
N A S A T E C H N I C A L

R E P O R T

N A S A T R R-402

CASE Fit
COPY

A!SUCCESSIVE OVERRELAXATION
ITERATIVE TECHNIQUE FOR
AN ADAPTIVE EQUALIZER

' ' / '•

by Ostap 5. Kosoyych

Goddard Space Flight Center

Greenbelt, Md. 20771 ~<

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • MARCH 1973





1. Report No.
NASA TR R-k02

2. Government Accession No.

4. Title and Subtitle

A Successive Overrelaxation Iterative Technique for an
Adaptive Equalizer

7. Author(s)

Ostap S. Kosovych

Goddard Space Flight Center
Greenbelt, Maryland 20771

12. Sponsoring Agency Name and Addre

National Aeronautics and Spac
Washington, D.C. 20546

Address

ss

e Administration

3. Recipient's Catalog No.

5. Report Date

March 1973
6. Performing Organization Code

8. Performing Organization Report No.

G-1075
10. Work Unit No.

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Report

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

This study deals with an adaptive strategy for the equalization of pulse-amplitude-modulated
signals in the presence of intersymbol interference and additive noise. The successive overtaxation
iterative technique is used as the algorithm for the iterative adjustment of the equalizer coefficients
during a training period for the minimization of the mean square error. With 2-Cyclic and non-
negative Jacobi matrices substantial improvement was demonstrated in the rate of convergence
over the commonly used gradient techniques. The Jacobi theorems were also extended to non-
positive Jacobi matrices. Numerical examples strongly indicate that the improvements obtained
for the special cases are possible for general channel characteristics. The technique was analytically
demonstrated to decrease the mean square error (norm) at each iteration for a large range of
parameter values for light or moderate intersymbol interference and for small intervals for general
channels. Again, numerical examples indicate that the norm-decreasing property is valid for a
much larger parameter range for all types of intersymbol interference. Analytically, convergence
of the relaxation algorithm was proven in a noisy environment and the coefficient variance was
demonstrated to be bounded. Numerical simulations conducted indicate that the relaxation
algorithm consistently converged much faster than the gradient techniques; hence, it requires much
less time in the training period than do the gradients.

17. Key Words (Selected by Author(s))

Overrelaxation, Adaptive equalizer, Pulse-
amplitude modulation, Intersymbol interference,
Additive noise, Duobinary encoding

19. Security Classif . (of this report)

Unclassified

18. Distr ibution Statement

Unclassified— Unlimited

20. Security Classif. (of this page) 21. No. of Pages

Unclassified 52

22. Price*

$3.00

'For sale by the National Technical Information Service, Springfield, Virginia 22151.



CONTENTS

Page

ABSTRACT i

INTRODUCTION 1

CONVERGENCE PROPERTIES 14

EFFECTS OF NOISE 31

DIGITAL SIMULATIONS 36

CONCLUSIONS 43

ACKNOWLEDGMENTS 44

Appendix A-DUOBINARY SIGNALING 45

Appendix B-ESTIMATION OF EIGENVALUE BOUNDS 47

REFERENCES 49

BIBLIOGRAPHY 51

111 ,• "



A SUCCESSIVE OVERRELAXATION ITERATIVE TECHNIQUE
FOR AN ADAPTIVE EQUALIZER

Ostap S. Kosovych
Goddard Space Flight Center

INTRODUCTION

This study is concerned with an adaptive strategy for a receiver to improve reception of pulse-
amplitude-modulated signals (PAM) in the presence of intersymbol interference and additive noise.

As a result of imperfect channel characteristics, the pulses, representing transmitted information,
arrive at the receiver smeared out in time. If the rate of transmission is high enough, successive pulses
overlap, causing what is known as intersymbol interference. The number of detectable amplitude
levels and the rate of transmission have very often been limited by this intersymbol interference rather
than by the noise.

Currently used adaptive equalizers for the minimization of the mean-square error commonly use
a fixed step-size gradient procedure. Because of the slow rate of convergence, various other techniques
have been investigated yielding limited success—considerable improvement for moderate'intersymbol
interference, but little improvement for large intersymbol interference. To improve the rate of con-
vergence, the successive overrelaxation algorithm is proposed in this study for the iterative adjustment
of the equalizer parameters. The resultant convergence rates provide considerable improvement for all
types of intersymbol interference. In noisy environments, the resultant variance is of the same order
as the variance for the fixed step-size gradient. The overall net result is that the successive over-
relaxation method provides vast improvement over existing adaptive equalization schemes in the rate
of convergence with no degradation in noisy environment.

Historical Background

The data transmission system considered in this study is shown in figure 1. The message{an}, a
random sequence of real numbers belonging to a discrete set of possible amplitude levels, is amplitude
modulated. The transmitted signal is given by

n g( t -nT) (1)

where g(t) is the impulse response of the modulator. The modulation function g(t) is such that
g(kt) = 0 for all k ¥= 0, with T the time separation between samples. Thus if the channel were totally

1
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Figure 1.—Data transmission system.
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Figure 2.—Optimum receiving filter for PAM.

distortionless, the received signal at sample time/T would be equal to the/ data bit transmitted; i.e.,

s(jr> = a.

The channel is represented by a time-invariant linear system for which the response to g(t) is h(t)
and an additive noise source. The channel output, i.e., the received signal, has the form

(2)

where the channel noise n(t} is a white gaussian random process with an autocorrelation function given

by
R(T) = o28(T) (3)

The receiver consists of a linear filter, the output of which is sampled at kT, and a threshold detector
that determines in which decision region the sample lies.

The optimum linear receiver that minimizes the probability of error was derived by Aaron and
Tufts (ref. 1), under the assumption that the channel dispersion of a single pulse is limited to 2/V + 1
samples. The receiver consists of two filters in cascade (fig. 2). The first portion is a filter matched to
the received pulse h(t) and the second has the transfer function

(4)
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Figure 3.—Transversal filter.

This response can be obtained by using the transversal filter of figure 3 or by sampling the incoming
signal at T-second intervals and using a digital filter having coefficients cn. The transversal filter con-
sists of a continuous delay line tapped at T-second intervals. Each tap has a variable gain associated
with it, and the filter output is the sum of the tap gain outputs. The tap gains or the filter coefficients
are the solutions of a system of 2N + 1 linear equations (whose coefficients are not readily available).

Smith (ref. 2) and Tufts (ref. 3) have shown that the optimum linear filter for a mean-square-
error criterion has the same structure except for the values of the filter coefficients. Other authors
using different criteria have also arrived at the identical structure.

The matched filter portion of the optimum linear receiver of figure 2 increases the noise immunity
of the receiver whereas the transversal or digital filter compensates for the distortions introduced by
the channel—hence the name "equalizer."

A fundamental assumption, made in all of the aforementioned studies, is that the channel charac-
teristics are known a priori. In general, however, that assumption is not valid; therefore, adaptive
linear filters that learn the characteristics of the channel have been considered.

The transversal or digital filter portion of the optimum receiver is easily constructed and readily
lends itself to adaptive techniques. Also, as a result of the channel dispersion of the pulses, the com-
munication efficiency has very often been limited in the rate of transmission by the intersymbol inter-
ference, rather than by the additive noise. Hence, much attention has been focused on the design of
adaptive transversal filters or equalizers.

A (2/V + l)-dimensional digital filter will be used for the equalizer in this study. The filter co-
efficients are c_N , . . ., CQ, . . . , CN; the filter input is the sampled values at nT of the channel output



x(t); and the behavior of the filter is described by

where yn is the equalizer output at nT; C is the coefficient vector

c =

is the input vector

\ =

xn+N

and the symbol + is used for the vector transpose.

The filter input at nT is given by

Xn = (6)

where hm = h(mT). The summation portion of equation (6) is the intersymbol interference caused by
the dispersion of the modulation pulse by the channel. The equalizer, with the proper values for its
coefficients, will reduce this term.

A training period is used during which the equalizer coefficients converge to the optimum values
according to a strategy. During this training period, the transmitter sends a sequence of identical
pulses, with sufficient guard time to prevent interpulse interference. The desired equalizer response
dfr is the transmitted pulse, sampled at ^-second intervals. For example,



for no input encoding, and
f l k = Q , 1

(8)

for duobinary input encoding. (See app. A for a discussion of input encoding techniques.) In either
case, the filter output error at the kT sample is equal to the difference between the filter output yk

and the desired output dk:

A simple and effective technique for adaptive equalization with no input encoding was developed
by Lucky (ref. 4), using the tapped delay line filter for the equalizer. The equalizer parameters were
chosen to minimize a peak distortion criterion specified by

D =

The optimum values for the tap gains, in the sense of minimizing the peak distortion, are those that
make

^=0 for A: =-TV, . . . ,-1, 1, . . . ,N (11)

with the constraint yQ = 1.

The strategy used for the adaptive implementation was the steepest descent or gradient technique,
using only polarity information as specified by

c. = c. -Asgn j . /^O (12)

where A is a small positive number. A major limitation of this technique is that convergence of the
strategy to the optimum coefficients is assured only for relatively low dispersion channels. Mathemat-
ically, it is required that an initial distortion DQ, which is given by

I** I

be less than 1. This is equivalent to requiring that the unequalized channel in the absence of noise be
capable of supporting binary transmission without error. This limitation was imposed by the chosen
criterion and not by the strategy.

Subsequently, Lucky and Rudin (ref. 5) proposed and implemented an adaptive equalizer for
minimizing a weighted mean-square difference between an ideal channel response and the actual
equalized channel response. The strategy used was again the modified steepest descent technique.

The basic approach to adaptive adjustment of a set of weights in which a mean-square-error
criterion is used with a gradient search procedure was considered by Widrow and Hoff (ref. 6). They
noted that no derivative computation is needed. Lucky and Rudin (ref. 5) were the first to apply
the mean-square-error criterion with the gradient search procedure to the field of adaptive equalization.



This approach was applied to synchronous data transmission in the time domain by Gersho
(ref. 7), Lytle (ref. 8), and Niessen (ref. 9). In the absence of noise, the mean-square output error is
given by

The gradient of the mean-square error for the (k + 1 )th training pulse is used to adjust the coefficient
values according to

where C^ is the vector value after the kth iteration and the constant a. is called the step size. The evalu-
ated gradient is given by

Vcfc£ = 2^ Xnen = 2(AC* - g) (15)
n

where the vector g = "Ldn Xn. The matrix A is called the channel correlation matrix and is given by

1

A =

The //'th entry is equal to

*« *« + |/-/|

from which it is obvious that A is symmetric, and that all entries on any diagonal are equal. This
special form is known as the Toeplitz form. With a nonzero input sequence xk, it is also positive! •
definite. If the channel were known, i.e., if the matrix A were specified a priori, the optimum preset
equalizer that minimizes the mean-square output error would have its coefficients equal to !' j

Copt = A-1g ! (16)

The simplicity of using a gradient search for the minimum can be seen from the ease of the gradi-
ent's implementation. No derivatives are necessary and only a digital cross-correlation of the output
error ek with the input sequence xk is needed, as can be seen from equation (15). It should also be
obvious from equation (15) that the gradient produces a system of linear equations and, hence,
iterative techniques that solve systems of algebraic equations should be applicable.

The initial guess for the equalizer values normally used is 1 for the center tap and 0 elsewhere.
With this choice, the equalizer output is identical to the input, thus causing no further distortion.

Substituting the evaluated gradient into the algorithm yields

-o(AC*-g) (17)



Then the coefficient vector error at the kth iteration, which is equal to the difference between the
actual coefficient vector value and the optimum setting, is given by

e* = (l-«A)e*-1 (18)

where the matrix, I - «A, is the governing matrix for the gradient technique. The coefficient error at
the kth iteration can be expressed in terms of the initial coefficient error

ek = (I - aA)*e° (19)

Using vector and matrix norm inequalities, equations (18) and ( 1 9) become

l l e^KIH-aAHIIe*- 1 ! ! (20)
and

He* II < ||(l -oA)* || ||e° || (21)

The vector and matrix norms used in equations (20) and (21) are the euclidian and spectral norms,
respectively. They are defined as

where p(B), the spectral radius, is equal to
p(B) = max |X. |

with \f the /'th eigenvalue of B, and A* is the matrix adjoint of A. For nonzero initial errors, the nor-
malized coefficient mean-square error is bounded by

He* II
- <||(l-aA)*|| (22)
lie0 II

Because the matrix, I - «A, is hermitian, the spectral norm is equal to the spectral radius. Also

The technique definitely converges if the constant a. is chosen to be in the interval (0, 2/Xmax) where
\m is the largest eigenvalue of the correlation matrix A (Widrow (ref. 10)). The step size that mini-
mizes the upper bound, ||l - oA||*, for the normalized mean-square coefficient error, ||e*||/||e°||, was
derived by Gersho (ref. 7). Its value is

max mtn

(23)

The minimum reduction of the mean-square coefficient error at each iteration with this step size is
given by

max min A ,
HI - «0A|| = - (24)

max min



Therefore, for channel correlation matrices where the spread of the eigenvalues is small, i.e., low-
distortion channels with no encoding of the transmitted signal, the optimum fixed step-size gradient
will converge fairly rapidly. But for channels with high dispersion, the eigenvalue spread is large and
hence the convergence rate is very slow. Although the optimum fixed step size is an improvement, its
rate of convergence is still too slow. Because the time spent in a training period is useless for data
transmission, many different techniques have been investigated to accelerate the convergence. The
best results were obtained by Schonfeld and Schwartz (ref. 1 1). Their algorithm is the variable step-
size gradient

(25)

where <xk is chosen to minimize the norm of the tap gain error after M iterations. The step-size values
ak are given by the reciprocal of the zeros of the TWth-order Chebyshev polynomial. After M iterations,
the algorithm of equation (25) is repeatedly applied until the coefficients converge to the optimum
value of equation (16). The minimum reduction of the coefficient error norm for M iterations is

where R is the condition number of the matrix A. For hermitian matrices, this is equal to the quotient
Xmax/Xmjn. Although the variable step-size gradient is faster than the optimum fixed step-size gradient
for M iterations, the error norm does not necessarily decrease at each iteration; simulations conducted
actually showed that the error norm initially increases.

In a subsequent paper, Schonfeld and Schwartz (ref. 12) investigated a second-order variable step-
size gradient-technique: the Chebyshev semi-iterative method. This algorithm updates the equalizer
parameters with the (k + 1 )th training pulse according to

r^k + \ - Hf n ( _ \7 , p | 4. R (Ck - f*~l 1 (9M^ - ^ - a, i _ v rk&\ -rp.(.L. - L. ; ^oj

where the coefficients a.k and &k are chosen a priori to minimize the mean-square coefficient error at
each iteration. The convergence rate for M iterations is identical to that for the first-order variable
step-size gradient, but this algorithm has the property that it always decreases the mean-square error.
Yet for highly dispersive channels and for partial-response encoding techniques, although it is an
improvement over the fixed step-size gradient, convergence is still slow.

In all three techniques, the optimum fixed step-size gradient, the variable step-size gradient, and
the second-order variable gradient, the step sizes are functions of the minimum and maximum eigen-
values of the channel correlation matrix. Because exact determination of the eigenvalues is not feasi-
ble, upper and lower bounds for these eigenvalues are used. (See app. B.) In general, these bounds
are extremely poor and hence the step sizes are greatly underestimated. Because of this, the actual
convergence rates are exceedingly slower than the theoretical ones.



Successive Overrelaxation Algorithm

In this study, the successive overrelaxation iterative technique is proposed as the algorithm for
the adaptive equalizer. The equalizer coefficients are adjusted to minimize the output mean-square
error. The algorithm determines the ith coefficient value at the (k + 1) iteration according to

\j=-N j=i

where co is the relaxation factor. After some manipulation, equation (27) can be incorporated into
matrix notation. The vector behavior of the overrelaxation algorithm is described by

fAr + l _ p& _ /••-) _ ,c^-l (Af* - p"> <"981
V* V* VJU*^L/ VJl-J \/-\\s gy ^Z.O^

where D and E are strictly diagonal and lower triangular matrices such that A = D - E - E+.

The fixed step-size gradient technique changes the value of the ith coefficient by

Vy - */1 <29>
j—N I

The gradient technique, after computation of the new value of cl, retains the old value and uses it in
updating the other coefficient values. This is also true for the variable step-size gradient techniques.
On the other hand, the relaxation algorithm is sequential in nature. First it updates c1 and then in-
corporates it into the change in c2, etc. If the ith coefficient is being updated, the new values of the
first (i - 1) coefficients and the old values of the remaining coefficients are used in computing the
adjustment. The relaxation algorithm incorporates the most recent values in determining the change
in the coefficient values. This is equivalent to conducting (27V + 1) one-dimensional searches at each
iteration.

The relaxation algorithm requires less storage than the gradient methods because it needs storage
for only one equalizer vector whereas the fixed and first-order variable gradients require storage for
Ck + l and C*. and the second-order gradient for Ck + l ,Ck , and C k ~ l . The relaxation and fixed gradi-
ent methods require about the same number of calculations for each iteration, whereas the variable
gradients require more. The implementation is very similar to that for the gradient techniques except
for the fact that it is sequential. Figure 4 demonstrates the adaptive implementation of the transversal
filter equalizer using the algorithm.

In evaluating an iterative technique, the following properties should be investigated: convergence,
rate of convergence, and behavior of the algorithm in a noisy environment. The rate of convergence
and the behavior in noise are discussed in later sections of this report. The convergence of the relaxa-
tion algorithm is established in the following discussion.

For the equalizer problem, the channel correlation matrix A is positive definite hermitian;
D(A = D - E - E+) is diagonal with positive entries and hence D - coE is nonsingular because E is
strictly lower triangular. Convergence is guaranteed for all possible channels when the relaxation
parameter is in the open interval (0, 2) by Ostrowski's theorem (ref. 13):
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Figure 4.—Adaptive equalizer.

Theorem: Let A = D - E - E+ be an « X « hermitian matrix where D is hermitian and positive
definite and D - o?E is nonsingular for 0 < co < 2. Then p(£w )< 1; i.e., the algorithm converges, if
and only if A is positive definite and Q <w <2, where £ = I - co(D - coE)"1 A is the matrix associ-
ated with the'relaxation method.

Two-Dimensional Example

In this section, a heuristic argument for the use of the successive overrelaxation method is pre-
sented, and the behaviors of both the fixed step-size gradient and relaxation methods are analyzed for
a two-dimensional equalizer.

In a noise-free environment for a two-dimensional equalizer, the equal mean-square-error surfaces
(fig. 5) are ellipses with the major axis proportional to aQ + \ a l \ and the minor axis to aQ - \a^ \. The
channel correlation matrix is given by

A = (30)

10



Figure 5.—Mean-square-error surfaces for two-dimensional equalizer.

with aQ positive. The eigenvalues of this matrix are

If the error surface were known, the optimum way of proceeding from the initial guess PQ to the
minimum is represented by the dashed line of figure 5. The optimum "step size" with this direction
is equal to the length of the dashed line. This step size should not be confused with the constant a. as
in the gradient step size (eq. (14)); it is the total correction to the coefficient. For example, in the
gradient, this step size would be equal to -(a/2)Vcfc&. Unfortunately, the surface is always unknown
and, therefore, local exploration at the point PQ must be used to determine a suitable path and the
step-size magnitude. The steepest descent path or gradient direction is chosen, because infinitesimally
it is the path of most rapid descent. The gradient is also an indication of the step-size magnitude: The
gradient is large when the present position is far from the minimum and decreases as the minimum is
approached.

Figure 5 describes the progress of the gradient algorithm (eq. (14)) toward the minimum value.
It is seen that the gradient oscillates around the optimum path (ref. 14). These oscillations significantly
impede the progress.

The gradient can be viewed as the sum of one-dimensional searches along the respective coefficient
axes. Decomposing the gradient into components along the cl and c2 axes, respectively, the motion

11



along the c1 axis fromP0 toPl is feasibly the best one can do under the circumstances because the change
is due to the gradient projection onto the ct axis evaluated atPQ. The motion from.Pj toP2 along the c2

axis is still probably in the correct direction but the step magnitude is not the best because it is derived from
the gradient evaluated at PQ. Because the gradient is a function of position in all cases excluding the circular
error surfaces, using the gradient evaluated at PQ is no longer the best strategy for motion at />

1. A better
strategy would be to use the gradient projection evaluated at P. along the c2 axis. This strategy makes
more efficient use of the available information than the gradient algorithm. The successive overrelaxation
iterative technique uses this strategy. Therefore if the constants a. of equation (29) and oo/<2;.;. of equation
(27) are equal, one would expect the relaxation method to be faster than the gradient method.

The case in which the error surfaces are circular corresponds to a channel that causes no dispersion
but only value scaling of the transmitted signal. The relaxation and gradient techniques both converge
in one iteration.

Because the eigenvalues of a 2 X 2 matrix can be found analytically, it is possible to determine
the optimum step size (eq. (23)) for the fixed step-size gradient and hence compare the two techniques
analytically. The optimum step size <XQ has a value of \/aQ. The spectral norm or the minimum reduc-
tion in the error norm (eq. (24)) at each iteration is given by

(31)

where the matrix G, which is equal to I - <XQ A, is the matrix governing the behavior of the gradient
technique. For cj = 1, the step size for the relaxation iterative technique is equal to the optimum
gradient step size. For the relaxation parameter greater than or less than 1, the step size is larger or
smaller, respectively, than the gradient. The relaxation matrix £1 is given by

jCj = (D - E)-1 E+ (32)

where D and E are diagonal and strictly lower triangular matrices, such that the channel correlation
matrix can be uniquely decomposed into

A = D - E - E + (33)
In this case

D =
"o

0

0
and E =

0 0

-a. 0

The relaxation matrix is not symmetric, and hence the norm of the kth power is not equal to the kth
power of the norm. The spectral norm of the kth power of the relaxation matrix can be found
analytically and is equal to

H J C f l ^ M ^ - ' U . + fl2)1/2 (34)

It is now possible to compare the bounds (eq. (22)) on the normalized coefficient mean-square error
for both techniques. For all values of k greater than 1, the spectral norm for the kth power of the
relaxation technique is smaller than that for the gradient. Therefore, the average reduction for k itera-
tions (k > 1) is larger for the relaxation method; hence it should converge faster. i

12



For large numbers of iterations, the relaxation norm behaves according to

(35)

This is equal to the square of the fixed gradient norm (eq. (31)).

The minimum average reduction at each iteration for the variable step-size gradient techniques
asymptotically is given by

Ifll

Because |<z| < 1/2, the minimum reduction at each iteration for relaxation is larger than that for the
variable gradients. Hence, the relaxation technique can be asymptotically twice as fast as the fixed
gradient and at least as fast as the variable step-size gradients.

For the two-dimensional equalizer with co = 1 and the optimum a, examination of the equations
governing the adjustment of the equalizer coefficient (eq. (27) for the relaxation method and eq. (29)
for the fixed gradient) yields an amazing fact. For any starting point, the values of c2 at the A:th

o.o
0.7 0.8 0.9

FIRST TAP c.

'Figure 6.—Convergence of relaxation and gradient algorithms for two-dimensional
case; duobinary encoding was used with condition number R = 3.28.

13



relaxation iteration and the 2k gradient iteration are identical; also, the values of c^ at the (k + 1)
relaxation and the (2/c +1) gradient iterations are identical. This implies that if convergence occurs in
M iterations for the relaxation method, the gradient technique requires (2M - 1) iterations to converge.
Asymptotically, if M is large, the relaxation method is twice as fast as the gradient. This supports the
asymptotic result obtained earlier from the spectral norms.

Figure 6 shows the results of a simulation for both techniques for the two-dimensional equalizer.
Not surprisingly, the simulation results support the theoretical ones. Convergence for the relaxation
method was obtained in 18 iterations, whereas 35 iterations were required for the gradient. The simu-
lation agrees with the behavior of the gradient algorithm as portrayed in figure 5. The relaxation
algorithm, on the other hand, did not oscillate; and after the first iteration its direction was essentially
the same. The relaxation factor <x> = 1 does not yield the best asymptotic results, as will be demon-
strated later. This implies that the technique has the potential of at least halving the time spent in a
training mode over the fixed step-size gradient.

In the following section, the convergence properties of the successive relaxation algorithm are
investigated and, where possible, compared with those for the gradient in a noise-free environment.
The effects of the channel additive noise and of finite precision are determined separately in a later
section. The simulation results of the implementation of this algorithm for the adaptive equalizer are
then presented and the improvements that are possible over both the fixed and variable step-size gradi-
ents are demonstrated. Improvements at least of the order observed in the two-dimensional equalizer
are shown to be possible for a wide range of channel dispersions.

CONVERGENCE PROPERTIES

The successive overrelaxation iterative technique is proposed as the algorithm for the iterative
adjustment of the equalizer coefficients to minimize the mean-square error. As mentioned before, the
method in the (k + 1) iteration is characterized by the use of the latest estimate of the coefficient
values cf+l in all subsequent computations and corrections. The technique is specified by equation
(27):

_ ^ -, „ (2?)

j=-N ' ' *-> ' '

where afj- is the ij entry of the channel correlation matrix A. In matrix notation this is

=ck - w(D - coE)-1 (AC* - g) (28)

where D is a diagonal matrix formed with the diagonal entries of A, and E is a strictly lower triangular
matrix with entries equal to the negative entries of A below the main diagonal. Note that the matrix
co(D - coE)"1 is similar to the step size in the gradient technique.

The coefficient vector error at the kth iteration, i.e., the difference between the actual coefficient
value and the optimum setting, is given by

14



e* =£„€*-! =j£e° (36)

where £^ = I - co(D - coEy^A is the relaxation matrix. For a matrix iterative technique to converge
for all initial values, it is necessary that the successive powers of the matrix associated with the method
approach the zero matrix (X^ ->• 0). Convergence is guaranteed if and only if the spectral radius of the
associated matrix is strictly less than 1 . Because the matrix A is positive definite Toeplitz for all possi-
ble distortions, the successive overrelaxation method converges for all values of the relaxation param-
eter co in the open interval (0, 2). (See Ostrowski (ref. 13).)

Using the matrix spectral norm and vector euclidian norm, equation (36) becomes

He* || <IU* || ||e° || k^O (37)

For nonzero initial errors, ||<C || gives an upper-bound estimate for the ratio He* ||/||e° ||, and serves as a
basis for comparison of different iterative methods. With ||£^ II < 1, ||<C^ || is the minimum reduction
in the normalized coefficient mean-square error for k iterations. An average rate of convergence (ref.
1 5) for M iterations is defined as

||Fm||
R(Fm ) = - In - - - for a \ \ m > \ such that || fm \\ < 1 (38)

m

where the matrix F is the governing matrix for the technique. If F were symmetric, then

HF*|| = ||F||* = [p(F)]* (39)

where p(F) is the spectral radius or the largest eigenvalue in magnitude. The previously defined average
rate of convergence is then equal to a single value, which is identical to the asymptotic rate of conver-
gence given by

(40)

On the other hand, if F is not symmetric, the equality of equation (39) will most likely not hold.
Therefore, the average rate of convergence, which is defined for all k ^ 1 , will possess an infinite set of
values that need not be related. The average rate of convergence, as k increases, converges to the
asymptotic rate of convergence.

To determine any of these rates of convergence, it is necessary to find the eigenvalues of matrices.
Eigenvalues are the solutions of the A/th-order associated polynomial where M is the equalizer dimen-
sion. With the exception of a few cases, it is impossible to find a workable analytic solution for the
roots of a general polynomial. Some of the exceptions are quadratic polynomials and those arising
from tridiagonal matrices. Finding the average rate of convergence implies solving for the eigenvalues
of F*+ F* for all values of k. Because this is almost impossible, much of the work in this study has
been concentrated in determining or bounding the spectral radius and norm of the matrix £w .

To compare two techniques analytically is difficult; and even in cases for which the eigenvalues
can be found analytically, a comparison may not be possible. For a comparison to be made, it is
necessary that the eigenvalues of the two associated matrices have a functional relationship, or be
bounded by each other, or have bounds which themselves are bounded by the other set of eigenvalues.

In forming the relaxation matrix, the correlation matrix has been altered in a nonlinear fashion
and, in general, a relationship does not exist between the eigenvalues of the relaxation matrix and the
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channel correlation matrix A. Hence, no relationship is expected between the eigenvalues of the
relaxation and gradient (I - aA) matrices.

For the past decade and a half, mathematicians have been extremely interested in the convergence
properties of the relaxation method for the solution of systems of linear equations (refs. 13 and 15 to 23).
They (refs. 18 and 21) were able to determine or bound the asymptotic rates of convergence for matrices
that were p-cyclic or had associated Jacobi matrices (B = D-1(E + E"1")) that were nonnegative and con-
vergent (p(B) < 1). Of the p-cyclic class of matrices, the only subclass that is compatible with the
equalization problem is the 2-cyclic class (tridiagonal matrices). In this study, the results for non-
negative Jacobi matrices will be extended to include all Jacobi matrices with entries having the same
sign.

Further analytical results were not obtained, hence numerical evaluation of the spectral radius
was conducted for several channels. These simulations suggested an upper bound for the relaxation
spectral radius that is valid for a large portion of the parameter range. This upper bound indicates that
the type of improvement obtained for the 2-cyclic case is possible for more general equalizer problems.

A bound for the spectral norm of the relaxation matrix will be developed that demonstrates
that the technique is coefficient mean-square-error reducing at each iteration for certain parameter
values for channels with light or moderate intersymbol interference or channels that give rise to tri-
diagonal correlation matrices. Perturbation theory will be used to analytically demonstrate that the
technique is norm decreasing for a small parameter range for all possible distortions. Numerical evalua-
tions of the spectral norm for several channels have supported and extended the theoretical range.

The upper bound \ \ F k \ \ for the normalized coefficient mean-square error, as suggested by equa-
tion (37), was numerically evaluated as a function of the iteration number k for the relaxation, the
optimum, and estimated fixed step-size gradient methods.

2-Cyclic Matrices

To give rise to tridiagonal matrices, the output of the channel can have only two nonzero samples:
the transmitted sample and its echo. The channel matrix for a (2/V + 1 )-dimensional digital filter as the
equalizer has the form

A =

0

0

0

0

0

0 0

(41)

Surprisingly, the eigenvalues of this matrix can be found analytically and are the roots of a (2N+ 1)-
dimensional Chebyshev polynomial of the second kind. For the fixed step-size gradient technique, the
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optimum step size aQ can be determined and is \/aQ. The spectral radius (also the norm, because the
gradient matrix is real symmetric) for this step size is given by

||G|| = p(G)=2 | f l | cos ^-j (42)

where a - al faQ and G = I - a0 A. For 2-cyclic matrices, the optimum fixed step-size gradient tech-
nique is equivalent to the Jacobi iterative method which is used for the solution of systems of linear
equations. Hence, the comparison theorems between the relaxation and Jacobi methods are directly
applicable. For the 2-cyclic class of matrices, Young (ref. 21) discovered that a functional relationship
exists between the eigenvalues of the relaxation matrix and the Jacobi matrix. It is

(X + co- I)2 = XcoV (43)

where X and n are nonzero eigenvalues of the relaxation and Jacobi matrices, respectively, and co is the
relaxation parameter.

That such a functional relationship actually exists is itself interesting, but the importance of this
result lies in the fact that a direct comparison can be made between the two techniques. Also, it is the
basis for the determination of the values of co yielding the best asymptotic results.

The spectral radius can now be determined analytically as a function of co. Solving the functional
relationship for the nonzero eigenvalues of the relaxation matrix, the following is obtained:

coV + 2(1 - co) ± coMy^V + 4(1 - co)
2

For each nonzero eigenvalue of the Jacobi matrix, there corresponds two eigenvalues for the relaxation
method; in the interval (0, co0) where co0 is the largest value of co that insures real roots, the larger
root is obtained by using the plus sign for the square root. The value of COQ is given by

The larger eigenvalue is real, positive, and an increasing function of the Jacobi eigenvalues. Therefore,
the maximum eigenvalue (spectral radius of £ ) is obtained when the spectral radius of the Jacobi
matrix corresponding to A is used as the eigenvalue p. In the interval (0, coft) where

(45)

and is the largest value of co that insures real eigenvalues, the spectral radius is given by

co2p2(B) + 2(1 - co) + cop(B)yco2p2(B) + 4(1 - co)
„ = 2

For co > cofi, the eigenvalues of equation (44) are complex, but all have the same magnitude. Hence in
this range, the spectral radius is equal to

) = co - 1 (47)
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Figure 7.—Spectral radii for relaxation and fixed gradient methods; and relaxation
norm upper bound for 2-cyclic matrices.

The spectral radius for the relaxation method is sketched as a function of co in figure 7 for
2-cyclic matrices. It is monotonically decreasing for co in the interval (0, coft) and monotonically in-
creasing for co > cob. It has a nondifferential minimum at cob. The spectral radius of the fixed gradi-
ent (Jacobi) technique is superimposed on the same graph. For co = 1, the spectral radius of the relaxa-
tion method is equal to the square of the spectral radius of the Jacobi method, p2 (B). This implies
that the relaxation method is asymptotically twice as fast for this parameter value.

From figure 7, it is evident that there exists a large region for cj such that the relaxation method
is asymptotically faster than the gradient. Furthermore, in the region [ 1, o^ ] with co1 = 1 + p2(B),
the relaxation method is at least twice as fast as the gradient and has the fastest convergence rate for a
relaxation factor of cofi.

An asymptotic comparison can also be made for the variable step-size gradient techniques and the
relaxation iterative method. Both the first- and second-order variable gradient methods have the same
rate of convergence forM iterations. The minimum reduction in the normalized coefficient mean-
square error for M iterations by using these techniques is given by (ref. 11)

\\em 1
(48)

where 7 = 1 /p(B) and is the classical Chebyshev polynomial

exp (M cosh"1 7) + exp (-M cosh"1 7)
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The average reduction per iteration is simply

l/Af / i \l/M
I 1 \

(49)

The asymptotic result (eq. (50)) is obtained by letting M approach infinity in equation (49) and using

cosh"1 7 = In (7 + -y/72 + lj

P(B)
(50)

! + </!- p2(B)

The asymptotic result for the relaxation method with the optimum relaxation factor co, is

lim 1 ] < [ 1==] (51)
M-*<*>

The upper bound of equation (51) is equal to the square of the right-hand side of equation (50). This
implies that asymptotically the variable gradient techniques need twice as many iterations as the opti-
mum relaxation method to have the same minimum reduction.

The second-order variable step-size gradient method uses the semi-iterative Chebyshev accelera-
tion method to improve the convergence of the fixed step-size gradient. If the acceleration method is
applied to improve the optimum relaxation, the Chebyshev acceleration method is identical to the
relaxation technique applied M times where M is the order of the semi-iterative method (ref. 19).

The optimum relaxation method yields asymptotic convergence which is twice as fast as the
variable step-size gradient techniques and at least twice as fast as the optimum fixed step-size gradient
(ref. 19).

Nonnegative Jacobi Matrices

In the previous section, the properties of the successive overrelaxation method were investigated
under the assumption that the correlation matrix A is 2 cyclic. It should be clear that the basic
assumption that A is 2 cyclic allowed the functional relationship between the eigenvalues to be deduced
and hence was the steppingstone for the analysis. Mathematicians have been able to extend somewhat
the results to Jacobi matrices that are symmetric, nonnegative, and convergent (refs. 15 and 18). For
this class of matrices, the Jacobi and fixed step-size gradient techniques are not necessarily the same;
and the results, therefore, are not immediately applicable. The following observations, however, are
germane.

To use any gradient technique successfully, it is necessary to estimate the range for the step-size
values, and to choose a suitable step size. Convergence is guaranteed for all step sizes in the range
(0, 2/X ov), when Xmov is the largest eigenvalue of A. If the eigenvalues are known exactly, the

ITlaX UlaX

optimum fixed step size in the sense of convergence is

-Xm i n) (52)
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Exact determination of the eigenvalues is not feasible. Hence estimates are used in determining this
step size. Commonly used bounds (app. B) for the minimum and maximum eigenvalues are given by

For the lower bound to be useful, i.e., positive, the correlation matrix must be diagonally:dominant. If
these bounds are used in determining the step size according to equation (52), the gradient technique
reduces to the Jacobi method. Therefore, if the correlation matrix A is diagonally dominant and has a
Jacobi matrix that is nonnegative, the comparative results are applicable. This class of matrices has the
2-cyclic matrices as a subclass.

Let p be the spectral radius of the fixed step-size gradient (Jacobi) technique. The spectral radius
of the relaxation method for co in the interval (0, 1 ] obeys the following inequalities (ref. 18):

2(1 - a?) + co2p2 + co
- <P(<C W )< - (55)

2 2 - cop

Equality occurs if and only if A is 2 cyclic. It has also been shown that for this case the actual relaxa-
tion spectral radius in this interval is a monotonically decreasing function of the relaxation parameter
(ref. 1 5). Hence, the fastest convergence in the interval (0, 1 ] is obtained with cj = 1 . The inequalities
of equation (55) reduce to

<P (56)
2- p

For a relaxation factor of u>6 , the optimum choice in the 2-cyclic case, the spectral.radius is bounded
by

co&- KpCJC^Xv^F1 (57)

again, with equality if and only if A is 2 cyclic. Although a precise determination of the relaxation
factor that minimizes the convergence has not been obtained, equation (57) indicates that asymptotic
rates similar to those obtained for the 2-cyclic case are possible. Improvements in convergence are not
guaranteed by using factors larger than 1 .

The upper bounds of equations (56) and (57) are both smaller than the spectral norm for the
fixed gradient. Hence, the relaxation method is better asymptotically than the gradient for these
values of the relaxation factor.

The upper bound of equation (57) is equal to

_ P
xA3~~l = - - - (58)

1 + v/1 - P2
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If the upper and lower bounds (eqs. (53) and (54)) for the eigenvalues are also used for the variable
step-size gradient techniques, the asymptotic results of equation (50) hold and are equal to equation
(58). This implies that for a relaxation factor of co& , the relaxation method is at least as fast as the
variable gradient techniques.

Nonpositive Diagonally Dominant Jacobi Matrices

In the following discussion, the preceding results will be extended to include correlation matrices
that are nonnegative and diagonally dominant. The Jacobi matrix B now has all its entries nonpositive
(b.. < 0). Because B = - |B | where B is the absolute value of the Jacobi matrix, the spectral radii of
both are identical:

p(B) = p(|B|)

\£^ | and | B| are nonpositive and therefore are members of the class of matrices just discussed. Hence,
they must obey the inequalities of equations (55) to (57):

(60)

Furthermore, because for any n X n matrix M,

p(M)<p(|M|)

the spectral radius of the relaxation method is bounded by the right-hand side of those inequalities.
For co = 1 and co = co ,

(61)

(62)

Unfortunately, it is not necessarily true that the spectral radius is a monotonically decreasing function
of co in the interval (0, 1 ] ; but it is bounded by a monotonically decreasing function. Two-cyclic
matrices are also a subclass, but the asymptotic convergence rate of non-2-cyclic matrices can be
better than that for the 2-cyclic matrices. Again the relaxation method is faster than the fixed gradi-
ent for both co = 1 and coft and faster than the Chebyshev gradient for co = cofe .

For diagonally dominant correlation matrices whose associated Jacobi matrices have entries all of
the same size, it can be concluded that the relaxation method is asymptotically faster than the esti-
mated gradient techniques. Furthermore, the asymptotic improvements are similar to those obtained
for 2-cyclic matrices.

Spectral Radius for Several Examples

The spectral radius for the optimum and estimated fixed step-size gradient and the relaxation
method were evaluated numerically by a computer as a function of the relaxation factor for two
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channels with and without duobinary encoding of the transmitted signal. The step size for the esti-
mated fixed step-size gradient was determined by using the bounds given by equations (B-2) and (B-3)
of appendix B for the minimum and maximum eigenvalues.

The condition number R is equal to the quotient of the maximum eigenvalue by the minimum
eigenvalue of the channel correlation matrix A. The condition number without partial-response encod-
ing is a measure of the distortion of the transmitted pulse by the channel. For a channel with no dis-
tortion, the correlation matrix is a diagonal matrix and R = 1. Even with a poor initial guess for the
vector coefficients, both techniques will converge in one iteration.

With partial-response encoding and a distortionless channel, the correlation matrix is not diagonal.
In particular for duobinary encoding, the matrix A is tridiagonal with a non-one-condition number. If
an incorrect initial guess is made, neither technique will converge in one iteration even though the
channel is distortionless. Because A is 2 cyclic, the relaxation method with a factor in the interval
[ 1, 1 + p2 ] will be asymptotically at least twice as fast as the optimum fixed gradient and, for co = cofc,
twice as fast as the Chebyshev gradient. Partial-response encoding introduces more correlation between
the equalizer coefficient and hence greatly slows down the convergence rate. With a distortion chan-
nel, the duobinary encoding technique increases the condition number R. With channels having con-
dition numbers of 3.28 and 17.81, the duobinary encoding technique increased the condition numbers
to 150.4 and 173.5. Convergence is dependent only upon the matrix associated with the technique
and not upon the vector g of equation (28). Because g contains the partial-response encoding informa-
tion, the iterative techniques cannot distinguish between a moderate distortion channel with partial-
response encoding and an extremely high distortion channel without encoding. Therefore, we can
view the examples used as different channels without encoding and with channel distortions varying
from moderate to extreme.

The spectral radii for the relaxation, the optimum, and the estimated fixed step-size gradients are
plotted as functions of co in figures 8 to 11 for the channels with condition numbers 3.28, 17.81,
150.4, and 173.5. The spectral radius for relaxation is observed to be a continuous function of co
having one minimum. Its functional behavior is reminiscent of that for channels that give rise to
2-cyclic matrices. (See fig. 7.) Also plotted is the 2-cyclic-type functional relationship between the
spectral radii for relaxation and for the optimum fixed step-size gradient.

For R = 3.28, the relaxation radius is minimum at co = 1.08, and the asymptotic rate of con-
vergence is more than twice as fast as the optimum and 28 times faster than the estimated gradient.
For to in the interval [0.95, 1.25], the optimum gradient is at least twice as slow as the relaxation.
For co = 1, relaxation is 2 and 26 times as fast as the optimum and estimated gradients, respectively.
For a relaxation factor of 1.5, the optimum gradient is slightly faster but the relaxation method is
10 times better than the estimated. The spectral radius is bounded by the radii relationship for values
of co up to 1.05. The relationship has a minimum at co = 1.083.

Figure 9 gives the results forR = 17.81. The radius is minimum at co — 1.3 and yields asymptotic
results that are 6 and 40 times better than the optimum and estimated fixed gradients. The relaxation
method is at least twice as fast as the optimum for co.in [0.95, 1.7] and the estimated gradient for co
in [0.25, 1.9]. For relaxation factors of 1 and 1.5, the relaxation method is 2 and 4 times as fast as
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'•°51 ' ' ' ! ' t h e optimum a n d 1 9 a n d 3 2 times faster
than the estimated. The spectral radius is
smaller than the relationship for values of
co up to 1.35. The relationship minimum is
at 1.38.

For duobinary encoding with /?.= 150.4
(fig. 10), the minimum is at 1.64 and here
relaxation is about 16 and 86 times faster.
It is asymptotically at least 3 times faster
than the optimum with a relaxation factor
in [1.2, 1.9] and than the estimated in
[0.3, 1.9]. For co equal to 1 and 1.5, it is
3 and 10 times faster than the optimum.
The spectral radius is smaller than the re-
lationship which has its minimum at
co = 1.72 for co < 1.68.

The results are plotted in figure 11 for
duobinary encoding with/? = 173.5. The
relaxation method has its best asymptotic
result at 1.32 where it is 8 and 32 times
faster than the optimum and estimated
gradients. It is at least 3 times faster than
the optimum for co in [0.9, 1.7] and than
the estimated in [0.3, 1.9]. For relaxation

factors of 1 and 1.5, the optimum is 4 to 6 times slower. The spectral radius is bounded by the 2-cyclic
relationship for values of co less than 1.4. The relationship has its minimum at 1.74.

• T

For the examples considered, the relaxation spectral radius is bounded by the 2-cyclic-type
relationship for values of co up to the value yielding the spectral radius minimum; therefore, asymp-
totic improvements similar to those obtained for the 2-cyclic case are possible for channels with
general characteristics. Although no clear pattern emerges for the minimum, values of co around 1
seem to yield better asymptotic results for small and moderate distortion channels, and values around
1.5 for large and enormous distortions. The amount of distortion present can be determined from the
estimated condition number (keeping in mind that the estimate is poor).

The minima for the evaluated spectral radii occurred for values of co larger than 1. This suggests
that values of u < I need not be considered because better asymptotic results occur for co > 1. This
was analytically proven for the special cases considered.

Norm-Decreasing Property

A bound for the relaxation spectral norm will be developed for general correlation matrices in the
following sections. This bound, although not in a suitable form for comparisons, proves that the relax-
ation method is norm decreasing at each iteration for certain intervals of the relaxation factor values.

Figure 10.—Spectral radii for fixed step-size gradient and relaxa-
tion methods with duobinary encoding, R = 150.4, and 17 taps.
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Figure 11.—Spectral radii for fixed step-size gradient and relaxa-
tion methods with duobinary encoding, R = 173.5, and 17 taps.

From an alternate representation of the
relaxation matrix, an upper bound for the
spectral norm can be found. The relaxation
matrix £u can be expressed as

£w =(D-wE)-1[(l-oj)D + coE+] (63)

The matrix (D - coE)"1 can be expanded in
a power series in coD~J E. Because E is a
strictly lower triangular matrix, Em is iden-
tically zero for all m > 2N + 1. The relaxa-
tion matrix becomes

I
CO CO2

I + — E + — E2 + • • •
ao a:

COIN

0

-2N
coE+

(1 - co)l +

"0 J

Using norm sum and product inequalities,
the spectral norm of the relaxation matrix
is bounded by

I I J E I < 1 + - E + - - -

CO

(64)

The finite series can be expressed as a quotient of two polynomials. A more workable form of equa-
tion (64) is

(65)
- (co/a0)

For a zero relaxation factor, the upper bound NU (co) reduces to 1, which is the actual value of £Q. Dif-
ferentiating the bound with respect to co, one obtains

3co

CO CO2"

+ II+ — IIEH + • • • + — IIEH2

ao
2N

sgn(co- 1) +
IIEH

(66)
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For GO > 1, the derivative is positive, which implies that the bound is monotonically increasing. For a
relaxation factor less than 1 , after some manipulation the derivative becomes

= 2

(2N+ l)oj - (67)

It is definitely negative for ||E|| <aQ /2 and therefore the spectral radius is a monotonically decreasing
function of co having a minimum value of 1 - ||E||2^/(1 - ||E||)||E|| at a; = 1. The spectral norm of E is
another measure of the intersymbol interference present in the channel, in that as the intersymbol
interference increases, ||E|| increases. The restriction ||E|| ^a0/2 is equivalent to limitation to channels
with light or moderate intersymbol interference or that give rise to 2-cyclic correlation matrices. For
these channels, the bound indicates that the average rate of convergence is smallest at co = 1 and that
the rnethod is at each iteration monotonically decreasing the mean-square coefficient error for a range
of w. This bound for the 2-cyclic case is sketched in figure 7 and is smaller than the fixed gradient
norm for some combinations of equalizer dimension and channel distortion. For channels that have
|| E|| > aQ, the bound is an increasing function of co and hence not very useful.

The theory of perturbation can be used to demonstrate that the relaxation method is norm
decreasing for channels that cause large intersymbol interference. Let the relaxation factor be equal
to e, which is positive but small. The relaxation matrix is equal to

£
u = ( l + e — + e 2 — + - . . + e2N -r—} [ \ - e ) (68)

>

Expansion yields ^
e e2

£ =1 A EA + 0(e3) (69)
9ao al

Let e be sufficiently small so that the third term is negligible in comparison to the second term. Notice
that the relaxation method has reduced to the fixed gradient technique and hence its spectral norm is
less than 1. Because the norm is a continuous function of GO, there exists an interval for the relaxation
factor such that the relaxation method is a coefficient-mean-square-error-decreasing iterative technique.

Numerical Evaluation of Spectral Norm

The spectral norm was numerically evaluated for the four channels for which the spectral radii
were determined earlier. This was done for the purpose of collaborating the theoretical bound and of
demonstrating that the technique is norm decreasing for a much larger parameter range than indicated
by the theory of perturbation. Figures 12 through 15 contain the results for the various techniques.
The spectral norms for the estimated and optimum fixed step-size gradient are constant with respect
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Figure 12.—Spectral norms for fixed gradient and relaxation methods with R ~ 3.28
and 17 taps.

to the relaxation factor. The relaxation spectral norm is observed to be a continuous concave function
of to, with the value of 1 at co = 0.

Figure 12 has the results for the channel having a condition number of 3.28. This channel will
cause moderate distortion of the transmitted signal and has a norm upper bound (eq. (65)) that is not
a monotonically increasing function of co. For all other channels considered, ||E|| is not less than aQ/2
and hence the bound was an increasing function of co. At co = 1.05, the spectral norm for the relaxa-
tion method has a minimum that is smaller than the optimum fixed gradient and is equal to the 17th
power of the norm for the estimated gradient. The average rate of convergence for the relaxation
method for all iterations is larger than that for the optimum and estimated gradient. Relaxation is
almost twice as fast as the optimum gradient, and is 17 times faster than the estimated gradient. For
co in the interval [0.75, 1.3], the relaxation method is better than the optimum gradient and in
[0.2, 1.7] faster than trie estimated gradient. For a relaxation factor of 1.5, the optimum fixed step-
size gradient is a little better than the relaxation, but the relaxation is six times faster than the esti-
mated. The relaxation method will definitely decrease the mean-square coefficient error for all values
of co up to 1.9.

The results for the channel with a condition number of 17.81 are plotted in figure 13. The
relaxation method has a minimum at co = 1.125. At this value of the relaxation factor, the relaxation
method has an average rate of convergence that is two times as fast as the optimum and 18 times
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Figure 13.—Spectral norms for fixed gradient and relaxation methods
with /? = 17.81 and 17 taps.

faster than the estimated fixed step-size gradient. For co in the interval [0.65, 1.35 ], the relaxation
method is faster than the optimum; and in the interval [0.2,1.4], better than the estimated. For values of
co up to 1.45, the relaxation norm is strictly less than 1. At co = 1.5, a comparison cannot be made because
the relaxation norm is greater than 1.

" The results for duobinary encoding with channels that had condition numbers of 150.4 and 173.5
are in figures 14 and 15, respectively. The relaxation norm has a minimum at co = 1.075 for/? = 150.4,
and at co = 0.825 for/? = 173.5. For/? = 150.4, relaxation is almost 3 times faster than the optimum,
and 15 times faster than the estimated; for/? = 173.5, it is better than 2 and 10 times as fast as the
optimum and estimated fixed step-size gradients, respectively. For /? = 150.4, in the factor intervals
of [0,5, 1.2] and [0.2, 1.2], the relaxation norm is smaller than those for the optimum and estimated
gradients. It is also norm decreasing for values up to 1.3. With/? = 173.5 and intervals [0.2, 0.9] and
[6.4, 0.9], the estimated and optimum are slower. For co up to and including 0.925, the spectral norm
is less than 1.

The numerical evaluations of the spectral norm for the different channels indicate that great
improvements over the fixed step-size gradients are possible with the use of the relaxation method.
They also suggest that the norm-decreasing property for small co is valid for a large range, and that
relaxation factors around 1 yield nearly the best average rates of convergence.

Numerical Evaluation of \ \£k II
CJ

The upper-bound estimate for the normalized mean-square coefficient error, ||«C* || for relaxation,
has been plotted in figures 16 and 17 for the various techniques. The relaxation factor used is 1.5.
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Figure 15.—Spectral norms for fixed gradient and relaxation methods
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For/? = 3.28 the optimum fixed step-size gradient is, not surprisingly, faster, reaching an error of 10 3

in 11 steps, whereas with relaxation, it required 14 iterations, but relaxation is at least seven times
faster than the estimated gradient. For/? = 17.81, relaxation is faster (two times better than the opti-
mum and seven times better than estimated) even though initially it is not norm decreasing. For the
duobinary cases, relaxation is again much faster, but initially not norm decreasing. The plots are
almost linear on the log scale after a few iterations, indicating that mean-square error is decreasing pro-
portionally to some factor raised to the kth power, where k is the iteration number. The factor is very
close to the values of the relaxation spectral radius with co = 1.5. Relaxation is seven and six times
better than the optimum gradient, and nine times better than the estimated gradient for/? = 150.4 and
173.5, respectively.

-3

Conclusions

Analytically, the relaxation algorithm has been demonstrated to be asymptotically faster than the
gradient techniques for the following cases:

(1) Channels that give rise to 2-cyclic correlation matrices

(2) Channels that have diagonally dominant Jacobi matrices with all entries of the same sign and
with equations (53) and (54) used as the estimates for the eigenvalues

Although these results have not been analytically extended to channels with general characteris-
tics, numerical evaluations of the spectral radius for the considered channels strongly suggest that
similar improvements to those for the 2-cyclic case can be obtained for general channels.

EFFECTS OF NOISE

In the preceding section, the behavior of the relaxation algorithm was investigated in a noise-free
environment and with infinite precision. Physical systems, on the other hand, are usually corrupted by
noise and are limited to finite precision. In this section, the effects of additive channel noise and
limited precision will be investigated separately.

When the incoming signal is corrupted by additive noise, the filter coefficients become random
variables. Their final mean is the value about which the coefficients will oscillate after convergence,
and the variance is a measure of the peak-to-peak oscillations. When the system is limited by finite
precision, this limitation can be viewed as the actual value plus an additive noise that is uniformly dis-
tributed with zero mean and variance proportional to the difference in permissible coefficient levels.
Here again, the coefficients are random variables, but with zero means. The variance bounds for both
cases are similar.

Additive Channel Noise

In the presence of additive channel noise, the input to the equalizer is zk, where zfc = xk + nk.
The noise samples nk are assumed to be independent random variables that are identically distributed,
gaussian with zero mean and variance a1. The equalizer dimension is chosen to contain the dispersed
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pulse. The measured gradient becomes

(70)

which in matrix notation is

with Z{ the input vector

l-N

l+N

(71)

and H, , the new channel correlation matrix given by

"m"m+fc(27V-H)
m

The relaxation strategy is

where Hfc = D^ - Ek - E£ with Dk and Efc the previously defined diagonal and strictly lower triangular,
portions of H f c . The filter coefficients are now random variables that will converge in the mean to the
solution <C> of

E \ ( D k - a E k r l ( H k < C ) - g - g k ) } =0 (73)

if the spectral radius of the expected value of the relaxation matrix (M^.) is less than 1.

The correlation matrix is positive definite hermitian with probability 1. Therefore (D^. - cjE^) is
nonsingular for all values of the relaxation parameter in the interval (0, 2). Then, by Ostrowski's
theorem the spectral radius of the relaxation matrix and, hence, of its expected value is strictly less
than 1 with probability 1. Therefore, convergence is guaranteed for all possible channel distortions, as
long as the relaxation factor is in the interval (0, 2).

The filter coefficients will oscillate around the mean value <C>. Notice that coefficients do not
converge to the noise-free optimum setting and the mean final square error is larger. This bias cannot
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be eliminated with the present receiver, but if the receiver were altered to contain an adaptive matched
filter, the bias could be reduced.

The coefficient error, the difference between the coefficient values and the optimum values, is
given by

£ = M k € k ~ 1 - cohj. (74)
where

The expected value of this error tends toward zero as the number of iterations increase because
the technique converges. In the following discussion, the variance will be shown to be bounded.

The mean-square error for a vector V is equal to [E(V+ V)] */2 . Let the norm of a random vector
be the mean-square error because it satisfies all the properties associated with norms.

||V||2 = E(V+V) = <V + V> (75)

For deterministic vectors, this reduces to the euclidean norm used earlier.

Premultip lying equation (74) by ek+ and taking expected values of both sides, the following is
obtained:

co2||h||2 (76)

The relaxation matrix at the kth iteration is independent of the coefficient error at the (k - 1) iteration.
Using the Schwarz inequality, the first term of the right-hand side of equation (76) becomes

1 l l 2 (77)

where M = (({M^M^H and the matrix norm is the usual spectral norm. The middle term is equal to

co2<e*-1+lVDfc- "^r'V (78)

Again using the Schwarz inequality, expression (78) is bounded by

co^Ke*-1)!! IKH+CDj - wE*)-1^)!! (79)

Due to convergence, ||<e*>|| -*• 0; hence, the bound is zero and expression (78) is also zero for large k.

For large k, equation (76) becomes

II^II^Mll^-MP+c^l lhJI 2 (80)

Define the sequence of numbers as described by the first-order driven difference equation

<7*=W*-1+cj2 | |h j f c | |2 (81)

The norm of the coefficient error is bounded by this sequence

lle*| |2<<7* (82)
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Solving the first-order difference equation in terms of the initial value,

qk = f j ikqo + aj2||h||2 y ^ (83)
/ = o

Asymptotically, if /z < 1, the solution becomes in the limit

,,2 i
(84)

Therefore, the variance of the coefficient error in steady state is bounded by

l k ° ° H 2 < "' W (85)

For the fixed step-size gradient technique, a similar bound is obtained

"e~ "gradient < ^ (86)

where
hj = H f c<C>- g - gk and p = ||<l - aH^H

The bounds for the variance of both techniques are similar in nature. Initially, it would seem that
the dominant factor in decreasing the variance would be the spectral norms p or n, but it turns out that
making the step size smaller than the optimum more than compensates for the increase in the spectral
norm. Because the eigenvalue sum Xmax + Xmin is overestimated, the step size is decreased, and hence
the resultant variance is reduced for the fixed gradient technique. There appears to be a tradeoff be-
tween the speed of convergence and the variance value. Consider the fixed step-size gradient and the
Robbins-Monroe technique as examples. The Robbins-Monroe method is a variable step-size gradient
that forces the variance to be zero at convergence. Convergence is extremely slow and may even
require an infinite amount of steps. The fixed step-size gradient converges much more quickly, but
has a finite nonzero variance. This tradeoff is also evident with the fixed step-size gradient for dif-
ferent step sizes.

Quantization Noise

The effects of finite coefficient precision on the equalizer will be investigated in the following
sections. The assumption made thus far is that the variable parameters are continuous; i.e., they can
assume any value. In an actual realization of a digital filter, all the coefficients are discrete because
the number of binary bits or the word length is finite. Therefore, the initial coefficient vector choice
and all subsequent values must belong to a finite set of numbers. The correction algorithm can be
modified to satisfy this constraint. Consider the relaxation algorithm, equation (28):

g)] (28)
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The constraint is satisfied by forcing the correction, the bracketed term, to be a member of the finite
set. The quantization effect (finite precision) is analogous to the effect of noise superimposed on the
original analog value. The relaxation algorithm becomes

_ g) _ (87)
.

where the noise e^ is uniformly distributed in the interval [-EQ/2, EQ/2] with EQ the separation be-
tween different quantization levels. The different noise samples are assumed to be uncorrelated and
have zero mean and variance equal to E^/\2. Taking the expected value of equation (87), it is seen
that the filter coefficients converge in the mean to the optimum value (infinite precision):

<€*>-» A-1 g (88)

Defining the vector error as the difference between the actual and the average filter coefficient values

Q* =(*- <C*> . (89)
equation (87) becomes

- e* (90)

where £ is the relaxation matrix. The solution of this first-order difference equation is

k

m = Q

Taking norms of both sides and using the norm sum inequality,

K.

I Jc-m

Because for large k\\£k
w II -*• 0 (due to convergence), equation (91) is obtained1:

:-m

m =0

(91)

Because the quantization noise is uncorrelated and He* ||2 = (27V + 1)J?2/12, the following relation is
obtained:

V* /27V + 1> nc ii /-pr (92)
Z-« v 12

m =0 v

A closed-form solution for the summation can be obtained if the relaxation factor lies in the region
where the spectral norm is less than unity:

EQ /2N+1
—0-0*) —7T-
i - p v lz

(93)

with
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Similarly for the fixed step-size gradient technique, the coefficients converge to the optimum
value (88) and the coefficient standard deviation is bounded by

E
(94)

1-P V 12

The variance bounds (93) and (94) are monotonically increasing functions of both the respective
spectral norm and the equalizer dimensions. The relaxation bound is definitely smaller than the fixed
gradient bound in those regions where the relaxation norm is smaller than the gradient norm. (See the
section entitled "Convergence Properties.")

As the distortion caused by the channel increases, the condition number and, hence, both of the
spectral norms increase. This in turn causes an increase in the variance bound. If the equality of the
bound holds, quantization can cause large oscillations about the final value in poor conditioned
matrices, i.e., large condition numbers.

DIGITAL SIMULATIONS

The data transmission system of figure 1 was simulated on a computer. Intersymbol interference
was generated by sending a pulse with a raised cosine transformed through a channel with parabolic
delay and amplitude ripple 1 + af cos (2wr). The channel amplitude ripple ar was varied to simulate
different intersymbol interference conditions; af values of 0.3 and 0.65 resulted in correlation matrix
condition numbers/? of 3.28 and 17.81, respectively, where R = Xm a v /Xm . . Figure 18 shows themd-X miri
resulting pulse samples. The pulse yielding a condition number of 3.28 has a peak distortion DQ of
3.98, and the pulse with condition number 17.81 has a peak distortion of 5.78, where

I* 0 XQ

Both pulses would lead to a divergent Lucky iteration. Because the dispersion is for 1 7 samples at
most, a 1 7-dimensional digital filter was used as the equalizer receiver. The duobinary encoding tech-
nique was also simulated using the same channels. The performance of the successive overrelaxation
and gradient methods as the algorithms for adaptive equalization were investigated for these channels
for both normal and duobinary transmission.

Figure 19 shows the output mean-square error \ \ e k \ \ versus the iteration number k when the
fixed step-size gradient, first-order variable step-size gradient, and the successive overrelaxation algo-
rithms are used for the adjustment of the equalizer coefficients for the first pulse of figure 18
(R = 3.28). The upper bound \u , derived from the trace of the correlation matrix, and the lower
bound X/; estimated from the pulse spectrum, are used to estimate the minimum and the maximum
eigenvalues. (These bounds are determined by eqs. (B-3) and (B-2), respectively.) The relaxation
method uses a factor of 1 .5 and converges in 13 steps. This is at least twice as fast as the Chebyshev
gradient and about six times faster than the fixed step-size gradient. A relaxation factor of 1.1 further
improved the convergence by a factor of 2.
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2T 3T 4T 5T 1 6T 7T Figure 18.-Received pulses, (a) R = 3.28,
DQ =3.98. (b) R = 17.81, DQ = 5.78.

Figure 19.—Comparison of 11th-degree
Chebyshev, relaxation, and fixed step-
size gradient algorithms with R = 3.28,
XUA, = 35.1, and 17 taps.

CHEBYSHEV
DECREASING STEP

10 12 14 16 18 20 22

37



1.20

1.00

0.80

O

0.60 -

O
z

0.40 -

0.20 -

0.00
0.00

Figure 20.—Convergence of relaxation al-

5.00 10.00 15.00 20.00 25.00 3o.oo gorithm for 30 sample runs with S/N = 30
ITERATION NUMBER dB, R = 3.2, and 17 taps.

1.20

Figure 21.—Comparison of relaxation and
fixed step-size gradient algorithms with
S/N = 30 dB, R = 3.2, and 17 taps.

5.00 10.00 15.00 20.00

ITERATION NUMBER

25.00 30.00

38



Next, gaussian noise was added to the input pulse samples. Figures 20 and 21 contain the results
for a 30-dB input-signal-to-noise ratio (S/N). Thirty sample runs were conducted with independent
noise samples. Figure 20 shows the relaxation algorithm behavior for all 30 independent runs. The
computed average error norm is plotted in figure 21, with the standard deviation marked by vertical
lines for the relaxation and fixed step-size gradient techniques. The eigenvalues are again estimated
(from eqs. (B-3) and (B-2)) and the relaxation factor used is 1.5. The fixed step-size gradient algorithm
requires at least five times as many iterations as the relaxation algorithm for convergence in the mean.
The resultant standard deviation for relaxation is slightly larger than that for the gradient. The first-
order variable gradient required nine iterations (ref. 11); the relaxation method required five.

For the channel yielding the second pulse (R = 17.81) of figure 18, the equalization results with
both gradient techniques and the relaxation method are plotted as a function of the iteration number
in figure 22. The relaxation algorithm with co = 1.5 converged in 12 iterations. This is four times
faster than the Chebyshev algorithm and about seven times faster than the fixed gradient.

Figure 23 shows the output mean-square error and the standard deviation for 30 independent
noise runs with S/N = 30 dB for the fixed step gradient and the relaxation method. The relaxation
algorithm (co = 1.5) converged in seven iterations. This is at least seven times faster than the estimated

CHEBYSHEV
ALTERNATING

STEP

CHEBYSHEV
DECREASING STEP

10-2
10 12 14

ITERATION NUMBER

Figure 22.-Comparison of 11th-degree Chebyshev, relaxation, and fixed
step-size gradient algorithms with /?= 17.81, X(/A/=164, and 17 taps.
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Figure 23.— Comparison of relaxation and fixed step-size gradient algo-
rithms with S/N = 30 dB, ft = 15.8, and 17 taps.

gradient with a slightly higher standard deviation. The Chebyshev gradient required 20 iterations
(ref. 11).

Figures 24 and 25 contain the equalization results obtained when the duobinary encoding technique
was applied to the transmitted signal for the channels with condition numbers./? = 3.28 and 17.81, respec-
tively. The condition numbers for the channel correlation matrix increased enormously to 150.4 and
173.5, respectively. The fixed step-size gradient with the optimum step size «0 and the successive over-
relaxation method with co = 1.5 were used for the iterative adjustment of the equalizer parameters in the
noiseless case. Convergence for the relaxation method occurred in 40 iterations for R = 150.4, and in
about 70 iterations for/? = 173.5. The gradient required on the order of six times more iterations for either
channel. This implies that the gradient method requires at least 200 more iterations. For this simulatiop,
the eigenvalues of A were determined exactly to find the optimum fixed step size; estimates would have to
be used in real-time operation and hence the gradient technique would require even more iterations.

Figures 26 and 27 show the average value and standard deviation of the output error norm for
30 independent noise runs with S/N - 30 dB. Equations (B-2) and (B-3) were used to estimate the
step size. The relaxation technique is again substantially faster (at least seven times), but with a higher
standard deviation for both channels.

40



10 20 30 40

ITERATION NUMBER

50
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Figure 25.-Comparison of relaxation and fixed step-
size gradient algorithms for duobinary encoding with
/?= 173.5 and 17 taps.
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Figure 26.—Comparison of relaxation and
fixed step-size gradient algorithms for
duobinary encoding with S/N = 30 dB,
R = 83.8, and 17 taps.

Figure 27.—Comparison of relaxation and
fixed step-size gradient algorithms for
duobinary encoding with S/N = 30 dB,
R = 103.6, and 17 taps.
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Amazingly, for all simulations done, one relaxation factor (co = 1.5) was used and it yielded con-
vergence at least five times faster than the fixed step-size gradients and at least twice as fast as the
Chebyshev gradient (R = 3.28 and 17.81 only). The factor co = 1.5 does not yield the minimum value
for the spectral radii for, any of the channels; hence asymptotically better results are possible for other
parameter values. (See figs. 8 to 11.) In the numerical evaluations developed earlier, the minima for
the spectral norms for these channels occurred for values closer to 1. As a matter of fact, the spectral
norm was greater than 1 for co = 1.5 except for R - 3.28 and no encoding. Again, there were better
choices for w and yet substantial improvements were obtained.

Overall, the noiseless simulations supported the numerical results. They demonstrated that the
relaxation method with a; = 1.5 was consistently better than the estimated and/or the optimum fixed
step-size gradient in convergence. For R = 3.28, further improvement was obtained by using the
relaxation factor of 1.1. The minimum in the spectral radius (fig. 13) for this channel occurred for a
relaxation factor of 1.08; that is, the best asymptotic results occur for this factor.

With cj = 1.5 the resultant standard deviation obtained for the relaxation method was only
slightly larger than that for the fixed gradient, but the improvement in the convergence rate more than
compensates for this. Better variances may be obtained by using smaller values of the relaxation fac-
tor. This will in turn slow down the convergence rate because there appears to be some tradeoff be-
tween speed of convergence and standard deviation values.

Close examination of the simulations conducted with noise strongly suggests the conjecture that
in a noisy environment, the intersymbol interference caused by the channel distortion is initially the
dominant noise. The equalizer reduces this in a manner similar to the noiseless case with about the
same convergence rates, until the additive noise becomes dominant. Because the equalizer does not
have the capability of handling the additive noise, the noise in essence introduces a barrier beyond
which the equalizer cannot reduce the mean-square error. When the noise seriously limits the equalizer
performance, it may be possible to improve the reception by using a matched filter. The noise barrier
level is not only dependent upon the noise variance but also on the sum of the squares of the coeffi-
cient values. With the same signal-to-noise ratio for all simulations, the noise variance increased with
increasing condition number. This probably accounts for the different final mean-square errors.

The effect of the duobinary encoding of the transmitted signal is to vastly increase the condition
number. Hence the rate of convergence is slowed down; this effect is more noticeable for the noiseless
case. With duobinary encoding, convergence is about five times slower for R = 3.28 and seven for
R = 17.81, with no noise. The convergence with noise is impeded by a factor of 2. Also the final
mean-square error increases, although the initial error is smaller for duobinary encoding than for no
encoding.

CONCLUSIONS

The successive overrelaxation iterative technique has been proposed and demonstrated to be
feasible as the algorithm for the iterative adjustment of the equalization coefficients.

The commonly used fixed gradient technique has been shown to be identical to the Jacobi
iterative method for 2-cyclic and diagonally dominant nonnegative Jacobi matrices. This allowed the
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author to use known comparative theorems that state that substantial improvements are possible with
the relaxation technique. In this study, the results were also analytically extended to diagonally domi-
nant nonpositive Jacobi matrices.

; An analytical bound was found that proves that the relaxation algorithm is definitely mean-
square-error decreasing at each iteration for light or moderate channel dispersions. Perturbation theory
was used to show that the mean-square-error-decreasing property is valid for general channel charac-
teristics and small o>. Numerical examples indicate that this property is valid for a much larger
parameter range.

( Numerical evaluation of the spectral radius indicates that improvements similar to the analytic
ones are possible for channels with general characteristics. An area open to further,investigation is the
analytical proof that the relaxation method is indeed faster for all possible channels.

In a noisy channel, i.e., one with additive channel noise, the relaxation algorithm was shown to
converge in the mean and the variance of the equalizer coefficients was bounded. If the coefficient
vajues are limited to finite precession, the relaxation algorithm was altered to be feasible for this
problem.

Computer simulations, using pulses as shown in figure 18 with and without duobinary encoding
of the transmitted signal, support this conjecture. The Chebyshev gradient technique required at least
twice as many iterations (no duobinary encoding), and the fixed step-size gradient required at least
five times as many.

Furthermore, convergence for relaxation is not critically connected with the estimation of the
correlation eigenvalues. Both the gradient techniques suffer substantial decreases in the convergence
rates because of the eigenvalue bounds.
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Appendix A

DUOBINARY SIGNALING

Even with an ideal channel, i.e., perfectly distortionless, the transmitter must have ideal low-pass
characteristics, to insure no intersymbol interference with binary transmission. This system is un-
realizable. Therefore much attention has been focused on duobinary and related data transmission
schemes that utilize a controlled amount of intersymbol interference. The duobinary scheme arises
from the use of a cosine filter as the signal-shaping characteristic. Intersymbol interference is ex-
pected and for samples at nf - T/2, the impulse response g(t) is

T\ f 1 n = 0, 1

21 I (A'1}

\ 0 otherwise
The transmitted signal has the form

^-|

(1)

and with an ideal channel, the received signal sampled at kT - T/2 is

Note that the intersymbol interference comes only from the preceding sample. If the possible value of
ak is ±d, the received signal has three possible values: ±2d and 0. To prevent error propagation at the
receiver, the input sequence ja^.} is preceded. The input sequence is converted to another binary
sequence { bk } before transmission according to

where the symbol ® represents modulo 2 addition. The sequence {£>j.} is then transmitted using ±d
for 1 and 0, respectively.

The decoder is a modulo 2 adder with the following decision rule:

(A-4)
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With more realistic channels, the received signal (equalizer output) is

= akxO (A-5)
n*k, k-l

The last term is the additional intersymbol interference but the values ak and a k _ l have been scaled
down.

In a training period, only one pulse is transmitted, thereby making the a. all equal. The desired
equalizer output is the sampled transmitted signal of equation (A-l):

The advantages of duobinary encoding are the use of realizable filters that do not further add to
the intersymbol interference and the sampling rate insensitivity. However, the duobinary signal has
three levels that must be distinguished and this requires a higher signal-to-noise ratio for equal per-
formance with binary transmission.

The duobinary data transmission scheme has been generalized to partial-response encoding.
Kretzmer (ref. 24) has tabulated and classified a number of these partial-response systems, which
appear to have useful properties. The responses, their frequency characteristics, their signal-to-noise
ratio degradations over ideal binary, and their speed tolerances before peak eye closure is unity are
shown in table A-l. Notice particularly the last two frequency characteristics. These functions go to
zero at zero frequency (in addition to the Nyquist frequency) and thus become attractive for the
many occasions in which frequencies near dc are prohibited or are severely attenuated. The desired
response after equalization is the sampled values of the impulse response x(t). The first example is
duobinary.

Table A-l.—Partial-Response Systems
[From Kretzmer (ref. 24)]

Impulse
response

x(t)

-**-

A\ _
w

/TF\o
\i/

VILX \jy

Frequency
characteristic

*M

^

Ar(cj)

27- cos Vj-

47- cos2 f

T(2 + cos coT - cos 2co7)

+ iT(sin u>T- sin2co7*)

2T sin uT

4T sin cor

Number
received
levels

3

5

5

3

5

Speed
tolerance,
percent

43

40

38

15

8

S/yV degradation
over ideal
binary, dB

2.1

6.0

"1.2.

2.1

6.0

"With preceding it is 7.2 dB.

46



Appendix B

ESTIMATION OF EIGENVALUE BOUNDS

To use the gradient algorithm properly, it is necessary to bound the eigenvalues of the correlation
matrix A so as to estimate the optimum step size.

One set of bounds on the eigenvalues of the signal-plus-noise correlation matrix was derived by
Gersho (ref. 7) (see also Grenander and Szego (ref. 25)):

. .
Iw |

irj-,-njT

and
= min

(B-l)

(B-2)

where X (co) and S(oj) are the sampled signal Fourier transform and input noise spectral density,
respectively. The spectral bounds require finding the minima and maxima of a function. Because this
cannot be done a priori, an algorithm must be used. In general, the implementation at the receiver
may be extremely difficult and time consuming. It is therefore required that bounds easily imple-
mented be used; i.e., bounds based on input signal measurements.

The upper bound \u is fairly easy to obtain from input signal measurements. Consider the posi-
tive definite matrix A with positive eigenvalues:

Then a simple bound is

trace A =

X = trace A = (27V+ 1) xf +(2N+ l)a2 (B-3)

where a2 = E(nJ) is the variance of input noise samples.

The use of this bound forces the step size a to be smaller than the optimum. This will definitely
slow down the convergence, but will most likely reduce the error variance. A much tighter bound is
obtained by using the theorem of Frobenius or from the Gershgorin disks:

(B-4)

where it is understood that x. = 0 for all / not in the interval [-N, N] .
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A lower bound on the minimum eigenvalue is also obtained from the Gershgorin disks or by
Frobenius' theorem:

Xmin = (2N + l)a2 - max
k

(B-5)

The lower bound given by equation (B-5) is useful only if it is positive. Although it appears as if the
maximum value must again be determined, this can be avoided if equation (B-5) yields a positive lower
bound. This is done by noting that the sum \ „ + A . must be estimated, and the estimate of the

ITlaX ITliri

sum is given by

(B-6)

For the noiseless case (a = 0), equation (B-5) will be positive only if the channel correlation
matrix A is diagonally dominant. In this case, the gradient technique becomes identical to the Jacobi
iterative method.

On the other hand, if equation (B-5) becomes negative, zero can be used as the lower bound.
Then it is necessary to determine the maxima in equation (B-4). This is easier than determining that
of equation (B-l), because in equation (B-4), (N + 1) sums need only be computed and compared. In
this case, the gradient will still converge and it may turn out that the estimated step size will be closer
to the optimum step size. If the error variance is more important, then the upper bound of (B-3)
should be used because its estimated step size will be much smaller than that of (B-4).
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