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Smoothing Properties of Neutral Equations

Jack K. Hale

For given r>0 ,A>0, x [-r,A] - E° and any t e [0,A],

~Qefine x,: [-1,0] - E' by x,(8) = x(t +6) , -r<6 <0 . Also,

let C = C([-r,0],E") be the space of continuous functions mapping .
[-r,0] into E" with the topclogy of uniform convergence. If

f: ¢ »E" isa given continuous function, then a retarded functional

differential equation (RFDE) is a relation

(1) | (1) = £(x,) -

A solution .x = x(@) through ¢ € C 1is a continuous funcfion defined
on [-r,A) for some A >0 which sétisfies (1) on [0,A) and coin-
cides with ¢ on [-r,0] . If a solution % is defined on [-r,A)
with A > r , then Xy s t € [r,A) is a function which also has a
continuous first derivative; that is, the solution of (1) is in
general smoother'than the initial data.

To generalize (1), suppose D: C —>E" is continuous, linear
and atomic at zero; that is, there exists an n x n matrix function

p of bounded variation on [-r,0} and a continuous non-negative

function y(s), s> 0, y(0) = 0, such that

Dp = ¢(0) ~ glo) ,
g(o) = ii [du(e)lo(e)

_éoldu(G)l <y(s) ,0<s<r .
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By a neutral functional differential equation (NFDE), we
mean & relation

- (3) %E Dxt = f(xt)

with D 1linear, continuous, atomic at zero and £ as before. A

solution x = x(9) <of (3) is defined as above. For equation (3),4

the solution generally is no smoother than.the initial data aftex
any finite number of steps. However, we define a more restrictive
class of D-operators for which some smoothing takes place after
an infinite nﬁmber of steps. This result will say that a solution
of (3) can be in an ~limit set only if it corresponds to initial
data which is "smooth".

With D as above, the space Cj = fPec: D=0} can e

considered as a Banach space with the topology of uniform convergence.

On CD s conside? thevequation

()'I') ’ D.’)’t=0 ’ y ='4f€’C .
There exist positive constants a , K = K(a) such that

(5 vl < k™9, t20, vecy

Let . ay = inf {a : 3 K = K(a) satisfying (5)} . Following Cruz

and Hale [1], we say D is stable if ay <0 .

-A result we need from [ 1] is the following.
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Lemma 1. TIf D is stable, then there exist b >0, a>0 such

that for all h e C([0,®),E"), the solution z(¥,h) of

(6) Dz, = h(t) , v, =¥
satisfies
(7 |z, (¥,m)] _<_be—at|(p[ + b sup g 1w, t>0 .

o< ux<

Lemma 2. If f: C - E° is continuous, takes bounded sets of C
into bounded sets E° , D is stable and the orbit ¢ (g) =
Uiso xt(cp) of the solution of (3) through ¢ is bounded, then

there exist constants M > 0 , >0, such that
(8) | x,.. (@) - x (9)] < Me_atlx -9 | + Mt
t+T t - T

forall t>0, 7>0 .

Proof: Sirice Y+((p) is bounded and f takes bounded sets into

bounded sets, there is a constant N such that lf(xt(cp))| < N,

t+T
J

t>0 . Since D(xt+“r—xt) = I

f(xs)ds forall t , v >0,

the result now follows immediately from Lemma 1 .

Theorem 1. If f: C -EY s continuous, takes bounded sets of C
into bounded sets of E° , D is stable, the solutions of (3)
depend continuously on initial data, and - Y+(cp) is bounded, then

the w-limit set w(®) of ¢ consists of equilipschitz functions;

that is, there is a constant k = k(o) such that for any ¥ € w(9) ,

we have [?Jf(el) - dr(eg)l < klel - 92| f'or all 6,,0, € [-r,0] -
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Proof: If % e w(9) , then there exists a sequence of real tk - ®

such that x_tk((p) % as k> o . But xtk+T(<p) —)xT(?b“) as
k > o for every T>0 . Thus, using Lemma 2 for t =ltk , we
obtain

1% e ® =%, @] 5 W F r @0 sue
Taking the limit as k — o , it follows that |x (¥) - ¥ <Mr

for all t>0 . This proves the theorem,

Theorem 1 shows that functions ¢ which are in the w-limit
set of bounded orbits of (3) must have a..derivative almost every-
where and the derivatives are equibounded. It is also shown in [1]
that for such @ , there must be a solution x of (3) on (- ,0]
with X, = ¢ .« With this remark, an even stronger conclusion for

a special case is the following

Theorem 2. ’ ‘Suppose f: C S>EY is continuous, takes béunded sets

of C into bounded sets of E- , Dp = ¢(0) - Ap(-1), |o | <1 .
Then any solution x of (3) which is definea and bounded on (-  ,0]
must have a continuous uniformly bounded first derivative.

t+T :
Proof: If T>0, y(t) = x(t + 1) - x(t), h(t) = ft f(xs)ds , then

y(t) = Ay(t - 1) + h(t)

i

Agy(t - 2) + h(t) + An(t - 1)

Ayt - ) + Z.ﬁ;i A - 1) .
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Since f takes bounded sets into bounded sets and |A | <1 , the
series on the right is absolutely and uniformly convergent on (- «,0]

Il

(e o]
and y{(t) = Z‘kzoAkh(t-k) . Now, one can verify that
. 1s® ( - y® .k
lim o 3 Zk=oAkh\t k) = ZkzoA f(xt_k) .

This shows that the right hand derivative of =x(t) exists and is
S :
bounded on (—<§,O] and equal to Zk=dA f(xt—n) . But, Lemma 2

implies x, is uniformly.continuous on (-,0]. Thus, the right

t
hand derivative of x is continuous. Since x is continuous, we
have the derivative of x exists and is continuous. This proves
the theorem.

It is certainly reasohable to conjecture that the conclusion

of Theorem 2 is true under only the hypothesis that D is stable.

[i} Cruz, M. A. and J. XK. Hale, Stability of functional differentiel
equations of neutral type. J. Differential Eqgns. T(1970), 334-355.
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