
SMOOTHING PROPERTIES OF NEUTRAL EQUATIONS

by

Jack K. Hale+

Division' of Applied Mathematics

Center for Dynamical Systems

. Brown University

Providence,, Rhode Island 02912

ASE
COPY

This research was supported in part "by the Air Force Office of Scientific
Research, AF-AFOSR 71-2078, the National Aeronautics and -Space Administra
tion, WGL ̂ 0-002-015, and the United States Army - Durham, DA-ARO-D-31-
12U-71-G12S2,



Smoothing Properties of Neutral Equations

Jack K. Hale

For given r > 0 , A > 0 , x: [~r>A] ~* E and any t e [0,A],
t

define x • [-r,0] -> En by x (0) = x(t + 0 ) , - r < 0 < 0 . Also,
t "t

let C = C([-r,0],E ) "be the space of continuous functions mapping

[-r,0] into E with the topology of uniform convergence. If

f: C -» E is a given continuous function, then a retarded functional

differential equation (RFDE) is a relation

(l) i(t) = f(xt)

A solution , x = x(cp) through cp e C is a continuous function defined

on [-r,A) for some A > 0 which satisfies (l) on [0,A) and coin-

cides with cp on [-r,0] . If a solution x is defined on [-r,A)

with A > r , then x, , t e [r,A) is a function which also has a

continuous first derivative; that is, the solution of (l) is in

general smoother than the initial data,,

To generalize (l), suppose D: C -»E is continuous, linear

and atomic at zero; that is, there exists an n x n matrix function

H of bounded variation on [-r,0] and a continuous non-negative

function r( s), s > 0 , y(o) = 0 , such that

= <P(0) - g(cp) ,

= [° [dn(0)]cp(0)

< r(s) , 0 < s < r .
-s
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By a neutral functional differential equation (NFDE), we

mean a relation

(3) £s Dxt = f (xt)

•with D linear, continuous, atomic at zero and f as "before. A

solution x = x(cp) -of (3} is defined as above. For equation (3),

the solution generally is no smoother than,.the initial data after

any finite number of steps. However, we define a more restrictive

class of D-operators for which some smoothing takes place after

an infinite number of steps. This result will say that a solution

of (3) can be in an oo-limit set only if it corresponds to initial

data which is "smooth".

With D as above, the space C = { fy e C: Dt = 0 } can be

considered as a Banach space with the topology of uniform convergence.

On C , consider the equation

(1+) ' Dyt = 0 , yQ = t e CD .

There exist positive constants a , K = K(a) such that

(5) |ytW| < Keatif| , t> 0 , if e CD .

Let -a = inf | a : 3 K = K(a) satisfying (5)} • Following Cruz

and Hale [ 1], we say D is stable if a.^ < 0 .

A result we need from [1] is the following.
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Lemma 1. If D is stable, then there exist b > 0 a > 0 such

that for all h e C([0, oo ) ,En), the solution z(t,h) of

(6) Dzt = h(t) , WQ =

satisfies

be"at |q> | + b sup |h(u)| , t > 0

Lemma 2. If f: C -> E is continuous, takes bounded sets of C

into bounded sets E , D is stable and the orbit r+(9) =

Uj. x (9) of the solution of (3) through 9 is bounded, then
"U->O "C

there exist constants M>0 , a>0 , such that

for all t > 0 , T > 0 .

Proof; Since T (9) is bounded and f takes bounded sets into

bounded sets, there is a constant K such that lf(x. (9))! < N ,
"C

t > 0 . Since D(X -xj = / +T f(x )ds for all t , i > 0 ,

the result now follows immediately from Lemma 1 .

Theorem 1. If f: C -»E is continuous, takes bounded sets of C

into bounded sets of E , D is stable, the solutions of (3)

depend continuously on initial data, and y (9) is bounded, then

the CD-limit set co(ro) of 9 consists of equilipschitz functions;

that is, there is a constant k = k(ro) such that for any $" e o>(9) ,

we have 1̂ (0 - t(02)l ^
 k! ei ~ ®2\ for a11 9l>92 e t~r^°l °
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Proof; If ty e 00(9) , then there exists a sequence of real t -» °°
k

such that x+ (9) -» t as k -> co . But x (9) -» x
xC lc

as

k -» oo for every T > 0 . Thus, using Lemma 2 for t = t , .we
K.

obtain

|x (9) - xt (9)| < Me
 k |xT(9)- 9 | + MT

Taking the limit as k -» °o , it follows that | x (t) - tj < MT

for all T > 0 . This proves the theorem.,

Theorem 1 shows that functions 9 which are in the uv limit

set of bounded orbits of (3) must have a derivative almost every-

where and the derivatives are equibounded. It is also shown in [ 1]

that for such 9 , there must be a solution x of (3) on (- °° ,0]

with x = 9 . With this remark, an even stronger conclusion for

a special case is the following

Theorem 2. Suppose f: C -»E is continuous, takes bounded sets

pf C into bounded sets of En , Dcp = 9(0) - A9(-l), |A | < 1 .

Then any solution x of (3) which is defined and bounded on (- oo ,0]

must have a continuous uniformly bounded first derivative.

t+T

Proof; If T > 0 , y(t) = x(t -!- T) - x(t), h(t) = / f(x )ds , then
't v s'

y(t) = Ay(t - 1) + h(t)

= A2y(t - 2) + h(t) + Ah(t -

- A\(t - N) + T A^hCt - k)
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5.

Since f talces bounded sets into bounded sets and JA | < 1 , the

series on the right is absolutely and uniformly convergent on (- o°,0]
CO V '

arid y(t) = Z. Ali(t-k) . Now, one can verify that
K=O

This shows that the right hand derivative of x(t) exists and is

OO Ĵbounded on (-°°,0] and equal to L. A f(x, ) . But, Lemma 2K — o u""n

implies x. is uniformly continuous on (~°°,0]. Thus, the right
"C

hand derivative of x is continuous. Since x is continuous, we

have the derivative of x exists and is continuous. This proves

the theorem. - - -• ~

It is certainly reasonable to conjecture that the conclusion

of Theorem 2 is true under only the hypothesis that D is stable.
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