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Abstract

A set of 23,3.r>5 1° x 1° mean free-air anomalies were used to predict
a set of 5° equal area anomalies and their standard errors. Using the 1°
data incorporating geophysically predicted values of ACIC, 1283 5° blocks
were computed. Excluding the geophysically predicted anomalies 1249
blocks were computed. The 1° data was also used to compute covariance
functions and the equatorial gravity and flattening implied by this data.
The predicted anomalies were supplemented by model anomalies to form
a complete 1654 global anomaly field. This data was used in a weighted
least squares to determine potential coefficients to degree 15, and in a
summation type formulation to determine potential coefficients to degree 25.
These potential coefficients sets are compared to recent satellite determinations.
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1. 0 Introduction

The combination of satellite and gravimetric data has generally taken
place using 5°X5° (Rapp, 1967) mean anomalies, or 300 n. m. (Kaula, 1966)
mean anomalies. In Kaula's work, the 300 n. m. means were estimated on
the basis of a set of l°xl° mean anomalies provided by the Aeronautical Chart
and Information Center (ACIC). Using a linear regression technique Kaula
computed mean anomalies for 935 near equal area blocks. The values for
934 of these anomalies were given by Gaposchkin and Lambeck (1970).

An updated set of 1470 5°X5° anomalies was used by Rapp (1969) in
determining potential coefficients solely from gravity data. The specific
anomalies were not published although they were used by other investigators
(e.g. Koch (1970)).

In defining a new combination procedure (Rapp (1970)) it was necessary
to determine mean gravity anomalies in 15° equal area blocks. As a first
step in the evaluation of these anomalies it was decided that a set of 5° or
300 n. m. blocks should first be computed from the latest available data.
This paper summarizes the data used, the procedures, the results and the
analysis of the results, that are related to the determination of these
anomalies.

2.0 The 1° x 1° Free-Air Anomaly Data

The starting point for these computations was a set of 19, 846 l°xl° mean
anomalies, referenced to the International Gravity Formula, their accuracy,
and other pertinent information provided by ACIC (Creighton, 1971). These
anomalies are a slightly updated set from the 19,164 anomalies described in
a recent ACIC report (1971).

The procedures for estimating the l°xi° anomalies were varied but specified
on the ACIC data. Of the 19, 846 ACIC anomalies 2708 had been computed on
the basis of gravity-geophysical correlation prediction techniques as described,
for example, by Durbin (1972). These geophysically derived anomalies are,
at times, treated separately in this discussion, as they are not based on actual
gravity measurements.



Examination of the ACIC material revealed certain areas that were not
included. It was then decided to do an updating of the ACIC material incorporating
new material both as additional material and as replacement material. This
updating process consisted of literature searches and correspondence with
persons who could make available data that would be helpful to this compilation.

One of the biggest gaps in the ACIC data occurred in Canada. To obtain
such anomalies it was necessary to resort to fast, but somewhat less than
rigorous procedures. In the specific case of Canada, a tape containing 131,105
point anomalies in Canada was provided to us by J. Tanner. Using this data
a set of mean Bouguer anomalies were formed for land areas by simple
meaning the point values that fell within a l°xl° block. These anomalies
were then converted to free-air anomalies using mean elevations provided
by ACIC. For ocean areas the mean free air anomalies were computed as
a mean of the point free-air anomalies. Using this procedure we replaced 323
of the ACIC anomalies and added 1989 l°xl° anomalies in the Canadian area.

The procedures followed for other sources depended specifically on the
source. Some anomalies were obtained directly as recommended values by
an investigator. Other anomalies were obtained by estimations from anomaly
contour maps. In many cases we would have more than one anomaly estimate
for a l°xl° block. The anomaly that was selected to be used was generally
the one that had the smaller standard error estimated for it. In the case of
an anomaly given by ACIC and another source, the value given by ACIC was
accepted if the standard errors were similar.

At the conclusion of this updating procedure we had examined 11,350
l°xl° mean anomalies excluding the ACIC anomalies. Of these anomalies,
862 were used to replace values given by ACIC and 3510 were used where ACIC
had given no value. Combining this material we obtained a set of 23, 355 l°xi°
mean anomalies that form the basis for the computations described in this
paper.

The accuracy of the l°xl° mean anomalies was determined in several
ways. The material from ACIC had specific accuracy estimates given. For
non-ACIC material we automatically assigned a standard error of ±20 mgals
unless specific information was available on the number of points that were
used in the estimation of the l°xl° anomaly. If this information was available,
a standard error was assigned on the basis of the number of points in the
block. The specific criteria used are given in Table One.



Table One
l°xl° Block Accuracy As a Function of the Number

of Point Anomalies Used

No. of Anomalies Accuracy
1-3 ±23 mgals
4-7 21
8-14 19
15 - 25 17
26 - 40 15
41 - 61 13
62 - 85 11
86 - 114 9
115 - 250 7

>250 ±5 mgals

The data for Table One was obtained by analyzing the relationship between
the anomaly accuracy and number of points used in the anomaly estimation
for all the AC 1C anomaly data where such information was given. Such a
procedure is not ideal because it does not specifically consider the accuracy
of the observed data nor the distribution of the point data within a block.
Such considerations would be of prohibitive expense to this study.

2.1 Gravity Formula Conversion

The 1° x 1° anomalies described in section 2.0 were referred to the
International Gravity Formula. In the computations of this paper we desired
to refer our anomalies to a gravity formula more consistent with current
estimates of critical earth constants. Such estimates are (Rapp, 1971):

a = 6378137.8 m
f= 1/298. 258

= 3.986013 x 10 14m3/sec3

The value of kM includes the mass of the atmosphere so that gravity values
computed using this kM should (at the surface of the earth) be reduced by
- 0. 87 mgals (Ecker and Mittemayer, 1967) to obtain a theoretical gravity
consistent with measurements taken on the surface of the earth, inside the
atmosphere. The gravity formula consistent with the above constants and
considerations is:

y = yE ( 1 + .00530243 sin2cp - .00000587 sin22cp) (1)



where the equatorial gravity, yE , is 978033.51 mgals.

In order to convert anomalies given with respect to the International
Gravity Formula referred to the Potsdam system to the gravity formula
given in equation (1) which is in an absolute system, we adopt a Potsdam
correction of -14 mgals (IAG, 1971). If Ag^ are anomalies referred to
the International Gravity Formula and Agi are the anomalies referred to
the gravity formula of equation (1), we have:

= Agz + ( 1.49 - 13. 71 sin 3cpy mgals (2)

where T> is the mean latitude of the anomaly block.

Unless otherwise stated, all computations in this paper were done
using anomalies that had been referred to the gravity formula given in
equation (1).

3.0 Method of Computation of the 300 n. m. Mean Anomalies

The l°xi° anomalies were processed using basically the same techniques
and computer programs used by Kaula (1966). The l°xl° means were first
formed into mean anomalies for areas of 60 n. m. (in latitude) and 60 ±30 n. m.
(in longitude). These anomalies were then used to estimate the mean anomalies
in 300 n.m. (in latitude) and 300 ±30 n.m. (in longitude) blocks by predicting,
in the 300 n.m. block any missing 60 n. m. blocks by linear regression. The
300n. m. mean anomaly block was then formed as a straight average of the
25 60 n.m. blocks in the 300 n.m. blocks. No estimations were made for a
300 n.m. block unless it contained one or more observed 60 n.m. blocks.

The specific equation used for predicting a 60 n. m. anomaly (g*) was
given by Moritz (1969):

g* = C p (C- fD)^ £ (3)

where Cp is a column vector whose elements are the covariance between the
block (p) to be predicted and the observed anomalies. C_ is a matrix whose
elements are the covariances between the observed anomalies; D is an error
covariance matrix for the known blocks, and g; is a column vector of the observed
anomalies within the 300 n.m. blocks in which g* was situated. For these
computations D is taken to be a diagonal matrix with each diagonal element
being equal to 1/nij3 where nij is the accuracy estimate of the observed anomaly
gj. The procedure presented differs from that used by Kaula (1966) in
that we now do not consider the l°xl° data perfect.



The accuracy (m) of the 300 n. m. anomaly was computed from the following
(Heiskanenand Moritz, 1967, section 7-9, Moritz, 1969, p. 11):

m^ = C — C (C + D Y~ Ct (4)

where C is the mean square value (or variance) of the 300 n. m. mean anomalies,
and Cj is a column vector representing the covariance between the i th observed
anomaly and the 300 n. m. block in which it lies. We have:

n

- _ 1 r1

—* n L 1»k

and

k=l J=

where n is the total number of 60 n.m. blocks within the 300 n. m. block (i.e. n = 25).

The accuracy estimation obtained through equation (4) will reflect both
representation errors and errors contributed through inaccurate l°xi° data.

4.0 300 n. m. Anomaly Set

4. 1 Numerical Procedures and Results

We first determined the covariances from the 60 n. m. block anomalies
that are needed in the evaluation of the Cl * and Cj >k values of equations
(5) and (6). For comparison purposes this was done using all the 1° x 1° data
and then a 1° x 1° data set that excluded the geophysically predicted anomalies.
The covariances were computed using the same procedures and program used
by Kaula (1966). The results are given in Table Two.



Table Two
Short-Range Autocovariances of 60 ± 30 n. m.

Free Air Gravity Anomalies

Geophysically Predicted
All Anomalies Used Anomalies Excluded

Distance
deg
0.00
0.97
1.60
2.50
3.46
4.37
5.34
6.18

Number of Pairs Covariance Number of Pairs
in Sample

19837
22592
41526
55997
42947
24849
3810
110

mgal8

690
317
227
163
95
39

-16*
-63*

in Sample
19245
21198
38956
52182
40318
23167
3579
110

Covariance
mgal3

697
309
217
147
71
17

-42*
-92*

* interpolated values

, Using the 1° covariances where all the data was used a set of covariances
Ci * and C_t , C were computed and used to carry out the prediction of 1283
300 n.m. blocks based on all the 1° x 1° data._The anomaly variance from
the predicted anomalies was 245 mgal2 while C was 182 mgal2 as computed
from the 1° covariance data. This latter value is smaller than that actually
found due to the fact that more anomaly variability exists in the actual
anomalies than is represented by the covariance functions. In order to
use the more realistic higher values of Ci >]c , Cj, and C the covariance
functions previously obtained for these quantities were scaled by a factor
which would make C equal to the variance of the 300 n. m. means as obtained
from the first prediction tests. Using these covariances, the 1283 anomalies
were predicted again, as well as a set of 1249 300 n. m. anomalies that
wrer predicted excluding all geophysically predicted 1° anomalies. Maps
showing the location of the 1283 anomaly set are given in Figure 1A and IB
where the location of the anomaly is indicated by the integer part of the rounded
standard error of the prediction.

The results of these predictions are given in Table Three. The first
section of the table given the 1249 anomalies predicted excluding all geophysically
predicted anomalies. These anomalies are followed by 121 anomalies which
were predicted from the 1° anomaly set that included the geophysically predicted
anomalies. Thirty-four of the 121 values do not appear in .the 1249 anomaly
set. If one wishes to have a set of 300 n.m. mean anomalies based only on
actual gravity observations, the 1249 set should be used. If a requirement



Figure 1A
Standard Errors of 1283 Predicted Anomalies

Northern Hemisphere



X =

Figure IB
Standard Errors of 1283 Predicted Anomalies

Southern Hemisphere
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exists for data that incorporates the geophysically predicted anomalies, 87
of the additional 121 anomalies should be used as replacements in the 1249
set while the remaining 34 new anomalies should be added to the 1249 set.

The specific data in the table consists of the latitude and longitude
of the center of the block, the anomaly (mgals), the anomaly standard
error, and the number (n) of known 60 n. m. blocks used in the computation
of the 300 n.m. block. All anomalies and their standard errors have been
rounded to the nearest mgal. Consequently there are several blocks that
have a standard error of zero printed (and given in Figure 1) since the
actual standard error was less than 0.5 mgals. These blocks and the actual
standard errors are: co = 47. 5°, X=11.0°, m = ±0.4 mgals; cp = 42. 5°,
A =268. 5°, m = ± 0 . 4 mgals; <P = 37. 5°, \= 275.0°, m= ±0.3 mgals.

4.2 Comparison with Kaula (1966) Anomalies

The values of 934 anomalies used by Kaula (1966) are given in Gaposchkin
and Lambeck (1970). These anomalies were compared to the corresponding
anomalies of the 1283 set for various ranges of accuracy of the anomalies of
the 1283 set. The results of these comparisons are shown in Table Four.

Table Four
Comparison of Kaula Anomalies with

Anomalies from 1283 Set

Maximum
Accuracy (mgals)

1
2
3
4

10
16

Number of
Blocks

3
37

116
212
697
919

Mean Difference Root Mean Square
(1283 Set - Kaula) Difference

-1. 5 mgals
-3.7
-4.4
-2.9
-2.3
-2.0

±3.8 mgals
5.6
8.2

12.3
11.5
10.9

We can see that there is a systematic anomaly difference between the
Kaula results and the results of this paper. This difference probably represents
the use of different reference equatorial gravity values.

These comparisons also revealed that the Kaula anomaly set contained
15 anomaly values that were not contained in the 1283 set. These values are
given in Table Five.
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Table Five
Kaula Anomalies Missing from 1283 Set

$° ^° Ag (mgals) n m (mgals)
82.5 100.0 -4 1 ± 14.5
67.5 70.5 -19 1 14.5
57.5 337.0 -9 5 11.1
52.5 143.0 -3 4 11.8
22.5 169.5 -8 5 11.1
12.5 249.5 7 8 9.1
7.5 164.5 4 4 11.8
7.5 337.5 5 8 9.1
2.5 297.5 7 1 14.5
2.5 337.5 -2 8 9.1

-7.5 210.5 14 1 14.5
-12.5 208.5 16 6 10.4
-17.5 2.5 6 3 12.7
-17.5 352.5 42 2 13.2
-87.5 60.0 -17 5 11.1

In this table n is the number of 60 n. m. blocks used in the prediction and
m is the standard error of the prediction based on n as determined from
corresponding predictions made in the 1283 set.

These values could be incorporated into our 1283 anomaly set by taking
into account the systematic difference indicated in Table Four.

4.3 Long Range Covariances

The 300 n. m. predicted mean anomalies (with and without geophysically
predicted data) were used to determine covariance functions for this block
size. Using programs originally written by Kaula, these covariances were
computed and are given in Table Six. These values may be compared to
similiar values given in Table Two of Kaula (1966).
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Table Six
Long-Range Autocovariances

of 300 n. m. Free-Air Gravity Anomalies
(mgal3)

Distance All Anom. Geophy. Anom. Distance All Anom. Geophy. Anom.
(deg) Used Excluded (deg) Used Excluded

0 250 245 90 -7 -8
5 139 133 95 -2 -2
9 102 99 100 2 3

13 63 63 105 7 8
18 39 40 111 10 12
23 21 20 116 11 14
29 6 5 121 11 14
34 -2 -1 126 9 10
39 -4 -4 131 6 7
4 4 - 5 - 4 1 3 6 3 2
49 -8 -7 141 0 -2
54 -10 -11 146 -3 -3
59 -12 -14 151 -2 -3
64 -9 -14 156 -1 -1
69 -9 -12 162 -3 -4
74 -8 -10 167 -10 -10
80 -7 -10 172 -18 -13
85 -8 -10 175 -20 -17

4. 4 Anomaly Degree Variances from Covariance Data

The anomaly degree variances can be computed from covariance data
from the following well known expression:

rr
g|(Ag) = 2Z + l PA (cos*) C ( » ) sin » d» (?)

In this equation ty is the spherical arc separation, P , is a Legendre polynomial
of degree & , and C(i|r) is the covariance function. The results of applying
equation (7) to the covariance values given in Table Six are given in Table Seven
along with values from the gravimetric data as given by Kaula (1966, Table
Three) and values obtained from satellite derived potential coefficients as
given by Gaposchkin and Lambeck (1970).
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Table Seven
Anomaly Degree Variances o^(Ag)

(mgal2)

a •
0
i
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Kaula (1966)
2.7

-0.5
6.3

31.8
18.6 .
8.4

22.2
11.0
9.2

10.1

Gravimetric
C(t) Table 5

All Data
1.2
2.2

12.7
31.3
13.6
15.1
19.9
15.5

7.5
16.1
9.6

10.8
3.9
8.2
8.2

.8.1

C(i|0 Table 5
No Geophy.

0.8
1.2

13.1
34.0
13.0
11.4
20.4
14.8
8.3

16.3
9.1
8.9
3.5
6.2
8.7
.8.7

Satellite

Gaposchkin & Lambeck (1970)

—
—
7.4

33.3
19.7
17.5
14.4
16.4
8.5

15.1
17.7
13.7
8.4

These values will be compared in a subsequent section to anomaly degree
variances computed from potential coefficient solutions made using the gravity
material computed in this work.

5. 0 Gravity Formula Parameters

The 1° x 1° gravity data and the covariance functions previously computed
enable us to determine values of equatorial gravity and the flattening as implied
by terrestrial gravity material. To determine both equatorial gravity and the
flattening we perform a least squares adjustment that minimizes the sum of
the squares of the weighted anomalies using as a model the gravity formula
in the form of equation (1). Such a computation was carried out with the 20, 662
1° x 1° anomalies that did not contain any geophysical anomalies using several
weighting schemes and with a constraint on the flattening forcing it to be
equal to 1/298.258. These solutions are described as follows:

Solution One: yE and f adjusted, weights = coscp/m2

Solution Two: f constrained, weights = coscp/m2
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Solution Three: yE and f adjusted, weights = coscp/103

Solution Four: f constrained, weights = cos cp/ 10a

Solutions Three and Four assume the anomaly data has the same accuracy.
In practice this reduces the dominance of the more accurately observed
land areas.

In addition to using the gravity formula technique for finding yE, we
may use the zeroth order anomaly degree variance given in Table Seven as
computed from the covariance function where no geophysically predicted
anomalies were used. We have (Heiskanen and Moritz, 1967):

V a0
3(Ag) = Ago = ( yB - y*) - — y( fB - fR) (8)

3

where yB, fs are equatorial gravity and flattening of the "best" parameters
while yR, fe are corresponding parameters of the gravity formula to which
the anomalies have been referred. Since the anomalies, and thus the anomaly
covariances and the anomaly degree variances have been referred to a gravity
formula where f is considered to be accurately known, we have fg = fR.
Thus:

yB = yR a 0 ( A g ) (9)

This computation of equatorial gravity constitutes Solution Five.

Solution Six for yE and f are the values and constants inherent with equation (1).
Since these constants have been derived independently of gravity information,
their comparison with the gravity dependent results is of interest.

The results of these solutions are summarized in Table Eight where all
equatorial gravity values have been referenced to an absolute system using
a Potsdam correction of - 14 mgals.
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Table Eight
Equatorial Gravity and Flattening Determinations

Solution yE (mgals) 1/f
One 978034.4 298.646
Two 978035.8 298.258*
Three 978032.1 298.265
Four 978032.1 298.258*
Five 978034.4 298.258*
Six 978033.5 298.258*

Comparing solutions of the same flattening, we find solution 5, followed by
solution 4 agrees best with solution 6. Solutions 2 differs by 2. 3 mgal from
solution 6 indicating some distortion has taken place by weighting according
to actual anomaly accuracy estimates. We could conclude that within the
accuracy of. the data there is reasonable agreement between equatorial gravity
values determined from gravity data and satellite data.

6.0 Potential Coefficient Determinations

The 300 n. m. mean anomalies computed in this paper may be used to
determine potential coefficients describing the earth's gravitational field. In
order to do this we first consider the relationship between point gravity anomalies,
referred to a given gravity formula and potential coefficients:

= Ag

i=2 a=o
(10)

where Ag0 is the mean global value of Ag r, r is the geocentric distance to the
computation point, C*. and Is f are fully normalized potential coefficients where
C* represents the difference between the actual values and reference values
consistent with the flattening to which the anomalies are referrenced. P . is
the fully normalized Legendre functions and 9 is the geocentric latitude.

Generally equation (10) has been evaluated using center point block
coordinates. With higher degree solutions being continually made, errors will
start to exist at the higher degrees unless an integrated form of equation (10)
is used that recognizes that the anomaly values are given in blocks bordered

20



by meridians and parallels, e.g. cpi, cps, Xlt \s . Thus a more accurate expres-
sion relating potential coefficients to mean anomalies is as follows (Rapp, 1972,
Desrochers, 1971) :

V

kM r r-> / a \ArAS- = Ago*-— - - — — - ry n - i ) (— ) r A \ C * £ > O -
A A s u i c - smc r *~ \ r ' L

J

AA(suicp3 - smcpi) r _
* ="

<Pa ' *
(sincp) cos 9 d^ +

!*• •

a
i)] J P^Jsincp) coscp dcp J J (11)

r01

where r is the average geocentric radius in the block which, in these computa-
tions, was taken at the mean geocentric latitude of the block, and k is the highest
degree to which the summation is to be carried, or for which a potential coefficient
solution is to be made.

Although the complications resulting in going from equation (10 ) to equation
(11) are not justified for the lower degree solutions, it is a necessity as solutions
are generated for the higher degrees, say 15 or more.

In solving for potential coefficients from gravity material it is desirable
to have a global set of anomalies which, in the Kaula divisions used in this paper,
will consist of 1654 blocks. To obtain such a global set the model anomalies
of Uotila (1964) were used to supplement the predicted anomaly sets assigning
such model anomalies a standard error of ± 20 mgals as has previously been
done (Rapp, 1969 ).

Using equation (11) as a model several weighted least squares solutions
were made. In applying equation (11 ) , the value of f was computed using the
value of a = 6378137. 9 m and f = 1/298. 258 and all block division latitudes
defined in terms of geodetic latitudes were converted to geocentric latitudes.
The longitude limits on the blocks were individually computed for each block
based on the specific 1° anomaly selection criteria of the anomaly prediction
program.

In addition to the relationships represented by equation (10) (or (11)),
potential coefficients may be directly computed from the anomaly data from
the following expressions:
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I c*
I a

P^fsincp)
cos mX
sinmA

This formula may also be written in a manner that obtains a mean value of the
kernal (excluding Ag) in a manner analogous to what was done in writing
equation (11). If, in equation (10) (or (11)), r was set equal to a, kM/r3 was
set to y, and a least squares adjustment was made with equal anomaly variances,
the results for the potential coefficients from either (11) or (12) would be the
same. Consequently, the application of equation (12) may be viewed as a
least squares adjustment with equal anomaly variances. The computation of
potential coefficients through equation (12) is considerably faster than the
procedure carried out using equation (10) or (11) because in the latter case,
normal equations and their solutions need to be carried out.

6.1 Solutions Made

Several potential coefficient solutions were made with the following
being of primary interest:

Solution One: Complete to degree 12 using 1283 anomalies based on
predictions incorporating the 1° geophysically predicted
data, plus 371 model anomalies

Solution Two: Complete to degree 12 using 1249 anomalies based on
predictions excluding the 1° geophysically predicted
data, plus 405 model anomalies

Solution Three: Complete to degree 12 using the 934 Kaula anomalies
plus 720 model anomalies

Solution Four: Complete to degree 12 as given by Rapp (1969)

Solution Five: Complete to degree 15 using same data as solution one

Solution Six: Complete to degree 25 using same data as solution one
but using equation (12) for the computation

Solution Seven: Complete to 15,15 using 1283 anomalies plus the 15
Kaula anomalies (Table 6) missing in the 1283 set,
plus 356 model anomalies
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In Solutions One, Two, Three, and Five the value of Ag0 was computed as
the mean value of the 1654 anomaly set. The potential coefficients and their
standard errors from Solution Five, and the potential coefficients from Solution
Six are given in Table Nine. The geoid undulations implied by the potential
coefficients of Solution Five with respect to f = 1/298.258 and a best fitting
"a" are given in Figure Two as computed by Method One in Rapp (1971).

6. 2 Comparison of Solutions to Satellite Derived Potential Coefficients

In order to judge the accuracy of these solutions, we compare them to
the recent satellite derived potential coefficients of Gaposchkin (1969) and
Smith, Lerch, and Wagner (1972). The comparisons are made with respect
to three quantities: 1. the root mean square coefficient difference; 2. the
solution correlation (r) as defined by Rapp (1972); 3. the percentage difference
(p). This latter quantity is computed as the average percentage difference
of each degree, where the percentage difference of each degree (p .) is computed
from the following expression:

where a is the value of a potential coefficient in degree H of the satellite solution.
These results are given in Table Ten.

Table Ten
Comparison of Potential Coefficient Sets

Comparison Coefficients
Gaposchkin (1969), Smith et als. (1972), Smith et als. (1972),

to 8 only to 8 only to 12 only
Solution A x 10s r p(%) A x 10s r p(%) A x 10s r p(%)
One
Two
Three
Four
Five
Six
Seven

.190

.191

.344

.239

.188

.186

.192

.937

.934

.762

.895

.938

.938

.937

16.0
15.7
24.1
16.4
15.3
14.5
15.6

.187

.190

.339

.246

.185

.180

.188

.940

.936

.790

.892

.942

.947

.940

14.4
14.5
21.8
15.9
13.9
12.9
14.1

.140

.141

.236

.173

.134

.128

.136

.928

.925

.778

.886

.934

.942

.933

18.6
18.3
22.2
17.8
16.3
14.4
16.4
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Table Nine
Potential Coefficients From Gravity Data (x 10 6)

Solution Five Solution Six

i
?
2
3
3
•3

3
4
4
4
4
4
S
Rj
r>
5
5
5
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
p
8
8
fl
a
8
8
8
8

m
0
2
0
1
2
3
0
1
2
3
4
0
1
7
3
4
5.
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
0
I
2
3
4
5
6
7
q

C4»
-484.003

3.177
0.749
1.290
1.020
0.664
0.662

-0.288
0.339
0.836

-0.053
0.001

-0.105
0.521

-0.350
0.086
0.286
0.087

-0.068
0.193

-0.099
-0.205
-0.394

0.007
0.114
0.159
0.291
0.099

-0.158
-0.035
-0.240
-0.049
-0.045
-0.137

0.001
0.083

-0.160
0.009

-0.139
0.01P

-0.103

m(C)

0.285
0.327
0.148
0.154
0.165
0.161
0.105
0.111
0. 115
0.104
0.112
0.083
0.082
0.086
0.086
0.079
0.084
0.065
0.067
0.065
0.071
0.069
0.062
0.070
0.054
0.057
0.052
0.056
0.061
0.056
0.053
0.058
0.046
0.048
0.046
0.046
0.053
0.050
0.047
0.047
0.050

S*»

-1.635

-0. 189
-0.603

1.305

-0.210
0.244

-0.401
0.268

-0.027
-0.085
-0.003
0.003

-0.681

-0.076
-0.178
-0.110
-0.419
-0.591
-0.230

0.180
0.058

-0. 123
-0.13?

0.048
0.157

-0.109

0.070
0.148
0.008

-0.002
0.043
0. 130
0.094
0.047

m(S)

0.308

0.134
0.163
0.169

0.105
0. 123
0.109
0.112

0.074
0.090
0.090
0.079
0.087

0.063
0.066
0.075
0.068
0.066
0.068

0.052
0.054
0.060
0.060
0.057
0.053
0.057

0.044
0.047
0.047
0.051
0.052
0.046
0.045
0.049

Ct*
-484.400

2.721
0.453
1.224
0.998
0.794
0.614

-0.348
0.413
0.758

-0.084
-0.078
-0.192

0.453
-0.245

0.025
0.120

-0.003
-0.059

0. 149
-0. 109
-0. 130
-0.311
-0.013

0.092
0.228
0.273
0. 134

-0. 143
-0.036
-0.189
-0.011
-0.004
-0.056

0.054
0.059

-0.099
0.002

-0.070
0.041

-0.082

V
-0,828

0.069
-0.384

1.159

-0.217
0.281

-0.198
0.237

-0.133
-0.067
-0.143
-0.011
-0.461

-0.039
-0.170
-0.052
-0.332
-0.451
-0.137

0.145
0.077

-0.096
-0.127
0.055
0.135

-0.031

0.039
0.164
0.015
0.039
0.041
0.122
0.120
0.039
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q
q
9
9
q
q
9
q
q
q

10
10
10
10
10
10
10
10
10
1.0
10
11
11
11
11
li
1 1
ii
n
11
11
1.1
11
12
1?
1?
1?
1?
i ?
12
12
1.2
12
12
12
12

0
I

f->

3
'+
•5
6
7
8
9
0
\

'2
3
4
5
6
7
3
9

1.0
0
1
2
3
4
5
6
7
a
9

10
ii
0
1.
2
3
4
5
6
7
3
9

10
ll
12

0.174
0.068
0.137

-0.205
-0.072
-0.057

0.072
-0.017

0.262
0.052
0.020
0.047

-0.057
-0.014
-0.070
-0.048
-0.006

0.135
0.006
0.096
0. 150

-0.076
-0.027
-0.011
-0.078
-0.082

0.061
-0.012

0.042
-0.058

0.011
-0.065

0.136
-0.042
-0.067
-0.067

0.071
-0.021

0.052
0.001

-0.079
0.015

-0.056
0.004
0.024
0.020

0.040
0.042
0.040
0.040
0.043
0.045
0.043
0.040
0.041
0.043
0.035
0.038
0.035
0.035
0.037
0.038
0.040
0.038
0.036
0.036
0.038
0.031
0.033
0.032
0.031
0.033
0.033
0.037
0.036
0.033
0.031
0.032
0.035
0.029
0.029
0.029
0.028
0.029
0.029
0.031
0.032
0.030
r>.028
0.028
0.029
0.032

0.019
-0.145
-0.082
-0.020

0.005
0. 175
0.078
0.023
0.036

-0.023
-0.122
-0.082
-0.096

0.014
-0.094
-0.070
-0,155
-0.010
-0.002

0.046
-0.131
-0.072
-0.133

0.034
-0.071
-0.122

0.084
0.030

-0.065
-0.032

0.012
0.038
0.027

-0.020
-0.008

0.054
0.023
0.059
0.049

-0.058
-0.008
-0.038

0.039
0.041
0.041
0.041
0.047
0.043
0.040
0.040
0.044

0.035
0.036
0.037
0.036
0.039
0.040
0.037
0.035
0.036
0.039

0.030
0.033
0.032
0.032
0.034
0.035
0.035
0.032
0.031
0.032
0.035

0.026
0.030
0.029
0.028
0.029
0.030
0.031
0.030
0.028
0.027
0.029
0.031

0. 118
0.142
0.061
•0. 162
•0.043
•0.094
0.034
•0.022
0.201
•0.005
0.011
0.054
0.057
0.028
•0.063
•0.032
•0.011
0.082
0.012
0. 133
0.047
•0.066
-0.005
0.000
•0.075
•0.060
0.063
0.039
0.016
•0.022
0.009

•0.042
0.055
•0.045
•0.030
•0.033
0.026
0.046
0. 040
0.032
•0.052
0.003
0.021
•0.008
0.009
0.031

-0.003
-0.075
-0.042

0.023
0.043
0.147
0.028
0.024
0.035

-0.056
-0.048
-0.069
-0.102
-0.007
-0.055
-0.013
-0.097

0.004
0.001

0.017
-0.082
-0.040
-0.091

0.009
-0.045
-0.044

0.062
0.060

-0.046
0.020

-0.043
0.007

-0.018
-0.023

0.007
0.032
0.017
0.022
0.013
0.001

-0.004
-0.001
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1?
13
13
13
13
13
13
13
13
13
13
13
13
13
14
14
14
14
14
14
14
14
14
14
14
14
14
1.4
14
1 5
15
15
15
15
15
1 5
1.5
15
15
15
15
15
15
15
15

0
I
2
3
4
5
6
7
8
9

10
11
12
13

0
1
2
3
4
5
6
7
8
q

10
11
12
13
14
0
1
7

3
4
5
6
7
8
9

10
11
12
13
14
15

0.031
0.024

-0.032
-0.008

0.029
0.071

-0.065
-0.093

0.003
0.003
0.020

- O . O R 5
-0.032
-0.089

0.058
-0.046
-0.020

0.039
-0.047
0.0

-0.015
0.062
0.013
0.020
0.035
0.046

-0.023
0.053

-0.005
0.013
0.001

-0.050
-0.012

0.016
-0.025
-0.008

0.061
-0.076
-0.070
-0.001
-0.050

0.012
-0.005
-0.022
-0.092

0.025
0.026
0.025
0.026
0,026
0.026
0.028
0.028
0.028
0.026
0.024
0.024
0.026
0.028
0.022
0.024
0.022
0.024
0.024
0.0
0.025
0.025
0.025
0.025
0.022
0.021
0.021
0.022
0.024
0.018
0.019
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.0.18
0.017
0.017
0.018
0.019
0.020

-0.037
-0.056

0.031
-0.073

0.072
0.080
0.071
0.040
0.045
0.029

-0.054
0.081
0.125

0.035
0.040

-0.031
0.022
0.0

-0.056
0.014

-0.060
0.025

-0.074
-0.068
-0.026

0.016
-0.001

0.029
-0.038

0.084
0.021
0.046

-0.120
0.049

-0.017
0.047
0.028

-0.005
0.048
0.000

-0.046
0.046

0.023
0.025
0.026
0.025
0.026
0.026
0.028
0.028
0.027
0.024
0.024
0.026
0.028

0.021
0.022
0.023
0.023
0.0
0.024
0.024
0.025
0.024
0.022
0.021
0.021
0.023
0.024

0.017
0.018
0.019
0.018
0.017
0.018
0.018
0.018
0.018
0.018
0.018
0.017
0.018
0.019
0.021

0.036
0.009

-0.022
0.011

-0.007
0.070

-0.061
-0.031
-0.009
-0.002
-0.008
-0.013

0.006
-0.056

0.014
-0.002
-0.024

0.022
0.015
0.0
0.010
0.022

-0.029
-0.007

0.048
0.017
0.009
0.001

-0.035
0.016
0.039

-0.019
0.012

-0.013
0.026
0.026
0.045

-0.024
0.002

-0.017
0.015

-0.012
-0.041
-0.002
-0.041

-0.030
-0.025

0.036
-0.030

0.062
0.011
0.034

-0.005
0.058
0.012
0.006
0.073
0.048

0.023
0.009

-0.022
0.014
0.0

-0.003
-0.025
-0.033

0.075
-0.036
-0.037
-0.036

0.069
-0.014

0.015
-0.000

0.038
-0.010

0.008
-0.065

0.027
0.012
0.030

-0.003
0.005
0.046

-0.004
-0.017

0.028
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From the table we see the following:

1. The potential coefficient solutions based on gravity data agree slightly better
with the new satellite derived solution of Smith et als. than with the Gaposchkin
solution.

2. The poorest solution is Solution Three where the Kaula anomalies were used.
The second poorest solution is the older solution of Rapp (Solution Four).
The better agreement of the newer solutions with the satellite derived
coefficients reflects the increase and improvement of the current gravity
material over that used in the earlier solutions.

3. There is very little difference between the coefficient sets that include
oand exclude the geophysically computed 1 anomalies in their formation

(Solutions One and Two).

4. The inclusion of the Kaula derived anomalies into the 1283 set (Solution
Seven) appears to have slightly deteriorated the potential coefficient sets
when compared to the results of Solution Six.

5. Of the weighted least squares solutions made, the best set of potential
coefficients appears to be those found in Solution Five.

6. Of all solutions, the best agreement with the satellite derived solutions is
with the coefficients of Solution Six. Information to be considered in the
next section, however, reveals some undesirable features of Solution Six.
Consequently for the results of this paper, the potential coefficients from
Solution Five will be considered the best overall set.

6. 3 Anomaly Degree Variances from Potential Coefficients

The anomaly degree variances discussed in section 4.4 may also be
computed from potential coefficients using the following equation:

y3 ( £ - l ) 3 £ (C** +8^) (12)
m = O

where y is a mean value of gravity. Such values have been computed from several
solutions and are given in Table Eleven along with the anomaly degree variances
given in Table Seven as computed from the covariance data obtained from the 1283
anomaly set.
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Table Eleven
Anomaly Degree Variances from Potential Coefficient Solutions

(mgal2)

Solutions
a
2
3
4
5
6
7
8
9

10
11
12
13
14
15

One
11.3
24.5
11.6
13.2
22.7
16.6
9.1

16.2
14.3
14. 9
15.7

Five Six
12.3 7.8
22.3 18.5
10.8 9.7
14.8 9.0
21.1 12.4
11.3 9.9
6.6 4.5

15.3 9.3
10.3 5.6
12.3 5.4
5.3 2.2

13.0 4.9
7.9 4.1

12.9 4.0

From Table 6
(Col. 3)

12.7
31.3
13.6
15.1
19.9
15.5
7.5

16. 1
9.6

10.8
3.9
8.2
8.2
8.1

The larger degree variances for the higher degrees for Solution One
reflect the aliasing effect 'Desrochers, 1971) caused by the truncation of the
of the least squares adjustment. This truncation causes a distortion in the
coefficients of the degrees near the truncation degree. This effect is also
noticable in Solution Five, but to a lesser extent. The degree variances
from Solution Six are all smaller than the ones from Solution Five and those
computed from the covariance function data. The unreasonably small values
of the anomaly degree variances from Solution Six indicate that solution to
be undesirable as compared with other solutions (such as Five).

7. 0 Summary

This paper had described the estimation of a 300 n. m. (or 5° equal
area) block terrestrial free air anomaly field. The derived fields were
analyzed to obtain covariance functions, anomaly degree variances, and
potential coefficients. Only small and insignificant differences between
solutions that did and did not incorporate the geophysically estimated 1° x 1°
into the 300 n. m. predicted set were found.

The potential coefficients as determined from this new data agree -
better with the satellite derived potential coefficients than the coefficients
of earlier sets derived from gravity data. This improvement reflects the
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improvement in the gravity coverage and the accuracy of the material since
the earlier solutions.

The gravity data of this paper will be used for the formation of i and
perhaps 10° equal area block mean anomalies. In addition a combination of
this gravimetric data with satellite derived potential coefficients will be
carried out to determine a 300 n. m. gravity field that is consistent with
a high degree potential coefficient field.
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