sine function is defined as

\[
\arcsin(x) = x + \frac{x^3}{6} + \frac{3x^5}{40} + \frac{5x^7}{112} + \ldots
\]

(40)

Various numerical problems associated with implementing this definition for arguments with magnitudes near 1.0 can be avoided by using the transformation

\[
\arcsin(x) = \text{sgn}(x) \left[\frac{\pi}{2} - 2 \arcsin(y) \right]
\]

\[
y = \sqrt{\frac{1 - |x|}{2}}
\]

(41)

wherever \(|x| > 0.5 \). The rational approximation

\[
\arcsin(y) \approx y + \frac{y^3}{Q(y^2)}
\]

(42)

is then used in either case.

Any errors that may be introduced by the argument transformation of (41) are preserved through the approximation; hence, all possible error reducing steps should be used. Implementation in base two arithmetic eases this problem somewhat because then neither the calculation of \((1 - |x|)/2\) nor the multiplication in \(2 \arcsin(y)\) can introduce error.

A suitable evaluation algorithm for the principal value of the inverse cosine function can be built around the identity

\[
\arccos(x) = \frac{\pi}{2} - \arcsin(x)
\]

(43)

transformation (41) and approximation (42).

Coefficients for the polynomial \(Q(y^2) \) of degree \(M \) used in approximation (42) are identified as \(\text{ARSIN}(0.5, 0, M) \). The approximation using \(\text{ARSIN}(0.5, 0, 1) \) is comparable to approximation 4691 of reference 1; a loss of 0.19 decimal digit of precision is caused by the imposition of the boundary point value constraint.
The precision obtainable from approximation (42) increases only slowly with the
degree M of the polynomial used. This may limit the utility of these approximations
where high precision is required.

RESULTS

Coefficients for use in implementing any of the approximations that have been dis­
cussed are presented herein. Note that these coefficients are for the polynomial $P(y^2)$
or $Q(y^2)$ required in the description of each approximation. Any specifically constrained
coefficients that may be needed were presented with that description. The coefficients
are listed in order of increasing powers of the square of the appropriate variable; for­
mally,

$$P(y^2) = P_{00} + P_{01}y^2 + P_{02}y^4 + \ldots$$

(44)

For each function considered the functional form and nominal interval of its approxi­
mations are presented as page headings to the lists of coefficients. Each set of coeffi­
cients is identified by an index number and the precision for which that approximation
is adequate. The precision is expressed as the number of binary digits (bits) and
the number of decimal digits. The coefficients are given in both binary (octal) and deci­
mal notation; in each radix system ($\beta = 2$ or $\beta = 10$) the coefficient is expressed as
$(n)F$ where n is an integer and F is a signed fraction whose magnitude is bounded by
$1/\beta$ and 1. The value of the numeral is $F*\beta^n$. Both parts of the binary numeral are,
for convenience, written in the common pseudo-octal representation.

The extreme values of the relative error function $ER(x)$ for each approximation
covered by this report are given in separate lists, indexed according to the same sys­
tem used for the sets of coefficients. With each value is displayed a set of points from
the nominal domain at which the relative error function attains its extreme magnitude.
The sign of the relative error at each point is indicated by a mark (+) or (-) attached to
the point. The natural symmetries of the various relative error functions are indicated;
this allows the identification of all the remaining extremal points of the approximation
and the corresponding signs.
\[
\log(x) \quad \sqrt{2} < x < \sqrt{2}, \quad y = (x-1)/(x+1), \quad \log(\sqrt{2}, 0, M) = 2y + y^3/q(y^2)
\]

Binary Coefficients

<table>
<thead>
<tr>
<th>(M = 1)</th>
<th>Precision 25.0 Bits</th>
<th>(M = 2)</th>
<th>Precision 33.2 Bits</th>
<th>(M = 3)</th>
<th>Precision 41.0 Bits</th>
<th>(M = 4)</th>
<th>Precision 48.6 Bits</th>
<th>(M = 5)</th>
<th>Precision 56.1 Bits</th>
<th>(M = 6)</th>
<th>Precision 63.6 Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 0.60000 60.017 03222 63203</td>
<td>(1) 0.60000 60.017 03222 63203</td>
<td>(1) 0.57777 77543 30151 71753</td>
<td>(1) 0.60000 60.017 03222 63203</td>
<td>(1) 0.57777 77543 30151 71753</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0) -7.71713 02456 73527 27242</td>
<td>(0) -7.71713 02456 73527 27242</td>
<td>(0) -7.71463 16141 34744 31055</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0) 0.56226 04072 27070 26612</td>
<td>(0) 0.56226 04072 27070 26612</td>
<td>(0) 0.56452 30165 35187 17770</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0) -7.70346 32565 04321 70154</td>
<td>(0) -7.70346 32565 04321 70154</td>
<td></td>
</tr>
</tbody>
</table>

Decimal Coefficients

<table>
<thead>
<tr>
<th>(M = 1)</th>
<th>Precision 7.53 Digits</th>
<th>(M = 2)</th>
<th>Precision 10.00 Digits</th>
<th>(M = 3)</th>
<th>Precision 12.35 Digits</th>
<th>(M = 4)</th>
<th>Precision 14.64 Digits</th>
<th>(M = 5)</th>
<th>Precision 16.90 Digits</th>
<th>(M = 6)</th>
<th>Precision 19.14 Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 0.15000 45908 71064 92509</td>
<td>(1) 0.15000 45908 71064 92509</td>
<td>(1) 0.14999 99708 26922 35389</td>
<td>(1) 0.15000 45908 71064 92509</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0) 0.90643 38041 61428 99733</td>
<td>(0) 0.90643 38041 61428 99733</td>
<td>(0) 0.89994 27367 90583 87066</td>
<td>(0) 0.90643 38041 61428 99733</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0) -1.0604 28985 34924 58845</td>
<td>(0) -1.0604 28985 34924 58845</td>
<td>(0) -1.0729 14103 86473 10443</td>
<td>(0) -1.0604 28985 34924 58845</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) -5.1256 98676 13972 73393</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table entries are the binary and decimal coefficients for various values of \(M\), representing the precision in bits or digits. The values are formatted for readability, with each coefficient aligned for easier comparison and use in computations.
<table>
<thead>
<tr>
<th>M = 7</th>
<th>BINARY COEFFICIENTS</th>
<th>DECIMAL COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>6.0000 00000 00000</td>
<td>00000 00000 00068</td>
</tr>
<tr>
<td></td>
<td>7344 72913 31036</td>
<td>54354 01409</td>
</tr>
<tr>
<td>(0)</td>
<td>-.71463 14631 46313</td>
<td>9711 01409</td>
</tr>
<tr>
<td></td>
<td>07376 47263 27417</td>
<td>34575 01409</td>
</tr>
<tr>
<td>(-3)</td>
<td>-.64523 30401 34067</td>
<td>37906 01409</td>
</tr>
<tr>
<td></td>
<td>26222 02613 71412</td>
<td>15600 01409</td>
</tr>
<tr>
<td>(-4)</td>
<td>-.56252 44342 13167</td>
<td>40502 01409</td>
</tr>
<tr>
<td></td>
<td>10205 21621 32614</td>
<td>00000 01409</td>
</tr>
<tr>
<td>(-4)</td>
<td>-.42212 02025 23541</td>
<td>50545 01409</td>
</tr>
<tr>
<td></td>
<td>47005 73433 32500</td>
<td>00000 01409</td>
</tr>
<tr>
<td>(-5)</td>
<td>-.60602 26754 20447</td>
<td>25421 01409</td>
</tr>
<tr>
<td></td>
<td>11015 41141 50000</td>
<td>00000 01409</td>
</tr>
<tr>
<td>(-5)</td>
<td>-.44707 50064 17000</td>
<td>77066 01409</td>
</tr>
<tr>
<td></td>
<td>33135 35230 00000</td>
<td>00000 01409</td>
</tr>
<tr>
<td>(-5)</td>
<td>-.40747 71256 77267</td>
<td>60240 01409</td>
</tr>
<tr>
<td></td>
<td>12165 07100 00000</td>
<td>00000 01409</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M = 8</th>
<th>BINARY COEFFICIENTS</th>
<th>DECIMAL COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>5.7777 77777 77777</td>
<td>00000 00000 00000</td>
</tr>
<tr>
<td></td>
<td>76642 33124 24177</td>
<td>00000 00000 00000</td>
</tr>
<tr>
<td>(0)</td>
<td>-.71463 14631 46313</td>
<td>9711 01409</td>
</tr>
<tr>
<td></td>
<td>77012 60340 35415</td>
<td>40543 01409</td>
</tr>
<tr>
<td>(-3)</td>
<td>-.64523 30401 35510</td>
<td>10240 01409</td>
</tr>
<tr>
<td></td>
<td>43153 51305 01736</td>
<td>44600 01409</td>
</tr>
<tr>
<td>(-4)</td>
<td>-.56252 44331 42702</td>
<td>52353 01409</td>
</tr>
<tr>
<td></td>
<td>76406 43512 21326</td>
<td>00000 01409</td>
</tr>
<tr>
<td>(-4)</td>
<td>-.42212 02562 01576</td>
<td>06550 01409</td>
</tr>
<tr>
<td></td>
<td>25474 76737 57200</td>
<td>00000 01409</td>
</tr>
<tr>
<td>(-5)</td>
<td>-.60577 23412 71161</td>
<td>57071 01409</td>
</tr>
<tr>
<td></td>
<td>73551 66755 40000</td>
<td>00000 01409</td>
</tr>
<tr>
<td>(-5)</td>
<td>-.45056 47166 13027</td>
<td>51756 01409</td>
</tr>
<tr>
<td></td>
<td>41511 61460 00000</td>
<td>00000 01409</td>
</tr>
<tr>
<td>(-6)</td>
<td>-.72470 54677 37474</td>
<td>55562 01409</td>
</tr>
<tr>
<td></td>
<td>54510 36000 00000</td>
<td>00000 01409</td>
</tr>
<tr>
<td>(-6)</td>
<td>-.67007 13545 54560</td>
<td>03456 01409</td>
</tr>
<tr>
<td></td>
<td>34747 40000 00000</td>
<td>00000 01409</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M = 9</th>
<th>BINARY COEFFICIENTS</th>
<th>DECIMAL COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>6.0000 00000 00000</td>
<td>00000 00000 00000</td>
</tr>
<tr>
<td></td>
<td>00007 46755 42721</td>
<td>13072 01409</td>
</tr>
<tr>
<td>(0)</td>
<td>-.71463 14631 46313</td>
<td>9711 01409</td>
</tr>
<tr>
<td></td>
<td>12170 05447 23335</td>
<td>15455 01409</td>
</tr>
<tr>
<td>(-3)</td>
<td>-.64523 33031 35476</td>
<td>63034 01409</td>
</tr>
<tr>
<td></td>
<td>24277 37133 17250</td>
<td>47400 01409</td>
</tr>
<tr>
<td>(-4)</td>
<td>-.56252 44331 53144</td>
<td>40540 01409</td>
</tr>
<tr>
<td></td>
<td>54701 26310 57574</td>
<td>00600 01409</td>
</tr>
<tr>
<td>(-4)</td>
<td>-.42212 02541 20243</td>
<td>55053 01409</td>
</tr>
<tr>
<td></td>
<td>12672 26566 54000</td>
<td>00000 01409</td>
</tr>
<tr>
<td>(-5)</td>
<td>-.60577 30502 22226</td>
<td>01345 01409</td>
</tr>
<tr>
<td></td>
<td>55636 65266 00000</td>
<td>00000 01409</td>
</tr>
<tr>
<td>(-5)</td>
<td>-.45052 61662 72524</td>
<td>31151 01409</td>
</tr>
<tr>
<td></td>
<td>17622 47600 00000</td>
<td>00000 01409</td>
</tr>
<tr>
<td>(-6)</td>
<td>-.73026 50177 33560</td>
<td>77330 01409</td>
</tr>
<tr>
<td></td>
<td>45019 60000 00000</td>
<td>00000 01409</td>
</tr>
<tr>
<td>(-6)</td>
<td>-.60012 66436 63039</td>
<td>20330 01409</td>
</tr>
<tr>
<td></td>
<td>53334 30000 00000</td>
<td>00000 01409</td>
</tr>
<tr>
<td>(-6)</td>
<td>-.57033 67236 44435</td>
<td>73405 01409</td>
</tr>
<tr>
<td></td>
<td>30400 00000 00000</td>
<td>00000 01409</td>
</tr>
</tbody>
</table>

LOG(X) \[\sqrt{2}/2 < X < \sqrt{2} \], \[Y = (X-1)/(X+1) \], \[\log(\sqrt{2}, 0, M) = 2Y + Y^3/Q(Y^2) \]
\[\log(x) \quad \sqrt{e} < x < \sqrt{e}, \quad y = (x-1)/(x+1), \quad \log(\sqrt{e}, 0, M) = 2y + y^3/6(q^2) \]

Binary Coefficients

<table>
<thead>
<tr>
<th>M = 16</th>
<th>Precision: 92.9 Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ 1 }</td>
<td>57777 77777 77777 77777</td>
</tr>
<tr>
<td>{ 0 }</td>
<td>71463 14631 46314 63146</td>
</tr>
<tr>
<td>{-3}</td>
<td>64523 30401 35476 71666</td>
</tr>
<tr>
<td>{-4}</td>
<td>65562 44331 53050 60713</td>
</tr>
<tr>
<td>{-5}</td>
<td>60577 30407 33602 57316</td>
</tr>
<tr>
<td>{-6}</td>
<td>73015 17522 50366 53507</td>
</tr>
<tr>
<td>{-7}</td>
<td>60427 50773 47253 63006</td>
</tr>
<tr>
<td>{-8}</td>
<td>50320 67527 77264 16335</td>
</tr>
<tr>
<td>{-9}</td>
<td>51010 26153 13326 61304</td>
</tr>
</tbody>
</table>

Decimal Coefficients

<table>
<thead>
<tr>
<th>M = 16</th>
<th>Precision: 29.75 Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ 1 }</td>
<td>14999 99999 99999 99999</td>
</tr>
<tr>
<td>{ 0 }</td>
<td>89999 99999 99999 99999</td>
</tr>
<tr>
<td>{-3}</td>
<td>10285 71428 57142 86124</td>
</tr>
<tr>
<td>{-4}</td>
<td>52571 42857 14285 89095</td>
</tr>
<tr>
<td>{-5}</td>
<td>24261 70648 65962 22563</td>
</tr>
<tr>
<td>{-6}</td>
<td>33466 41929 52635 38047</td>
</tr>
<tr>
<td>{-7}</td>
<td>23803 12255 79813 29415</td>
</tr>
<tr>
<td>{-8}</td>
<td>18107 31277 73065 53564</td>
</tr>
<tr>
<td>{-9}</td>
<td>77854 86718 46926 89734</td>
</tr>
<tr>
<td>{-10}</td>
<td>10513 74582 33248 10770</td>
</tr>
</tbody>
</table>

Binary Coefficients

<table>
<thead>
<tr>
<th>M = 11</th>
<th>Precision: 100.2 Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ 1 }</td>
<td>60000 00000 00000 00000</td>
</tr>
<tr>
<td>{ 0 }</td>
<td>71463 14631 46314 63146</td>
</tr>
<tr>
<td>{-3}</td>
<td>64523 30401 35476 71666</td>
</tr>
<tr>
<td>{-4}</td>
<td>65562 44331 53050 60713</td>
</tr>
<tr>
<td>{-5}</td>
<td>60577 30407 33602 57316</td>
</tr>
<tr>
<td>{-6}</td>
<td>73015 17522 50366 53507</td>
</tr>
</tbody>
</table>

Decimal Coefficients

<table>
<thead>
<tr>
<th>M = 11</th>
<th>Precision: 30.15 Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ 1 }</td>
<td>15000 00000 00000 00000</td>
</tr>
<tr>
<td>{ 0 }</td>
<td>90000 00000 00000 00000</td>
</tr>
<tr>
<td>{-3}</td>
<td>10285 71428 57142 85710</td>
</tr>
<tr>
<td>{-4}</td>
<td>52571 42857 14285 89095</td>
</tr>
<tr>
<td>{-5}</td>
<td>24261 70648 65962 22563</td>
</tr>
<tr>
<td>{-6}</td>
<td>33466 41929 52635 38047</td>
</tr>
<tr>
<td>{-7}</td>
<td>23803 12255 79813 29415</td>
</tr>
<tr>
<td>{-8}</td>
<td>18107 31277 73065 53564</td>
</tr>
<tr>
<td>{-9}</td>
<td>77854 86718 46926 89734</td>
</tr>
<tr>
<td>{-10}</td>
<td>10513 74582 33248 10770</td>
</tr>
</tbody>
</table>
\[\exp(y) \quad |y| < \ln(2)/2, \quad \exp(\ln(2)/2, N, 0) = 1 + 2y/(2 - y + y^2\exp(y^2)) \]

Binary Coefficients

N = 2

<table>
<thead>
<tr>
<th>Precision</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.5</td>
<td>2525 2054 0640 47441</td>
</tr>
<tr>
<td>-10</td>
<td>55234 61667 44521 41037</td>
</tr>
</tbody>
</table>

Decimal Coefficients

N = 2

<table>
<thead>
<tr>
<th>Precision</th>
<th>Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.19</td>
<td>16666 61156 57965 13756</td>
</tr>
</tbody>
</table>

N = 3

<table>
<thead>
<tr>
<th>Precision</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.2</td>
<td>2525 25247 21407 07671</td>
</tr>
<tr>
<td>-10</td>
<td>55405 32224 14032 40401</td>
</tr>
<tr>
<td>-15</td>
<td>42351 07317 05066 57021</td>
</tr>
</tbody>
</table>

Decimal Coefficients

N = 3

<table>
<thead>
<tr>
<th>Precision</th>
<th>Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.40</td>
<td>16666 66658 77010 60714</td>
</tr>
</tbody>
</table>

N = 4

<table>
<thead>
<tr>
<th>Precision</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>51.7</td>
<td>2525 25252 52306 31444</td>
</tr>
<tr>
<td>-10</td>
<td>55405 54033 03044 30247</td>
</tr>
<tr>
<td>-15</td>
<td>42531 21327 32175 34146</td>
</tr>
<tr>
<td>-23</td>
<td>67002 10606 47073 06361</td>
</tr>
</tbody>
</table>

Decimal Coefficients

N = 4

<table>
<thead>
<tr>
<th>Precision</th>
<th>Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.56</td>
<td>16666 66666 66665 13756</td>
</tr>
</tbody>
</table>

N = 5

<table>
<thead>
<tr>
<th>Precision</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.2</td>
<td>52525 25252 52522 12352</td>
</tr>
<tr>
<td>-10</td>
<td>55405 54033 36541 33223</td>
</tr>
<tr>
<td>-15</td>
<td>42531 42532 42607 15125</td>
</tr>
<tr>
<td>-23</td>
<td>67364 70003 50255 04375</td>
</tr>
<tr>
<td>-30</td>
<td>54316 70735 34505 36530</td>
</tr>
</tbody>
</table>

Decimal Coefficients

N = 5

<table>
<thead>
<tr>
<th>Precision</th>
<th>Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.71</td>
<td>16666 66666 66666 66666 66665</td>
</tr>
</tbody>
</table>

N = 6

<table>
<thead>
<tr>
<th>Precision</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>72.6</td>
<td>52525 25252 52522 25244</td>
</tr>
<tr>
<td>-10</td>
<td>55405 54033 40552 10421</td>
</tr>
<tr>
<td>-15</td>
<td>42531 25257 74001 00430</td>
</tr>
<tr>
<td>-23</td>
<td>67365 67302 03106 27240</td>
</tr>
<tr>
<td>-30</td>
<td>54651 07266 07130 56111</td>
</tr>
<tr>
<td>-35</td>
<td>43721 54432 43311 75335</td>
</tr>
</tbody>
</table>

Decimal Coefficients

N = 6

<table>
<thead>
<tr>
<th>Precision</th>
<th>Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.86</td>
<td>16666 66666 66666 66666 66666 66666</td>
</tr>
</tbody>
</table>

Notes:

- Precision refers to the number of significant digits.
- Bits indicate the number of binary digits used for precision.
- Decimal coefficients are provided for each precision level.
\[
\begin{array}{ll}
\text{EXP}(Y) & |Y| < \ln(2)/2, \quad \text{EXP}(\ln(2)/2, N, 0) = 1 + 2Y/(2 - Y + Y^2 P(Y))
\end{array}
\]

BINARY COEFFICIENTS

<table>
<thead>
<tr>
<th>(N = 7)</th>
<th>PRECISION 83.0 BITS</th>
<th>(N = 8)</th>
<th>PRECISION 93.4 BITS</th>
<th>(N = 9)</th>
<th>PRECISION 103.8 BITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-2)</td>
<td>(0.52525 \ 0.52525 \ 0.52525 \ 0.52525)</td>
<td>(-2)</td>
<td>(0.52525 \ 0.52525 \ 0.52525 \ 0.52525)</td>
<td>(-2)</td>
<td>(0.52525 \ 0.52525 \ 0.52525 \ 0.52525)</td>
</tr>
<tr>
<td>(-10)</td>
<td>(-0.55405 \ 0.54505 \ 0.54055 \ 0.54505)</td>
<td>(-10)</td>
<td>(-0.55405 \ 0.54505 \ 0.54055 \ 0.54505)</td>
<td>(-10)</td>
<td>(-0.55405 \ 0.54505 \ 0.54055 \ 0.54505)</td>
</tr>
<tr>
<td>(-15)</td>
<td>(-0.54231 \ 0.52570 \ 0.00425 \ 0.00425)</td>
<td>(-15)</td>
<td>(-0.54231 \ 0.52570 \ 0.00425 \ 0.00425)</td>
<td>(-15)</td>
<td>(-0.54231 \ 0.52570 \ 0.00425 \ 0.00425)</td>
</tr>
<tr>
<td>(-23)</td>
<td>(-0.67365 \ 0.67466 \ 0.0076 \ 0.0076)</td>
<td>(-23)</td>
<td>(-0.67365 \ 0.67466 \ 0.0076 \ 0.0076)</td>
<td>(-23)</td>
<td>(-0.67365 \ 0.67466 \ 0.0076 \ 0.0076)</td>
</tr>
<tr>
<td>(-30)</td>
<td>(-0.56452 \ 0.57217 \ 0.04467 \ 0.04467)</td>
<td>(-30)</td>
<td>(-0.56452 \ 0.57217 \ 0.04467 \ 0.04467)</td>
<td>(-30)</td>
<td>(-0.56452 \ 0.57217 \ 0.04467 \ 0.04467)</td>
</tr>
<tr>
<td>(-35)</td>
<td>(-0.58173 \ 0.57456 \ 0.0053 \ 0.0053)</td>
<td>(-35)</td>
<td>(-0.58173 \ 0.57456 \ 0.0053 \ 0.0053)</td>
<td>(-35)</td>
<td>(-0.58173 \ 0.57456 \ 0.0053 \ 0.0053)</td>
</tr>
<tr>
<td>(-43)</td>
<td>(-0.72072 \ 0.10575 \ 0.53034 \ 0.62337)</td>
<td>(-43)</td>
<td>(-0.72072 \ 0.10575 \ 0.53034 \ 0.62337)</td>
<td>(-43)</td>
<td>(-0.72072 \ 0.10575 \ 0.53034 \ 0.62337)</td>
</tr>
</tbody>
</table>

DECIMAL COEFFICIENTS

<table>
<thead>
<tr>
<th>(N = 7)</th>
<th>PRECISION 24.99 DIGITS</th>
<th>(N = 8)</th>
<th>PRECISION 28.12 DIGITS</th>
<th>(N = 9)</th>
<th>PRECISION 31.25 DIGITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-2)</td>
<td>(0.16666 \ 0.66666 \ 0.66666 \ 0.66666)</td>
<td>(-2)</td>
<td>(0.66666 \ 0.66666 \ 0.66666 \ 0.66666)</td>
<td>(-2)</td>
<td>(0.66666 \ 0.66666 \ 0.66666 \ 0.66666)</td>
</tr>
<tr>
<td>(-10)</td>
<td>(-0.27777 \ 0.77777 \ 0.77777 \ 0.77777)</td>
<td>(-10)</td>
<td>(-0.27777 \ 0.77777 \ 0.77777 \ 0.77777)</td>
<td>(-10)</td>
<td>(-0.27777 \ 0.77777 \ 0.77777 \ 0.77777)</td>
</tr>
<tr>
<td>(-15)</td>
<td>(-0.66137 \ 0.56133 \ 0.75122 \ 0.77933)</td>
<td>(-15)</td>
<td>(-0.66137 \ 0.56133 \ 0.75122 \ 0.77933)</td>
<td>(-15)</td>
<td>(-0.66137 \ 0.56133 \ 0.75122 \ 0.77933)</td>
</tr>
<tr>
<td>(-23)</td>
<td>(-0.18718 \ 1.18733 \ 0.98222 \ 0.57076)</td>
<td>(-23)</td>
<td>(-0.18718 \ 1.18733 \ 0.98222 \ 0.57076)</td>
<td>(-23)</td>
<td>(-0.18718 \ 1.18733 \ 0.98222 \ 0.57076)</td>
</tr>
<tr>
<td>(-30)</td>
<td>(-0.71344 \ 1.34253 \ 0.37294 \ 0.03655)</td>
<td>(-30)</td>
<td>(-0.71344 \ 1.34253 \ 0.37294 \ 0.03655)</td>
<td>(-30)</td>
<td>(-0.71344 \ 1.34253 \ 0.37294 \ 0.03655)</td>
</tr>
<tr>
<td>(-35)</td>
<td>(-0.18657 \ 0.81676 \ 0.04023 \ 0.84655)</td>
<td>(-35)</td>
<td>(-0.18657 \ 0.81676 \ 0.04023 \ 0.84655)</td>
<td>(-35)</td>
<td>(-0.18657 \ 0.81676 \ 0.04023 \ 0.84655)</td>
</tr>
<tr>
<td>(-43)</td>
<td>(-0.81469 \ 0.68199 \ 0.96450 \ 0.89348)</td>
<td>(-43)</td>
<td>(-0.81469 \ 0.68199 \ 0.96450 \ 0.89348)</td>
<td>(-43)</td>
<td>(-0.81469 \ 0.68199 \ 0.96450 \ 0.89348)</td>
</tr>
</tbody>
</table>

COEFFICIENTS

<table>
<thead>
<tr>
<th>(N = 7)</th>
<th>(N = 8)</th>
<th>(N = 9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_0)</td>
<td>(P_0)</td>
<td>(P_0)</td>
</tr>
<tr>
<td>(P_1)</td>
<td>(P_1)</td>
<td>(P_1)</td>
</tr>
<tr>
<td>(P_2)</td>
<td>(P_2)</td>
<td>(P_2)</td>
</tr>
<tr>
<td>(P_3)</td>
<td>(P_3)</td>
<td>(P_3)</td>
</tr>
<tr>
<td>(P_4)</td>
<td>(P_4)</td>
<td>(P_4)</td>
</tr>
<tr>
<td>(P_5)</td>
<td>(P_5)</td>
<td>(P_5)</td>
</tr>
<tr>
<td>(P_6)</td>
<td>(P_6)</td>
<td>(P_6)</td>
</tr>
<tr>
<td>(P_7)</td>
<td>(P_7)</td>
<td>(P_7)</td>
</tr>
</tbody>
</table>

PRECISION

- **N = 7**: PRECISION 83.0 BITS
- **N = 8**: PRECISION 93.4 BITS
- **N = 9**: PRECISION 103.8 BITS
- **N = 10**: PRECISION 123.8 BITS
- **N = 11**: PRECISION 143.8 BITS
- **N = 12**: PRECISION 163.8 BITS

DIGITS

- **N = 7**: 24.99 DIGITS
- **N = 8**: 28.12 DIGITS
- **N = 9**: 31.25 DIGITS
- **N = 10**: 34.37 DIGITS
- **N = 11**: 37.50 DIGITS
- **N = 12**: 40.62 DIGITS
\[\sinh(y) \quad |y| < \ln((1 + \sqrt{5})/2), \quad \sinh(\ln((1 + \sqrt{5})/2, 0, M) = y + y^3/(6y^2) \]

<table>
<thead>
<tr>
<th>BINARY COEFFICIENTS</th>
<th>DECIMAL COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>M = 1</td>
<td>M = 1</td>
</tr>
<tr>
<td>PRECISION 22.9 BITS</td>
<td>PRECISION 6.89 DIGITS</td>
</tr>
<tr>
<td>(3) [.57777 11217 34261 01451]</td>
<td>(1) [.59997 91260 38329 57553]</td>
</tr>
<tr>
<td>(1) [-.46314 75243 52416 32765]</td>
<td>(0) [-.29728 63482 61173 16774]</td>
</tr>
<tr>
<td>M = 2</td>
<td>M = 2</td>
</tr>
<tr>
<td>PRECISION 33.0 BITS</td>
<td>PRECISION 9.94 DIGITS</td>
</tr>
<tr>
<td>(3) [.57777 77721 67356 72537]</td>
<td>(1) [.59999 99656 27987 80758]</td>
</tr>
<tr>
<td>(1) [-.46314 16643 66123 12277]</td>
<td>(0) [-.29999 13263 35020 31956]</td>
</tr>
<tr>
<td>(7) [.77666 23672 34305 72621]</td>
<td>(2) [-.77949 31022 65013 44420]</td>
</tr>
<tr>
<td>M = 3</td>
<td>M = 3</td>
</tr>
<tr>
<td>PRECISION 43.8 BITS</td>
<td>PRECISION 13.18 DIGITS</td>
</tr>
<tr>
<td>(3) [.57777 77777 75176 64110]</td>
<td>(1) [.59999 99999 67958 83639]</td>
</tr>
<tr>
<td>(1) [-.46314 63112 14735 15504]</td>
<td>(0) [-.29999 98868 69269 90423]</td>
</tr>
<tr>
<td>(6) [.40135 21331 17225 35003]</td>
<td>(2) [-.78569 75676 82561 85824]</td>
</tr>
<tr>
<td>(14) [-.43114 13114 31137 25042]</td>
<td>(3) [-.13408 19463 60659 91619]</td>
</tr>
<tr>
<td>M = 4</td>
<td>M = 4</td>
</tr>
<tr>
<td>PRECISION 57.0 BITS</td>
<td>PRECISION 17.15 DIGITS</td>
</tr>
<tr>
<td>(3) [.57777 77777 77777 62201]</td>
<td>(1) [.59999 99999 99995 11608]</td>
</tr>
<tr>
<td>(1) [-.46314 63146 31149 02347]</td>
<td>(0) [-.29999 99999 97070 26644]</td>
</tr>
<tr>
<td>(7) [.76124 46002 34303 77734]</td>
<td>(2) [-.78571 42858 03577 22224]</td>
</tr>
<tr>
<td>(14) [-.43274 53223 46364 44613]</td>
<td>(3) [-.13492 06462 78058 58121]</td>
</tr>
<tr>
<td>(23) [.66473 65216 57055 02053]</td>
<td>(4) [-.14488 95344 56593 56675]</td>
</tr>
<tr>
<td>(30) [.10354 07610 42100 00000]</td>
<td>(5) [.53337 41202 49813 24478]</td>
</tr>
<tr>
<td>M = 5</td>
<td>M = 5</td>
</tr>
<tr>
<td>PRECISION 64.4 BITS</td>
<td>PRECISION 19.39 DIGITS</td>
</tr>
<tr>
<td>(3) [.60000 00000 00000 00057]</td>
<td>(1) [.60000 00000 00000 03884]</td>
</tr>
<tr>
<td>(1) [-.46314 63146 31463 15126]</td>
<td>(0) [-.30000 00000 00000 27888]</td>
</tr>
<tr>
<td>(7) [.0746 22071 66549 43665]</td>
<td>(2) [-.78571 42858 03577 22224]</td>
</tr>
<tr>
<td>(14) [-.43274 53223 46364 44613]</td>
<td>(3) [-.13492 06462 78058 58121]</td>
</tr>
<tr>
<td>(23) [.60534 50660 42621 75005]</td>
<td>(4) [-.14508 04888 74696 66981]</td>
</tr>
<tr>
<td>(30) [.30724 57254 22500 00000]</td>
<td>(5) [-.27491 05451 27541 48687]</td>
</tr>
<tr>
<td>(34) [-.57165 30622 23242 37567]</td>
<td>(6) [.26232 64055 90022 74117]</td>
</tr>
<tr>
<td>M = 6</td>
<td>M = 6</td>
</tr>
<tr>
<td>PRECISION 73.8 BITS</td>
<td>PRECISION 22.22 DIGITS</td>
</tr>
<tr>
<td>(3) [.60000 00000 00000 00000]</td>
<td>(1) [.60000 00000 00000 00000]</td>
</tr>
<tr>
<td>(1) [-.46314 63146 31463 15126]</td>
<td>(0) [-.30000 00000 00000 00000]</td>
</tr>
<tr>
<td>(7) [.07626 14726 35557 14263]</td>
<td>(2) [-.78571 42858 14899 36741]</td>
</tr>
<tr>
<td>(14) [-.43274 53223 46364 44613]</td>
<td>(3) [-.13492 06349 73858 92777]</td>
</tr>
<tr>
<td>(23) [.66933 31024 44004 35322]</td>
<td>(4) [-.14507 32366 84647 17765]</td>
</tr>
<tr>
<td>(34) [-.53225 17607 47743 00006]</td>
<td>(5) [-.21928 95596 43713 14936]</td>
</tr>
<tr>
<td>(37) [.46711 10126 14555 76265]</td>
<td>(6) [-.28298 25636 83370 42599]</td>
</tr>
<tr>
<td>(17602 17600 00000 00000)</td>
<td>(48101 64367 63332 68372)</td>
</tr>
</tbody>
</table>
BINARY COEFFICIENTS

<table>
<thead>
<tr>
<th>M = 7</th>
<th>PRECISION 84.1 BITS</th>
<th>DECIMAL COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)</td>
<td>.60000 00000 00000</td>
<td>Q00 (1) .60000 00000 00000 00000</td>
</tr>
<tr>
<td></td>
<td>00000 00000 00000</td>
<td>00780 41862 98227 74210</td>
</tr>
<tr>
<td>(-1)</td>
<td>-.46314 63146 31463</td>
<td>Q01 (01) -.30000 00000 00000 00000</td>
</tr>
<tr>
<td></td>
<td>14631</td>
<td>85547 03537 71061 69687</td>
</tr>
<tr>
<td>(-6)</td>
<td>-.40135 47671 62064</td>
<td>Q02 (02) .78571 42057 14226 23028</td>
</tr>
<tr>
<td></td>
<td>53125</td>
<td>69422 24907 49525 20264</td>
</tr>
<tr>
<td>(-14)</td>
<td>-.43274 57333 54066</td>
<td>Q03 (03) -.13492 06349 20753 51949</td>
</tr>
<tr>
<td></td>
<td>21767</td>
<td>54539 78531 32705 10638</td>
</tr>
<tr>
<td>(-23)</td>
<td>.60533 30374 41145</td>
<td>Q04 (05) .14507 31809 38256 36851</td>
</tr>
<tr>
<td></td>
<td>57353</td>
<td>84050 91699 36968 50332</td>
</tr>
<tr>
<td>(-34)</td>
<td>-.44663 91052 14000</td>
<td>Q05 (08) -.25173 35117 80674 15178</td>
</tr>
<tr>
<td></td>
<td>00000</td>
<td>60081 38605 73631 26898</td>
</tr>
<tr>
<td>(-37)</td>
<td>-.47651 54323 10377</td>
<td>Q06 (09) -.28981 18217 33982 20768</td>
</tr>
<tr>
<td></td>
<td>14756</td>
<td>91627 79620 28173 98355</td>
</tr>
<tr>
<td>(-44)</td>
<td>.43370 00000 00000</td>
<td>Q07 (11) .73756 66483 91288 20564</td>
</tr>
<tr>
<td></td>
<td>65633</td>
<td>33376 50940 11111 96260</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M = 8</th>
<th>PRECISION 95.4 BITS</th>
<th>PRECISION 28.72 DIGITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)</td>
<td>.60000 00000 00000</td>
<td>Q00 (1) .60000 00000 00000 00000</td>
</tr>
<tr>
<td></td>
<td>00000 00000 00000</td>
<td>00000 00000 00000 00000 00000</td>
</tr>
<tr>
<td>(-1)</td>
<td>-.46314 63146 31463</td>
<td>Q01 (01) -.30000 00000 00000 00000</td>
</tr>
<tr>
<td></td>
<td>14631</td>
<td>85547 03537 71061 69687</td>
</tr>
<tr>
<td>(-6)</td>
<td>-.40135 47671 62064</td>
<td>Q02 (02) .78571 42057 14226 23028</td>
</tr>
<tr>
<td></td>
<td>53125</td>
<td>69422 24907 49525 20264</td>
</tr>
<tr>
<td>(-14)</td>
<td>-.43274 57333 54066</td>
<td>Q03 (03) -.13492 06349 20753 51949</td>
</tr>
<tr>
<td></td>
<td>21767</td>
<td>54539 78531 32705 10638</td>
</tr>
<tr>
<td>(-23)</td>
<td>.60533 30374 41145</td>
<td>Q04 (05) .14507 31809 38256 36851</td>
</tr>
<tr>
<td></td>
<td>57353</td>
<td>84050 91699 36968 50332</td>
</tr>
<tr>
<td>(-34)</td>
<td>-.44663 91052 14000</td>
<td>Q05 (08) -.25173 35117 80674 15178</td>
</tr>
<tr>
<td></td>
<td>00000</td>
<td>60081 38605 73631 26898</td>
</tr>
<tr>
<td>(-37)</td>
<td>-.47651 54323 10377</td>
<td>Q06 (09) -.28981 18217 33982 20768</td>
</tr>
<tr>
<td></td>
<td>14756</td>
<td>91627 79620 28173 98355</td>
</tr>
<tr>
<td>(-44)</td>
<td>.43370 00000 00000</td>
<td>Q07 (11) .73756 66483 91288 20564</td>
</tr>
<tr>
<td></td>
<td>65633</td>
<td>33376 50940 11111 96260</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M = 9</th>
<th>PRECISION 105.9 BITS</th>
<th>PRECISION 31.88 DIGITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)</td>
<td>.57777 77777 77777</td>
<td>Q00 (1) .59999 99999 99999 99999</td>
</tr>
<tr>
<td></td>
<td>77777 77777 77777</td>
<td>99999 99999 99999 99999 99999</td>
</tr>
<tr>
<td></td>
<td>74762 23647</td>
<td>49111 66828</td>
</tr>
<tr>
<td>(-1)</td>
<td>-.46314 63146 31463</td>
<td>Q01 (01) -.29999 99999 99999 99999</td>
</tr>
<tr>
<td></td>
<td>14631</td>
<td>99999 34042 88426 42573</td>
</tr>
<tr>
<td>(-6)</td>
<td>-.40135 47671 62064</td>
<td>Q02 (02) .78571 42857 14285 71428</td>
</tr>
<tr>
<td></td>
<td>52230</td>
<td>50263 12182 32349 47222</td>
</tr>
<tr>
<td>(-14)</td>
<td>-.43274 57333 54066</td>
<td>Q03 (03) -.13492 06349 20634 92046</td>
</tr>
<tr>
<td></td>
<td>14062</td>
<td>34410 89547 36453 43324</td>
</tr>
<tr>
<td>(-23)</td>
<td>.60533 30373 52679</td>
<td>Q04 (05) .14507 31807 87466 14829</td>
</tr>
<tr>
<td></td>
<td>66002</td>
<td>01416 18382 72455 54854</td>
</tr>
<tr>
<td>(-34)</td>
<td>-.47651 54323 10377</td>
<td>Q05 (08) -.25173 23964 80916 86062</td>
</tr>
<tr>
<td></td>
<td>14756</td>
<td>91971 98783 24561 42458</td>
</tr>
<tr>
<td>(-37)</td>
<td>-.47651 54323 10377</td>
<td>Q06 (09) -.28985 87308 25410 37509</td>
</tr>
<tr>
<td></td>
<td>14756</td>
<td>32472 92459 11366 32400</td>
</tr>
<tr>
<td>(-44)</td>
<td>.43370 00000 00000</td>
<td>Q07 (11) .74872 92459 11366 32400</td>
</tr>
<tr>
<td></td>
<td>65633</td>
<td>60665 31378 34851 48385</td>
</tr>
<tr>
<td>(-53)</td>
<td>-.47651 54323 10377</td>
<td>Q08 (12) -.13220 82708 71330 24371</td>
</tr>
<tr>
<td></td>
<td>15746</td>
<td>91971 98783 24561 42458</td>
</tr>
</tbody>
</table>

\[\text{SINH}(Y) \quad |Y| < \ln((1+\sqrt{c})/2), \quad \text{SINH}(\ln((1+\sqrt{c})/2), 0, M) = Y + \frac{3}{4}(Y^2) \]
\[
\sinh(y) \quad |y| < \ln(1+\sqrt{2}) \quad \sinh(\ln(1+\sqrt{2}), 0, M) = y + \frac{y^3}{3} \frac{1}{2}
\]

<table>
<thead>
<tr>
<th>BINARY COEFFICIENTS</th>
<th>DECIMAL COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>M = 1</td>
<td>M = 2</td>
</tr>
<tr>
<td>PRECISION 17.7 BITS</td>
<td>PRECISION 26.1 BITS</td>
</tr>
<tr>
<td>(3) 0.57766 45071 12461 51574</td>
<td>(3) 0.57777 74527 64230 24055</td>
</tr>
<tr>
<td>(1) -0.45200 03774 06637 43646</td>
<td>(1) -0.46314 61017 43081 17006</td>
</tr>
<tr>
<td>Q00</td>
<td>Q00</td>
</tr>
<tr>
<td>M=5</td>
<td>M=6</td>
</tr>
<tr>
<td>PRECISION 35.1 BITS</td>
<td>PRECISION 36.3 BITS</td>
</tr>
<tr>
<td>(3) 0.57777 77777 77625 26565</td>
<td>(3) 0.57777 77777 77625 26565</td>
</tr>
<tr>
<td>(1) 0.46314 63146 33170 61752</td>
<td>(1) 0.46314 63146 33170 61752</td>
</tr>
<tr>
<td>(0) 35471 73727 64230 47600</td>
<td>(0) 35471 73727 64230 47600</td>
</tr>
<tr>
<td>Q01</td>
<td>Q01</td>
</tr>
<tr>
<td>M=7</td>
<td>M=8</td>
</tr>
<tr>
<td>PRECISION 52.3 BITS</td>
<td>PRECISION 59.9 BITS</td>
</tr>
<tr>
<td>(3) 0.60000 00000 00000 21544</td>
<td>(3) 0.60000 00000 00000 21544</td>
</tr>
<tr>
<td>(1) -0.46314 63146 33170 61752</td>
<td>(1) -0.46314 63146 33170 61752</td>
</tr>
<tr>
<td>(0) 05171 41443 17515 44452</td>
<td>(0) 05171 41443 17515 44452</td>
</tr>
<tr>
<td>Q02</td>
<td>Q02</td>
</tr>
<tr>
<td>M=9</td>
<td>M=10</td>
</tr>
<tr>
<td>PRECISION 59.9 BITS</td>
<td>PRECISION 59.9 BITS</td>
</tr>
<tr>
<td>(3) 0.60000 00000 00000 21544</td>
<td>(3) 0.60000 00000 00000 21544</td>
</tr>
<tr>
<td>(1) -0.46314 63146 33170 61752</td>
<td>(1) -0.46314 63146 33170 61752</td>
</tr>
<tr>
<td>(0) 05171 41443 17515 44452</td>
<td>(0) 05171 41443 17515 44452</td>
</tr>
<tr>
<td>Q03</td>
<td>Q03</td>
</tr>
<tr>
<td>M=11</td>
<td>M=12</td>
</tr>
<tr>
<td>PRECISION 59.9 BITS</td>
<td>PRECISION 59.9 BITS</td>
</tr>
<tr>
<td>(3) 0.60000 00000 00000 21544</td>
<td>(3) 0.60000 00000 00000 21544</td>
</tr>
<tr>
<td>(1) -0.46314 63146 33170 61752</td>
<td>(1) -0.46314 63146 33170 61752</td>
</tr>
<tr>
<td>(0) 05171 41443 17515 44452</td>
<td>(0) 05171 41443 17515 44452</td>
</tr>
<tr>
<td>Q04</td>
<td>Q04</td>
</tr>
<tr>
<td>M=13</td>
<td>M=14</td>
</tr>
<tr>
<td>PRECISION 59.9 BITS</td>
<td>PRECISION 59.9 BITS</td>
</tr>
<tr>
<td>(3) 0.60000 00000 00000 21544</td>
<td>(3) 0.60000 00000 00000 21544</td>
</tr>
<tr>
<td>(1) -0.46314 63146 33170 61752</td>
<td>(1) -0.46314 63146 33170 61752</td>
</tr>
<tr>
<td>(0) 05171 41443 17515 44452</td>
<td>(0) 05171 41443 17515 44452</td>
</tr>
<tr>
<td>Q05</td>
<td>Q05</td>
</tr>
</tbody>
</table>
SINH(Y) = \frac{Y^3}{3} + \frac{Y^5}{45} + \frac{Y^7}{294} + \frac{Y^9}{16710} + \ldots

where |Y| < ln(1 + \sqrt{2}), \quad \text{SINH}[\ln(1 + \sqrt{2})], \quad O, M = Y + Y^3/3

<table>
<thead>
<tr>
<th>M = 7</th>
<th>BINARY COEFFICIENTS</th>
<th>DECIMAL COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRECISION 68.4 BITS</td>
<td>PRECISION 20.59 DIGITS</td>
</tr>
<tr>
<td>(3)</td>
<td>600000 00000 00000 00000 00000 00000</td>
<td>Q00 (1) 600000 00000 00000 00000 00000 00000</td>
</tr>
<tr>
<td>(-1)</td>
<td>-65314 63146 31463 17044</td>
<td>Q01 (0) -30000 00000 00000 00000 00000 00000 00000 00000</td>
</tr>
<tr>
<td>(-6)</td>
<td>-40135 47671 62104 43066</td>
<td>Q02 (-2) 78571 42857 15022 47078</td>
</tr>
<tr>
<td></td>
<td>06456 07472 64475 01566</td>
<td></td>
</tr>
<tr>
<td>(-14)</td>
<td>-3274 57333 71741 32641</td>
<td>Q03 (-3) -13492 06349 96876 98287</td>
</tr>
<tr>
<td></td>
<td>63136 72166 41316 22000</td>
<td></td>
</tr>
<tr>
<td>(-23)</td>
<td>65933 30544 75652 60475</td>
<td>Q04 (-5) -14507 31994 91845 36899</td>
</tr>
<tr>
<td></td>
<td>81424 64630 51000 00000</td>
<td></td>
</tr>
<tr>
<td>(-34)</td>
<td>-53202 20417 10261 03067</td>
<td>Q05 (-8) -25177 38070 56448 95181</td>
</tr>
<tr>
<td></td>
<td>03111 27113 00000 00000</td>
<td></td>
</tr>
<tr>
<td>(-37)</td>
<td>-47607 47717 64354 35212</td>
<td>Q06 (-9) -28932 76520 36127 20711</td>
</tr>
<tr>
<td></td>
<td>07212 44116 00000 00000</td>
<td></td>
</tr>
<tr>
<td>(-45)</td>
<td>76476 14357 70637 33450</td>
<td>Q07 (-11) 71192 37382 01770 23994</td>
</tr>
<tr>
<td></td>
<td>52771 73100 00000 00000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M = 8</th>
<th>BINARY COEFFICIENTS</th>
<th>DECIMAL COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRECISION 77.9 BITS</td>
<td>PRECISION 23.46 DIGITS</td>
</tr>
<tr>
<td>(3)</td>
<td>60000 00000 00000 00000 00000 00000 00000 00000</td>
<td>Q00 (1) 60000 00000 00000 00000 00000 00000 00000 00000</td>
</tr>
<tr>
<td>(-1)</td>
<td>-63146 31463 17044</td>
<td>Q01 (0) -30000 00000 00000 00000 00000 00000 00000 00000</td>
</tr>
<tr>
<td>(-6)</td>
<td>-40135 47671 62104 43066</td>
<td>Q02 (-2) 78571 42857 15022 47078</td>
</tr>
<tr>
<td></td>
<td>02474 11740 20378 50735</td>
<td></td>
</tr>
<tr>
<td>(-14)</td>
<td>-43274 57333 54074 50442</td>
<td>Q03 (-3) -13492 06349 96876 98287</td>
</tr>
<tr>
<td></td>
<td>02740 07130 67526 00000</td>
<td></td>
</tr>
<tr>
<td>(-23)</td>
<td>65333 30374 07475 14000</td>
<td>Q04 (-5) 16507 31808 67259 20676</td>
</tr>
<tr>
<td></td>
<td>02125 55343 10540 00000</td>
<td></td>
</tr>
<tr>
<td>(-34)</td>
<td>-53176 50564 42300 02170</td>
<td>Q05 (-8) -25173 26307 60334 06512</td>
</tr>
<tr>
<td></td>
<td>61053 71620 00000 00000</td>
<td></td>
</tr>
<tr>
<td>(-37)</td>
<td>-47654 61234 55547 41074</td>
<td>Q06 (-9) -28985 55409 20867 95206</td>
</tr>
<tr>
<td></td>
<td>45751 53720 00000 00000</td>
<td></td>
</tr>
<tr>
<td>(-44)</td>
<td>-40722 14567 25553 07511</td>
<td>Q07 (-11) 74829 91539 49519 13902</td>
</tr>
<tr>
<td></td>
<td>00042 57000 00000 00000</td>
<td></td>
</tr>
<tr>
<td>(-53)</td>
<td>-72522 17675 33747 72523</td>
<td>Q08 (-12) -10420 22300 90656 20000</td>
</tr>
<tr>
<td></td>
<td>64660 40000 00000 00000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M = 9</th>
<th>BINARY COEFFICIENTS</th>
<th>DECIMAL COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRECISION 86.9 BITS</td>
<td>PRECISION 26.17 DIGITS</td>
</tr>
<tr>
<td>(3)</td>
<td>57777 77777 77777 77777</td>
<td>Q00 (1) 59999 99999 99999 99999</td>
</tr>
<tr>
<td>(-1)</td>
<td>-46314 63146 31463 17044</td>
<td>Q01 (0) -29999 99999 99999 99999</td>
</tr>
<tr>
<td>(-6)</td>
<td>-40135 47671 62104 43066</td>
<td>Q02 (-2) 78571 42857 15022 47078</td>
</tr>
<tr>
<td></td>
<td>45747 26515 60062 61630</td>
<td></td>
</tr>
<tr>
<td>(-14)</td>
<td>-43274 57333 54074 50442</td>
<td>Q03 (-3) -13492 06349 96876 98287</td>
</tr>
<tr>
<td></td>
<td>72304 62507 34204 00000</td>
<td></td>
</tr>
<tr>
<td>(-23)</td>
<td>60533 30373 52555 16354</td>
<td>Q04 (-5) 14507 31807 20634 21233</td>
</tr>
<tr>
<td></td>
<td>74413 62440 26600 00000</td>
<td></td>
</tr>
<tr>
<td>(-34)</td>
<td>-53176 47307 00042 12554</td>
<td>Q05 (-8) -25173 29329 71231 95929</td>
</tr>
<tr>
<td></td>
<td>07360 67234 00000 00000</td>
<td></td>
</tr>
<tr>
<td>(-37)</td>
<td>-47654 06607 57534 35430</td>
<td>Q06 (-9) -28985 98689 49799 39191</td>
</tr>
<tr>
<td></td>
<td>61276 67700 00000 00000</td>
<td></td>
</tr>
<tr>
<td>(-44)</td>
<td>-40734 74665 53165 26237</td>
<td>Q07 (-11) 74877 66126 47436 12764</td>
</tr>
<tr>
<td></td>
<td>23205 30000 00000 00000</td>
<td></td>
</tr>
<tr>
<td>(-53)</td>
<td>-74226 13367 03740 72712</td>
<td>Q08 (-12) -10710 24447 94646 52077</td>
</tr>
<tr>
<td></td>
<td>41230 00000 00000 00000</td>
<td></td>
</tr>
<tr>
<td>(-62)</td>
<td>-65672 03613 30660 17021</td>
<td>Q09 (-15) 74750 47854 25786 05423</td>
</tr>
<tr>
<td></td>
<td>24400 00000 00000 00000</td>
<td></td>
</tr>
</tbody>
</table>
\[
\sinh(y) \quad |y| < \ln(1 + \sqrt{2}), \quad \sinh(\ln(1 + \sqrt{2}), 0, M) = y + y^3/6\]

Binary Coefficients

<table>
<thead>
<tr>
<th>M = 10</th>
<th>Precision 93.7 Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)</td>
<td>0.57777 77777 77777</td>
</tr>
<tr>
<td></td>
<td>77777 77656 02375 04574</td>
</tr>
<tr>
<td>(-1)</td>
<td>-0.46314 63146 31463 14631</td>
</tr>
<tr>
<td></td>
<td>46311 64060 27763 25540</td>
</tr>
<tr>
<td>(-6)</td>
<td>-0.40135 47671 62064 52330</td>
</tr>
<tr>
<td></td>
<td>33260 07426 23552 51020</td>
</tr>
<tr>
<td>(-14)</td>
<td>-0.43274 57333 54045 13765</td>
</tr>
<tr>
<td></td>
<td>14640 45252 33714 20000</td>
</tr>
<tr>
<td>(-23)</td>
<td>0.60533 30373 52674 05370</td>
</tr>
<tr>
<td></td>
<td>51512 23563 61000 00000</td>
</tr>
<tr>
<td>(-34)</td>
<td>-0.53176 47313 53705 63556</td>
</tr>
<tr>
<td></td>
<td>26422 54260 00000 00000</td>
</tr>
<tr>
<td>(-37)</td>
<td>-0.47655 04535 55462 15613</td>
</tr>
<tr>
<td></td>
<td>30345 35460 00000 00000</td>
</tr>
<tr>
<td>(-44)</td>
<td>-0.40734 63763 13062 60333</td>
</tr>
<tr>
<td></td>
<td>37741 40000 00000 00000</td>
</tr>
<tr>
<td>(-53)</td>
<td>-0.74205 10151 22511 45501</td>
</tr>
<tr>
<td></td>
<td>33400 00000 00000 00000</td>
</tr>
<tr>
<td>(-62)</td>
<td>-0.63427 72411 42326 67703</td>
</tr>
<tr>
<td></td>
<td>00000 00000 00000 00000</td>
</tr>
<tr>
<td>(-70)</td>
<td>0.42602 36045 54202 62130</td>
</tr>
<tr>
<td></td>
<td>00000 00000 00000 00000</td>
</tr>
</tbody>
</table>

Decimal Coefficients

<table>
<thead>
<tr>
<th>Precision 28.21 Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>000 (1) 0.59999 99999 99999 99999</td>
</tr>
<tr>
<td>001 (0) -0.29999 99999 99999 99999</td>
</tr>
<tr>
<td>002 (-2) 0.78571 42857 14285 71429</td>
</tr>
<tr>
<td>003 (-3) -1.3492 06349 20634 90738</td>
</tr>
<tr>
<td>004 (-5) 0.14507 31807 87456 54606</td>
</tr>
<tr>
<td>005 (-8) 0.25173 23945 42557 80039</td>
</tr>
<tr>
<td>006 (-9) -0.28985 98434 68002 83424</td>
</tr>
<tr>
<td>007 (-11) 0.74877 04726 72253 89390</td>
</tr>
<tr>
<td>008 (-12) -0.10704 32916 37644 74358</td>
</tr>
<tr>
<td>009 (-15) 0.71535 42719 56820 25021</td>
</tr>
<tr>
<td>010 (-17) 0.73532 51142 21962 88768</td>
</tr>
</tbody>
</table>

27
<table>
<thead>
<tr>
<th>(M)</th>
<th>(TANH(ln(3)/2, 0, M) = Y - Y^5/(3 + Y^2Q(Y^2)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M = 2)</td>
<td>PRECISION 27.6 BITS</td>
</tr>
<tr>
<td>(1) (\cdot46314) 44234 53547 54725</td>
<td>Q00 (1) (\cdot11999) 85795 99494 52967</td>
</tr>
<tr>
<td>(-7) (\cdot56635) 13620 31514 45077</td>
<td>Q01 (-2) (\cdot55916) 74827 16129 28206</td>
</tr>
<tr>
<td>(M = 3)</td>
<td>PRECISION 36.1 BITS</td>
</tr>
<tr>
<td>(1) (\cdot46314) 63054 77205 53154</td>
<td>Q00 (1) (\cdot11999) 99893 06266 31581</td>
</tr>
<tr>
<td>(-7) (\cdot56630) 41260 61242 76650</td>
<td>Q01 (-2) (\cdot57126) 33736 02867 10955</td>
</tr>
<tr>
<td>(-13) (\cdot40177) 25572 12644 24753</td>
<td>Q02 (-3) (\cdot24603) 81338 86521 50827</td>
</tr>
<tr>
<td>(M = 4)</td>
<td>PRECISION 44.4 BITS</td>
</tr>
<tr>
<td>(1) (\cdot46314) 63146 00403 51675</td>
<td>Q00 (1) (\cdot11999) 99999 26970 15730</td>
</tr>
<tr>
<td>(-7) (\cdot56637) 30186 71236 12502</td>
<td>Q01 (-2) (\cdot57142) 85889 21155 70825</td>
</tr>
<tr>
<td>(-13) (\cdot41212) 00106 55612 65645</td>
<td>Q02 (-3) (\cdot25382) 64119 33539 28896</td>
</tr>
<tr>
<td>(-20) (\cdot61120) 02603 43313 17315</td>
<td>Q03 (-4) (\cdot11719) 78333 83387 87540</td>
</tr>
<tr>
<td>(M = 5)</td>
<td>PRECISION 52.6 BITS</td>
</tr>
<tr>
<td>(1) (\cdot46314) 63146 31342 05007</td>
<td>Q00 (1) (\cdot11999) 99999 99538 87683</td>
</tr>
<tr>
<td>(-7) (\cdot56634) 34663 06621 61567</td>
<td>Q01 (-2) (\cdot57142) 85889 21155 70825</td>
</tr>
<tr>
<td>(-13) (\cdot40236) 67740 22342 56042</td>
<td>Q02 (-3) (\cdot25382) 64119 33539 28896</td>
</tr>
<tr>
<td>(-20) (\cdot63110) 26056 54061 70005</td>
<td>Q03 (-4) (\cdot11719) 78333 83387 87540</td>
</tr>
<tr>
<td>(M = 6)</td>
<td>PRECISION 60.8 BITS</td>
</tr>
<tr>
<td>(1) (\cdot46314) 63146 31462 55772</td>
<td>Q00 (1) (\cdot11999) 99999 99997 26337</td>
</tr>
<tr>
<td>(-7) (\cdot56637) 34710 17402 36732</td>
<td>Q01 (-2) (\cdot57142) 85713 05487 82093</td>
</tr>
<tr>
<td>(-13) (\cdot41223) 42032 23370 35106</td>
<td>Q02 (-3) (\cdot25382) 62333 41234 85146</td>
</tr>
<tr>
<td>(-20) (\cdot63136) 64166 33513 52377</td>
<td>Q03 (-4) (\cdot12203) 49972 80024 49603</td>
</tr>
<tr>
<td>(M = 7)</td>
<td>PRECISION 69.0 BITS</td>
</tr>
<tr>
<td>(1) (\cdot45314) 63146 31462 14500</td>
<td>Q00 (1) (\cdot11999) 99999 99999 98454</td>
</tr>
<tr>
<td>(-7) (\cdot56637) 34710 23201 34046</td>
<td>Q01 (-2) (\cdot57142) 85713 05487 82093</td>
</tr>
<tr>
<td>(-13) (\cdot41223) 42032 23370 35106</td>
<td>Q02 (-3) (\cdot25382) 62333 41234 85146</td>
</tr>
<tr>
<td>(-20) (\cdot63137) 13174 10712 10704</td>
<td>Q03 (-4) (\cdot12203) 49972 80024 49603</td>
</tr>
<tr>
<td>(M = 8)</td>
<td>PRECISION 76.8 BITS</td>
</tr>
<tr>
<td>(1) (\cdot45314) 63146 31462 14500</td>
<td>Q00 (1) (\cdot11999) 99999 99999 98454</td>
</tr>
<tr>
<td>(-7) (\cdot56637) 34710 23201 34046</td>
<td>Q01 (-2) (\cdot57142) 85713 05487 82093</td>
</tr>
<tr>
<td>(-13) (\cdot41223) 42032 23370 35106</td>
<td>Q02 (-3) (\cdot25382) 62333 41234 85146</td>
</tr>
<tr>
<td>(-20) (\cdot63137) 13174 10712 10704</td>
<td>Q03 (-4) (\cdot12203) 49972 80024 49603</td>
</tr>
</tbody>
</table>
\[\tanh(Y) \quad |Y| < \ln(3)/2 \quad \tanh(\ln(3)/2, 0, M) = Y - Y^3/(3 + Y^2q(Y^2)) \]

Binary Coefficients

<table>
<thead>
<tr>
<th>(M = 8)</th>
<th>Precision</th>
<th>77.1 Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1))</td>
<td>(\text{Q00})</td>
<td>(\text{Q00})</td>
</tr>
<tr>
<td>((7))</td>
<td>(\text{Q01})</td>
<td>(\text{Q01})</td>
</tr>
<tr>
<td>((13))</td>
<td>(\text{Q02})</td>
<td>(\text{Q02})</td>
</tr>
<tr>
<td>((20))</td>
<td>(\text{Q03})</td>
<td>(\text{Q03})</td>
</tr>
<tr>
<td>((24))</td>
<td>(\text{Q04})</td>
<td>(\text{Q04})</td>
</tr>
<tr>
<td>((31))</td>
<td>(\text{Q05})</td>
<td>(\text{Q05})</td>
</tr>
<tr>
<td>((35))</td>
<td>(\text{Q06})</td>
<td>(\text{Q06})</td>
</tr>
<tr>
<td>((41))</td>
<td>(\text{Q07})</td>
<td>(\text{Q07})</td>
</tr>
</tbody>
</table>

Decimal Coefficients

<table>
<thead>
<tr>
<th>(M = 8)</th>
<th>Precision</th>
<th>23.21 Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1))</td>
<td>(\text{Q00})</td>
<td>(\text{Q00})</td>
</tr>
<tr>
<td>((7))</td>
<td>(\text{Q01})</td>
<td>(\text{Q01})</td>
</tr>
<tr>
<td>((13))</td>
<td>(\text{Q02})</td>
<td>(\text{Q02})</td>
</tr>
<tr>
<td>((20))</td>
<td>(\text{Q03})</td>
<td>(\text{Q03})</td>
</tr>
<tr>
<td>((24))</td>
<td>(\text{Q04})</td>
<td>(\text{Q04})</td>
</tr>
<tr>
<td>((31))</td>
<td>(\text{Q05})</td>
<td>(\text{Q05})</td>
</tr>
<tr>
<td>((35))</td>
<td>(\text{Q06})</td>
<td>(\text{Q06})</td>
</tr>
<tr>
<td>((41))</td>
<td>(\text{Q07})</td>
<td>(\text{Q07})</td>
</tr>
</tbody>
</table>

Binary Coefficients

<table>
<thead>
<tr>
<th>(M = 9)</th>
<th>Precision</th>
<th>85.2 Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1))</td>
<td>(\text{Q00})</td>
<td>(\text{Q00})</td>
</tr>
<tr>
<td>((7))</td>
<td>(\text{Q01})</td>
<td>(\text{Q01})</td>
</tr>
<tr>
<td>((13))</td>
<td>(\text{Q02})</td>
<td>(\text{Q02})</td>
</tr>
<tr>
<td>((20))</td>
<td>(\text{Q03})</td>
<td>(\text{Q03})</td>
</tr>
<tr>
<td>((24))</td>
<td>(\text{Q04})</td>
<td>(\text{Q04})</td>
</tr>
<tr>
<td>((31))</td>
<td>(\text{Q05})</td>
<td>(\text{Q05})</td>
</tr>
<tr>
<td>((35))</td>
<td>(\text{Q06})</td>
<td>(\text{Q06})</td>
</tr>
<tr>
<td>((41))</td>
<td>(\text{Q07})</td>
<td>(\text{Q07})</td>
</tr>
</tbody>
</table>

Decimal Coefficients

<table>
<thead>
<tr>
<th>(M = 9)</th>
<th>Precision</th>
<th>25.66 Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1))</td>
<td>(\text{Q00})</td>
<td>(\text{Q00})</td>
</tr>
<tr>
<td>((7))</td>
<td>(\text{Q01})</td>
<td>(\text{Q01})</td>
</tr>
<tr>
<td>((13))</td>
<td>(\text{Q02})</td>
<td>(\text{Q02})</td>
</tr>
<tr>
<td>((20))</td>
<td>(\text{Q03})</td>
<td>(\text{Q03})</td>
</tr>
<tr>
<td>((24))</td>
<td>(\text{Q04})</td>
<td>(\text{Q04})</td>
</tr>
<tr>
<td>((31))</td>
<td>(\text{Q05})</td>
<td>(\text{Q05})</td>
</tr>
<tr>
<td>((35))</td>
<td>(\text{Q06})</td>
<td>(\text{Q06})</td>
</tr>
<tr>
<td>((41))</td>
<td>(\text{Q07})</td>
<td>(\text{Q07})</td>
</tr>
</tbody>
</table>

Binary Coefficients

<table>
<thead>
<tr>
<th>(M = 10)</th>
<th>Precision</th>
<th>93.4 Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1))</td>
<td>(\text{Q00})</td>
<td>(\text{Q00})</td>
</tr>
<tr>
<td>((7))</td>
<td>(\text{Q01})</td>
<td>(\text{Q01})</td>
</tr>
<tr>
<td>((13))</td>
<td>(\text{Q02})</td>
<td>(\text{Q02})</td>
</tr>
<tr>
<td>((20))</td>
<td>(\text{Q03})</td>
<td>(\text{Q03})</td>
</tr>
<tr>
<td>((24))</td>
<td>(\text{Q04})</td>
<td>(\text{Q04})</td>
</tr>
<tr>
<td>((31))</td>
<td>(\text{Q05})</td>
<td>(\text{Q05})</td>
</tr>
<tr>
<td>((35))</td>
<td>(\text{Q06})</td>
<td>(\text{Q06})</td>
</tr>
<tr>
<td>((41))</td>
<td>(\text{Q07})</td>
<td>(\text{Q07})</td>
</tr>
<tr>
<td>((52))</td>
<td>(\text{Q09})</td>
<td>(\text{Q09})</td>
</tr>
</tbody>
</table>

Decimal Coefficients

<table>
<thead>
<tr>
<th>(M = 10)</th>
<th>Precision</th>
<th>28.10 Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1))</td>
<td>(\text{Q00})</td>
<td>(\text{Q00})</td>
</tr>
<tr>
<td>((7))</td>
<td>(\text{Q01})</td>
<td>(\text{Q01})</td>
</tr>
<tr>
<td>((13))</td>
<td>(\text{Q02})</td>
<td>(\text{Q02})</td>
</tr>
<tr>
<td>((20))</td>
<td>(\text{Q03})</td>
<td>(\text{Q03})</td>
</tr>
<tr>
<td>((24))</td>
<td>(\text{Q04})</td>
<td>(\text{Q04})</td>
</tr>
<tr>
<td>((31))</td>
<td>(\text{Q05})</td>
<td>(\text{Q05})</td>
</tr>
<tr>
<td>((35))</td>
<td>(\text{Q06})</td>
<td>(\text{Q06})</td>
</tr>
<tr>
<td>((41))</td>
<td>(\text{Q07})</td>
<td>(\text{Q07})</td>
</tr>
<tr>
<td>((52))</td>
<td>(\text{Q09})</td>
<td>(\text{Q09})</td>
</tr>
</tbody>
</table>
\(\text{TANH}(y) \quad |y| < \ln(3)/2 \quad \text{TANH}(\ln(3)/2, 0, M) = y - y^3/(3 + y^2 q(y^2)) \)

Binary Coefficients

M = 11

<table>
<thead>
<tr>
<th>Precision</th>
<th>101.5 Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>.46314 63146 31463 14631</td>
</tr>
<tr>
<td>(2)</td>
<td>.56637 34710 32251 54200</td>
</tr>
<tr>
<td>(3)</td>
<td>.56534 14152 36616 26200</td>
</tr>
<tr>
<td>(4)</td>
<td>41223 41260 51365 64630</td>
</tr>
<tr>
<td>(5)</td>
<td>4.0601 63402 03214 00000</td>
</tr>
<tr>
<td>(6)</td>
<td>.61317 13426 21443 40651</td>
</tr>
<tr>
<td>(7)</td>
<td>1.6014 03356 74000 00000</td>
</tr>
<tr>
<td>(8)</td>
<td>.50135 35030 05360 13711</td>
</tr>
<tr>
<td>(9)</td>
<td>11362 70740 00000 00000</td>
</tr>
<tr>
<td>(10)</td>
<td>.77373 14671 75612 05774</td>
</tr>
<tr>
<td>(11)</td>
<td>72702 00000 00000 00000</td>
</tr>
<tr>
<td>(12)</td>
<td>.62206 02411 76764 02251</td>
</tr>
<tr>
<td>(13)</td>
<td>11020 00000 00000 00000</td>
</tr>
<tr>
<td>(14)</td>
<td>.47641 64165 63323 66532</td>
</tr>
<tr>
<td>(15)</td>
<td>64400 00000 00000 00000</td>
</tr>
<tr>
<td>(16)</td>
<td>.77056 51307 32007 46505</td>
</tr>
<tr>
<td>(17)</td>
<td>00000 00000 00000 00000</td>
</tr>
<tr>
<td>(18)</td>
<td>.61637 72202 76245 50620</td>
</tr>
<tr>
<td>(19)</td>
<td>00000 00000 00000 00000</td>
</tr>
<tr>
<td>(20)</td>
<td>.44026 23013 64257 34000</td>
</tr>
<tr>
<td>(21)</td>
<td>00000 00000 00000 00000</td>
</tr>
</tbody>
</table>

Decimal Coefficients

Precision 30.54 Digits

<table>
<thead>
<tr>
<th>Precision</th>
<th>30.54 Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>.11999 99999 99999 59999</td>
</tr>
<tr>
<td>(2)</td>
<td>9.9999 88803 71191 86498</td>
</tr>
<tr>
<td>(3)</td>
<td>5.7142 85714 28571 42857</td>
</tr>
<tr>
<td>(4)</td>
<td>0.0376 53186 50999 29293</td>
</tr>
<tr>
<td>(5)</td>
<td>2.5396 82539 68253 96757</td>
</tr>
<tr>
<td>(6)</td>
<td>28014 96346 20251 62193</td>
</tr>
<tr>
<td>(7)</td>
<td>.12203 66934 65264 71458</td>
</tr>
<tr>
<td>(8)</td>
<td>0.0966 56650 53324 54787</td>
</tr>
<tr>
<td>(9)</td>
<td>76793 16590 36480 82919</td>
</tr>
<tr>
<td>(10)</td>
<td>.29565 12706 77863 50465</td>
</tr>
<tr>
<td>(11)</td>
<td>88637 39387 46577 04003</td>
</tr>
<tr>
<td>(12)</td>
<td>.14628 10778 72957 90633</td>
</tr>
<tr>
<td>(13)</td>
<td>38605 94294 55910 82908</td>
</tr>
<tr>
<td>(14)</td>
<td>0.0966 56650 53324 54787</td>
</tr>
<tr>
<td>(15)</td>
<td>72424 21897 75329 58876</td>
</tr>
<tr>
<td>(16)</td>
<td>.35863 14213 42213 64605</td>
</tr>
<tr>
<td>(17)</td>
<td>44482 45909 50433 26429</td>
</tr>
<tr>
<td>(18)</td>
<td>.17696 89273 38728 44428</td>
</tr>
<tr>
<td>(19)</td>
<td>10727 57429 35033 80594</td>
</tr>
<tr>
<td>(20)</td>
<td>.80024 08300 09698 81946</td>
</tr>
<tr>
<td>(21)</td>
<td>46548 73278 69149 97140</td>
</tr>
</tbody>
</table>
\[\sin(y) \quad |y| < \pi/4, \quad \sin(\pi/4, N, 0) = y + y^3 \sin(y^2) \]

<table>
<thead>
<tr>
<th>\text{BINARY COEFFICIENTS}</th>
<th>\text{DECIMAL COEFFICIENTS}</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 2</td>
<td>PRECISION 18.7 BITS</td>
</tr>
<tr>
<td>(-2) \times 10^4</td>
<td>-52520 \times 10^7</td>
</tr>
<tr>
<td>(-6) \times 10^4</td>
<td>41305 \times 10^7</td>
</tr>
<tr>
<td>N = 3</td>
<td>PRECISION 27.7 BITS</td>
</tr>
<tr>
<td>(-2) \times 10^4</td>
<td>-52525 \times 10^7</td>
</tr>
<tr>
<td>(-6) \times 10^4</td>
<td>42104 \times 10^7</td>
</tr>
<tr>
<td>(-14) \times 10^4</td>
<td>-64003 \times 10^7</td>
</tr>
<tr>
<td>(-22) \times 10^4</td>
<td>53454 \times 10^7</td>
</tr>
<tr>
<td>N = 4</td>
<td>PRECISION 37.3 BITS</td>
</tr>
<tr>
<td>(-2) \times 10^4</td>
<td>-52525 \times 10^7</td>
</tr>
<tr>
<td>(-6) \times 10^4</td>
<td>42104 \times 10^7</td>
</tr>
<tr>
<td>(-14) \times 10^4</td>
<td>-64003 \times 10^7</td>
</tr>
<tr>
<td>(-22) \times 10^4</td>
<td>53454 \times 10^7</td>
</tr>
<tr>
<td>N = 5</td>
<td>PRECISION 47.4 BITS</td>
</tr>
<tr>
<td>(-2) \times 10^4</td>
<td>-52525 \times 10^7</td>
</tr>
<tr>
<td>(-6) \times 10^4</td>
<td>42104 \times 10^7</td>
</tr>
<tr>
<td>(-14) \times 10^4</td>
<td>-64006 \times 10^7</td>
</tr>
<tr>
<td>(-22) \times 10^4</td>
<td>53454 \times 10^7</td>
</tr>
<tr>
<td>N = 6</td>
<td>PRECISION 57.8 BITS</td>
</tr>
<tr>
<td>(-2) \times 10^4</td>
<td>-52525 \times 10^7</td>
</tr>
<tr>
<td>(-6) \times 10^4</td>
<td>42104 \times 10^7</td>
</tr>
<tr>
<td>(-14) \times 10^4</td>
<td>-64006 \times 10^7</td>
</tr>
<tr>
<td>(-22) \times 10^4</td>
<td>53454 \times 10^7</td>
</tr>
<tr>
<td>N = 7</td>
<td>PRECISION 68.6 BITS</td>
</tr>
<tr>
<td>(-2) \times 10^4</td>
<td>-52525 \times 10^7</td>
</tr>
<tr>
<td>(-6) \times 10^4</td>
<td>42104 \times 10^7</td>
</tr>
<tr>
<td>(-14) \times 10^4</td>
<td>-64006 \times 10^7</td>
</tr>
<tr>
<td>(-22) \times 10^4</td>
<td>53454 \times 10^7</td>
</tr>
<tr>
<td></td>
<td>BINARY COEFFICIENTS</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>$\sin(y)$</td>
<td>$</td>
</tr>
<tr>
<td>N = 8</td>
<td>Precision 79.8 bits</td>
</tr>
<tr>
<td></td>
<td>(-2) 52525 25252</td>
</tr>
<tr>
<td></td>
<td>(-6) 82104 21042</td>
</tr>
<tr>
<td></td>
<td>(-14) -64006 40064</td>
</tr>
<tr>
<td></td>
<td>(-22) 56167 43512</td>
</tr>
<tr>
<td></td>
<td>(-31) -65631 50317</td>
</tr>
<tr>
<td></td>
<td>(-40) 54111 05733</td>
</tr>
<tr>
<td></td>
<td>(-50) -65636 67077</td>
</tr>
<tr>
<td></td>
<td>(-60) 62170 70042</td>
</tr>
<tr>
<td>N = 9</td>
<td>Precision 91.2 bits</td>
</tr>
<tr>
<td></td>
<td>(-2) 52525 25252</td>
</tr>
<tr>
<td></td>
<td>(-6) 82104 21042</td>
</tr>
<tr>
<td></td>
<td>(-14) -64006 40064</td>
</tr>
<tr>
<td></td>
<td>(-22) 56167 43512</td>
</tr>
<tr>
<td></td>
<td>(-31) -65631 50317</td>
</tr>
<tr>
<td></td>
<td>(-40) 54111 05733</td>
</tr>
<tr>
<td></td>
<td>(-50) -65636 67077</td>
</tr>
<tr>
<td></td>
<td>(-60) 62170 70042</td>
</tr>
<tr>
<td>N = 10</td>
<td>Precision 102.9 bits</td>
</tr>
<tr>
<td></td>
<td>(-2) 52525 25252</td>
</tr>
<tr>
<td></td>
<td>(-6) 82104 21042</td>
</tr>
<tr>
<td></td>
<td>(-14) -64006 40064</td>
</tr>
<tr>
<td></td>
<td>(-22) 56167 43512</td>
</tr>
<tr>
<td></td>
<td>(-31) -65631 50317</td>
</tr>
<tr>
<td></td>
<td>(-40) 54111 05733</td>
</tr>
<tr>
<td></td>
<td>(-50) -65636 67077</td>
</tr>
<tr>
<td></td>
<td>(-60) 62170 70042</td>
</tr>
</tbody>
</table>

32
\[
\cos(y) \quad |y| < \pi/4, \quad \cos(\pi/4, N, 0) = 1 + y^2(-0.5 + y^2P(y^2))
\]

BINARY COEFFICIENTS

<table>
<thead>
<tr>
<th>N = 3</th>
<th>PRECISION 23.3 BITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-4)</td>
<td>52525 25252 52525 25252 22407</td>
</tr>
<tr>
<td>(-11)</td>
<td>55405 54054 40516 07001</td>
</tr>
<tr>
<td>(-17)</td>
<td>64006 40063 42765 76300</td>
</tr>
<tr>
<td>(-25)</td>
<td>44672 34232 05177 16024</td>
</tr>
<tr>
<td>(-34)</td>
<td>61746 52652 32741 12413</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N = 4</th>
<th>PRECISION 32.8 BITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-4)</td>
<td>52525 24443 44021 14107</td>
</tr>
<tr>
<td>(-11)</td>
<td>55405 53645 56267 71040</td>
</tr>
<tr>
<td>(-17)</td>
<td>63160 06635 21233 61417</td>
</tr>
<tr>
<td>(-25)</td>
<td>44643 20551 44643 66131</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N = 5</th>
<th>PRECISION 42.8 BITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-4)</td>
<td>52525 25251 62764 30516</td>
</tr>
<tr>
<td>(-11)</td>
<td>55405 53645 56267 71040</td>
</tr>
<tr>
<td>(-17)</td>
<td>63160 06635 21233 61417</td>
</tr>
<tr>
<td>(-25)</td>
<td>44643 20551 44643 66131</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N = 6</th>
<th>PRECISION 53.1 BITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-4)</td>
<td>52525 25252 52525 32165</td>
</tr>
<tr>
<td>(-11)</td>
<td>55405 54055 40516 07001</td>
</tr>
<tr>
<td>(-17)</td>
<td>64006 40063 42765 76300</td>
</tr>
<tr>
<td>(-25)</td>
<td>44771 17371 74100 06732</td>
</tr>
<tr>
<td>(-34)</td>
<td>61334 76530 56620 50595</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N = 7</th>
<th>PRECISION 63.8 BITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-4)</td>
<td>52525 25252 52525 22407</td>
</tr>
<tr>
<td>(-11)</td>
<td>55405 54055 40516 07001</td>
</tr>
<tr>
<td>(-17)</td>
<td>64006 40063 42765 76300</td>
</tr>
<tr>
<td>(-25)</td>
<td>44771 17371 74100 06732</td>
</tr>
<tr>
<td>(-34)</td>
<td>61746 52652 32741 12413</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N = 8</th>
<th>PRECISION 74.9 BITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-4)</td>
<td>52525 25252 52525 25251</td>
</tr>
<tr>
<td>(-11)</td>
<td>55405 54055 40554 03611</td>
</tr>
<tr>
<td>(-17)</td>
<td>64006 40064 00614 03165</td>
</tr>
<tr>
<td>(-25)</td>
<td>44771 17556 56750 51263</td>
</tr>
<tr>
<td>(-34)</td>
<td>61334 76530 56620 50595</td>
</tr>
</tbody>
</table>

DECIMAL COEFFICIENTS

<table>
<thead>
<tr>
<th>N = 3</th>
<th>PRECISION 7.00 DIGITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>P00 (-1)</td>
<td>41660 53532 40411 57057</td>
</tr>
<tr>
<td>P01 (-2)</td>
<td>13637 54633 08921 49335</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N = 4</th>
<th>PRECISION 9.88 DIGITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>P00 (-1)</td>
<td>41666 64390 14384 86476</td>
</tr>
<tr>
<td>P01 (-2)</td>
<td>13888 88319 88869 76116</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N = 5</th>
<th>PRECISION 12.88 DIGITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>P00 (-1)</td>
<td>41666 66666 65917 94444</td>
</tr>
<tr>
<td>P01 (-2)</td>
<td>13888 88888 88888 88888</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N = 6</th>
<th>PRECISION 15.99 DIGITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>P00 (-1)</td>
<td>41666 66666 66666 66666</td>
</tr>
<tr>
<td>P01 (-2)</td>
<td>13888 88888 88888 88888</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N = 7</th>
<th>PRECISION 19.22 DIGITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>P00 (-1)</td>
<td>41666 66666 66666 66666</td>
</tr>
<tr>
<td>P01 (-2)</td>
<td>13888 88888 88888 88888</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N = 8</th>
<th>PRECISION 22.54 DIGITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>P00 (-1)</td>
<td>41666 66666 66666 66666</td>
</tr>
<tr>
<td>P01 (-2)</td>
<td>13888 88888 88888 88888</td>
</tr>
</tbody>
</table>
\[\cos(Y) \quad |Y| < \pi/4, \quad \cos(\pi/4, N, 0) = 1 + Y^2(-.5 + Y^2P(Y^2)) \]

Binary Coefficients

<table>
<thead>
<tr>
<th>N = 9</th>
<th>Precision</th>
<th>86.2 Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-4)</td>
<td>52525</td>
<td>25252</td>
</tr>
<tr>
<td>(-11)</td>
<td>55405</td>
<td>54055</td>
</tr>
<tr>
<td>(-17)</td>
<td>64006</td>
<td>40064</td>
</tr>
<tr>
<td>(-25)</td>
<td>-44771</td>
<td>17556</td>
</tr>
<tr>
<td>(-34)</td>
<td>43673</td>
<td>30737</td>
</tr>
<tr>
<td>(-44)</td>
<td>62345</td>
<td>64000</td>
</tr>
<tr>
<td>(-54)</td>
<td>65636</td>
<td>71614</td>
</tr>
<tr>
<td>(-64)</td>
<td>-54523</td>
<td>20473</td>
</tr>
</tbody>
</table>

Decimal Coefficients

<table>
<thead>
<tr>
<th>N = 9</th>
<th>Precision</th>
<th>25.96 Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-4)</td>
<td>41666</td>
<td>66666</td>
</tr>
<tr>
<td>(-11)</td>
<td>63018</td>
<td>29106</td>
</tr>
<tr>
<td>(-17)</td>
<td>40218</td>
<td>87309</td>
</tr>
<tr>
<td>(-25)</td>
<td>26401</td>
<td>58730</td>
</tr>
<tr>
<td>(-34)</td>
<td>37390</td>
<td>90124</td>
</tr>
<tr>
<td>(-44)</td>
<td>20876</td>
<td>75698</td>
</tr>
<tr>
<td>(-54)</td>
<td>30989</td>
<td>27029</td>
</tr>
<tr>
<td>(-64)</td>
<td>14595</td>
<td>65785</td>
</tr>
</tbody>
</table>

Binary Coefficients

<table>
<thead>
<tr>
<th>N = 10</th>
<th>Precision</th>
<th>97.8 Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-4)</td>
<td>52525</td>
<td>25252</td>
</tr>
<tr>
<td>(-11)</td>
<td>55405</td>
<td>54055</td>
</tr>
<tr>
<td>(-17)</td>
<td>64006</td>
<td>40064</td>
</tr>
<tr>
<td>(-25)</td>
<td>-44771</td>
<td>17556</td>
</tr>
<tr>
<td>(-34)</td>
<td>43673</td>
<td>30737</td>
</tr>
<tr>
<td>(-44)</td>
<td>62345</td>
<td>64000</td>
</tr>
<tr>
<td>(-54)</td>
<td>65636</td>
<td>71614</td>
</tr>
<tr>
<td>(-64)</td>
<td>-54523</td>
<td>20473</td>
</tr>
</tbody>
</table>

Decimal Coefficients

<table>
<thead>
<tr>
<th>N = 10</th>
<th>Precision</th>
<th>29.45 Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-4)</td>
<td>41666</td>
<td>66666</td>
</tr>
<tr>
<td>(-11)</td>
<td>63018</td>
<td>29106</td>
</tr>
<tr>
<td>(-17)</td>
<td>40218</td>
<td>87309</td>
</tr>
<tr>
<td>(-25)</td>
<td>26401</td>
<td>58730</td>
</tr>
<tr>
<td>(-34)</td>
<td>37390</td>
<td>90124</td>
</tr>
<tr>
<td>(-44)</td>
<td>20876</td>
<td>75698</td>
</tr>
<tr>
<td>(-54)</td>
<td>30989</td>
<td>27029</td>
</tr>
<tr>
<td>(-64)</td>
<td>14595</td>
<td>65785</td>
</tr>
</tbody>
</table>

Binary Coefficients

<table>
<thead>
<tr>
<th>N = 11</th>
<th>Precision</th>
<th>109.7 Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-4)</td>
<td>52525</td>
<td>25252</td>
</tr>
<tr>
<td>(-11)</td>
<td>55405</td>
<td>54055</td>
</tr>
<tr>
<td>(-17)</td>
<td>64006</td>
<td>40064</td>
</tr>
<tr>
<td>(-25)</td>
<td>-44771</td>
<td>17556</td>
</tr>
<tr>
<td>(-34)</td>
<td>43673</td>
<td>30737</td>
</tr>
<tr>
<td>(-44)</td>
<td>62345</td>
<td>64000</td>
</tr>
<tr>
<td>(-54)</td>
<td>65636</td>
<td>71614</td>
</tr>
<tr>
<td>(-64)</td>
<td>-54523</td>
<td>20473</td>
</tr>
</tbody>
</table>

Decimal Coefficients

<table>
<thead>
<tr>
<th>N = 11</th>
<th>Precision</th>
<th>33.02 Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-4)</td>
<td>41666</td>
<td>66666</td>
</tr>
<tr>
<td>(-11)</td>
<td>63018</td>
<td>29106</td>
</tr>
<tr>
<td>(-17)</td>
<td>40218</td>
<td>87309</td>
</tr>
<tr>
<td>(-25)</td>
<td>26401</td>
<td>58730</td>
</tr>
<tr>
<td>(-34)</td>
<td>37390</td>
<td>90124</td>
</tr>
<tr>
<td>(-44)</td>
<td>20876</td>
<td>75698</td>
</tr>
<tr>
<td>(-54)</td>
<td>30989</td>
<td>27029</td>
</tr>
<tr>
<td>(-64)</td>
<td>14595</td>
<td>65785</td>
</tr>
</tbody>
</table>

34
TAN(Y) \[|Y| < \pi/4, \quad \text{TAN}(\pi/4, 0, M) = Y + Y^3/(3 + Y^2Q(Y^2)) \]

Binary Coefficients

<table>
<thead>
<tr>
<th>(M = 2)</th>
<th>PRECISION</th>
<th>23.0 BITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>-0.313</td>
<td>0.000</td>
</tr>
<tr>
<td>(-7)</td>
<td>-6.013</td>
<td>11302</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(M = 3)</th>
<th>PRECISION</th>
<th>30.4 BITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>-4.314</td>
<td>64261</td>
</tr>
<tr>
<td>(-7)</td>
<td>-5.676</td>
<td>22330</td>
</tr>
<tr>
<td>(-13)</td>
<td>-4.347</td>
<td>57217</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(M = 4)</th>
<th>PRECISION</th>
<th>37.6 BITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>-4.314</td>
<td>63135</td>
</tr>
<tr>
<td>(-7)</td>
<td>-5.664</td>
<td>14752</td>
</tr>
<tr>
<td>(-13)</td>
<td>-4.115</td>
<td>32274</td>
</tr>
<tr>
<td>(-20)</td>
<td>-6.761</td>
<td>64623</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(M = 5)</th>
<th>PRECISION</th>
<th>44.8 BITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>-4.314</td>
<td>63146</td>
</tr>
<tr>
<td>(-7)</td>
<td>-5.663</td>
<td>37774</td>
</tr>
<tr>
<td>(-13)</td>
<td>-4.122</td>
<td>37300</td>
</tr>
<tr>
<td>(-20)</td>
<td>-6.725</td>
<td>17720</td>
</tr>
<tr>
<td>(-24)</td>
<td>-5.442</td>
<td>62474</td>
</tr>
<tr>
<td>(-20)</td>
<td>-6.711</td>
<td>24451</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(M = 6)</th>
<th>PRECISION</th>
<th>51.9 BITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>-4.314</td>
<td>63146</td>
</tr>
<tr>
<td>(-7)</td>
<td>-5.663</td>
<td>37774</td>
</tr>
<tr>
<td>(-13)</td>
<td>-4.122</td>
<td>37300</td>
</tr>
<tr>
<td>(-20)</td>
<td>-6.725</td>
<td>17720</td>
</tr>
<tr>
<td>(-24)</td>
<td>-5.442</td>
<td>62474</td>
</tr>
<tr>
<td>(-30)</td>
<td>-4.311</td>
<td>37305</td>
</tr>
<tr>
<td>(-20)</td>
<td>-6.711</td>
<td>24451</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(M = 7)</th>
<th>PRECISION</th>
<th>59.0 BITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>-4.314</td>
<td>63146</td>
</tr>
<tr>
<td>(-7)</td>
<td>-5.663</td>
<td>37774</td>
</tr>
<tr>
<td>(-13)</td>
<td>-4.122</td>
<td>37300</td>
</tr>
<tr>
<td>(-20)</td>
<td>-6.725</td>
<td>17720</td>
</tr>
<tr>
<td>(-24)</td>
<td>-5.442</td>
<td>62474</td>
</tr>
<tr>
<td>(-31)</td>
<td>-7.676</td>
<td>15714</td>
</tr>
<tr>
<td>(-35)</td>
<td>-7.143</td>
<td>31162</td>
</tr>
<tr>
<td>(-39)</td>
<td>-7.344</td>
<td>16264</td>
</tr>
</tbody>
</table>
Binary Coefficients

| $M = 8$ | Precision 66.1 Bits | $M = 9$ | Precision 73.2 Bits | $M = 10$ | Precision 80.2 Bits |
|---|---|---|---|---|
| $\text{TAN}(Y)$ | $|Y| < \pi/4$, $\text{TAN}(\pi/4, O, M) = Y + Y^3/(3 + Y^2q(Y^2))$ | $\text{TAN}(\pi/4, O, M) = Y + Y^3/(3 + Y^2q(Y^2))$ | $\text{TAN}(\pi/4, O, M) = Y + Y^3/(3 + Y^2q(Y^2))$ |
| $M = 8$ | Precision 66.1 Bits | $M = 9$ | Precision 73.2 Bits | $M = 10$ | Precision 80.2 Bits |
| $Q00$ | Precision 19.90 Digits | $Q00$ | Precision 22.02 Digits | $Q00$ | Precision 24.15 Digits |

<table>
<thead>
<tr>
<th>Y</th>
<th>$Q00$</th>
<th>$Q01$</th>
<th>$Q02$</th>
<th>$Q03$</th>
<th>$Q04$</th>
<th>$Q05$</th>
<th>$Q06$</th>
<th>$Q07$</th>
<th>$Q08$</th>
<th>$Q09$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>-1.19999</td>
<td>99999</td>
<td>99999</td>
<td>96256</td>
<td>60115</td>
<td>38230</td>
<td>66532</td>
<td>32260</td>
<td>16359</td>
<td>43637</td>
</tr>
<tr>
<td>1.1</td>
<td>-57142</td>
<td>85714</td>
<td>29469</td>
<td>68344</td>
<td>19762</td>
<td>67380</td>
<td>38253</td>
<td>42161</td>
<td>22457</td>
<td>64738</td>
</tr>
<tr>
<td>1.1</td>
<td>25396</td>
<td>82537</td>
<td>99471</td>
<td>59709</td>
<td>16359</td>
<td>43637</td>
<td>37451</td>
<td>29323</td>
<td>16359</td>
<td>43637</td>
</tr>
<tr>
<td>1.1</td>
<td>25396</td>
<td>82537</td>
<td>99471</td>
<td>59709</td>
<td>16359</td>
<td>43637</td>
<td>37451</td>
<td>29323</td>
<td>16359</td>
<td>43637</td>
</tr>
<tr>
<td>1.1</td>
<td>25396</td>
<td>82537</td>
<td>99471</td>
<td>59709</td>
<td>16359</td>
<td>43637</td>
<td>37451</td>
<td>29323</td>
<td>16359</td>
<td>43637</td>
</tr>
<tr>
<td>1.1</td>
<td>25396</td>
<td>82537</td>
<td>99471</td>
<td>59709</td>
<td>16359</td>
<td>43637</td>
<td>37451</td>
<td>29323</td>
<td>16359</td>
<td>43637</td>
</tr>
<tr>
<td>1.1</td>
<td>25396</td>
<td>82537</td>
<td>99471</td>
<td>59709</td>
<td>16359</td>
<td>43637</td>
<td>37451</td>
<td>29323</td>
<td>16359</td>
<td>43637</td>
</tr>
<tr>
<td>1.1</td>
<td>25396</td>
<td>82537</td>
<td>99471</td>
<td>59709</td>
<td>16359</td>
<td>43637</td>
<td>37451</td>
<td>29323</td>
<td>16359</td>
<td>43637</td>
</tr>
<tr>
<td>1.1</td>
<td>25396</td>
<td>82537</td>
<td>99471</td>
<td>59709</td>
<td>16359</td>
<td>43637</td>
<td>37451</td>
<td>29323</td>
<td>16359</td>
<td>43637</td>
</tr>
<tr>
<td>1.1</td>
<td>25396</td>
<td>82537</td>
<td>99471</td>
<td>59709</td>
<td>16359</td>
<td>43637</td>
<td>37451</td>
<td>29323</td>
<td>16359</td>
<td>43637</td>
</tr>
</tbody>
</table>

*M = 8: 64 bits, 1 sign bit, 63 fraction bits, 1 implied leading 1.

*M = 9: 72 bits, 1 sign bit, 71 fraction bits, 1 implied leading 1.

*M = 10: 80 bits, 1 sign bit, 79 fraction bits, 1 implied leading 1.
<table>
<thead>
<tr>
<th>M</th>
<th>PRECISION</th>
<th>BINARY COEFFICIENTS</th>
<th>DECIMAL COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>87.3 BITS</td>
<td>Q0</td>
<td>Q00</td>
</tr>
<tr>
<td>12</td>
<td>94.3 BITS</td>
<td>Q0</td>
<td>Q00</td>
</tr>
</tbody>
</table>

M = 11

<table>
<thead>
<tr>
<th>N</th>
<th>PRECISION</th>
<th>87.3 BITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>-46314 63146 31463 14631</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>-56637 34710 32251 54174</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>-41223 41260 51365 67614</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>-63137 13426 21420 66562</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>-50135 35030 11765 62574</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>-77373 14656 65460 00665</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>-62206 03562 57167 01004</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>-47641 13010 20752 62216</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>-77122 17773 03650 17471</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>-10074 35657 55750 71011</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>-60256 10243 32502 66462</td>
<td></td>
</tr>
</tbody>
</table>

M = 12

<table>
<thead>
<tr>
<th>N</th>
<th>PRECISION</th>
<th>94.3 BITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>-46314 63146 31463 14631</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>-56637 34710 32251 54174</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>-41223 41260 51365 67614</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>-63137 13426 21420 66562</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>-50135 35030 11765 62574</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>-77373 14656 65460 00665</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>-62206 03562 57167 01004</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>-47641 13010 20752 62216</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>-77122 17773 03650 17471</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>-10074 35657 55750 71011</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>-60256 10243 32502 66462</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>\tan(Y)</td>
<td>Y < \pi/4, \tan(\pi/4, 0, M) = Y + Y^3/(3 + Y^2Q(Y^2))</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>-1.46314, 63146, 31463, 14631</td>
<td>Q00 (1) -.12000, 00000, 00000, 00000</td>
</tr>
<tr>
<td>7</td>
<td>-56637, 34710, 32251, 54200</td>
<td>Q01 (2) -.57142, 85714, 28571, 42857</td>
</tr>
<tr>
<td>13</td>
<td>-61223, 41260, 51365, 64632</td>
<td>Q02 (3) -.25396, 82539, 68253, 96837</td>
</tr>
<tr>
<td>20</td>
<td>-63137, 13426, 21443, 43125</td>
<td>Q03 (4) -.12203, 66934, 65264, 87293</td>
</tr>
<tr>
<td>24</td>
<td>-50135, 35030, 05373, 50336</td>
<td>Q04 (5) -.59876, 63130, 52049, 69742</td>
</tr>
<tr>
<td>31</td>
<td>-77373, 14672, 04257, 02515</td>
<td>Q05 (7) -.29565, 12707, 06365, 72092</td>
</tr>
<tr>
<td>35</td>
<td>-62706, 02426, 50263, 21632</td>
<td>Q06 (8) -.14628, 10800, 66769, 22551</td>
</tr>
<tr>
<td>41</td>
<td>-47641, 65776, 27065, 40311</td>
<td>Q07 (10) -.72425, 06576, 66148, 74488</td>
</tr>
<tr>
<td>46</td>
<td>-77061, 47073, 13445, 15265</td>
<td>Q08 (11) -.35866, 43335, 77955, 90684</td>
</tr>
<tr>
<td>52</td>
<td>-61775, 43141, 45602, 32236</td>
<td>Q09 (12) -.17761, 86826, 31385, 84864</td>
</tr>
<tr>
<td>56</td>
<td>-67540, 26614, 14011, 14140</td>
<td>Q10 (14) -.88125, 49579, 26251, 17551</td>
</tr>
<tr>
<td>63</td>
<td>-75037, 42401, 75014, 63000</td>
<td>Q11 (15) -.42369, 99629, 47304, 21856</td>
</tr>
<tr>
<td>67</td>
<td>-76512, 61363, 11660, 24000</td>
<td>Q12 (16) -.27168, 38954, 52182, 85870</td>
</tr>
</tbody>
</table>

BINARY COEFFICIENTS

M = 13

<table>
<thead>
<tr>
<th>PRECISION</th>
<th>101.3 BITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>-.46314</td>
</tr>
<tr>
<td></td>
<td>63146</td>
</tr>
<tr>
<td></td>
<td>31463</td>
</tr>
<tr>
<td></td>
<td>14631</td>
</tr>
<tr>
<td>(7)</td>
<td>-56637</td>
</tr>
<tr>
<td></td>
<td>34710</td>
</tr>
<tr>
<td></td>
<td>32251</td>
</tr>
<tr>
<td></td>
<td>54200</td>
</tr>
<tr>
<td>(13)</td>
<td>-61223</td>
</tr>
<tr>
<td></td>
<td>41260</td>
</tr>
<tr>
<td></td>
<td>51365</td>
</tr>
<tr>
<td></td>
<td>64632</td>
</tr>
<tr>
<td>(20)</td>
<td>-63137</td>
</tr>
<tr>
<td></td>
<td>13426</td>
</tr>
<tr>
<td></td>
<td>21443</td>
</tr>
<tr>
<td></td>
<td>43125</td>
</tr>
<tr>
<td>(24)</td>
<td>-50135</td>
</tr>
<tr>
<td></td>
<td>35030</td>
</tr>
<tr>
<td></td>
<td>05373</td>
</tr>
<tr>
<td></td>
<td>50336</td>
</tr>
<tr>
<td>(31)</td>
<td>-77373</td>
</tr>
<tr>
<td></td>
<td>14672</td>
</tr>
<tr>
<td></td>
<td>04257</td>
</tr>
<tr>
<td></td>
<td>02515</td>
</tr>
<tr>
<td>(35)</td>
<td>-62706</td>
</tr>
<tr>
<td></td>
<td>02426</td>
</tr>
<tr>
<td></td>
<td>50263</td>
</tr>
<tr>
<td></td>
<td>21632</td>
</tr>
<tr>
<td>(41)</td>
<td>-47641</td>
</tr>
<tr>
<td></td>
<td>65776</td>
</tr>
<tr>
<td></td>
<td>27065</td>
</tr>
<tr>
<td></td>
<td>40311</td>
</tr>
<tr>
<td>(46)</td>
<td>-77061</td>
</tr>
<tr>
<td></td>
<td>47073</td>
</tr>
<tr>
<td></td>
<td>13445</td>
</tr>
<tr>
<td></td>
<td>15265</td>
</tr>
<tr>
<td>(52)</td>
<td>-61775</td>
</tr>
<tr>
<td></td>
<td>43141</td>
</tr>
<tr>
<td></td>
<td>45602</td>
</tr>
<tr>
<td></td>
<td>32236</td>
</tr>
<tr>
<td>(56)</td>
<td>-67540</td>
</tr>
<tr>
<td></td>
<td>26614</td>
</tr>
<tr>
<td></td>
<td>14011</td>
</tr>
<tr>
<td></td>
<td>14140</td>
</tr>
<tr>
<td>(63)</td>
<td>-75037</td>
</tr>
<tr>
<td></td>
<td>42401</td>
</tr>
<tr>
<td></td>
<td>75014</td>
</tr>
<tr>
<td></td>
<td>63000</td>
</tr>
<tr>
<td>(67)</td>
<td>-76512</td>
</tr>
<tr>
<td></td>
<td>61363</td>
</tr>
<tr>
<td></td>
<td>11660</td>
</tr>
<tr>
<td></td>
<td>24000</td>
</tr>
</tbody>
</table>

DECIMAL COEFFICIENTS

<table>
<thead>
<tr>
<th>PRECISION</th>
<th>30.51 DIGITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>-.12000</td>
</tr>
<tr>
<td></td>
<td>00000</td>
</tr>
<tr>
<td></td>
<td>00000</td>
</tr>
<tr>
<td></td>
<td>00000</td>
</tr>
<tr>
<td>(2)</td>
<td>-.57142</td>
</tr>
<tr>
<td></td>
<td>85714</td>
</tr>
<tr>
<td></td>
<td>28571</td>
</tr>
<tr>
<td></td>
<td>42857</td>
</tr>
<tr>
<td>(3)</td>
<td>-.25396</td>
</tr>
<tr>
<td></td>
<td>82539</td>
</tr>
<tr>
<td></td>
<td>68253</td>
</tr>
<tr>
<td></td>
<td>96837</td>
</tr>
<tr>
<td>(4)</td>
<td>-.12203</td>
</tr>
<tr>
<td></td>
<td>66934</td>
</tr>
<tr>
<td></td>
<td>65264</td>
</tr>
<tr>
<td></td>
<td>87293</td>
</tr>
<tr>
<td>(5)</td>
<td>-.59876</td>
</tr>
<tr>
<td></td>
<td>63130</td>
</tr>
<tr>
<td></td>
<td>52049</td>
</tr>
<tr>
<td></td>
<td>69742</td>
</tr>
<tr>
<td>(7)</td>
<td>-.29565</td>
</tr>
<tr>
<td></td>
<td>12707</td>
</tr>
<tr>
<td></td>
<td>06365</td>
</tr>
<tr>
<td></td>
<td>72092</td>
</tr>
<tr>
<td>(8)</td>
<td>-.14628</td>
</tr>
<tr>
<td></td>
<td>10800</td>
</tr>
<tr>
<td></td>
<td>66769</td>
</tr>
<tr>
<td></td>
<td>22551</td>
</tr>
<tr>
<td>(10)</td>
<td>-.72425</td>
</tr>
<tr>
<td></td>
<td>06576</td>
</tr>
<tr>
<td></td>
<td>66148</td>
</tr>
<tr>
<td></td>
<td>74488</td>
</tr>
<tr>
<td>(11)</td>
<td>-.35866</td>
</tr>
<tr>
<td></td>
<td>43335</td>
</tr>
<tr>
<td></td>
<td>77955</td>
</tr>
<tr>
<td></td>
<td>90684</td>
</tr>
<tr>
<td>(12)</td>
<td>-.17761</td>
</tr>
<tr>
<td></td>
<td>86826</td>
</tr>
<tr>
<td></td>
<td>31385</td>
</tr>
<tr>
<td></td>
<td>84864</td>
</tr>
<tr>
<td>(14)</td>
<td>-.88125</td>
</tr>
<tr>
<td></td>
<td>49579</td>
</tr>
<tr>
<td></td>
<td>26251</td>
</tr>
<tr>
<td></td>
<td>17551</td>
</tr>
<tr>
<td>(15)</td>
<td>-.42369</td>
</tr>
<tr>
<td></td>
<td>99629</td>
</tr>
<tr>
<td></td>
<td>47304</td>
</tr>
<tr>
<td></td>
<td>21856</td>
</tr>
<tr>
<td>(16)</td>
<td>-.27168</td>
</tr>
<tr>
<td></td>
<td>38954</td>
</tr>
<tr>
<td></td>
<td>52182</td>
</tr>
<tr>
<td></td>
<td>85870</td>
</tr>
</tbody>
</table>
ATAN(Y) |Y| < tan(π/12), ATAN(tan(π/12), 0, M) = Y - Y^3/Q(Y^2)

<table>
<thead>
<tr>
<th>M = 1</th>
<th>PRECISION 21.4 BITS</th>
<th>DECODAL COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+) 2</td>
<td>.60004 03425 02052 71655</td>
<td>Q00</td>
</tr>
<tr>
<td></td>
<td>.70320 65424 35335 27631</td>
<td>Q01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M = 2</th>
<th>PRECISION 28.4 BITS</th>
<th>PRECISION 8.54 DIGITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+) 2</td>
<td>.60000 03610 31256 73645</td>
<td>Q00</td>
</tr>
<tr>
<td></td>
<td>.71451 34531 33213 61807</td>
<td>Q01</td>
</tr>
<tr>
<td></td>
<td>-.61031 00570 03760 15475</td>
<td>Q02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M = 3</th>
<th>PRECISION 35.0 BITS</th>
<th>PRECISION 10.53 DIGITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+) 2</td>
<td>.60000 00000 31367 16551</td>
<td>Q00</td>
</tr>
<tr>
<td></td>
<td>.71462 74204 37158 76505</td>
<td>Q01</td>
</tr>
<tr>
<td></td>
<td>-.64520 03565 56527 64465</td>
<td>Q02</td>
</tr>
<tr>
<td></td>
<td>.65357 51000 42366 76552</td>
<td>Q03</td>
</tr>
<tr>
<td></td>
<td>-.73044 15074 74577 52333</td>
<td>Q04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M = 4</th>
<th>PRECISION 41.4 BITS</th>
<th>PRECISION 12.45 DIGITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+) 2</td>
<td>.60000 00000 42375 75017</td>
<td>Q00</td>
</tr>
<tr>
<td></td>
<td>.71463 14305 06011 7263</td>
<td>Q01</td>
</tr>
<tr>
<td></td>
<td>-.64520 03565 56527 64465</td>
<td>Q02</td>
</tr>
<tr>
<td></td>
<td>.65357 51000 42366 76552</td>
<td>Q03</td>
</tr>
<tr>
<td></td>
<td>-.73044 15074 74577 52333</td>
<td>Q04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M = 5</th>
<th>PRECISION 47.7 BITS</th>
<th>PRECISION 14.35 DIGITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+) 2</td>
<td>.60000 00000 00464 21114</td>
<td>Q00</td>
</tr>
<tr>
<td></td>
<td>.71463 14624 37624 43630</td>
<td>Q01</td>
</tr>
<tr>
<td></td>
<td>01444 26506 65563 76501</td>
<td>Q02</td>
</tr>
<tr>
<td></td>
<td>-.64520 21231 24207 25366</td>
<td>Q02</td>
</tr>
<tr>
<td></td>
<td>.36724 66652 22273 51464</td>
<td>Q03</td>
</tr>
<tr>
<td></td>
<td>.56433 03542 52040 79600</td>
<td>Q04</td>
</tr>
<tr>
<td></td>
<td>-.41703 21156 34001 53671</td>
<td>Q04</td>
</tr>
<tr>
<td></td>
<td>.20637 25337 24311 54000</td>
<td>Q05</td>
</tr>
<tr>
<td></td>
<td>.50373 13632 34365 24503</td>
<td>Q05</td>
</tr>
<tr>
<td></td>
<td>.21653 23122 61440 40000</td>
<td>Q05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M = 6</th>
<th>PRECISION 53.9 BITS</th>
<th>PRECISION 16.22 DIGITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+) 2</td>
<td>.60000 00000 00065 33721</td>
<td>Q00</td>
</tr>
<tr>
<td></td>
<td>42605 02512 02073 76710</td>
<td>Q01</td>
</tr>
<tr>
<td></td>
<td>.71463 14631 36647 33761</td>
<td>Q02</td>
</tr>
<tr>
<td></td>
<td>.34104 71747 23461 03065</td>
<td>Q02</td>
</tr>
<tr>
<td></td>
<td>-.64523 30217 21714 40355</td>
<td>Q02</td>
</tr>
<tr>
<td></td>
<td>.34432 15176 46556 76244</td>
<td>Q03</td>
</tr>
<tr>
<td></td>
<td>.65652 12762 74377 51546</td>
<td>Q03</td>
</tr>
<tr>
<td></td>
<td>47602 12427 40077 11000</td>
<td>Q03</td>
</tr>
<tr>
<td></td>
<td>-.42175 61242 61315 37510</td>
<td>Q04</td>
</tr>
<tr>
<td></td>
<td>36409 53260 60110 00000</td>
<td>Q05</td>
</tr>
<tr>
<td></td>
<td>.57735 04275 76577 02237</td>
<td>Q05</td>
</tr>
<tr>
<td></td>
<td>.65171 53265 24560 00000</td>
<td>Q06</td>
</tr>
<tr>
<td></td>
<td>-.73315 22112 37067 75643</td>
<td>Q06</td>
</tr>
<tr>
<td></td>
<td>.21457 63400 57390 00000</td>
<td>Q06</td>
</tr>
</tbody>
</table>
\(\text{ATAN}(Y) \quad |Y| < \tan(\pi/12), \quad \text{ATAN}(\tan(\pi/12), O, M) = Y - Y^3/Q(Y^2) \)

Binary Coefficients

<table>
<thead>
<tr>
<th>M = 7</th>
<th>Precision 66.6 Bits</th>
<th>Precision 18.07 Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>0.6000 00000 000000 06126</td>
<td>(1) 0.3000 00000 0000 09566</td>
</tr>
<tr>
<td>(1)</td>
<td>0.71463 14631 46165 32763</td>
<td>(1) 0.17999 99999 99503 30710</td>
</tr>
<tr>
<td></td>
<td>0.6252 02640 21464 40361</td>
<td>0.18673 10828 57465 19647</td>
</tr>
<tr>
<td></td>
<td>0.6452 30376 12064 47570</td>
<td>0.20571 42849 44780 13865</td>
</tr>
<tr>
<td>(3)</td>
<td>0.7534 07660 44510 74270</td>
<td>0.4104 02972 89466 31030</td>
</tr>
<tr>
<td></td>
<td>0.7835 13502 07711 61732</td>
<td>0.5736 02972 41986 58670</td>
</tr>
<tr>
<td>(3)</td>
<td>0.2211 32341 76515 60107</td>
<td>0.4622 47670 81135 80333</td>
</tr>
<tr>
<td>(4)</td>
<td>0.6050 80142 70232 16101</td>
<td>0.7182 05076 59067 37949</td>
</tr>
<tr>
<td></td>
<td>0.44166 13605 71502 02157</td>
<td>0.71463 14631 46165 32763</td>
</tr>
<tr>
<td>(5)</td>
<td>0.55463 02153 72726 45057</td>
<td>0.53252 40000 00000 00000</td>
</tr>
</tbody>
</table>

Decimal Coefficients

<table>
<thead>
<tr>
<th>M = 7</th>
<th>Precision 18.07 Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>0.3000 00000 0000 09566</td>
</tr>
<tr>
<td>(1)</td>
<td>0.17999 99999 99503 30710</td>
</tr>
<tr>
<td></td>
<td>0.18673 10828 57465 19647</td>
</tr>
<tr>
<td></td>
<td>0.20571 42849 44780 13865</td>
</tr>
<tr>
<td>(3)</td>
<td>0.4104 02972 89466 31030</td>
</tr>
<tr>
<td></td>
<td>0.5736 02972 41986 58670</td>
</tr>
<tr>
<td>(3)</td>
<td>0.4622 47670 81135 80333</td>
</tr>
<tr>
<td>(4)</td>
<td>0.7182 05076 59067 37949</td>
</tr>
<tr>
<td></td>
<td>0.71463 14631 46165 32763</td>
</tr>
<tr>
<td>(5)</td>
<td>0.53252 40000 00000 00000</td>
</tr>
</tbody>
</table>

M = 8

<table>
<thead>
<tr>
<th>Precision 66.2 Bits</th>
<th>Precision 19.92 Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) 0.6000 00000 000000 06126</td>
<td>(1) 0.3000 00000 0000 09566</td>
</tr>
<tr>
<td>(1) 0.71463 14631 46165 32763</td>
<td>(1) 0.17999 99999 99503 30710</td>
</tr>
<tr>
<td>0.6520 11417 63252 12513</td>
<td>0.12618 32938 18185 60208</td>
</tr>
<tr>
<td>0.6452 30401 27641 37477</td>
<td>0.20571 42849 44780 13865</td>
</tr>
<tr>
<td>0.6565 24310 36070 16216</td>
<td>0.4104 02972 89466 31030</td>
</tr>
<tr>
<td>0.6525 03760 44753 20000</td>
<td>0.4622 47670 81135 80333</td>
</tr>
<tr>
<td>(3) 0.42212 00705 74231 23740</td>
<td>0.7182 05076 59067 37949</td>
</tr>
<tr>
<td>0.5016 44667 76560 00000</td>
<td>0.71463 14631 46165 32763</td>
</tr>
<tr>
<td>(4) 0.60575 43153 13301 37533</td>
<td>0.4622 47670 81135 80333</td>
</tr>
<tr>
<td>0.45005 76444 73146 52706</td>
<td>0.36146 21603 76316 52513</td>
</tr>
<tr>
<td>34575 14172 10000 00000</td>
<td>0.99222 40843 04837 33313</td>
</tr>
<tr>
<td>0.71203 31232 63765 47637</td>
<td>0.27957 33962 01666 00499</td>
</tr>
<tr>
<td>0.5017 06760 00000 00000</td>
<td>32817 52118 34836 77612</td>
</tr>
<tr>
<td>(5) 0.84125 52272 67326 21744</td>
<td>0.17659 81744 00253 40367</td>
</tr>
<tr>
<td>32532 32554 00000 00000</td>
<td>79157 88388 40017 13746</td>
</tr>
</tbody>
</table>

M = 9

<table>
<thead>
<tr>
<th>Precision 72.2 Bits</th>
<th>Precision 21.75 Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) 0.6000 00000 000000 06126</td>
<td>(1) 0.3000 00000 0000 09566</td>
</tr>
<tr>
<td>(1) 0.71463 14631 46165 32763</td>
<td>0.17999 99999 99503 30710</td>
</tr>
<tr>
<td>0.6565 24310 36070 16216</td>
<td>0.12618 32938 18185 60208</td>
</tr>
<tr>
<td>0.6452 30401 27641 37477</td>
<td>0.20571 42849 44780 13865</td>
</tr>
<tr>
<td>0.6525 03760 44753 20000</td>
<td>0.4104 02972 89466 31030</td>
</tr>
<tr>
<td>(3) 0.42212 00705 74231 23740</td>
<td>0.4622 47670 81135 80333</td>
</tr>
<tr>
<td>0.5016 44667 76560 00000</td>
<td>0.7182 05076 59067 37949</td>
</tr>
<tr>
<td>(4) 0.60575 43153 13301 37533</td>
<td>0.4622 47670 81135 80333</td>
</tr>
<tr>
<td>0.45005 76444 73146 52706</td>
<td>0.36146 21603 76316 52513</td>
</tr>
<tr>
<td>34575 14172 10000 00000</td>
<td>0.99222 40843 04837 33313</td>
</tr>
<tr>
<td>0.71203 31232 63765 47637</td>
<td>0.27957 33962 01666 00499</td>
</tr>
<tr>
<td>0.5017 06760 00000 00000</td>
<td>32817 52118 34836 77612</td>
</tr>
<tr>
<td>(5) 0.84125 52272 67326 21744</td>
<td>0.17659 81744 00253 40367</td>
</tr>
<tr>
<td>32532 32554 00000 00000</td>
<td>79157 88388 40017 13746</td>
</tr>
</tbody>
</table>
ATAN(Y) \quad |Y| < \tan(\pi/12), \quad ATAN(\tan(\pi/12), O, M) = Y - Y^2/2(Y^2)

<table>
<thead>
<tr>
<th>M = 10</th>
<th>BINARY COEFFICIENTS</th>
<th>DECIMAL COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRECISION 78.3 BITS</td>
<td>PRECISION 23.57 DIGITS</td>
</tr>
<tr>
<td>(2)</td>
<td>60000 00000 00000 00000</td>
<td>(1) 30000 00000 00000 00000</td>
</tr>
<tr>
<td>(1)</td>
<td>71463 14631 46314 63111</td>
<td>(1) 17999 99999 99999 59499</td>
</tr>
<tr>
<td></td>
<td>41376 44555 75523 10107</td>
<td></td>
</tr>
<tr>
<td>(-2)</td>
<td>-64523 30461 35474 72450</td>
<td>(0) -20571 42857 14271 59174</td>
</tr>
<tr>
<td></td>
<td>91320 77460 27121 12500</td>
<td></td>
</tr>
<tr>
<td>(-3)</td>
<td>05652 43331 51772 44466</td>
<td>(0) 10514 28571 40871 27127</td>
</tr>
<tr>
<td></td>
<td>65254 34342 16047 40000</td>
<td></td>
</tr>
<tr>
<td>(-3)</td>
<td>-42212 02540 11475 47313</td>
<td>(-1) -66932 83842 76383 85770</td>
</tr>
<tr>
<td></td>
<td>70554 14031 00340 00000</td>
<td></td>
</tr>
<tr>
<td>(-4)</td>
<td>60577 30171 03631 75355</td>
<td>(-1) 47606 23662 80518 58411</td>
</tr>
<tr>
<td></td>
<td>43355 51753 40000 00000</td>
<td></td>
</tr>
<tr>
<td>(-4)</td>
<td>-45200 57421 41322 26324</td>
<td>(-1) -32619 33777 28087 66666</td>
</tr>
<tr>
<td></td>
<td>75445 06542 00000 00000</td>
<td></td>
</tr>
<tr>
<td>(-5)</td>
<td>73006 67737 64056 06214</td>
<td>(-1) -28815 14932 41866 93413</td>
</tr>
<tr>
<td></td>
<td>04643 02200 00000 00000</td>
<td></td>
</tr>
<tr>
<td>(-5)</td>
<td>-60250 72427 31545 53715</td>
<td>(-1) -23598 58968 4165 63310</td>
</tr>
<tr>
<td></td>
<td>26460 30000 00000 00000</td>
<td></td>
</tr>
<tr>
<td>(-5)</td>
<td>47000 30120 75547 57126</td>
<td>(-1) -19043 32873 42341 87943</td>
</tr>
<tr>
<td></td>
<td>50701 00000 00000 00000</td>
<td></td>
</tr>
<tr>
<td>(-6)</td>
<td>-60582 35544 01547 12712</td>
<td>(-1) -11895 40099 62411 65650</td>
</tr>
<tr>
<td></td>
<td>77246 00000 00000 00000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M = 11</th>
<th>BINARY COEFFICIENTS</th>
<th>DECIMAL COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRECISION 84.3 BITS</td>
<td>PRECISION 25.39 DIGITS</td>
</tr>
<tr>
<td>(2)</td>
<td>60000 00000 00000 00000</td>
<td>(1) 30000 00000 00000 00000</td>
</tr>
<tr>
<td>(1)</td>
<td>71463 14631 46314 63111</td>
<td>(1) 17999 99999 99999 59499</td>
</tr>
<tr>
<td></td>
<td>62733 63121 75440 42260</td>
<td></td>
</tr>
<tr>
<td>(-2)</td>
<td>-64523 30461 35476 65612</td>
<td>(0) -20571 42857 14285 36599</td>
</tr>
<tr>
<td></td>
<td>47101 11103 75757 21100</td>
<td></td>
</tr>
<tr>
<td>(-3)</td>
<td>-65562 44331 53031 15222</td>
<td>(0) 10514 28571 42759 10028</td>
</tr>
<tr>
<td></td>
<td>77734 20226 31359 00000</td>
<td></td>
</tr>
<tr>
<td>(-3)</td>
<td>-62212 02541 37601 05561</td>
<td>(-1) -66932 83858 43111 89607</td>
</tr>
<tr>
<td></td>
<td>56465 61152 03600 00000</td>
<td></td>
</tr>
<tr>
<td>(-4)</td>
<td>-60577 30402 41662 64170</td>
<td>(-1) -47606 24483 04667 21700</td>
</tr>
<tr>
<td></td>
<td>22720 47567 00000 00000</td>
<td></td>
</tr>
<tr>
<td>(-4)</td>
<td>-45052 70407 72410 43734</td>
<td>(-1) -36124 60543 44673 04347</td>
</tr>
<tr>
<td></td>
<td>14940 75330 00000 00000</td>
<td></td>
</tr>
<tr>
<td>(-5)</td>
<td>-75052 07261 53655 43341</td>
<td>(-1) -20521 10099 55552 85688</td>
</tr>
<tr>
<td></td>
<td>34346 13000 00000 00000</td>
<td></td>
</tr>
<tr>
<td>(-5)</td>
<td>-60404 26406 64176 74576</td>
<td>(-1) -23685 79079 67750 85084</td>
</tr>
<tr>
<td></td>
<td>67647 70000 00000 00000</td>
<td></td>
</tr>
<tr>
<td>(-5)</td>
<td>50520 36322 62277 41130</td>
<td>(-1) -19852 13773 9861 81322</td>
</tr>
<tr>
<td></td>
<td>10262 00000 00000 00000</td>
<td></td>
</tr>
<tr>
<td>(-5)</td>
<td>-41132 12771 13554 17015</td>
<td>(-1) -16199 25865 28666 67977</td>
</tr>
<tr>
<td></td>
<td>77010 00000 00000 00000</td>
<td></td>
</tr>
<tr>
<td>(-6)</td>
<td>50777 40043 76671 53704</td>
<td>(-1) -10009 52773 00312 47156</td>
</tr>
<tr>
<td></td>
<td>50500 00000 00000 00000</td>
<td></td>
</tr>
</tbody>
</table>

41
\(\text{ATAN}(y) \quad |y| < \tan(\pi/12) \), \(\text{ATAN}(\tan(\pi/12), O, W) = y - y^3/Q(y^2) \)

Binary Coefficients

<table>
<thead>
<tr>
<th>(M = 12)</th>
<th>Precision: 90.4 Bits</th>
<th>(M = 13)</th>
<th>Precision: 96.4 Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>.60000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000</td>
<td>(2)</td>
<td>.60000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000</td>
</tr>
<tr>
<td>(1)</td>
<td>.71463 14631 46314 63146 30632 01773 31415 43213</td>
<td>(1)</td>
<td>.71463 14631 46314 63146 30632 01773 31415 43213</td>
</tr>
<tr>
<td>(-2)</td>
<td>- .64523 30401 35476 71552 14535 51402 16724 65200</td>
<td>(-2)</td>
<td>- .64523 30401 35476 71552 14535 51402 16724 65200</td>
</tr>
<tr>
<td>(-3)</td>
<td>.65652 44331 53051 05402</td>
<td>(-3)</td>
<td>.65652 44331 53051 05402</td>
</tr>
<tr>
<td>(-4)</td>
<td>.42212 02541 42610 27403 07645 52241 07600 00000</td>
<td>(-4)</td>
<td>.42212 02541 42610 27403 07645 52241 07600 00000</td>
</tr>
<tr>
<td>(-5)</td>
<td>.60577 30410 26529 51662 63670 00000 40000 00000</td>
<td>(-5)</td>
<td>.60577 30410 26529 51662 63670 00000 40000 00000</td>
</tr>
<tr>
<td>(-6)</td>
<td>.73015 41550 63567 41521 27752 60000 00000 00000</td>
<td>(-6)</td>
<td>.73015 41550 63567 41521 27752 60000 00000 00000</td>
</tr>
<tr>
<td>(-7)</td>
<td>.60414 21544 61143 05324</td>
<td>(-7)</td>
<td>.60414 21544 61143 05324</td>
</tr>
<tr>
<td>(-8)</td>
<td>.55670 15521 71123 76045 50260 00000 00000 00000</td>
<td>(-8)</td>
<td>.55670 15521 71123 76045 50260 00000 00000 00000</td>
</tr>
<tr>
<td>(-9)</td>
<td>.42664 03275 73650 36232 35400 00000 00000 00000</td>
<td>(-9)</td>
<td>.42664 03275 73650 36232 35400 00000 00000 00000</td>
</tr>
<tr>
<td>(-10)</td>
<td>.71214 55212 33363 41553</td>
<td>(-10)</td>
<td>.71214 55212 33363 41553</td>
</tr>
<tr>
<td>(-11)</td>
<td>.65000 0000 0000 0000</td>
<td>(-11)</td>
<td>.65000 0000 0000 0000</td>
</tr>
<tr>
<td>(-12)</td>
<td>.47237 27146 47116 22616 54000 00000 00000 00000</td>
<td>(-12)</td>
<td>.47237 27146 47116 22616 54000 00000 00000 00000</td>
</tr>
</tbody>
</table>

Decimal Coefficients

<table>
<thead>
<tr>
<th>(M = 12)</th>
<th>Precision: 27.21 Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(00)</td>
<td>.00019 58198 2447 37988</td>
</tr>
<tr>
<td>(01)</td>
<td>.17999 99999 99999 99999</td>
</tr>
<tr>
<td>(02)</td>
<td>78338 77930 18393 26622</td>
</tr>
<tr>
<td>(03)</td>
<td>.05204 35627 11062 62742</td>
</tr>
<tr>
<td>(04)</td>
<td>74812 60529 40178 79752</td>
</tr>
<tr>
<td>(05)</td>
<td>45662 58315 21721 65852</td>
</tr>
<tr>
<td>(06)</td>
<td>.47606 24516 95409 79616</td>
</tr>
<tr>
<td>(07)</td>
<td>63131 75329 00823 65629</td>
</tr>
<tr>
<td>(08)</td>
<td>02516 89267 73048 13062</td>
</tr>
<tr>
<td>(09)</td>
<td>93454 66566 93219 08575</td>
</tr>
<tr>
<td>(10)</td>
<td>.28821 49375 53372 91560</td>
</tr>
<tr>
<td>(11)</td>
<td>99557 20911 70749 81589</td>
</tr>
<tr>
<td>(12)</td>
<td>86577 06082 35888 41937</td>
</tr>
<tr>
<td>(13)</td>
<td>.10514 28571 42857 90853</td>
</tr>
<tr>
<td>(14)</td>
<td>11238 11615 33225 99872</td>
</tr>
<tr>
<td>(15)</td>
<td>97026 69289 49761 84759</td>
</tr>
<tr>
<td>(16)</td>
<td>.17017 41473 32677 64738</td>
</tr>
<tr>
<td>(17)</td>
<td>19930 35020 57257 95739</td>
</tr>
<tr>
<td>(18)</td>
<td>.13983 11011 76868 37416</td>
</tr>
<tr>
<td>(19)</td>
<td>35313 65175 07826 93028</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(M = 13)</th>
<th>Precision: 29.02 Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(00)</td>
<td>.00000 34868 28894 36490</td>
</tr>
<tr>
<td>(01)</td>
<td>.17999 99999 99999 99999</td>
</tr>
<tr>
<td>(02)</td>
<td>99557 20911 70749 81589</td>
</tr>
<tr>
<td>(03)</td>
<td>.47606 24518 26773 08021</td>
</tr>
<tr>
<td>(04)</td>
<td>31989 75834 11979 87870</td>
</tr>
<tr>
<td>(05)</td>
<td>.36214 62007 08719 39695</td>
</tr>
<tr>
<td>(06)</td>
<td>19528 90685 97719 16649</td>
</tr>
<tr>
<td>(07)</td>
<td>.28621 51654 18614 51232</td>
</tr>
<tr>
<td>(08)</td>
<td>99517 68175 96958 95860</td>
</tr>
<tr>
<td>(09)</td>
<td>.23693 89990 64364 19107</td>
</tr>
<tr>
<td>(10)</td>
<td>53793 67942 86438 47301</td>
</tr>
<tr>
<td>(11)</td>
<td>.19959 46451 11298 76954</td>
</tr>
<tr>
<td>(12)</td>
<td>23438 97200 57446 51561</td>
</tr>
<tr>
<td>(13)</td>
<td>.17126 07113 14185 12740</td>
</tr>
<tr>
<td>(14)</td>
<td>31312 06173 80324 72213</td>
</tr>
<tr>
<td>(15)</td>
<td>.14808 11381 44030 48145</td>
</tr>
<tr>
<td>(16)</td>
<td>60530 99931 22469 23160</td>
</tr>
<tr>
<td>(17)</td>
<td>.73448 08826 48234 24223</td>
</tr>
<tr>
<td>(18)</td>
<td>48911 19366 57991 46401</td>
</tr>
</tbody>
</table>
\[
\text{ATAN}(y) \quad |y| < \tan(\pi/12), \quad \text{ATAN}(\tan(\pi/12), 0, M) = y - y^3/Q(y^2)
\]

Binary Coefficients

<table>
<thead>
<tr>
<th>(M = 14)</th>
<th>Precision 102.4 Bits</th>
<th>Decimal Coefficients</th>
<th>Precision 30.82 Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pm 2)</td>
<td>(0.60000 \ 00000 \ 00000 \ 00000)</td>
<td>(\pm 3.0000 \ 00000 \ 00000 \ 00000)</td>
<td></td>
</tr>
<tr>
<td>(\pm 1)</td>
<td>(0.71463 \ 14631 \ 46314 \ 63146)</td>
<td>(\pm 1.7999 \ 99999 \ 99999 \ 99999)</td>
<td></td>
</tr>
<tr>
<td>31463 01754 60212 67616</td>
<td>99991 03535 61879 95324</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pm 2)</td>
<td>(-0.64523 \ 30401 \ 35476 \ 71620)</td>
<td>(-2.0571 \ 42857 \ 14285 \ 71428)</td>
<td></td>
</tr>
<tr>
<td>63243 76502 55705 10400</td>
<td>11654 25908 66329 36259</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pm 3)</td>
<td>(0.65652 \ 44331 \ 53051 \ 42674)</td>
<td>(1.0514 \ 28571 \ 42857 \ 14168)</td>
<td></td>
</tr>
<tr>
<td>34637 03014 62060 00000</td>
<td>71828 27699 60558 09366</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pm 3)</td>
<td>(-0.42212 \ 02541 \ 42675 \ 04613)</td>
<td>(-0.6932 \ 83858 \ 99812 \ 67937)</td>
<td></td>
</tr>
<tr>
<td>51130 41622 14000 00000</td>
<td>20519 91746 88220 70850</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pm 4)</td>
<td>(-0.60577 \ 30410 \ 45675 \ 62722)</td>
<td>(-0.67606 \ 24518 \ 3761 \ 69145)</td>
<td></td>
</tr>
<tr>
<td>02760 44140 00000 00000</td>
<td>23392 89171 78640 93905</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pm 4)</td>
<td>(-0.45052 \ 71003 \ 67133 \ 14157)</td>
<td>(-0.36214 \ 62009 \ 97614 \ 02577)</td>
<td></td>
</tr>
<tr>
<td>73405 75000 00000 00000</td>
<td>74895 13796 11144 69955</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pm 5)</td>
<td>(-0.73015 \ 43240 \ 54650 \ 36724)</td>
<td>(-0.28821 \ 51773 \ 37236 \ 41046)</td>
<td></td>
</tr>
<tr>
<td>26101 00000 00000 00000</td>
<td>21957 98734 60819 73313</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pm 5)</td>
<td>(-0.60414 \ 71043 \ 02033 \ 53157)</td>
<td>(-0.23693 \ 93510 \ 25520 \ 65597)</td>
<td></td>
</tr>
<tr>
<td>64520 00000 00000 00000</td>
<td>02826 20673 76847 69376</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pm 5)</td>
<td>(-0.50701 \ 63110 \ 51404 \ 67445)</td>
<td>(-0.19960 \ 21184 \ 16394 \ 24381)</td>
<td></td>
</tr>
<tr>
<td>61000 00000 00000 00000</td>
<td>62512 20530 88294 82675</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pm 5)</td>
<td>(-0.43061 \ 66423 \ 11245 \ 47315)</td>
<td>(-0.17137 \ 38646 \ 20015 \ 72016)</td>
<td></td>
</tr>
<tr>
<td>10000 00000 00000 00000</td>
<td>08346 19273 36227 32634</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pm 6)</td>
<td>(-0.71110 \ 64024 \ 70323 \ 40274)</td>
<td>(-0.14927 \ 29813 \ 44468 \ 22846)</td>
<td></td>
</tr>
<tr>
<td>98792 50478 78366 03163</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pm 6)</td>
<td>(-0.65334 \ 06212 \ 12260 \ 36740)</td>
<td>(-1.0344 \ 40401 \ 38056 \ 81686)</td>
<td></td>
</tr>
<tr>
<td>99038 30615 17604 80133</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pm 6)</td>
<td>(-0.54106 \ 32054 \ 30385 \ 67400)</td>
<td>(-1.0775 \ 76046 \ 20166 \ 11279)</td>
<td></td>
</tr>
<tr>
<td>00000 00000 00000 00000</td>
<td>65643 06108 84854 10436</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pm 7)</td>
<td>(-0.64214 \ 75300 \ 50506 \ 03000)</td>
<td>(-0.6812 \ 63495 \ 38615 \ 73083)</td>
<td></td>
</tr>
<tr>
<td>00000 00000 00000 00000</td>
<td>88643 19435 33825 68806</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ARSIN(Y) \quad |Y| < 0.5, \quad ARSIN(0.5, 0, M) = Y + \frac{Y^3}{3} \sqrt{1 - Y^2}

<table>
<thead>
<tr>
<th>M = 1</th>
<th>PRECISION 16.4 BITS</th>
<th>DECIMAL COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(3) \cdot 60101 33624 12324 40573</td>
<td>Q00 (1) \cdot 60159 75148 69820 57912</td>
</tr>
<tr>
<td></td>
<td>(2) \cdot 56013 11305 74666 32464</td>
<td>Q01 (1) \cdot -28763 60676 99668 58558</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M = 2</th>
<th>PRECISION 21.3 BITS</th>
<th>DECIMAL COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(3) \cdot 57773 77305 31774 16263</td>
<td>Q00 (1) \cdot 59990 21093 59305 18286</td>
</tr>
<tr>
<td></td>
<td>(2) \cdot -52670 70656 46564 13311</td>
<td>Q01 (1) \cdot -26788 19353 15246 86946</td>
</tr>
<tr>
<td></td>
<td>(0) \cdot -41153 25024 53777 01335</td>
<td>Q02 (0) \cdot -51890 04137 06455 24248</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M = 3</th>
<th>PRECISION 25.9 BITS</th>
<th>DECIMAL COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(3) \cdot 60000 21450 42751 76200</td>
<td>Q00 (1) \cdot 60000 67059 29487 88279</td>
</tr>
<tr>
<td></td>
<td>(2) \cdot -53171 71166 67447 56340</td>
<td>Q01 (1) \cdot -27023 79669 50386 69904</td>
</tr>
<tr>
<td></td>
<td>(1) \cdot -56674 66426 24241 25077</td>
<td>Q02 (0) \cdot -36616 29065 48671 14636</td>
</tr>
<tr>
<td></td>
<td>(0) \cdot -46441 42271 75113 12170</td>
<td>Q03 (0) \cdot -30092 67719 25491 60618</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M = 4</th>
<th>PRECISION 30.2 BITS</th>
<th>DECIMAL COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(3) \cdot 57777 76576 53467 33733</td>
<td>Q00 (1) \cdot 59999 95221 80392 80492</td>
</tr>
<tr>
<td></td>
<td>(2) \cdot -53164 25704 25635 04771</td>
<td>Q01 (1) \cdot -26997 48770 67182 63713</td>
</tr>
<tr>
<td></td>
<td>(1) \cdot -62573 33106 43033 23337</td>
<td>Q02 (0) \cdot -39641 45512 07688 30092</td>
</tr>
<tr>
<td></td>
<td>(0) \cdot -51561 20500 61474 16642</td>
<td>Q03 (0) \cdot -16297 34786 16977 95334</td>
</tr>
<tr>
<td></td>
<td>(0) \cdot -67600 04464 71127 11041</td>
<td>Q04 (0) \cdot -21777 39862 56980 41912</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M = 5</th>
<th>PRECISION 34.5 BITS</th>
<th>DECIMAL COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(3) \cdot 60000 00056 36360 76445</td>
<td>Q00 (1) \cdot 60000 00346 27395 90990</td>
</tr>
<tr>
<td></td>
<td>(2) \cdot -53146 46564 42701 15452</td>
<td>Q01 (1) \cdot -27000 25247 57742 46054</td>
</tr>
<tr>
<td></td>
<td>(1) \cdot -62073 27503 45262 66747</td>
<td>Q02 (0) \cdot -39153 09028 62354 80214</td>
</tr>
<tr>
<td></td>
<td>(0) \cdot -63322 43352 20239 57074</td>
<td>Q03 (0) \cdot -20082 51497 18395 83653</td>
</tr>
<tr>
<td></td>
<td>(0) \cdot -53033 63305 19264 43371</td>
<td>Q04 (1) \cdot -84090 43462 11621 40450</td>
</tr>
<tr>
<td></td>
<td>(0) \cdot -55055 60241 73070 11055</td>
<td>Q05 (0) \cdot -17613 03325 00577 97831</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M = 6</th>
<th>PRECISION 38.7 BITS</th>
<th>DECIMAL COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(3) \cdot 57777 77774 46557 35407</td>
<td>Q00 (1) \cdot 59999 99974 70531 08359</td>
</tr>
<tr>
<td></td>
<td>(2) \cdot -53146 30244 02620 32536</td>
<td>Q01 (1) \cdot -26999 97559 35173 39064</td>
</tr>
<tr>
<td></td>
<td>(1) \cdot -62150 54231 03762 16201</td>
<td>Q02 (0) \cdot -39222 24757 55065 46992</td>
</tr>
<tr>
<td></td>
<td>(0) \cdot -61274 62431 02076 26672</td>
<td>Q03 (0) \cdot -19284 66020 69482 43835</td>
</tr>
<tr>
<td></td>
<td>(0) \cdot -41366 17174 22263 77030</td>
<td>Q04 (0) \cdot -13078 48981 31793 06445</td>
</tr>
<tr>
<td></td>
<td>(0) \cdot -52262 61314 35415 04367</td>
<td>Q05 (1) \cdot -41356 60527 16537 59216</td>
</tr>
<tr>
<td></td>
<td>(0) \cdot -47007 14613 65703 36630</td>
<td>Q06 (0) \cdot -15239 86784 37318 44645</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M = 7</th>
<th>PRECISION 42.8 BITS</th>
<th>DECIMAL COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(3) \cdot 60000 00000 17735 65627</td>
<td>Q00 (1) \cdot 60000 00001 85487 81950</td>
</tr>
<tr>
<td></td>
<td>(2) \cdot -53146 31360 46051 21441</td>
<td>Q01 (1) \cdot -27000 00228 71423 36254</td>
</tr>
<tr>
<td></td>
<td>(1) \cdot -62142 65724 53436 31762</td>
<td>Q02 (0) \cdot -39213 32159 59236 09210</td>
</tr>
<tr>
<td></td>
<td>(0) \cdot -61567 00647 77271 77007</td>
<td>Q03 (0) \cdot -12426 73716 67056 18060</td>
</tr>
<tr>
<td></td>
<td>(0) \cdot -74600 27544 43133 62004</td>
<td>Q04 (0) \cdot -11865 37561 64675 10652</td>
</tr>
<tr>
<td></td>
<td>(0) \cdot -62306 25472 73362 23427</td>
<td>Q05 (1) \cdot -98412 84841 87263 03372</td>
</tr>
<tr>
<td></td>
<td>(0) \cdot -65421 12156 50153 36502</td>
<td>Q06 (1) \cdot -13069 70578 48687 74584</td>
</tr>
<tr>
<td></td>
<td>(0) \cdot -43250 51273 40607 72036</td>
<td>Q07 (0) \cdot -13800 54195 20651 93502</td>
</tr>
</tbody>
</table>
AR\sin(y) \quad |y| < 0.5, \quad AR\sin(0.5, 0, M) = y + \frac{y^3}{3!}(y^2)

Binary Coefficients

<table>
<thead>
<tr>
<th>M = 8</th>
<th>Precision 46.9 Bits</th>
<th>Decimal Coefficients</th>
<th>Precision 14.11 Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.57777 77777 76650 56752</td>
<td>Q00 (1) 0.59999 99999 86374 26200</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.5405 32116 73442 70216</td>
<td>0.01914 59031 31286 57232</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-0.53146 31455 45627 45364</td>
<td>Q01 (1) -0.26999 99979 10322 07187</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>-0.52700 82770 36367 72732</td>
<td>Q02 (0) -0.39214 39612 63967 65017</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td>-0.61531 45524 06721 23254</td>
<td>Q03 (0) -0.19404 28810 44547 51459</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.33336 05160 46771 77300</td>
<td>90092 63798 52759 71841</td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td>-0.76052 26510 10131 26027</td>
<td>Q04 (0) -0.12125 53167 86436 19839</td>
<td></td>
</tr>
<tr>
<td>-4</td>
<td>-0.55615 55346 47513 74000</td>
<td>0.06901 99200 92124 50725</td>
<td></td>
</tr>
<tr>
<td>-5</td>
<td>-0.51277 11526 72242 52465</td>
<td>Q05 (1) -0.80807 30853 96567 08399</td>
<td></td>
</tr>
<tr>
<td>-6</td>
<td>-0.5737 72405 01363 40000</td>
<td>62358 85012 94052 92989</td>
<td></td>
</tr>
<tr>
<td>-7</td>
<td>-0.52105 31756 77724 06446</td>
<td>Q06 (1) -0.82296 01185 28758 59680</td>
<td></td>
</tr>
<tr>
<td>-8</td>
<td>-0.42766 63050 76772 06700</td>
<td>83709 59663 94166 48540</td>
<td></td>
</tr>
<tr>
<td>-9</td>
<td>-0.07441 71660 72146 00000</td>
<td>70761 03447 46135 95509</td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td>-0.41036 70575 05312 75444</td>
<td>Q08 (0) -0.12914 10962 84529 60198</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25705 15061 57620 00000</td>
<td>80294 91347 35701 75071</td>
<td></td>
</tr>
</tbody>
</table>

M = 9

<table>
<thead>
<tr>
<th>Precision 50.9 Bits</th>
<th>Precision 15.33 Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q00 (1) 0.60000 00000 00000 01001 58353</td>
</tr>
<tr>
<td>1</td>
<td>0.84574 41551 96489 56119</td>
</tr>
<tr>
<td>2</td>
<td>-0.27000 00000 00000 00000 96958 24214</td>
</tr>
<tr>
<td>-1</td>
<td>-0.46608 94542 18804 98612</td>
</tr>
<tr>
<td>-2</td>
<td>-0.39214 27362 39264 92588</td>
</tr>
<tr>
<td>-3</td>
<td>-0.82296 01185 28758 59680</td>
</tr>
<tr>
<td>-4</td>
<td>-0.80807 30853 96567 08399</td>
</tr>
<tr>
<td>-5</td>
<td>-0.85012 94052 92989</td>
</tr>
<tr>
<td>-6</td>
<td>-0.82296 01185 28758 59680</td>
</tr>
<tr>
<td>-7</td>
<td>-0.80807 30853 96567 08399</td>
</tr>
<tr>
<td>-8</td>
<td>-0.85012 94052 92989</td>
</tr>
<tr>
<td>-9</td>
<td>-0.82296 01185 28758 59680</td>
</tr>
<tr>
<td>-10</td>
<td>-0.80807 30853 96567 08399</td>
</tr>
<tr>
<td></td>
<td>90278 64515 90052 29045</td>
</tr>
<tr>
<td></td>
<td>52287 01764 34774 78247</td>
</tr>
<tr>
<td></td>
<td>70667 54880 23671 45165</td>
</tr>
<tr>
<td></td>
<td>-0.57571 81658 71886 77082</td>
</tr>
<tr>
<td></td>
<td>15208 57063 80544 29598</td>
</tr>
<tr>
<td></td>
<td>-0.74988 84807 75021 96911</td>
</tr>
<tr>
<td></td>
<td>10554 16995 38575 92360</td>
</tr>
<tr>
<td></td>
<td>63527 71987 25714 05826</td>
</tr>
<tr>
<td></td>
<td>-0.12388 43209 28901 45983</td>
</tr>
<tr>
<td></td>
<td>32886 46206 61918 63266</td>
</tr>
</tbody>
</table>
ARSIN(Y)

For $|Y| < 0.5$,

\[
\text{ARSIN}(0.5, 0, M) = Y + Y^3/Q(Y^2)
\]

Binary Coefficients

<table>
<thead>
<tr>
<th>M = 10</th>
<th>Precision 54.9 Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)</td>
<td>.57777 77777 77774 60605</td>
</tr>
<tr>
<td>(2)</td>
<td>-.53146 31463 11764 05074</td>
</tr>
<tr>
<td>(-1)</td>
<td>-.62143 36320 63044 66353</td>
</tr>
<tr>
<td>(-2)</td>
<td>-.6135 20775 56320 76535</td>
</tr>
<tr>
<td>(-3)</td>
<td>-.75700 25515 24632 14332</td>
</tr>
<tr>
<td>(-3)</td>
<td>-.33334 06734 77507 40000</td>
</tr>
<tr>
<td>(-3)</td>
<td>-.33112 51421 02760 07701</td>
</tr>
<tr>
<td>(-3)</td>
<td>-.45504 67747 55001 02116</td>
</tr>
<tr>
<td>(-4)</td>
<td>-.54775 47340 45713 32773</td>
</tr>
<tr>
<td>(-3)</td>
<td>.70624 56137 11566 36373</td>
</tr>
<tr>
<td>(-3)</td>
<td>.65271 52000 00000 00000</td>
</tr>
</tbody>
</table>

Decimal Coefficients

<table>
<thead>
<tr>
<th>M = 11</th>
<th>Precision 58.9 Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)</td>
<td>.60000 00000 00000 00000 17165</td>
</tr>
<tr>
<td>(2)</td>
<td>-.52146 31463 15026 60556</td>
</tr>
<tr>
<td>(-1)</td>
<td>-.62143 36262 45572 65562</td>
</tr>
<tr>
<td>(-2)</td>
<td>-.61535 26510 71675 26474</td>
</tr>
<tr>
<td>(-3)</td>
<td>-.75675 00466 21135 76533</td>
</tr>
<tr>
<td>(-3)</td>
<td>.33172 55371 71422 27176</td>
</tr>
<tr>
<td>(-3)</td>
<td>.40160 77346 31344 10557</td>
</tr>
<tr>
<td>(-4)</td>
<td>.63235 41300 14051 61426</td>
</tr>
<tr>
<td>(-5)</td>
<td>.71022 06235 42221 35161</td>
</tr>
<tr>
<td>(-5)</td>
<td>.46770 33060 20023 71462</td>
</tr>
<tr>
<td>(-4)</td>
<td>.76050 51431 30631 26346</td>
</tr>
<tr>
<td>(-3)</td>
<td>.75507 03641 76343 66633</td>
</tr>
<tr>
<td>(-3)</td>
<td>.31415 56563 00000 00000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M = 11</th>
<th>Precision 17.74 Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)</td>
<td>.60000 00000 00000 00000 17165</td>
</tr>
<tr>
<td>(2)</td>
<td>-.62146 31463 15026 60556</td>
</tr>
<tr>
<td>(-1)</td>
<td>-.62143 36262 45572 65562</td>
</tr>
<tr>
<td>(-2)</td>
<td>-.61535 26510 71675 26474</td>
</tr>
<tr>
<td>(-3)</td>
<td>-.75675 00466 21135 76533</td>
</tr>
<tr>
<td>(-3)</td>
<td>.33172 55371 71422 27176</td>
</tr>
<tr>
<td>(-3)</td>
<td>.40160 77346 31344 10557</td>
</tr>
<tr>
<td>(-4)</td>
<td>.63235 41300 14051 61426</td>
</tr>
<tr>
<td>(-5)</td>
<td>.71022 06235 42221 35161</td>
</tr>
<tr>
<td>(-5)</td>
<td>.46770 33060 20023 71462</td>
</tr>
<tr>
<td>(-4)</td>
<td>.76050 51431 30631 26346</td>
</tr>
<tr>
<td>(-3)</td>
<td>.75507 03641 76343 66633</td>
</tr>
<tr>
<td>(-3)</td>
<td>.31415 56563 00000 00000</td>
</tr>
</tbody>
</table>

\[\text{PRECISION} = 54.9 \text{ BITS} \]

\[\text{PRECISION} = 58.9 \text{ BITS} \]

\[\text{PRECISION} = 17.74 \text{ DIGITS} \]

46
ARSIN(\(y\)) for \(|y| < 0.5\), \(ARSIN(0.5, 0, M) = y + y^3/Q(y^2)\)

Binary Coefficients

<table>
<thead>
<tr>
<th>M = 12</th>
<th>Precision 62.9 Bits</th>
<th>Decimal Coefficients</th>
<th>Precision 18.94 Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)</td>
<td>0.57777 77777 77777 76703</td>
<td>Q00 (1) 0.59999 99999 99999 60258</td>
<td>84164 65764 67233 44180</td>
</tr>
<tr>
<td>21200</td>
<td>45101 75052 25562</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>-0.53146 31663 14616 71615</td>
<td>Q01 (1) -2.69999 99999 99878 38638</td>
<td>05384 25338 28239 35244</td>
</tr>
<tr>
<td>32036</td>
<td>22127 50765 16127</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-1)</td>
<td>-0.62413 36265 53102 30166</td>
<td>Q02 (0) -3.9214 28572 73063 23699</td>
<td>6843 40659 63351 10618</td>
</tr>
<tr>
<td>10102</td>
<td>45077 43446 45700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-2)</td>
<td>-0.61535 25050 51343 56122</td>
<td>Q03 (0) -1.9407 14215 50487 75059</td>
<td>86696 99531 76111 74215</td>
</tr>
<tr>
<td>46251</td>
<td>31302 26435 62000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-3)</td>
<td>-0.75675 37372 36127 01734</td>
<td>Q04 (0) -1.2084 00421 85900 49423</td>
<td>32365 32202 59939 71094</td>
</tr>
<tr>
<td>54003</td>
<td>74167 22202 00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-3)</td>
<td>-0.53162 21270 42424 00252</td>
<td>Q05 (-1) -8.4420 29525 04878 55099</td>
<td>42464 67785 60705 30339</td>
</tr>
<tr>
<td>62341</td>
<td>27762 63400 00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-3)</td>
<td>-0.40233 40253 26160 74260</td>
<td>Q06 (-1) -6.3306 82841 91187 40483</td>
<td>87492 82219 61197 59374</td>
</tr>
<tr>
<td>12004</td>
<td>26233 72000 00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-4)</td>
<td>-0.62173 03036 56255 03366</td>
<td>Q07 (-1) -4.9062 82007 71770 89751</td>
<td>64878 55746 29267 15711</td>
</tr>
<tr>
<td>16004</td>
<td>56243 40000 00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-4)</td>
<td>-0.55215 63265 72515 41537</td>
<td>Q08 (-1) -4.4215 77916 45981 14831</td>
<td>76402 56762 89698 04989</td>
</tr>
<tr>
<td>60436</td>
<td>77722 00000 00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-5)</td>
<td>-0.40333 01655 33177 57756</td>
<td>Q09 (-1) -1.5833 88207 43890 71123</td>
<td>62703 93291 09776 23494</td>
</tr>
<tr>
<td>37744</td>
<td>10047 52724 75240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-3)</td>
<td>-0.52240 10442 54571 34756</td>
<td>Q10 (-1) -8.2662 11224 14780 49342</td>
<td>83106 02325 68744 28205</td>
</tr>
<tr>
<td>70366</td>
<td>54240 00000 00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-3)</td>
<td>-0.47626 20231 20400 51174</td>
<td>Q11 (-1) -7.7721 61360 57413 26628</td>
<td>40695 68836 13418 86571</td>
</tr>
<tr>
<td>11112</td>
<td>47540 00000 00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-3)</td>
<td>-0.76020 30505 24740 23742</td>
<td>Q12 (0) -1.1215 62535 40750 40083</td>
<td>09970 89017 06329 05341</td>
</tr>
</tbody>
</table>
\[
\arcsin(y) \quad |y| < 0.5, \quad \arcsin(0.5, 0, M) = y + \frac{y^3}{q(y^2)}
\]

<table>
<thead>
<tr>
<th>BINARY COEFFICIENTS</th>
<th>DECIMAL COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>M = 14</td>
<td>PRECISION 21.33 DIGITS</td>
</tr>
<tr>
<td>PRECISION 70.8 BITS</td>
<td></td>
</tr>
<tr>
<td>(3) (-57777)</td>
<td>(1) (-59999)</td>
</tr>
<tr>
<td>(77777)</td>
<td>(99999)</td>
</tr>
<tr>
<td>(77777)</td>
<td>(99999)</td>
</tr>
<tr>
<td>(77777)</td>
<td>(97875)</td>
</tr>
<tr>
<td>72467</td>
<td>98845</td>
</tr>
<tr>
<td>71734</td>
<td>47511</td>
</tr>
<tr>
<td>65550</td>
<td>62519</td>
</tr>
<tr>
<td>07361</td>
<td>68744</td>
</tr>
<tr>
<td>(2) (-53146)</td>
<td>(1) (-26999)</td>
</tr>
<tr>
<td>(31463)</td>
<td>(99999)</td>
</tr>
<tr>
<td>(14631)</td>
<td>(99999)</td>
</tr>
<tr>
<td>(41436)</td>
<td>14011</td>
</tr>
<tr>
<td>27046</td>
<td>85782</td>
</tr>
<tr>
<td>22600</td>
<td>42183</td>
</tr>
<tr>
<td>06333</td>
<td>64659</td>
</tr>
<tr>
<td>32400</td>
<td>92770</td>
</tr>
<tr>
<td>(-1) (-62143)</td>
<td>(0) (-39214)</td>
</tr>
<tr>
<td>(36265)</td>
<td>28571</td>
</tr>
<tr>
<td>(31315)</td>
<td>44070</td>
</tr>
<tr>
<td>(24433)</td>
<td>27885</td>
</tr>
<tr>
<td>14616</td>
<td>73770</td>
</tr>
<tr>
<td>12716</td>
<td>52364</td>
</tr>
<tr>
<td>66221</td>
<td>42492</td>
</tr>
<tr>
<td>70240</td>
<td>55566</td>
</tr>
<tr>
<td>(-2) (-61535)</td>
<td>(0) (-19407)</td>
</tr>
<tr>
<td>(25106)</td>
<td>14284</td>
</tr>
<tr>
<td>(33376)</td>
<td>84663</td>
</tr>
<tr>
<td>(20204)</td>
<td>88368</td>
</tr>
<tr>
<td>70145</td>
<td>76116</td>
</tr>
<tr>
<td>01674</td>
<td>16686</td>
</tr>
<tr>
<td>12124</td>
<td>86475</td>
</tr>
<tr>
<td>70000</td>
<td>12609</td>
</tr>
<tr>
<td>(-3) (-75675)</td>
<td>(0) (-12083)</td>
</tr>
<tr>
<td>(33635)</td>
<td>98228</td>
</tr>
<tr>
<td>(76670)</td>
<td>02482</td>
</tr>
<tr>
<td>(46124)</td>
<td>63036</td>
</tr>
<tr>
<td>36426</td>
<td>22587</td>
</tr>
<tr>
<td>76713</td>
<td>81088</td>
</tr>
<tr>
<td>10220</td>
<td>18241</td>
</tr>
<tr>
<td>00000</td>
<td>00898</td>
</tr>
<tr>
<td>(-3) (-53183)</td>
<td>(-1) (-84424)</td>
</tr>
<tr>
<td>(33711)</td>
<td>72777</td>
</tr>
<tr>
<td>(44217)</td>
<td>87525</td>
</tr>
<tr>
<td>(66043)</td>
<td>43528</td>
</tr>
<tr>
<td>65721</td>
<td>00534</td>
</tr>
<tr>
<td>64124</td>
<td>66362</td>
</tr>
<tr>
<td>04000</td>
<td>68934</td>
</tr>
<tr>
<td>00000</td>
<td>11744</td>
</tr>
<tr>
<td>(-3) (-40303)</td>
<td>(-1) (-63246)</td>
</tr>
<tr>
<td>(53333)</td>
<td>46174</td>
</tr>
<tr>
<td>(93055)</td>
<td>27890</td>
</tr>
<tr>
<td>(13047)</td>
<td>38088</td>
</tr>
<tr>
<td>34305</td>
<td>40835</td>
</tr>
<tr>
<td>72701</td>
<td>63171</td>
</tr>
<tr>
<td>00000</td>
<td>22840</td>
</tr>
<tr>
<td>00000</td>
<td>53798</td>
</tr>
<tr>
<td>(-4) (-62642)</td>
<td>(-1) (-49626)</td>
</tr>
<tr>
<td>(64003)</td>
<td>94664</td>
</tr>
<tr>
<td>(25651)</td>
<td>37586</td>
</tr>
<tr>
<td>(66453)</td>
<td>23332</td>
</tr>
<tr>
<td>45541</td>
<td>45954</td>
</tr>
<tr>
<td>36506</td>
<td>24445</td>
</tr>
<tr>
<td>00000</td>
<td>01995</td>
</tr>
<tr>
<td>00000</td>
<td>23999</td>
</tr>
<tr>
<td>(-4) (-31430)</td>
<td>(-1) (-40574)</td>
</tr>
<tr>
<td>(75022)</td>
<td>93914</td>
</tr>
<tr>
<td>(53444)</td>
<td>62188</td>
</tr>
<tr>
<td>(37104)</td>
<td>78342</td>
</tr>
<tr>
<td>04266</td>
<td>63752</td>
</tr>
<tr>
<td>10060</td>
<td>31417</td>
</tr>
<tr>
<td>00000</td>
<td>11846</td>
</tr>
<tr>
<td>00000</td>
<td>86850</td>
</tr>
<tr>
<td>(-4) (-40426)</td>
<td>(-1) (-31782)</td>
</tr>
<tr>
<td>(74047)</td>
<td>03336</td>
</tr>
<tr>
<td>(43678)</td>
<td>19889</td>
</tr>
<tr>
<td>(22424)</td>
<td>96643</td>
</tr>
<tr>
<td>35427</td>
<td>78102</td>
</tr>
<tr>
<td>25400</td>
<td>15047</td>
</tr>
<tr>
<td>00000</td>
<td>67909</td>
</tr>
<tr>
<td>00000</td>
<td>02397</td>
</tr>
<tr>
<td>(-4) (-46557)</td>
<td>(-1) (-37811)</td>
</tr>
<tr>
<td>(72453)</td>
<td>11793</td>
</tr>
<tr>
<td>(63314)</td>
<td>37790</td>
</tr>
<tr>
<td>(53074)</td>
<td>90284</td>
</tr>
<tr>
<td>01652</td>
<td>44779</td>
</tr>
<tr>
<td>61000</td>
<td>89199</td>
</tr>
<tr>
<td>00000</td>
<td>05474</td>
</tr>
<tr>
<td>00000</td>
<td>73205</td>
</tr>
<tr>
<td>(-6) (-46046)</td>
<td>(-2) (-92958)</td>
</tr>
<tr>
<td>(56360)</td>
<td>09781</td>
</tr>
<tr>
<td>(02072)</td>
<td>65970</td>
</tr>
<tr>
<td>(65474)</td>
<td>86332</td>
</tr>
<tr>
<td>57601</td>
<td>83309</td>
</tr>
<tr>
<td>00000</td>
<td>14344</td>
</tr>
<tr>
<td>00000</td>
<td>63642</td>
</tr>
<tr>
<td>00000</td>
<td>54843</td>
</tr>
<tr>
<td>(-3) (-66442)</td>
<td>(0) (-10657)</td>
</tr>
<tr>
<td>(45473)</td>
<td>72563</td>
</tr>
<tr>
<td>(34970)</td>
<td>01983</td>
</tr>
<tr>
<td>(61342)</td>
<td>69498</td>
</tr>
<tr>
<td>22147</td>
<td>19886</td>
</tr>
<tr>
<td>10000</td>
<td>50191</td>
</tr>
<tr>
<td>00000</td>
<td>57974</td>
</tr>
<tr>
<td>00000</td>
<td>48060</td>
</tr>
<tr>
<td>(-3) (-73015)</td>
<td>(0) (-11528)</td>
</tr>
<tr>
<td>(77107)</td>
<td>77295</td>
</tr>
<tr>
<td>(72122)</td>
<td>28556</td>
</tr>
<tr>
<td>(67564)</td>
<td>57770</td>
</tr>
<tr>
<td>30270</td>
<td>19887</td>
</tr>
<tr>
<td>70000</td>
<td>88070</td>
</tr>
<tr>
<td>00000</td>
<td>71109</td>
</tr>
<tr>
<td>00000</td>
<td>72998</td>
</tr>
<tr>
<td>(-2) (-40310)</td>
<td>(0) (-12652)</td>
</tr>
<tr>
<td>(02353)</td>
<td>61722</td>
</tr>
<tr>
<td>(55133)</td>
<td>04392</td>
</tr>
<tr>
<td>(76636)</td>
<td>97375</td>
</tr>
<tr>
<td>62020</td>
<td>47413</td>
</tr>
<tr>
<td>56000</td>
<td>49590</td>
</tr>
<tr>
<td>00000</td>
<td>70655</td>
</tr>
<tr>
<td>00000</td>
<td>19321</td>
</tr>
</tbody>
</table>
\[
\text{ARSIN}(\gamma) \quad |\gamma| < 0.5, \quad \text{ARSIN}(0.5, 0, M) = \gamma + \gamma^3/Q(\gamma^2)
\]

<table>
<thead>
<tr>
<th>BINARY COEFFICIENTS</th>
<th>DECIMAL COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>M = 15</td>
<td>PRECISION 74.8 BITS</td>
</tr>
<tr>
<td>(3) 60000 00000 00000 00000</td>
<td>Q00 (1) 60000 00000 00000 00000</td>
</tr>
<tr>
<td>16361 10635 57731 17237</td>
<td>01</td>
</tr>
<tr>
<td>(2) -53146 31464 14631 46632</td>
<td>Q01 (1) -27000 00000 00000 07131</td>
</tr>
<tr>
<td>26456 03226 55602 23202</td>
<td></td>
</tr>
<tr>
<td>(-1) -62143 36265 31157 73620</td>
<td>Q02 (0) -39214 28571 42743 16919</td>
</tr>
<tr>
<td>52245 11407 44725 04540</td>
<td></td>
</tr>
<tr>
<td>(-2) -61535 25106 65707 76463</td>
<td>Q03 (0) -19407 14285 8064 66850</td>
</tr>
<tr>
<td>53535 73220 11541 00000</td>
<td></td>
</tr>
<tr>
<td>(-3) -75675 33572 31616 52442</td>
<td>Q04 (0) -12083 98186 60494 78922</td>
</tr>
<tr>
<td>40265 27235 00520 00000</td>
<td></td>
</tr>
<tr>
<td>(-3) -53163 35661 64070 50461</td>
<td>Q05 (-1) -84424 84422 28683 66968</td>
</tr>
<tr>
<td>66725 32301 70000 00000</td>
<td></td>
</tr>
<tr>
<td>(-3) -40303 05455 27715 72444</td>
<td>Q06 (-1) -63244 19907 45104 30545</td>
</tr>
<tr>
<td>66403 23452 40000 00000</td>
<td></td>
</tr>
<tr>
<td>(-4) -62663 05047 54447 24613</td>
<td>Q07 (-1) -49657 97297 75265 20302</td>
</tr>
<tr>
<td>43537 19570 00000 00000</td>
<td></td>
</tr>
<tr>
<td>(-4) -51666 13506 53107 74422</td>
<td>Q08 (-1) -40264 47647 91516 71172</td>
</tr>
<tr>
<td>47740 63200 00000 00000</td>
<td></td>
</tr>
<tr>
<td>(-4) -42701 30356 03623 74463</td>
<td>Q09 (-1) -34060 33089 03054 84763</td>
</tr>
<tr>
<td>73754 61000 00000 00000</td>
<td></td>
</tr>
<tr>
<td>(-5) -64260 13623 77714 07174</td>
<td>Q10 (-1) -25958 64735 03620 52091</td>
</tr>
<tr>
<td>55652 40000 00000 00000</td>
<td></td>
</tr>
<tr>
<td>(-4) -47254 33660 34561 00363</td>
<td>Q11 (-1) -38415 30813 65372 76047</td>
</tr>
<tr>
<td>50323 00000 00000 00000</td>
<td></td>
</tr>
<tr>
<td>(-5) -61604 54031 14646 27321</td>
<td>Q12 (-1) 24296 46326 92860 20086</td>
</tr>
<tr>
<td>40726 00000 00000 00000</td>
<td></td>
</tr>
<tr>
<td>(-3) -77650 53022 34713 62002</td>
<td>Q13 (0) -12445 32487 41516 30944</td>
</tr>
<tr>
<td>76745 00000 00000 00000</td>
<td></td>
</tr>
<tr>
<td>(-2) -42767 55733 55770 00606</td>
<td>Q14 (0) 13665 55606 29094 53707</td>
</tr>
<tr>
<td>21603 00000 00000 00000</td>
<td></td>
</tr>
<tr>
<td>(-2) -41507 33626 01425 52543</td>
<td>Q15 (0) -13091 60939 47388 86682</td>
</tr>
<tr>
<td>56006 60000 00000 00000</td>
<td></td>
</tr>
</tbody>
</table>
\[
\text{ARSIN}(Y) \quad |Y| < 0.5, \quad \text{ARSIN}(0.5, 0, M) = Y + \frac{Y^3}{Q(Y^2)}
\]

Binary Coefficients

<table>
<thead>
<tr>
<th>M = 16</th>
<th>Precision 78.7 Bits</th>
<th>Decimal Coefficients</th>
<th>Precision 23.7 Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)</td>
<td>0.5777 77777 77777</td>
<td>Q00 (1) 59999 99999</td>
<td>99999 99999 99999 99999</td>
</tr>
<tr>
<td>(2)</td>
<td>-0.53146 31463 14631</td>
<td>Q01 (1) -26999 99999</td>
<td>99999 99999 99413</td>
</tr>
<tr>
<td></td>
<td>70526 47054 64006</td>
<td>11064 42660 57346</td>
<td>33412 54000</td>
</tr>
<tr>
<td>(1)</td>
<td>-0.62143 36265 31170</td>
<td>Q02 (0) -39214 28517</td>
<td>42867 68846</td>
</tr>
<tr>
<td></td>
<td>42660 57346 33412</td>
<td>54000</td>
<td>24045 08276 94363 27390</td>
</tr>
<tr>
<td>(0)</td>
<td>-0.61535 25106 63051</td>
<td>Q03 (0) -19407 14285</td>
<td>70463 65888</td>
</tr>
<tr>
<td></td>
<td>41523 71310 77711</td>
<td>60000</td>
<td>19437 80765 64085 42148</td>
</tr>
<tr>
<td>(1)</td>
<td>-0.75675 33576 55532</td>
<td>Q04 (0) -12083 98191</td>
<td>62349 40874</td>
</tr>
<tr>
<td></td>
<td>60024 62554 22700</td>
<td>00000</td>
<td>58453 06771 42930 84687</td>
</tr>
<tr>
<td>(0)</td>
<td>-0.75163 35447 16466</td>
<td>Q05 (1) -84424 82808</td>
<td>93348 62098</td>
</tr>
<tr>
<td></td>
<td>44107 17744 66000</td>
<td>00000</td>
<td>51418 91350 40930 00039</td>
</tr>
<tr>
<td>(2)</td>
<td>-0.43033 13472 06556</td>
<td>Q06 (1) -63244 55818</td>
<td>45152 13411</td>
</tr>
<tr>
<td></td>
<td>72733 37643</td>
<td>00000 00000 00000</td>
<td>58540 87134 49158 59213</td>
</tr>
<tr>
<td>(4)</td>
<td>-0.62660 04443 67320</td>
<td>Q07 (1) -49652 23580</td>
<td>74870 24888</td>
</tr>
<tr>
<td></td>
<td>42144 53740</td>
<td>00000 00000 00000</td>
<td>10786 38379 14991 15878</td>
</tr>
<tr>
<td>(3)</td>
<td>-0.51231 35747 25601</td>
<td>Q08 (1) -40331 79747</td>
<td>50841 45135</td>
</tr>
<tr>
<td></td>
<td>60416 42400</td>
<td>00000 00000 00000</td>
<td>55411 27021 30349 58662</td>
</tr>
<tr>
<td>(5)</td>
<td>-0.42215 42227 24155</td>
<td>Q09 (1) -33473 08324</td>
<td>39285 42021</td>
</tr>
<tr>
<td></td>
<td>04502 54000</td>
<td>00000 00000 00000</td>
<td>14649 90389 57124 52508</td>
</tr>
<tr>
<td>(4)</td>
<td>-0.74135 51315 15163</td>
<td>Q10 (1) -29386 18363</td>
<td>13338 70061</td>
</tr>
<tr>
<td></td>
<td>16640 00000</td>
<td>00000 00000 00000</td>
<td>37609 38220 06464 73970</td>
</tr>
<tr>
<td>(5)</td>
<td>-0.50532 41671 36752</td>
<td>Q11 (1) -19861 72590</td>
<td>06632 45197</td>
</tr>
<tr>
<td></td>
<td>52044 00000</td>
<td>00000 00000 00000</td>
<td>68327 43964 76178 24874</td>
</tr>
<tr>
<td>(4)</td>
<td>-0.52470 37541 01324</td>
<td>Q12 (1) -41611 66219</td>
<td>40230 36023</td>
</tr>
<tr>
<td></td>
<td>74236 00000</td>
<td>00000 00000 00000</td>
<td>28095 90366 70361 56714</td>
</tr>
<tr>
<td>(4)</td>
<td>-0.53104 30007 14569</td>
<td>Q13 (1) -42122 60288</td>
<td>17995 16866</td>
</tr>
<tr>
<td></td>
<td>21500 00000</td>
<td>00000 00000 00000</td>
<td>45181 33697 96181 30322</td>
</tr>
<tr>
<td>(2)</td>
<td>-0.53660 67446 33124</td>
<td>Q14 (0) -14685 72109</td>
<td>99458 32326</td>
</tr>
<tr>
<td></td>
<td>31530 00000</td>
<td>00000 00000 00000</td>
<td>07437 27852 81293 55920</td>
</tr>
<tr>
<td>(2)</td>
<td>-0.51024 71626 72552</td>
<td>Q15 (0) -16031 57275</td>
<td>62947 97678</td>
</tr>
<tr>
<td></td>
<td>12530 00000</td>
<td>00000 00000 00000</td>
<td>16631 70681 46166 92424</td>
</tr>
<tr>
<td>(2)</td>
<td>-0.42725 33365 40717</td>
<td>Q16 (0) -13638 63324</td>
<td>54658 67274</td>
</tr>
<tr>
<td></td>
<td>65374 00000</td>
<td>00000 00000 00000</td>
<td>78660 89548 32960 86605</td>
</tr>
</tbody>
</table>
ARSIN(Y) \quad |Y| < 0.5, \quad ARSIN(0.5, 0, M) = Y + Y^3/Q(Y^2)

<table>
<thead>
<tr>
<th>BINARY COEFFICIENTS</th>
<th>DECIMAL COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M = 17)</td>
<td>(\text{PRECISION 82.7 BITS})</td>
</tr>
<tr>
<td></td>
<td>Q00 (1)</td>
</tr>
<tr>
<td></td>
<td>Q01 (1)</td>
</tr>
<tr>
<td></td>
<td>Q02 (0)</td>
</tr>
<tr>
<td></td>
<td>Q03 (0)</td>
</tr>
<tr>
<td></td>
<td>Q04 (0)</td>
</tr>
<tr>
<td></td>
<td>Q05 (1)</td>
</tr>
<tr>
<td></td>
<td>Q06 (1)</td>
</tr>
<tr>
<td></td>
<td>Q07 (1)</td>
</tr>
<tr>
<td></td>
<td>Q08 (0)</td>
</tr>
<tr>
<td></td>
<td>Q09 (1)</td>
</tr>
<tr>
<td></td>
<td>Q10 (0)</td>
</tr>
<tr>
<td></td>
<td>Q11 (0)</td>
</tr>
<tr>
<td></td>
<td>Q12 (1)</td>
</tr>
<tr>
<td></td>
<td>Q13 (1)</td>
</tr>
<tr>
<td></td>
<td>Q14 (1)</td>
</tr>
<tr>
<td></td>
<td>Q15 (0)</td>
</tr>
<tr>
<td></td>
<td>Q16 (0)</td>
</tr>
<tr>
<td></td>
<td>Q17 (0)</td>
</tr>
</tbody>
</table>
ARSIN(Y) \[|Y| < 0.5,\] \[ARSIN(0.5, 0, M) = Y + Y^3/Q(Y^2)\]

Binary Coefficients

M = 18

<table>
<thead>
<tr>
<th>PRECISION</th>
<th>86.6 Bits</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Q00</th>
<th>Q01</th>
<th>Q02</th>
<th>Q03</th>
<th>Q04</th>
<th>Q05</th>
<th>Q06</th>
<th>Q07</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5777</td>
<td>0.5777</td>
<td>0.5777</td>
<td>0.5777</td>
<td>0.5777</td>
<td>0.5777</td>
<td>0.5777</td>
<td>0.5777</td>
</tr>
<tr>
<td>0</td>
<td>0.53146</td>
<td>0.31463</td>
<td>0.46314</td>
<td>0.54011</td>
<td>2.1212</td>
<td>7.1547</td>
<td>0.2514</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-0.62143</td>
<td>3.6265</td>
<td>3.1167</td>
<td>7.5356</td>
<td>-12.247</td>
<td>55.773</td>
<td>25.36</td>
<td>11.700</td>
</tr>
<tr>
<td>0</td>
<td>-0.61535</td>
<td>2.5106</td>
<td>6.3257</td>
<td>7.2052</td>
<td>5.1316</td>
<td>32.534</td>
<td>23.234</td>
<td>0.000</td>
</tr>
<tr>
<td>0</td>
<td>-0.75675</td>
<td>3.3576</td>
<td>2.0762</td>
<td>2.0627</td>
<td>7.7762</td>
<td>27.331</td>
<td>16.200</td>
<td>0.000</td>
</tr>
<tr>
<td>0</td>
<td>-0.53163</td>
<td>3.5467</td>
<td>2.3353</td>
<td>6.7526</td>
<td>4.5545</td>
<td>45.754</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0</td>
<td>-0.40303</td>
<td>1.2652</td>
<td>2.5361</td>
<td>3.3116</td>
<td>0.34544</td>
<td>21.006</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0</td>
<td>-0.62660</td>
<td>4.0406</td>
<td>7.2067</td>
<td>3.4005</td>
<td>7.6477</td>
<td>43.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0</td>
<td>-0.51223</td>
<td>5.5526</td>
<td>5.5001</td>
<td>6.5565</td>
<td>3.0441</td>
<td>30.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0</td>
<td>-0.42306</td>
<td>1.0721</td>
<td>4.1300</td>
<td>0.5145</td>
<td>21.026</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0</td>
<td>-0.72432</td>
<td>7.5574</td>
<td>5.0560</td>
<td>0.7370</td>
<td>1.6360</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0</td>
<td>-0.61506</td>
<td>7.6025</td>
<td>0.5166</td>
<td>5.2443</td>
<td>6.6500</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0</td>
<td>-0.61121</td>
<td>1.7100</td>
<td>1.1241</td>
<td>5.1614</td>
<td>7.7000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0</td>
<td>-0.76424</td>
<td>6.6003</td>
<td>5.7067</td>
<td>5.1114</td>
<td>4.0000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0</td>
<td>-0.72667</td>
<td>15.411</td>
<td>5.3655</td>
<td>1.2121</td>
<td>20.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0</td>
<td>-0.56177</td>
<td>21.066</td>
<td>3.5141</td>
<td>0.7311</td>
<td>40.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0</td>
<td>-0.65171</td>
<td>12.335</td>
<td>0.4172</td>
<td>0.6007</td>
<td>3.6000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0</td>
<td>-0.67277</td>
<td>5.5072</td>
<td>5.5506</td>
<td>0.7012</td>
<td>5.0000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0</td>
<td>-0.46433</td>
<td>4.7400</td>
<td>1.7252</td>
<td>0.2614</td>
<td>4.4000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Decimal Coefficients

M = 18

<table>
<thead>
<tr>
<th>PRECISION</th>
<th>26.07 Bits</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Q00</th>
<th>Q01</th>
<th>Q02</th>
<th>Q03</th>
<th>Q04</th>
<th>Q05</th>
<th>Q06</th>
<th>Q07</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.59999</td>
<td>9.99999</td>
<td>9.99999</td>
<td>9.99999</td>
<td>0.99384</td>
<td>21.026</td>
<td>32.806</td>
<td>41.833</td>
</tr>
<tr>
<td>0</td>
<td>-0.26999</td>
<td>9.99999</td>
<td>9.99999</td>
<td>9.99999</td>
<td>1.0668</td>
<td>70.929</td>
<td>69.240</td>
<td>46.194</td>
</tr>
<tr>
<td>0</td>
<td>-0.39214</td>
<td>2.8571</td>
<td>4.2857</td>
<td>2.2964</td>
<td>8.4299</td>
<td>70.689</td>
<td>18.015</td>
<td>0.6062</td>
</tr>
<tr>
<td>0</td>
<td>-1.9407</td>
<td>1.4205</td>
<td>7.1418</td>
<td>6.8966</td>
<td>7.5199</td>
<td>87.578</td>
<td>75.275</td>
<td>8.5444</td>
</tr>
<tr>
<td>0</td>
<td>-1.2083</td>
<td>9.8191</td>
<td>1.0139</td>
<td>0.1271</td>
<td>8.5377</td>
<td>0.0095</td>
<td>37.421</td>
<td>0.4807</td>
</tr>
<tr>
<td>0</td>
<td>-0.84424</td>
<td>8.2996</td>
<td>0.8092</td>
<td>2.6143</td>
<td>6.3731</td>
<td>84.244</td>
<td>19.482</td>
<td>6.0062</td>
</tr>
<tr>
<td>0</td>
<td>-0.63244</td>
<td>5.1164</td>
<td>5.2282</td>
<td>1.5958</td>
<td>0.0076</td>
<td>28.196</td>
<td>82.845</td>
<td>7.2600</td>
</tr>
<tr>
<td>0</td>
<td>-0.49653</td>
<td>6.0858</td>
<td>6.9477</td>
<td>3.5387</td>
<td>6.7001</td>
<td>43.543</td>
<td>29.382</td>
<td>8.0864</td>
</tr>
<tr>
<td>0</td>
<td>-0.40320</td>
<td>8.0380</td>
<td>1.4814</td>
<td>4.5418</td>
<td>22.620</td>
<td>91.147</td>
<td>0.8446</td>
<td>0.07859</td>
</tr>
<tr>
<td>0</td>
<td>-0.33581</td>
<td>0.4554</td>
<td>4.7928</td>
<td>3.1264</td>
<td>0.0409</td>
<td>93.712</td>
<td>66.766</td>
<td>0.5229</td>
</tr>
<tr>
<td>0</td>
<td>-0.28590</td>
<td>1.6870</td>
<td>5.9891</td>
<td>7.5768</td>
<td>29.710</td>
<td>59.868</td>
<td>41.837</td>
<td>8.8645</td>
</tr>
<tr>
<td>0</td>
<td>-0.24237</td>
<td>6.0356</td>
<td>2.7020</td>
<td>2.8231</td>
<td>8.4553</td>
<td>16.622</td>
<td>21.396</td>
<td>30.736</td>
</tr>
<tr>
<td>0</td>
<td>-0.24003</td>
<td>2.5425</td>
<td>39.282</td>
<td>6.5828</td>
<td>0.0469</td>
<td>43.202</td>
<td>55.564</td>
<td>0.0576</td>
</tr>
<tr>
<td>0</td>
<td>-0.76343</td>
<td>5.9439</td>
<td>0.7838</td>
<td>4.5504</td>
<td>13.098</td>
<td>52.247</td>
<td>0.0012</td>
<td>28.157</td>
</tr>
<tr>
<td>0</td>
<td>-0.57478</td>
<td>3.5394</td>
<td>4.6964</td>
<td>8.0828</td>
<td>5.9151</td>
<td>87.302</td>
<td>52.289</td>
<td>5.2767</td>
</tr>
<tr>
<td>0</td>
<td>-0.90329</td>
<td>23.619</td>
<td>6.6845</td>
<td>0.3299</td>
<td>15.285</td>
<td>19.072</td>
<td>94.348</td>
<td>16.603</td>
</tr>
<tr>
<td>0</td>
<td>-0.20795</td>
<td>5.6503</td>
<td>0.2168</td>
<td>4.5043</td>
<td>0.0247</td>
<td>6.8900</td>
<td>76.549</td>
<td>6.3715</td>
</tr>
<tr>
<td>0</td>
<td>-0.21630</td>
<td>6.3424</td>
<td>4.3702</td>
<td>0.6217</td>
<td>8.4403</td>
<td>40.134</td>
<td>42.211</td>
<td>5.1703</td>
</tr>
</tbody>
</table>
$$\text{ARSIN}(y) \quad |y| < 0.5, \quad \text{ARSIN}(0.5, 0, M) = y + y^3 / q(y^2)$$

Binary Coefficients

<table>
<thead>
<tr>
<th>M = 19</th>
<th>Precision 90.5 Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)</td>
<td>60000 00000 00000 00000</td>
</tr>
<tr>
<td>(2)</td>
<td>53146 31463 14631 46314</td>
</tr>
<tr>
<td>(-1)</td>
<td>62143 36265 31167 75024</td>
</tr>
<tr>
<td>(-2)</td>
<td>61535 25106 63261 33675</td>
</tr>
<tr>
<td>(-3)</td>
<td>75675 33576 20436 67246</td>
</tr>
<tr>
<td>(-4)</td>
<td>40303 12640 70017 71332</td>
</tr>
<tr>
<td>(-5)</td>
<td>72331 21204 61601 47446</td>
</tr>
<tr>
<td>(-6)</td>
<td>62530 16760 10716 77744</td>
</tr>
<tr>
<td>(-7)</td>
<td>52527 36305 51005 71166</td>
</tr>
<tr>
<td>(-8)</td>
<td>57161 17250 57344 74626</td>
</tr>
<tr>
<td>(-9)</td>
<td>44200 67407 45362 02000</td>
</tr>
<tr>
<td>(-10)</td>
<td>44522 23600 20774 43375</td>
</tr>
<tr>
<td>(-11)</td>
<td>77032 27421 45373 01072</td>
</tr>
<tr>
<td>(-12)</td>
<td>77457 35273 11000 41204</td>
</tr>
<tr>
<td>(-13)</td>
<td>77716 55620 71763 25371</td>
</tr>
<tr>
<td>(-14)</td>
<td>56640 12473 61270 01413</td>
</tr>
</tbody>
</table>

Decimal Coefficients

<table>
<thead>
<tr>
<th>Precision 27.24 Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)</td>
</tr>
<tr>
<td>(1)</td>
</tr>
<tr>
<td>(2)</td>
</tr>
<tr>
<td>(3)</td>
</tr>
<tr>
<td>(4)</td>
</tr>
<tr>
<td>(5)</td>
</tr>
<tr>
<td>(6)</td>
</tr>
<tr>
<td>(7)</td>
</tr>
<tr>
<td>(8)</td>
</tr>
<tr>
<td>(9)</td>
</tr>
<tr>
<td>(10)</td>
</tr>
<tr>
<td>(11)</td>
</tr>
<tr>
<td>(12)</td>
</tr>
<tr>
<td>(13)</td>
</tr>
<tr>
<td>(14)</td>
</tr>
<tr>
<td>(15)</td>
</tr>
<tr>
<td>(16)</td>
</tr>
<tr>
<td>(17)</td>
</tr>
<tr>
<td>(18)</td>
</tr>
<tr>
<td>(19)</td>
</tr>
<tr>
<td>(20)</td>
</tr>
<tr>
<td>(21)</td>
</tr>
<tr>
<td>(22)</td>
</tr>
<tr>
<td>(23)</td>
</tr>
<tr>
<td>(24)</td>
</tr>
<tr>
<td>(25)</td>
</tr>
<tr>
<td>(26)</td>
</tr>
<tr>
<td>(27)</td>
</tr>
<tr>
<td>(28)</td>
</tr>
<tr>
<td>(29)</td>
</tr>
<tr>
<td>(30)</td>
</tr>
<tr>
<td>(31)</td>
</tr>
<tr>
<td>(32)</td>
</tr>
<tr>
<td>(33)</td>
</tr>
<tr>
<td>(34)</td>
</tr>
<tr>
<td>(35)</td>
</tr>
</tbody>
</table>
\[
\log(x) \quad \sqrt{2/3} < x < \sqrt{2}, \quad y = (x-1)/(x+1), \quad \log(\sqrt{2}, 0, M) = 2y + y^3/\sqrt{y^2}
\]

\[
\text{ER}(1) = \text{ER}(\sqrt{2}) = 0, \quad \text{ER}(1/x) = \text{ER}(x)
\]

<table>
<thead>
<tr>
<th>INDEX</th>
<th>EXTREMAL ERROR</th>
<th>POINTS OF EXTREMAL RELATIVE ERROR WITH SIGNS OF THE ERRORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>M = 1</td>
<td>.29295*10^{-7}</td>
<td>1.1722(-), 1.3601(+)</td>
</tr>
<tr>
<td>M = 2</td>
<td>.99921*10^{-10}</td>
<td>1.1255(+), 1.2770(-), 1.3846(+)</td>
</tr>
<tr>
<td>M = 3</td>
<td>.44545*10^{-12}</td>
<td>1.0988(-), 1.2222(+), 1.3252(-), 1.3954(+)</td>
</tr>
<tr>
<td>M = 4</td>
<td>.22691*10^{-14}</td>
<td>1.0815(+), 1.1846(-), 1.2767(+), 1.3518(-), 1.4012(+)</td>
</tr>
<tr>
<td>M = 5</td>
<td>.12517*10^{-16}</td>
<td>1.0693(-), 1.1576(+), 1.2391(-), 1.3111(+), 1.3681(-)</td>
</tr>
<tr>
<td>M = 6</td>
<td>.72790*10^{-19}</td>
<td>1.0603(+), 1.1373(-), 1.2098(+), 1.2766(-), 1.3342(+)</td>
</tr>
<tr>
<td>M = 7</td>
<td>.43943*10^{-21}</td>
<td>1.0534(-), 1.1216(+), 1.1865(-), 1.2479(+), 1.3034(-)</td>
</tr>
<tr>
<td>M = 8</td>
<td>.27278*10^{-23}</td>
<td>1.0479(+), 1.1090(-), 1.1676(+), 1.2240(-), 1.2765(+)</td>
</tr>
<tr>
<td>M = 9</td>
<td>.17301*10^{-25}</td>
<td>1.0397(+), 1.0988(+), 1.1521(-), 1.2040(+), 1.2532(-)</td>
</tr>
<tr>
<td>M = 10</td>
<td>.1146*10^{-27}</td>
<td>1.0366(-), 1.0903(-), 1.1392(+), 1.1871(-), 1.2332(+)</td>
</tr>
<tr>
<td>M = 11</td>
<td>.70612*10^{-30}</td>
<td>1.0366(-), 1.0831(+), 1.1282(-), 1.1725(+), 1.2157(-)</td>
</tr>
</tbody>
</table>
\[\text{EXP}(y) \quad \text{where} \quad |y| < \ln(2)/2, \quad \text{EXP}(\ln(2)/2, N, 0) = 1 + \frac{2y}{2 - y + y^{2}P(y^{2})} \]

\[\text{ER}(0) = \text{ER}(\ln(2)/2) = 0, \quad \text{ER}(-x) = -\text{ER}(x) \]

<table>
<thead>
<tr>
<th>INDEX</th>
<th>EXTREMAL ERROR</th>
<th>POINTS OF EXTREMAL RELATIVE ERROR WITH SIGNS OF THE ERRORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 2</td>
<td>(63842 \times 10^{-9})</td>
<td>(0.18992 (+), 0.31550 (-))</td>
</tr>
<tr>
<td>N = 3</td>
<td>(40152 \times 10^{-12})</td>
<td>(0.14745 (+), 0.26087 (-), 0.32913 (+))</td>
</tr>
<tr>
<td>N = 4</td>
<td>(27364 \times 10^{-15})</td>
<td>(0.12058 (+), 0.21981 (-), 0.29102 (+), 0.33529 (-))</td>
</tr>
<tr>
<td>N = 5</td>
<td>(19349 \times 10^{-18})</td>
<td>(0.10241 (+), 0.18908 (-), 0.25697 (+), 0.30741 (-), 0.33864 (+))</td>
</tr>
<tr>
<td>N = 6</td>
<td>(13962 \times 10^{-21})</td>
<td>(0.08840 (+), 0.16555 (-), 0.22858 (+), 0.27961 (-), 0.31741 (+), 0.34068 (-))</td>
</tr>
<tr>
<td>N = 7</td>
<td>(10202 \times 10^{-24})</td>
<td>(0.07799 (+), 0.14705 (-), 0.20516 (+), 0.25461 (-), 0.29457 (+), 0.32399 (-), 0.34202 (+))</td>
</tr>
<tr>
<td>N = 8</td>
<td>(75175 \times 10^{-28})</td>
<td>(0.06978 (+), 0.13219 (-), 0.18576 (+), 0.23281 (-), 0.27283 (+), 0.30530 (-), 0.32856 (+), 0.34294 (-))</td>
</tr>
<tr>
<td>N = 9</td>
<td>(55720 \times 10^{-31})</td>
<td>(0.06313 (+), 0.12001 (-), 0.16951 (+), 0.21392 (-), 0.25303 (+), 0.28611 (-), 0.31257 (+), 0.33183 (-), 0.34360 (+))</td>
</tr>
</tbody>
</table>
\[\sinh(y) = \ln((1 + \sqrt{1}})/2), \quad \sinh(\ln((1 + \sqrt{1}))/2, 0, M) = y + y^3/(6y^2) \]
\[\er(0) = \er(\ln(1 + \sqrt{1}))/2) = 0, \quad \er(-x) = \er(x) \]

<table>
<thead>
<tr>
<th>INDEX</th>
<th>EXTREMA</th>
<th>ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>M = 1</td>
<td>1.2837*10^{-6}</td>
<td>2.2063 (+), 4.2706 (-)</td>
</tr>
<tr>
<td>M = 2</td>
<td>1.1396*10^{-8}</td>
<td>1.6449 (+), 3.3988 (-), 4.5198 (+)</td>
</tr>
<tr>
<td>M = 3</td>
<td>6.6755*10^{-13}</td>
<td>1.3130 (+), 2.7928 (-), 3.9145 (+), 4.6284 (-)</td>
</tr>
<tr>
<td>M = 4</td>
<td>7.0249*10^{-17}</td>
<td>1.0950 (+), 2.3645 (-), 3.4038 (+), 4.1925 (-), 4.6862 (+)</td>
</tr>
<tr>
<td>M = 5</td>
<td>4.0612*10^{-19}</td>
<td>9.3557 (-), 2.0404 (+), 2.9864 (-), 3.7688 (+), 4.3557 (-), 4.7196 (+)</td>
</tr>
<tr>
<td>M = 6</td>
<td>5.9922*10^{-22}</td>
<td>8.186 (-), 1.7956 (+), 2.6550 (-), 3.4007 (+), 4.0105 (-)</td>
</tr>
<tr>
<td>M = 7</td>
<td>4.9082*10^{-25}</td>
<td>7.276 (-), 1.6024 (+), 2.3857 (-), 3.0864 (+), 3.6890 (-)</td>
</tr>
<tr>
<td>M = 8</td>
<td>1.9084*10^{-28}</td>
<td>6.548 (-), 1.4466 (+), 2.1640 (-), 2.8194 (+), 3.4016 (-)</td>
</tr>
<tr>
<td>M = 9</td>
<td>1.3215*10^{-31}</td>
<td>5.949 (+), 1.3168 (-), 1.9771 (+), 2.5899 (-), 3.1464 (+), 3.6372 (-), 4.0529 (+), 4.3853 (-), 4.6276 (+), 4.7750 (-)</td>
</tr>
</tbody>
</table>
\[\sinh(Y) = \left| Y \right| \ln(1 + \sqrt{2}), \quad \sinh(\ln(1 + \sqrt{2}), 0, M) = Y + \frac{Y^3}{3!} \]
\[\text{ER}(0) = \text{ER}(\ln(1 + \sqrt{2})) = 0, \quad \text{ER}(-X) = \text{ER}(X) \]

<table>
<thead>
<tr>
<th>INDEX</th>
<th>EXTREMAL ERROR</th>
<th>POINTS OF EXTREMAL RELATIVE ERROR WITH SIGNS OF THE ERRORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>M = 1</td>
<td>(4.6756 \times 10^{-5})</td>
<td>.40177(+), .78101(-)</td>
</tr>
<tr>
<td>M = 2</td>
<td>(1.3980 \times 10^{-7})</td>
<td>.29993(+), .62098(-), .82737(+)</td>
</tr>
<tr>
<td>M = 3</td>
<td>(2.7783 \times 10^{-10})</td>
<td>.23969(+), .51033(-), .71614(+), .84751(-)</td>
</tr>
<tr>
<td>M = 4</td>
<td>(1.1712 \times 10^{-13})</td>
<td>.20065(+), .43324(-), .62360(+), .76799(-), .85833(+)</td>
</tr>
<tr>
<td>M = 5</td>
<td>(1.8026 \times 10^{-15})</td>
<td>.17081(-), .37264(+), .54582(-), .68937(+), .79729(-), .86433(+)</td>
</tr>
<tr>
<td>M = 6</td>
<td>(9.1182 \times 10^{-18})</td>
<td>.14955(-), .32813(+), .48540(-), .62205(+), .73398(-), .81715(+), .86840(-)</td>
</tr>
<tr>
<td>M = 7</td>
<td>(2.5471 \times 10^{-20})</td>
<td>.13298(-), .29293(+), .43626(-), .56460(+), .67510(-), .76468(+), .83071(-), .87116(+)</td>
</tr>
<tr>
<td>M = 8</td>
<td>(3.4995 \times 10^{-23})</td>
<td>.11977(-), .26456(+), .39590(-), .51591(+), .62258(-), .71359(+), .78679(-), .84041(+), .87313(-)</td>
</tr>
<tr>
<td>M = 9</td>
<td>(6.7749 \times 10^{-26})</td>
<td>.10866(+), .24056(-), .36136(+), .47343(-), .57539(+), .66541(-), .74173(+), .80282(-), .84740(+), .87454(-)</td>
</tr>
<tr>
<td>M = 10</td>
<td>(6.2358 \times 10^{-28})</td>
<td>.09971(+), .22110(-), .33299(+), .43790(-), .53484(+), .62240(-), .69918(+), .76389(-), .81543(+), .85290(-)</td>
</tr>
</tbody>
</table>
\[
\text{TANH}(Y) \quad |Y| < \ln(3)/2 \quad \text{TANH(}\ln(3)/2, 0, M) = Y - \frac{Y^3}{3 + Y^2(\text{Q}(Y))}
\]
\[
\text{ER}(0) = \text{ER}(\ln(3)/2) = 0, \quad \text{ER}(-X) = \text{ER}(X)
\]

<table>
<thead>
<tr>
<th>INDEX</th>
<th>EXTREMAL ERROR</th>
<th>POINTS OF EXTREMAL RELATIVE ERROR WITH SIGNS OF THE ERRORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>M = 2</td>
<td>.48245 \times 10^{-8}</td>
<td>.33133(-), .50672(+)</td>
</tr>
<tr>
<td>M = 3</td>
<td>.13686 \times 10^{-10}</td>
<td>.26542(-), .42896(+), .52491(-)</td>
</tr>
<tr>
<td>M = 4</td>
<td>.43338 \times 10^{-13}</td>
<td>.22162(-), .36807(+), .47026(-), .53327(+)</td>
</tr>
<tr>
<td>M = 5</td>
<td>.14459 \times 10^{-15}</td>
<td>.19028(-), .32105(+), .42007(-), .49294(+), .53790(-)</td>
</tr>
<tr>
<td>M = 6</td>
<td>.49670 \times 10^{-18}</td>
<td>.16673(-), .28414(+), .37729(-), .45191(+), .50693(-), .54075(+)</td>
</tr>
<tr>
<td>M = 7</td>
<td>.17375 \times 10^{-20}</td>
<td>.14837(-), .25458(+), .34137(-), .41439(+), .47310(-), .51624(+), .54264(-)</td>
</tr>
<tr>
<td>M = 8</td>
<td>.61526 \times 10^{-23}</td>
<td>.13366(-), .23044(+), .31114(-), .38121(+), .44048(-), .48799(+), .52275(-), .54396(+)</td>
</tr>
<tr>
<td>M = 9</td>
<td>.21976 \times 10^{-25}</td>
<td>.12160(-), .21040(+), .28551(-), .35217(+), .41044(-), .45961(+), .49888(-), .52750(+), .54492(-)</td>
</tr>
<tr>
<td>M = 10</td>
<td>.79000 \times 10^{-28}</td>
<td>.11154(-), .19351(+), .26360(-), .32678(+), .38328(-), .43260(+), .47409(-), .50709(+), .53108(-), .54564(+)</td>
</tr>
<tr>
<td>M = 11</td>
<td>.28537 \times 10^{-30}</td>
<td>.10302(-), .17910(+), .24468(-), .30451(+), .35891(-), .40753(+), .44984(-), .48531(+), .51344(-), .53384(+)</td>
</tr>
</tbody>
</table>

58
\[\sin(y) \quad |y| < \pi/4, \quad \sin(\pi/4, n, 0) = y + y^3p(y^2) \]
\[er(0) = er(\pi/4) = 0, \quad er(-x) = er(x) \]

<table>
<thead>
<tr>
<th>INDEX</th>
<th>EXTREMAL ERROR</th>
<th>POINTS OF EXTREMAL RELATIVE ERROR WITH SIGNS OF THE ERRORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N = 2)</td>
<td>(.23205 \times 10^{-5})</td>
<td>(.36559 (+), .69983 (-))</td>
</tr>
<tr>
<td>(N = 3)</td>
<td>(.44477 \times 10^{-8})</td>
<td>(.27194 (+), .55879 (-), .73895 (+))</td>
</tr>
<tr>
<td>(N = 4)</td>
<td>(.58471 \times 10^{-11})</td>
<td>(.21601 (+), .45934 (-), .64141 (+), .75607 (-))</td>
</tr>
<tr>
<td>(N = 5)</td>
<td>(.55462 \times 10^{-14})</td>
<td>(.18003 (+), .38819 (-), .55771 (+), .68555 (-), .76515 (+))</td>
</tr>
<tr>
<td>(N = 6)</td>
<td>(.39562 \times 10^{-17})</td>
<td>(.15403 (+), .33543 (-), .49007 (+), .61722 (-), .71204 (+), .77037 (-))</td>
</tr>
<tr>
<td>(N = 7)</td>
<td>(.21951 \times 10^{-20})</td>
<td>(.13460 (+), .29498 (-), .43562 (+), .55714 (-), .65608 (+), .72920 (-), .77406 (+))</td>
</tr>
<tr>
<td>(N = 8)</td>
<td>(.97348 \times 10^{-24})</td>
<td>(.11952 (+), .26308 (-), .39134 (+), .50572 (-), .60376 (+), .68288 (-), .74096 (+), .77645 (-))</td>
</tr>
<tr>
<td>(N = 9)</td>
<td>(.35273 \times 10^{-27})</td>
<td>(.10749 (+), .23731 (-), .35483 (+), .46192 (-), .55679 (+), .63746 (-), .70214 (+), .74938 (-), .77815 (+))</td>
</tr>
<tr>
<td>(N = 10)</td>
<td>(.10634 \times 10^{-30})</td>
<td>(.09765 (+), .21609 (-), .32427 (+), .42447 (-), .51527 (+), .59514 (-), .68262 (+), .71644 (-), .75562 (+), .77941 (-))</td>
</tr>
</tbody>
</table>
\[
\cos(y) \quad |y| < \pi/4, \quad \cos(\pi/4, N, 0) = 1 + y^2(-.5 + y^2P(y^2))
\]

\[
\text{ER}(0) = \text{ER}(\pi/4) = 0, \quad \text{ER}(-X) = \text{ER}(X)
\]

<table>
<thead>
<tr>
<th>INDEX</th>
<th>EXTREMAL ERROR</th>
<th>POINTS OF EXTREMAL RELATIVE ERROR WITH SIGNS OF THE ERRORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 3</td>
<td>(99493 \times 10^{-7})</td>
<td>(49199(-), \ 73091(+))</td>
</tr>
<tr>
<td>N = 4</td>
<td>(13274 \times 10^{-9})</td>
<td>(39375(-), \ 62490(+), \ 75365(-))</td>
</tr>
<tr>
<td>N = 5</td>
<td>(13287 \times 10^{-12})</td>
<td>(32766(-), \ 53804(+), \ 67966(-), \ 76425(+))</td>
</tr>
<tr>
<td>N = 6</td>
<td>(10127 \times 10^{-15})</td>
<td>(28041(-), \ 46957(+), \ 60932(-), \ 70960(+), \ 77019(-))</td>
</tr>
<tr>
<td>N = 7</td>
<td>(60233 \times 10^{-19})</td>
<td>(24499(-), \ 41534(+), \ 54816(-), \ 65254(+), \ 72812(-), \ 77390(+))</td>
</tr>
<tr>
<td>N = 8</td>
<td>(28613 \times 10^{-22})</td>
<td>(21746(-), \ 37174(+), \ 49622(-), \ 59945(+), \ 68122(-))</td>
</tr>
<tr>
<td>N = 9</td>
<td>(11081 \times 10^{-25})</td>
<td>(19548(-), \ 33610(+), \ 45224(-), \ 55198(+), \ 63533(-))</td>
</tr>
<tr>
<td>N = 10</td>
<td>(35616 \times 10^{-29})</td>
<td>(17752(-), \ 30651(+), \ 41483(-), \ 51014(+), \ 59263(-))</td>
</tr>
<tr>
<td>N = 11</td>
<td>(96433 \times 10^{-33})</td>
<td>(16257(-), \ 28159(+), \ 38278(-), \ 47338(+), \ 55377(-), \ 62336(+), \ 68143(-), \ 72727(+), \ 76036(-), \ 78036(+))</td>
</tr>
</tbody>
</table>
\[\tan(y) \quad |y| < \pi/4, \quad \tan(\pi/4, 0, M) = y + \frac{y^3}{(3 + y^2q(y^2))} \]
\[\text{ER}(0) = \text{ER}(\pi/4) = 0, \quad \text{ER}(-x) = \text{ER}(x) \]

<table>
<thead>
<tr>
<th>INDEX</th>
<th>EXTREMAL ERROR</th>
<th>POINTS OF EXTREMAL RELATIVE ERROR WITH SIGNS OF THE ERRORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>M = 2</td>
<td>(1.2158 \times 10^{-6})</td>
<td>(0.49264(-), \ 0.73112(+))</td>
</tr>
<tr>
<td>M = 3</td>
<td>(7.1323 \times 10^{-9})</td>
<td>(0.39416(+), \ 0.62527(-), \ 0.75375(+))</td>
</tr>
<tr>
<td>M = 4</td>
<td>(4.6965 \times 10^{-11})</td>
<td>(0.32799(-), \ 0.53839(+), \ 0.67987(-), \ 0.76430(+))</td>
</tr>
<tr>
<td>M = 5</td>
<td>(3.2665 \times 10^{-13})</td>
<td>(0.28065(+), \ 0.46988(-), \ 0.60956(+), \ 0.70973(-), \ 0.77022(+))</td>
</tr>
<tr>
<td>M = 6</td>
<td>(2.3421 \times 10^{-15})</td>
<td>(0.24517(-), \ 0.41559(+), \ 0.54840(-), \ 0.65271(+), \ 0.72821(-))</td>
</tr>
<tr>
<td>M = 7</td>
<td>(1.7114 \times 10^{-17})</td>
<td>(0.21761(+), \ 0.37195(-), \ 0.49644(+), \ 0.59963(-), \ 0.68134(+))</td>
</tr>
<tr>
<td>M = 8</td>
<td>(1.2665 \times 10^{-19})</td>
<td>(0.19559(-), \ 0.33627(+), \ 0.45243(-), \ 0.55216(+), \ 0.63547(-))</td>
</tr>
<tr>
<td>M = 9</td>
<td>(9.4566 \times 10^{-22})</td>
<td>(0.17761(+), \ 0.30665(-), \ 0.41500(+), \ 0.51030(-), \ 0.59278(+))</td>
</tr>
<tr>
<td>M = 10</td>
<td>(7.1075 \times 10^{-24})</td>
<td>(0.16265(-), \ 0.28172(+), \ 0.38293(-), \ 0.47353(+), \ 0.55392(-))</td>
</tr>
<tr>
<td>M = 11</td>
<td>(5.3688 \times 10^{-26})</td>
<td>(0.15001(+), \ 0.26046(-), \ 0.35523(+), \ 0.44119(-), \ 0.51886(+))</td>
</tr>
<tr>
<td>M = 12</td>
<td>(4.0712 \times 10^{-28})</td>
<td>(0.13919(-), \ 0.24214(+), \ 0.33112(-), \ 0.41265(+), \ 0.48734(-))</td>
</tr>
<tr>
<td>M = 13</td>
<td>(3.0967 \times 10^{-30})</td>
<td>(0.12982(+), \ 0.22619(-), \ 0.30996(+), \ 0.38735(-), \ 0.45900(+))</td>
</tr>
</tbody>
</table>
\[\begin{align*}
\text{ATAN}(Y) & \quad |Y| < \tan(\pi/12), \quad \text{ATAN}(\tan(\pi/12)) 0, M = Y - Y^3/Q(Y^2) \\
\text{ER}(O) & = \text{ER}(\tan(\pi/12)) = 0, \quad \text{ER}(-X) = \text{ER}(X)
\end{align*} \]

<table>
<thead>
<tr>
<th>INDEX</th>
<th>EXTREMAL ERROR</th>
<th>POINTS OF EXTREMAL RELATIVE ERROR WITH SIGNS OF THE ERRORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>M = 1</td>
<td>(\times 36768 \times 10^{-6})</td>
<td>.12101(+), .23714(-)</td>
</tr>
<tr>
<td>M = 2</td>
<td>(\times 28901 \times 10^{-8})</td>
<td>.09071(+), .18822(-), .25135(+)</td>
</tr>
<tr>
<td>M = 3</td>
<td>(\times 29772 \times 10^{-10})</td>
<td>.07247(+), .15453(-), .21727(+), .25753(-)</td>
</tr>
<tr>
<td>M = 4</td>
<td>(\times 35092 \times 10^{-12})</td>
<td>.06038(+), .13064(-), .18857(+), .23287(-), .26080(+)</td>
</tr>
<tr>
<td>M = 5</td>
<td>(\times 44825 \times 10^{-14})</td>
<td>.05176(+), .11298(-), .16560(+), .20931(-), .24224(+)</td>
</tr>
<tr>
<td>M = 6</td>
<td>(\times 60388 \times 10^{-16})</td>
<td>.04530(+), .09944(-), .14720(+), .18877(-), .22891(+)</td>
</tr>
<tr>
<td>M = 7</td>
<td>(\times 84485 \times 10^{-18})</td>
<td>.04028(+), .08877(-), .13227(+), .17128(-), .20493(+)</td>
</tr>
<tr>
<td>M = 8</td>
<td>(\times 12157 \times 10^{-19})</td>
<td>.03627(+), .08014(-), .11998(+), .15643(-), .18899(+)</td>
</tr>
<tr>
<td>M = 9</td>
<td>(\times 17877 \times 10^{-21})</td>
<td>.03298(+), .07302(-), .10971(+), .14376(-), .17476(+)</td>
</tr>
<tr>
<td>M = 10</td>
<td>(\times 26747 \times 10^{-23})</td>
<td>.03024(+), .06706(-), .10102(+), .13288(-), .16234(+)</td>
</tr>
<tr>
<td>M = 11</td>
<td>(\times 40585 \times 10^{-25})</td>
<td>.02792(+), .06199(-), .09358(+), .12345(-), .15141(+)</td>
</tr>
<tr>
<td>M = 12</td>
<td>(\times 62304 \times 10^{-27})</td>
<td>.02593(+), .05763(-), .08714(+), .11523(-), .14176(+)</td>
</tr>
<tr>
<td>M = 13</td>
<td>(\times 96588 \times 10^{-29})</td>
<td>.02421(+), .05384(-), .08152(+), .10800(-), .13318(+)</td>
</tr>
<tr>
<td>M = 14</td>
<td>(\times 15099 \times 10^{-30})</td>
<td>.02270(+), .05052(-), .07657(+), .10159(-), .12554(+)</td>
</tr>
</tbody>
</table>

62
\[
\begin{align*}
\text{ARSIN}(Y) \quad |Y| < 0.5, & \quad \text{ARSIN}(0.5, O, M) = Y + Y^5/T(Y^2) \\
\text{ER}(0) = \text{ER}(0.5) = 0, & \quad \text{ER}(-X) = \text{ER}(X)
\end{align*}
\]

<table>
<thead>
<tr>
<th>INDEX</th>
<th>EXTREMAL ERROR</th>
<th>POINTS OF EXTREMAL RELATIVE ERROR WITH SIGNS OF THE ERRORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>M = 1</td>
<td>+11955*10^{-4}</td>
<td>+24038(-), +44933(+)</td>
</tr>
<tr>
<td>M = 2</td>
<td>+38635*10^{-6}</td>
<td>+17844(+), +36192(-), +47235(+)</td>
</tr>
<tr>
<td>M = 3</td>
<td>+16363*10^{-7}</td>
<td>+14167(-), +29819(+), +41247(-), +48241(+)</td>
</tr>
<tr>
<td>M = 4</td>
<td>+79250*10^{-9}</td>
<td>+11739(+), +25196(-), +35967(+), +43921(-), +48778(+)</td>
</tr>
<tr>
<td>M = 5</td>
<td>+41582*10^{-10}</td>
<td>+10017(-), +21750(+), +31637(-), +39644(+), +45521(-)</td>
</tr>
<tr>
<td>M = 6</td>
<td>+23011*10^{-11}</td>
<td>+08735(+), +19104(-), +28125(+), +35834(-), +42033(+)</td>
</tr>
<tr>
<td>M = 7</td>
<td>+13226*10^{-12}</td>
<td>+07743(-), +17018(+), +25257(-), +32546(-), +38733(-)</td>
</tr>
<tr>
<td>M = 8</td>
<td>+78206*10^{-14}</td>
<td>+06953(+), +15334(-), +22889(+), +29731(-), +35748(+)</td>
</tr>
<tr>
<td>M = 9</td>
<td>+47270*10^{-15}</td>
<td>+06309(-), +13948(+), +20908(-), +27317(+), +33095(-)</td>
</tr>
<tr>
<td>M = 10</td>
<td>+29077*10^{-16}</td>
<td>+05774(+), +12790(-), +19232(+), +25238(-), +30749(+)</td>
</tr>
<tr>
<td>M = 11</td>
<td>+18144*10^{-17}</td>
<td>+05322(-), +11807(+), +17797(-), +23435(+), +28683(-)</td>
</tr>
<tr>
<td>M = 12</td>
<td>+11457*10^{-18}</td>
<td>+04936(+), +10963(-), +16556(+), +21860(-), +26843(+)</td>
</tr>
<tr>
<td>M = 13</td>
<td>+73083*10^{-20}</td>
<td>+04602(-), +10231(+), +15474(-), +20475(+), +25212(-)</td>
</tr>
<tr>
<td>M = 14</td>
<td>+47018*10^{-21}</td>
<td>+04311(+), +09590(-), +14523(+), +19250(-), +23756(+)</td>
</tr>
<tr>
<td>M = 15</td>
<td>+30475*10^{-22}</td>
<td>+04054(-), +09024(+), +13680(-), +18158(+), +22451(-)</td>
</tr>
<tr>
<td>M = 16</td>
<td>+19881*10^{-23}</td>
<td>+03826(+), +08521(-), +12928(+), +17181(-), +21275(+)</td>
</tr>
<tr>
<td>M = 17</td>
<td>+13045*10^{-24}</td>
<td>+03622(-), +08071(+), +12254(-), +16301(+), +20212(-)</td>
</tr>
</tbody>
</table>
\[\text{ARSIN}(Y) \quad |Y| < 0.5, \quad \text{ARSIN}(0.5, 0, M) = Y + Y^3/Q(Y^2) \]

\[\text{ER}(0) = \text{ER}(0.5) = 0, \quad \text{ER}(-X) = \text{ER}(X) \]

<table>
<thead>
<tr>
<th>INDEX</th>
<th>EXTREMAL ERROR</th>
<th>POINTS OF EXTREMAL RELATIVE ERROR WITH SIGNS OF THE ERRORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M = 18)</td>
<td>(\approx 6028 \times 10^{-26})</td>
<td>(0.03439(+)), (0.07666(-)), (0.11646(+)), (0.15505(-)), (0.19266(+)), (0.22854(-)), (0.26308(+)), (0.29590(-)), (0.32680(+)), (0.35561(-)), (0.38216(+)), (0.40630(-)), (0.42791(+)), (0.44685(-)), (0.46304(+)), (0.47640(-)), (0.48685(+)), (0.49435(-)), (0.49886(+))</td>
</tr>
<tr>
<td>(M = 19)</td>
<td>(\approx 6991 \times 10^{-27})</td>
<td>(0.03271(-)), (0.07299(+)), (0.11095(-)), (0.14782(+)), (0.18366(-)), (0.21834(+)), (0.25169(-)), (0.28353(+)), (0.31372(-)), (0.34207(+)), (0.36845(-)), (0.39272(+)), (0.41475(-)), (0.43444(+)), (0.45169(-)), (0.46642(+)), (0.47856(-)), (0.48806(+)), (0.49487(-)), (0.49897(+))</td>
</tr>
</tbody>
</table>

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, December 4, 1971,
APPENDIX - STRATEGY OF ARGUMENT REDUCTION

Within the scope of this report argument reduction is required only for the exponential function and for the circular functions. No argument reduction is required for the logarithm approximation in the sense that the working argument is obtained without error from the floating-point representation of the actual argument.

For these cases, given the related transcendental constant \(K \) (either \(\ln(2) \) or \(\pi/2 \)), the reduced argument \(y \) is defined in terms of \(K \) and the given argument \(x \) by

\[
y = x - nK
\]

(A1)

where \(n \) is an integer. Because the approximations are constrained to have negligible error for \(y = \pm K/2 \), adequately small errors will result for a somewhat wider interval. We, therefore, require only that \(y \) lie in the interval

\[
-\left(\frac{K}{2} + \Delta\right) < y < \frac{K}{2} + \Delta
\]

(A2)

Table I given at the end of this appendix shows the value of \(\Delta \) allowed by each of these approximations.

Given an upper bound \(N \) on the magnitude of the integers allowed for use in relation (A1) a value of \(n \) for which inequality (A2) is satisfied is given by

\[
n = [kx]
\]

(A3)

The symbol \([Z]\) means the nearest integer to \(Z \) and the multiplier \(k \) satisfies the inequality

\[
\frac{1}{K + \frac{2\Delta}{2N + 1}} < k < \frac{1}{K - \frac{2\Delta}{2N - 1}}
\]

(A4)

If \(2\Delta/(2N + 1) \) is greater than \(\beta \) times the value of a one in the least significant digit of the machine precision representation of \(K \), then the numbers \(1/\left(K + [2\Delta/(2N + 1)]\right) \), \(1/K \), \(1/\left(K - [2\Delta/(2N - 1)]\right) \) have distinct representations. The rounded for storage representation of the value \(1/K \) is then a suitable value for \(k \).

In the case of the exponential function the bound \(N \) is typically determined by the limitations of exponent overflow or underflow on the representation of the computed result. For the circular functions which (except for poles) are defined and representable.
for all arguments the bound on N must be somewhat arbitrary and is related to the details of the actual evaluation of the reduced argument y.

For any of these functions the required transcendental constant, $\ln(2)$ or $\pi/2$, cannot be exactly represented. It may, however, be represented to any required precision as a sequence of constants K_1, K_2, \ldots of successively decreasing magnitude whose correct sum is very nearly equal to the desired K. At least three such constants are generally required. A minimum limitation on the lengths of the constants K_1 and K_2 is that the products nK_1 and nK_2 be exactly representable in the floating-point notation of the computer of implementation.

A further requirement of any implementation is that the difference $x - nK_1$ be computed exactly. This cannot be guaranteed for an arithmetic system in which no guard digits are provided for floating point addition unless the given argument x is broken into shorter parts and the constant K_1 subject to more severe restrictions on its length. In any case, when K_1 is subjected only to the limitation that the product nK_1 be exactly representable the difference $x - nK_1$ is always exactly representable.

For any n there is always some value of x such that $x - nK_1$ equals zero. The reduced argument is then the negative of the correctly rounded sum of $nK_2 + nK_3$ which should cause a minimum of trouble.

If $K_1, K_2,$ and K_3 are of the same sign and the sign of $x - nK_1$ is opposite to that of x, the final calculation of the reduced argument requires the correct addition of three terms of like sign. No arithmetic trouble occurs in adding these terms in the order $(nK_3 + nK_2) + (x - nK_1)$ with rounding on the final addition. If $K_1, K_2,$ and K_3 are of the same sign and the sign of $x - nK_1$ is the same as the sign of x, which should happen in about one-half the cases, completion of the argument reduction can cause further cancellation of lead digits and result in an unrecoverable error. Greater care with regard to the details of the reduction is required to avoid unwanted loss of precision. In this situation the difficulty caused by mixed signs could be resolved by the use of a second set of constants K'_1, K'_2, \ldots, where K'_1 is just larger than K_1 and the K'_2, \ldots are negative; therefore, the smaller terms nK'_2, \ldots have the same sign as $x - nK'_1$. The small interval for which $x - nK_1$ has the same sign as x but $x - nK'_1$ is opposite in sign remains unresolved. Assuming that this variant is implemented, difficulty with further cancellation can occur only for very small reduced arguments.
TABLE I. - VALUES OF Δ FOR VARIOUS APPROXIMATIONS

<table>
<thead>
<tr>
<th>J</th>
<th>exp(Y) EXP[ln(2)/2, J, 0]</th>
<th>sin(Y) SIN($\pi/4$, J, 0)</th>
<th>cos(Y) COS($\pi/4$, J, 0)</th>
<th>tan(Y) TAN($\pi/4$, 0, J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.01041</td>
<td>0.02881</td>
<td>-------</td>
<td>0.01780</td>
</tr>
<tr>
<td>3</td>
<td>0.00585</td>
<td>0.01561</td>
<td>0.01788</td>
<td>0.01015</td>
</tr>
<tr>
<td>4</td>
<td>0.00378</td>
<td>0.00983</td>
<td>0.01054</td>
<td>0.00702</td>
</tr>
<tr>
<td>5</td>
<td>0.00265</td>
<td>0.00677</td>
<td>0.00704</td>
<td>0.00505</td>
</tr>
<tr>
<td>6</td>
<td>0.00196</td>
<td>0.00495</td>
<td>0.00507</td>
<td>0.00382</td>
</tr>
<tr>
<td>7</td>
<td>0.00152</td>
<td>0.00378</td>
<td>0.00383</td>
<td>0.00300</td>
</tr>
<tr>
<td>8</td>
<td>0.00121</td>
<td>0.00298</td>
<td>0.00300</td>
<td>0.00242</td>
</tr>
<tr>
<td>9</td>
<td>0.00098</td>
<td>0.00241</td>
<td>0.00242</td>
<td>0.00199</td>
</tr>
<tr>
<td>10</td>
<td>-------</td>
<td>0.00199</td>
<td>0.00199</td>
<td>0.00167</td>
</tr>
<tr>
<td>11</td>
<td>-------</td>
<td>-------</td>
<td>0.00167</td>
<td>0.00142</td>
</tr>
<tr>
<td>12</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>0.00122</td>
</tr>
<tr>
<td>13</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
</tbody>
</table>
REFERENCES

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

—National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546