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RELATIVISTS TIME CORRECTIONS

FOR APOLLO 12 AND APOLLO 13

by
John E. Lavery

Goddard Space Flight Center

INTRODUCTION

Interest in a determination of the relativistic time shift as manifested on board a spacecraft has
been sharpened by the recent publication of an estimate by C. O. Alley indicating that a blue shift of
some 300 /xs occurred for the Apollo 8 spacecraft versus a ground-based clock (ref. 1) and of a descrip-
tion of a proposed orbiting clock experiment to determine the gravitational red shift by Kleppner,
Vessot, and Ramsey (ref. 2). However, precise computations using actual tracking data for specific
space missions have yet to be published. To fill this gap, this report presents precise frequency and
time shift computations with tight error bounds for one long-duration lunar mission (Apollo 12) and
one short-duration lunar mission (Apollo 13). Because no precision frequency standards were carried
on these flights, no comparison of these computations with experimental data can be attempted. How-
ever, the error bounds achieved in the computations presented here are to be taken as indicative of the
accuracy achievable in future computations using the methods presented in this report.l

THEORETICAL DEVELOPMENT

Introduced in the theory of relativity is the concept of "proper time" (see, for example, ref. 3),
which is the time indicated by a clock rigidly connected with a moving material frame of reference.
If x (a = 1, 2, 3) are the space coordinates and t the time coordinate of this moving frame with respect
to a given inertial frame of reference, it can be shown that the interval of proper time dr is given by

(1)
I .

where g B are the components of the metric tensor involving the spatial coordinates xa, the subscript
4 labels the time coordinate, and dt is the interval of coordinate time. (Coordinate time is the time

JA11 computations presented here were carried out by program E00032 of the Goddard Space Flight Center Computer Program
Library, This program can be used without modification for calculations for any near-Earth mission. With small modifications it can
be used for interplanetary missions.



indicated by a clock at rest with respect to the coordinate system and under no gravitational
potential.)

For a weak static gravitational field having potential 0, the components of the metric tensor can
be taken to be

"afi <xfl

and.
20
^2

where 6 = 1 if a = j3 and 6 = 0 if a =£ 0. Hence

(2)

where 0 is the total gravitational potential at the clock, v is the speed of the clock with respect to the
given inertial frame, and c = 2.997 925 X 108 m/s (the speed of light). Let (f>A and <t>B represent the
gravitational potential at clock A and the gravitational potential at clock B, respectively, and VA and
VB represent the speed of clock A and the speed of clock B, respectively. If we compare clock A to
clock B, both in the same inertial frame, the relative frequency of clock A with respect to clock B is
given by
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Hence, to the first order, the frequency shift of clock A with respect to clock B is
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Thus, the total time difference of clock A with respect to clock B accumulated from (coordinate) time
t^ to (coordinate) time t2 is

(5)rA . c 2c2 2c 2 _
dt

Now, for points in the neighborhood of the Earth-Moon system, the gravitational potentials <j>A
w

and 4>B may be computed with sufficient precision from the expression
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where

GMS = (1.327 124 99 ± 0.000 000 15) X 1020 m3/s2 = gravitational parameter of the Sun

rs = distance from the clock to the center of mass of the Sun

GME = (3.986 012 ± 0.000 004) X 1014 m3/s2 = gravitational parameter of the Earth

r£ = distance from the clock to the center of mass of the Earth

/2 = (1.0827 ± 0.0001) X 1(T3

RE = 6.378 166 X 106 m = equatorial radius of the Earth

IE = geocentric latitude (declination) of the clock

/3 =(-2.56 ± 0.1) X ID"6

/4 =(-1.58 ±0.2) X 1(T6

C22 = (1.57 ± 0.01) X 1(T6

S22 = (-0.897 ± 0.01) X 1(T6

\E = geocentric longitude of the clock

GMM = (4.902 78 ± 0.000 06) X 1012 m3/s2

rM = distance from the clock to the center of mass of the Moon

KI =(2.071 08 ± 0.05) X 1(T4

(6)



RM = (1.738 09 ± 0.07) X 106 m = mean lunar radius

IM - selenocentric latitude (declination) of the clock

K22 =(2.0716 ±0.5) X 10-5

\M = selenocentric longitude of the clock (positive eastward with respect to the Moon's prime
meridian)

These constants are taken from pages 6-2 to 7-1 of reference 4. Equation (6) is derived from the
gravitational-potential equations for the Earth and for the Moon on these same pages.

CALCULATIONS

Calculations of the frequency shift and resulting time difference of a spacecraft clock (clock A)
versus an Earth-based clock (clock 5) were made by equations (4) and (5), respectively, where the
inertial frame of reference is a nonrotating Cartesian coordinate system with origin at the center of
mass of the Earth. The spacecraft clock was assumed to be on the command module (CM) of the
Apollo 12 and Apollo 13 spacecraft and the Earth-based clock was assumed to be at NASA's Network
Test and Training Facility (NTTF) (38°59'56.7" N, 76°50'22.7" W, 52 m above the Earth model
ellipsoid). To an accuracy of 10~14, the frequency of a clock at NTTF is the same as the frequency of
an identical clock anywhere on the Earth model ellipsoid. Hence the results presented in the tables
and figures in this report are typical of the results expected for a comparison of a spacecraft clock to

Table 1.-Frequency and Time Corrections for a Clock on Apollo 12 for Selected Values of Ground
Elapsed Time (GET)

Event

Begin TLC
TLC
In orbit

around Moon
In orbit

around Moon
TEC
Reentry
Splashdown

fCT
(jt.1,

s

10 380.0
247 080.0

425 580.0

514 380.0
671 280.0
879 769.6
880557.6

Distance
of CM from

center of
Earthy,

m

6 724 000
347 003 000

378 498 000

385 457 000
346213000

6 464 000
6 377 000

Distance
of CM from

center of
MoonrM,

m

370 883 000
63 883 000

1 846 000

1 851 000
64 183 000

401 185 000
402 727 000

Speed
ofCMu,

m/s

10805
674

2660

613
905

11033
a442

Frequency shift of CM standard
versus Earth standard, 10~10

Due to gravity of-

Sun

-0.0061
.0822

.1570

.2012

.2099
-.0056
-.0063

Earth

0.3633
6.8248

6.8354

6.8376
6.8245

.0975

.0032

Moon

-0.0000
-.0071

-.2941

-.2934
-.0071
.0000
.0000

Due to
velocity

-6.4873
-.0180

-.3865

-.0136
-.0383

-6.7650
-.0036

Total
shift

-6.1301
6.8819

6.3120

6.7318
6.9890

-6.6731
-.0067

Time
correction

(advance) of
CM standard
versus Earth

standard,
MS

0.0
153.797

271.328

329.228
434.334
570.430
570.345

aThis speed is due mainly to the rotational speed of the Earth, not the slight downward speed of the CM.



Table 2.-Frequency and Time Corrections for a Clock on Apollo 13 for Selected Values of GET

Event

Begin TLC
Oxygen tank

explosion
TLC
Closest approach

to Moon
TEC
Begin reentry

GET,
s

11 197.0

201 420.0
226 620.0

278 470.0
325 020.0
513 645.7

Distance
of CM from

center of
Earth r£,

m

13 361 000

336 373 000
360 077 000

406 425 000
355 207 000

6 495 000

Distance
of CM from

center of
Moon rM,

m

387 728 000

91 536 000
63 750 000

2 002 000
63 771 000

404 547 000

Speed
ofCMu,

m/s

7631

993
930

1481
1 170

11037

Frequency shift of CM standard
versus Earth standard, 10~10

Due to gravity of-

Sun

-0.0065

.0599

.0637

.0702

.0573

.0045

Earth

3.6375

6.8208
6.8295

6.8435
6.8278

.1325

Moon

-0.0000

-.0046
-.0072

-.2715
-.0072

.0000

Due to
velocity

-3.2327

-.0475
-.0408

-.1148
-0689

-6.7696

Total
shift

0.3983

6.8286
6.8452

6.5274
6.8090

-6 6326

Time
correction

(advance) of
CM standard

standard, MS

0.0

122.841
140.074

175.499
207.174
327.559

any clock near sea level on the Earth. The Earth model ellipsoid referred to has equatorial radius
RE and polar radius (1 - 1/298.3)RE. Tables 1 and 2 give frequency and time differences at selected
times during translunar coast (TLC), near the Moon, during trans-Earth coast (TEC), and during
reentry for the flights of Apollo 12 and Apollo 13, respectively. Figures 1 and 2 are the plots for
Apollo 12 of the frequency shift of the CM standard versus the Earth standard and the time advance
of the CM standard relative to the Earth standard. Figures 3 and 4 are the same plots for Apollo 13.

From the columns in tables 1 and 2 giving the frequency shift of the spacecraft standard versus
the Earth standard, it is clear that the main factor in the blue shift of the spacecraft clock with respect
to the Earth clock is that the spacecraft standard is far away from the Earth's relatively strong gravita-
tional field. From table 1, we see that the total time advance of a hypothetical standard on the CM
of Apollo 12 versus an Earth standard accumulated during TLC, lunar orbit, TEC, and reentry (up to
splashdown) is 570.3 MS. From table 2, the time advance of a clock on Apollo 13 accumulated from
TLC up to reentry is 327.6 us.

ERROR ANALYSIS

The errors in the calculation of these numbers are (1) error due to the use of the approximation
(3a) for drA /drB ; (2) error in equation (6); (3) errors in the raw data, particularly the ranging and
velocity data; (4) integration errors in equation (5) due to integrating over GET rather than coordinate
time t and calculating the integral by the trapezoidal rule; and (5) roundoff errors in the values 570.3
and 327.6 jus. The error bounds which will now be calculated are not optimum bounds. They are,
however, sufficiently sharp for our calculations.

The error due to the use of expression (3a) to approximate drA /drB can be estimated by means
of the Taylor-series remainder terms. It is bounded by 7.0 X 10~19 (resulting in a time-difference
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Figure 3.—Frequency shift of clock on Apollo 13
CM versus Earth clock.
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Figure 4.—Time shift of clock on Apollo 13
CM versus Earth clock (curve A, left-hand time
shift scale); the results of subtracting out the
average offset frequency (6.5193 X 1(T10) are
given in curve B (using the right-hand time
shift scale).



error of less than 1 ps for both Apollo 12 and Apollo 13). The error resulting from errors in equation
(6) can be bounded by using the error bounds on the constants given after equation (6).

Although error estimates for the internal consistency of the tracking and ephemeris data used in
the calculations are available (ref. 5), no absolute error bounds for the range and velocity data are
available. However, the following error bounds, based on the error estimates for the internal con-
sistency of the tracking and ephemeris data will be assumed. The ranging errors of both the CM stand-
ard and the Earth standard to the center of the Sun are bounded by 200 km. The ranging error of the
CM standard to the center of the Earth is bounded by 2 km when the range is less than 100 000 km
and,by 20 km when the range is greater than 100 000 km. The increased error bound for ranges
greater than 100 000 km is due to large ranging errors near the Earth-Moon interface. The ranging
error of the Earth standard to the center of the Earth is bounded by 10m. The ranging error of the
CM standard to the center of the Moon is bounded by 2 km when the range is less than 10 000 km
and by 20 km when the range is greater than 10 000 km. Again, the increased error bound for larger
ranges is to account for large ranging errors near the Earth-Moon interface. The ranging error of the
Earth standard to the center of the Moon is bounded by 2 km. The velocity error of the CM standard
is bounded by 2 m/s and the velocity error of the Earth standard is bounded by 10~3 m/s.

Let/(0 denote the integrand in equation (5). The error in integrating/(O over GET (rfl) rather
than over coordinate time t is

f(t)dt (7)

and is bounded by

max /(O (8)

which is less than 1 ps for both Apollo 12 and Apollo 13. For our data/(0 is piecewise twice con-
tinuously differentiable. Then, if n + 1 represents the number of equispaced points on a twice con-
tinuously differentiable segment of the curve/(/) from ?3 to /4, which are used to calculate

r/(O dt

by the trapezoidal rule, the error in the numerically calculated value of the integral is bounded by

max (9)
12«2

Su.mming these error bounds over all segments of each flight gives an error bound for the final time
corrections.

Table 3 gives the magnitudes of the error bounds for the final time corrections listed in tables 1
and 2. All error bounds in table 3 have been rounded upward to the nearest nanosecond except those
less than 0.1 ns, which are entered as "negligible." As a result, the relativistic blue shift from

8



Table 3.-Error Bounds for Final Time Corrections

Error source

Approximation (3a)
Equation (6)
CM standard .

Ranging to Sun
Ranging to Earth
Ranging to Moon
Velocity

Earth standard:
Ranging to Sun
Ranging to Earth
Ranging to Moon
Velocity

Integration over GET instead of coordinate time
Trapezoidal integration error
Roundoff in final value

Total

Error bound, us

Apollo 12

Negligible
0.015

0.012
0.009
0.017
0.065

0.012
0.001
Negligible
Negligible
Negligible
0.084
0.045
0.260

Apollo 13

Negligible
0.007

0.007
0.006
0.006
0.039

0.007
0.001
Negligible
Negligible
Negligible
0.038
0.041
0.152

10 380.0 s GET to 880 557.6 s GET of a standard on Apollo 12 versus an Earth standard is
570.3 ± 0.3 jus and the relativistic blue shift from 11 197.0 s GET to 513 645.7 s GET of a standard
on Apollo 13 versus an Earth standard is 327.6 ± 0.2 MS.

It remains now only to indicate the precision to which an actual experiment could measure these
relativistic time corrections. The only atomic frequency standards of sufficiently small size and weight
to be carried on Apollo missions are cesium and rubidium standards. For the intervals of time used
to make the theoretical calculations for both flights, the standard deviation of the frequency2 of a
cesium standard is bounded by 5.0 X 10~13, and that of a rubidium standard is bounded by 2.0 X 10~12.
Multiplying these standard deviations by the duration of the flights and rounding them off to the
nearest 0.1 jus yields the experimental error estimates of 0.5 MS (cesium) and 1.8 MS (rubidium) for
Apollo 12 and 0.3 MS (cesium) and 1.1 MS (rubidium) for Apollo 13. Hence, if an experiment were
performed, one could expect a fractional statistical error of 0.1 percent with a cesium standard and
0.33 percent with a rubidium standard.
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INTRODUCTION

Interest in a determination of the relativistic time shift as manifested on board a spacecraft has
been sharpened by the recent publication of an estimate by C. O. Alley indicating that a blue shift of
some 300 jus occurred for the Apollo 8 spacecraft versus a ground-based clock (ref. 1) and of a descrip-
tion of a proposed orbiting clock experiment to determine the gravitational red shift by Kleppner,
Vessot, and Ramsey (ref. 2). However, precise computations using actual tracking data for specific
space missions have yet to be published. To fill this gap, this report presents precise frequency and
time shift computations with tight error bounds for one long-duration lunar mission (Apollo 12) and
one short-duration lunar mission (Apollo 13).1 Because no precision frequency standards were carried
on these flights, no comparison of these computations with experimental data can be attempted. How-
ever, the error bounds achieved in the computations presented here are to be taken as indicative of the
accuracy achievable in future computations using the methods presented in this report.

THEORETICAL DEVELOPMENT

Introduced in the theory of relativity is the concept of "proper time" (see, for example, ref. 3),
which is the time indicated by a clock rigidly connected with a moving material frame of reference.
If xa(a = 1, 2, 3) are the space coordinates and t the time coordinate of this moving frame with respect
to a given inertial frame of reference, it can be shown that the interval of proper time dr is given by

,dr =

where g are the components of the metric tensor involving the spatial coordinates xa, the subscript
4 labels the time coordinate, and dt is the interval of coordinate time. (Coordinate time is the time

JA11 computations presented in this document, except those for the error bounds, were carried out by program E00032 of the
Goddard Space Flight Center Computer Program Library. This program can be used without modification for calculations for any
mission in the vicinity of the Earth-Moon system. With small modifications it can be used for interplanetary missions.
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