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TECHNICAL NOTE D- 

LONGITUDINAL OSCI LLATlON OF 
LAUNCH VEHICLES 

Any rocket (missile or launch vehicle) represents an elastic structure. During flight, any 
disturbance caused by wind gusts or irregularities of the thrust may cause longitudinal oscillations of 
the structure. In general oscillations of this kind are of a transient nature and are damped out after 
a certain time. The vibrating system is said to be stable. 

It is well known, however, that under certain circumstances the system proves to  be un- 
stable; that is, vibration energy can be tapped from the thrust by the activity of the system itself and 
sustain the structural oscillations. The amplitudes increase until some nonlinear effects limit any 
further increase. In other words, self-excited oscillations, so called "POGO oscillations named for 
the pogo-stick-like motion of the vehicle, may result. 

The first time, POGO oscillations occurred during test flights of the Titan-I1 missile [l]  . 
Later, the first and second stages of the Saturn V Launch vehicle were plagued by POGO oscillations [2] . 

The supply of energy is caused by an interaction of the structure and the propellant system. 
Oscillation of the structure, especially of the pumps, causes pressure oscillation of the liquid propellants. 
Consequently, an oscillating pump discharge and hence an oscillating thrust is generated that in return 
can excite the structure. In this way, the feedback loop is closed (Fig. 1). An inherent mechanism of 
the system may cause feedback of the thrust oscillation to sustain the structural oscillation at least for a 
certain time interval (Fig. 2). 

THRUST I OSCILLATION } 1 

To examine the stability of the vehicle, 
a proper model must be established. Then the 
characteristic equation must be investigated to 
determine whether there are roots having positive 
real parts that imply instability. Commonly this 
will be done by application of an appropriate 
stability criterion. In this way, the stability 
conditions'in terms of the system parameter can 
be obtained. 

Since the POGO problem developed, 
numerous stability analyses have been performed. 
A review of the efforts made for the Saturn 
V/Apollo vehicle is given in Reference 3. In 
References 3 and 4 a description of one of the 
latest models and its stability analysis is out- 
lined. According to these reports the POGO 

Figure 1. Feedback system with constant time lag 7. model is based on the idea that a model must 
be sufficiently complex to serve as a prediction 

tool. It should cover all experimental and flight data. In other words, the basic idea is that the more 
accurately the model copies the actual system, the better it will display all the important features, 
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Figure 2. S-IC POGO oscillations; SA-502; Apollo 6. 

especially the one of stability. Accordingly, the model is a coupled system of structural modes, propellant 
line modes, and inboard and outboard engine gain and phase transfer functions. The structural modes 
were obtained from a 280-degree-of-freedom structural model. The propellant line modes were derived 
also from many degree-of-freedom systems composed essentially of lumped liquid masses connected by 
springs. The stability analysis leads to a set of equations that forms a closed-loop system. The roots of 
the characteristic equations were obtained by the root locus technique. 

Although opinions about the validity of such complex models may differ, one peculiarity 
is evident. Even if one assumes the model and analysis to be correct, one cannot consider both of them 
to be completely satisfying. The reason is that no understanding of the mechanism and the actual 
physical cause of self-excitation can be obtained in this manner. Any decision concerning the stability of 
the system is left to the computer. 

In this note, the POGO problem shall be examined from another point of view. Two special 
features of the system prove to be crucial for creation of instability. 

1. There is an inherent time lag of the thrust oscillations behind the structural oscillations 
(Fig. 1). The time lag arises from the (constant) time interval required to convert the pump inlet pressure 
oscillations into thrust oscillations. 

2. The decrease of mass caused by the exhausting of gas.' 

1. During the burn phase a vehicle loses approximately 70 percent of its mass. 



Systems with time lag or systems possessing retarded action, as they are sometimes referred 
to, are known and have been examined previously [S-81. The point is that systems with time lag are 
capable of self-excited oscillations or instability. In general, retarded action is present in all closed-loop 
control systems [5,8] . However, an example of a mechanical system was given by Minorsky in 1942 
[S] . The equations of motion of problems possehing retarded action are amenable to so-called 
difference-differentid equations [5,7] . This notation stems from the fa6t that these equations contain 
at least one term, called a retarded term, which depends not on the time t itself but on the difference 
t-T, where T represents the time lag. In its linear form, having one degree-of-freedom only, the problem 
is-already of transcendental character. It always leads to an infinte spectrum of frequencies with which 
the system can oscillate. In practice however, only a few of them (most frequently only one) are actually 
responsible for self-excitation [7]. 

To illustrate the importance of the time lag and difference-differential equation concepts for 
systems possessing retarded actions, Minorsky may.be quoted. In essence he pointed out [5] : 

"In fact in all closed-loop systems there always exists a time lag in 
the cyclic process of operation. A mathematical description of such a process 
in terms of a difference-differential equation simplifies the commonly estab- 
lished procedure of 'couplings' between the different parts of the system which 
generally leads to an ordinary differential equation of a relatively high order; 
this usually involves considerable difficulties if one attempts to discuss the 
characteristic equation algebraically. Furthermore the nature of coupling 
very frequently remains unknown. On the other hand, in establishing a 
difference-differential equation of a retarded process one must know only 
the over-all time lag T, Gthout the necessity bf knowing the intermediate 
links in the system." 

The conclusions to be drawn for the problem at hand are obvious. The combined work of 
the single parts of the propellant system must not be considered. Only the system's total effect on the 
vibrating structure is of significance. This effect is determined by two quantities, however: the time lag 
and the magnitude of the feedback. As far as the structure is concerned, a number of structural modes 
may serve for its representation. 

The model derived in this note follows this line. However, the model is intended to serve 
first for understanding the basic mechanism of self-excitation; thus, further simplifications have been 
made. Accordingly, nonessential system details that may efface the actual cause of instability have been 
omitted. In doing so, the model has been reduced to one structural mode. This is in accordance with 
experience because all flight measurements show one POGO frequency only. Another simplification 
concerns the oscillating thrust component.. Although the entire propellant system occurs in its creation, 
only the oscillation of the pumps is considered. The importance of the latter is shown in Reference 9. . 

By linear approximation the respective amplitudes are assumed to be proportional. The thrust oscillation, 
however, is delayed by the time interval T. 

Accordingly, the simple model proposed is a single mass-spring model possessing retarded 
action. It has been obtained by a one-term Calerkin approach to the equation of motion. The stability 
is examined with the aid of Nyquist's criterion [6,8]. Special emphasis has been placed on showing the 
effect of the mass decrease. The possible importance of the latter was quoted in Reference 10. Further- 
more, it is shown that a significant conclusion can be drawn from this simple model. 



At this point, an important fact must be mentioned. The actual vibrating system is a non- 
linear one whereby its nonlinearity represents an assential feature. The model derived hust obviously be 
a linear one which covers a small vibration of the system only. As is well known, the linear theory is in- 
sufficient to describe the actual motion of the system. Especially, limit cycles cannot be determined in 
this way. By using linear analysis, the conditions only can be obtained under which the system is stable 
or unstable. 

EQUATION OF MOTION 

During powered flight the vehicle mass center is moving along the flight path. If an oscillating 
thrust component AT is acting on the vehicle, it causes vibrational motion of the vehicle mass center 
according to Newton's first law. Consequently, inertia forces of the vehicle masses are created that equi- 
librate the oscillating thrust component AT. This equilibrium system of forces, however, excites free 
longitudinal vibration of the elastic vehicle structure that superimposes the rigid body motion. If the 
vehicle structure is reduced to a lumped mass-spring system, the equation of motion of the vibrating masses 
relative to the mass center is 

where, according to Newton's first law, 

and 

Substitution of equation (2) into equation (1) results in 

Equation (3) shall be solved by a Galerkin approach [ l  11. Restriction to one term yields the 
desired one-degree-of-freedom model mentioned previously. 

The eigensolutions of the above problem, 



are the solutions of the matrix eigenvalue problem 

(K - a 2 M ) x  = Q . 

The eigenvectors satisfy the orthogonality conditions: 

n 
X i  MXj = Z m x (i) xku) = 6 - M .  . i , j  = 0,1,2 ¶... n-1 , 

k= 1 k k  !l J '  

where M, has been defined by equation (2). From equations (5) and (6) it follows that 

x i  KXj = a,' 6.. M. = 6 . .  
1J J !I5 i ,j = 0,1,2 ,... n-1 

hence, 

To perform the Galerkin approach, it is assumed that 

where a. (j=l, ... n-1) has the dimension of a length. Substitution of equation (8) into equation (3) 
3 

and left multiplication by the eigenvector X i  of the eigenvectors (4) yields 

n-1 . 
~~g~ t t . xkl klXj t K~ ak = AT xJk) ; k = 1y2y...n-1 ; j=l 4 

thereby, equations (6) and (7a), are considered. 



In Reference 12, it is explained that no considerable error results if one assumes 

Thus, it follows from equation (7b) and (9) 

Now, AT must be expressed. As mentioned previously, it is assumed that the oscillating 
thrust is caused primarily by the pump oscillations. In addition it is assumed that the magnitudes of 
both oscillations are linear-dependent. Because AT represents the retarded quantity that lags the time 
interval T behind the structural oscillations, one may write 

where xn is the coordinate of the mass at station n to which the pumps belong and the factor of 

proportionality s has the dimension of a mass. 

The.acceleration of the pumps can be composed of that of the mass center and relative 
acceleration. The latter is given by equation (8). Thus, 

.. n-1 .. (j) 
x n =  j;,+ I: 

j=l 7% 

However, the magnitude of the oscillating thrust AT is not large enough to accelerate the vehicle mass 
center considerably. In other words, $ is a small quantity compared with the relative acceleration and 
can therefore be neglected. 

Then, from equations (1 1) and (1 2), it follows that 

Substitution of equation (13) into equations (10) yields the following system of equations: 

Because a one-term approach is considered, the system reduces to 



According to equations (6) and (7a) 

where ml * , k1 * represent generalized mass and spring constant of the first mode normalized to the unit 

at station n. One realizes that the smaller xn(') is relative to the other coordinates of the first mode, 

the larger is the generalizes mass mT : 

If the subscript 1 is omitted, one obtains from equations (14) and (15) 

thereby are 

where 

In the following, the stability of the simple system represented by equations (16) will be examined. 

APPLICATION OF NYQUISTS STAB! LITY CRITERION 

By the assumption 

a(t) = aeht 

it follows from equation (1 6a) that 



This is a transcendental equation having an infinite number of roots that, in general, are complex: 

If interpreted in the complex A-plane, one may state: The vibration is stable [6, 81 if and only if no 
lies in the right half-plane. In other words, the vibration is stable if h j  

Because the spring-mass system which follows from the system (16a) by omitting the right 
side 

can be assumed to be a vibrating system with positive (not overcritical) damping, its characteristic 
equation 

does not have roots in the right half-plane. Consequently, one may divide equation (17b) by the left side 
of the equation (18) without gebing any poles in the right half-plane. Thus, instead of equation (17b), 
the following equation may be examined: 

where 



To study the stability of the system at hand, the Nyquist analysis must be applied (81. The 
Nyquist criterion is: 

The system is stable if and only if f(A) does not encircle the 
point (-1,O) of the f(A)-plane if A travels along the so-called Nyquist path. 

The Nyquist path is a closed contour in the A-plane that completely encloses the entire right 
half of the A-plane. In Reference 6 it has been shown that steady-state solutions of equation (16a) exist 
under very special conditions only. Thus, the general case, 

shall first be studied. In doing so, one may consider the Nyquist path to be going along the imaginary 
axis [6, 81. To enclose the right half-plane, a large semicircular path is drawn in the right half-plane having 
the radius R that is interpreted as being infinite in the limit (Fig. 3). 

Because 

and, hence, 

lim . , 
R - t w  

Figure 3. Nyquist path in the 
complex A-plane. 

the traveling along the semicircle does not contribute 
(if R -t -) and therefore can be omitted [6]. 

Thus, if one substitutes 

h = i o o  

the Nyquist path is represented by the following: 

From equations (19) and (21a) one realizes that 



Now f(iou) shall be expressed by its radius vector r(u) and its argument. First, the 
denominator: 

(r2 - 1 - 2i5u = J (0.2 - 112 + 45202 e-i@ 

where 

e-i@ = cos 9 - i sin @ , 

u 
sin 4 = 21 J (02 - 112 + 4c202 

and 

Thus, equation (21b) can be written 

f(iwu) = r(o) ei(@ - a") 

where 

and @ is given by equations (22) and (23). 

Because 

whereby the conjugate complex Tis symmetrical to f, the real axis being the symmetry axis, one may 
restrict the travel path to  positive o. Thus, the Nyquist criterion can be expressed as follows: 



The system is stable if and only if f(X) does not encircle the point (-1,O) of the f(X)-plane if 
o travels along 

where X and a are linked by equation (21a): 

Now, one has to  determine under what conditions f(X) encircles(-1,O) if a travels along 
the interval (25). 

Because 

it foliows from equations (24) that encirclement will occur if and only if a positive o exists so that 

where 9 is determined by equations (22) and (23), and 

By combining equations (221, (23), (25), and (26), it follows: 

and 

Equation (28) is a transcendental equation having infinite many roots. Let 

be those positfire roots which belong to the intervals (29). Thm, considering equation (24b) and the con- 
dition (27), one may state: Encirclement will occur if for at least one root uk of the mots (30) 



No encirclement can occur if for all roots (3Q) 

Figure 4 is a graph of 

The function g(o) represents the right side of the conditions (31). It shows two stationary points at 

o =,/ d and ,J = 00 m 1 - 252 

The respective values of g(o) are 

The first represents a minimum, and the second represents a maximum. The horizontal line through 
o = 1 is the asymtote of g(o0). 

Figure 4. Graph of g(u). 



The abscissa oI 91 are the positive solutions of 

One obtains 

For any ok satisfying 

condition (3la) is valid as can be seen from Figure 3. Thus, encirclement can occur if and only if the 
interval (34) contains at least one of the roots (30). 

Let no be the number of encirclements of (- 1,O); then, from Figure 4 or equation 

(33b), one concludes 

In the latter case, namely, the length of the interval (34) becomes infinite. 

The conclusions which can be drawn from Figure 4 and equation (33b) are gathered in 
Table 1. 

Now, the special case of the steady-state oscillation shall be examined. It occurs if at least 
one of the real parts (20) equals zero. Then, according to equation (17c), one may assume 

Now, from equations (16), (17), and (36), it follows that 



TABLE 1. uI AND uII AS FUNCTIONS OF q.  

For this equation to represent the steady-state oscillation, the coefficients must reduce to 

2 5 w  + q y s i n y r  = 0 

o2 - qy2  cosy7 = y2 

or if notation (21a) is used ( 6 > 0 )  

q u s i n o r o  = -2c 

Equations (37) are equivalent to the following equations: 

cotanwru = _h u 2 - 1  
2 5 u 



(2j - 1) n < o r a  < 2jn * 

These equations, in turn, are identical to equations (28), (29), (32), and (33a). Thus, the 
special conditions under which steady-state oscillations may occur are characterized by coincidence of 
one of the roots (30) with either oI or aII. In that case, 

are the frequencies of steady-state oscillations. 

Now, combining this and previous statements, especially equations (39,  Nyquist's criterion 
for the case at hand is: 

1. The system is stable if 

the system is stable if none of the roots (30) lie within the interval 

which is determined by equations (33). If at least one of the roots (30) belongs to this interval, the 
system is unstable. 

3. If q > 1 ,  'the system is unstable. 

For some practical- applications, another formulation of Nyquist's criterion is appropriate. It follows 
from equation (22), (26) conditions of encirclement (31), and equation (38) that the system is 
stable or unstable accordingly as 



for all of the roots (30) or 

7, 2 - 2 5  
o Sln 0 7 0  

for at least one of these roots. 

Figure 4 is a graphic interpretation of the stability problem. For determination of the roots 
(30'), the curves (28) are drawn in. Here, cotan m a  is represented by the first and the second branch 
of the intervals (29), j = 1,2. Figure 4a shows stability because o1 lies to the right of on . Conse- 

quently all roots (30) lie outside the interval (30). However, Figure 4b is an unstable case because a1 
lies between o and oII . I 

(a) STABLE CASE 

(b) UNSTABLE CASE 

Figure 5. Stability graphs. 



STABILITY OWlMG TO THE DECREASE 1N MASS 

One realizes that the stability of the system depends, apart from the damping ratio 5,  on 
two dimensionless parameters, namely 

W T  and w T 
S 

While the first one determines the roots (30), the ratio 

determines the boundaries o and o of the critical interval (39). I I1 

The quantities s and T represent specific quantities of the vibrating system and can 
therefore be considered to be constant. Now, the decrease in mass may cause a change over from the 
state of stability (Fig. 4a) to one of instability (Fig. 4b) and vice versa. The reason is that a decrease 
in mass affects both of the parameters 7 and w T. The decrease in mass causes, in general, an increase 
of the natural period w [I 11 and a decrease of the generalized mass m* as it can be seen by a 
closer examination. 

At the beginning of the powered flight, the liquid propellant masses are large; consequently, 
rl is a small quantity. The increase of 77 may first cause a and a to become real and later on I I1 
may increase the length o - oI of the interval (39) as shown in Figure 3 and Table 1. As result of I1 
the increase of w , however, the roots (30) (Fig. 4) travel in the negative direction of the a-axis. 
Consequently one of the roots, in general the first one, approaches the interval (39) and finally may 
enter it. However, this implies instability. Further decrease of mass may cause this root to leave the 
interval. If at that time the next one is still outside the interval, the system regains stability; otherwise, 
the instability persists. In this way, the state of stability may change over to one of instability and vice 
versa. 

To demonstrate this behavior a numerical case shall be considered. Assumed is a single 
mass-spring system (m* = m). The damping ratio of the system shall be 

The state of decreasing mass shall be characterized by an interval of the natural frequency w 

2. In exceptional cases, w remains constant as the mass decreases. 



The Nyquist criterion is applied to some successive (discrete) values of w T from this interval. Five 
cases determined by different values of w T are investigated. All values of 0 7  and w T are 
gathered in Table 2. S S 

TABLE 2. STABILITY STATE OF A ONE-DOF SYSTEM DEPENDENT ON NATURAL 
FREQUENCY AND FEEDBACK MAGNITUDE. 

Note: S = stable; U = unstable. 

According to  the stability criterion, if 

the system is stable. Thus, for the above { and the upper limit of the interval (40) ( 0 7  = 5.9), it 
follows that for 

the system is stable for the entire interval (40). Because the wsr values of Table 2 are smaller than 

the above value, special consideration must be given to the position of the roots (30) relative to the 
respective intervals (39) according to the stability criterion. The result of this investigation is shown by 
Table 2. 

Cases 2 through 5 of Table 2 show transition from stability to instability and, with 
exception of the last one, return to stability. 



The Nyquist criterion is not an algebraic criterion. It  is based on fundamentals of the theory 
of the complex variables. For that reason, it lacks some perspicuity. It therefore seems to  be con- 
venient to perform also a direct integration of equation (16a). This has been done for the cases 3 and 
4 of Table 2. 

The integration is performed by the method of Runge-Kutta (Table 3 and 4) and also by 
analog computer (Figs. 6 and 7). It is assumed that 

7 = 1. 

The initial conditions are 

As far as the Runge-Kutta analysis is concerned, the amplitude maxima only are printed (Table 3 and 4). 

TABLE 3. CASE 3 (ws = 14.25) M A ~ A  OF a(t). 

Owing to the transient condition at the beginning, the values of a(t) behave nonuniform, but, 
later, the tendency to  stability or instability, respectively, can easily be observed. 

TABLE 4. CASE 4 ( a  = 14.00) MAXIMA OF a(t). 
S 

Once again, one realizes the transition from stability to instability and the return to stability, 
caused by the decrease of mass. However, these results are obtained by linear analysis which, as men- 
tioned previously, is insufficient to describe the actual motion. As in the case of Nyquist's criterion, 
the conditions only are displayed under which the system is stable or unstable. 



Figure 6. Analog computer run of case 3 (w = 14.25). 
S 



l 1 1 1 1 ~ ~ 1 1 1 ~ 1 1 l 1 1 1 1 1 1 1 l 1 1 1 1 1 1 1 1 1 1 l  

Figure 7. Analog computer run of case 4 (w = 14.00). 
S 



SUMMARY AND GONGLUSsON 

Because of its elastic structure, a launch vehicle is capable of longitudinal oscillation. In 
this regard, three basic features prove to be essential: 

1. The elastic vehicle structure and the propellant system form a feedback system. 

2. A time delay exists in the feedback loop. 

3. The loss of mass because of the depletion of liquid propellant. 

The intent of this report is to show that the presence of these features impart the tendency to self- 
excitation. 

It is well known that feedback systems with time lag are sensitive to self-excitation or 
instability. However, the loss of mass changes the systems mass and mass distribution continuously. 
Consequently, the entire system changes continuously and also may change its stability behavior. At 
one time point, the system may be stable, and at another time point, it may be unstable. 

From this point of view, the changing of the stability state of a vehicle during powered 
flight must be considered a certainly peculiar but absolutely understandable feature of the vehicle. It 
may be difficult or impossible to design a vehicle which proves to  be stable during the entire powered 
flight time. Above all, it seems to be very difficult to predict the stability behavior of a vehicle. The 
only remaining alternative is to keep the effect of self-excitation unsignificant. Preventive measures 
exist. 

First, the quantity q should remain small; consequently, the effect of feedback and also 
the interval of instability (39) remain small. This can be achieved by large m*. According to the 
remark following equation (15), the coordinate xn must be kept as small as possible relative to the other 

coordinates of the first mode. This implies to  support the engines as stiff as possible. The connection 
between soft engine support and self-excitation was demonstrated in the past. First, the connection was 
demonstrated during test flights of the Titan-I1 missile, whereby POGO oscillations first occurred. 
The spring support of the engine-pump masses of this missile is striking [I].  Later, POGO oscillation 
of the S-I1 stage during some of the Apollo flights were observed. Especially, severe oscillations occurred 
during the flight of Apollo 13 [2]. Flight data obtained at that time show extremely large relative 
displacements of the center engine. The soft support of the center engine by a pin-ended cross beam 
led to this situation. 

The use of gas-filled accumulators [1,3] in some of the suction lines represents another 
preventive measure. An accumulator is a device which is able to absorb pressure fluctuations in the 
suction system before they could propagate through the pumps and produce significant thrust 
oscillations. In the case of the Titan-I1 missile and also of the S-IC stage of the Saturn V launch 
vehicle, these "POGO fxes" proved to be successful [ l ,  31. 
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