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CHAPTER |

INTRODUCTION AND OBJECT




Preface

Two students' investigatiye.papers are including in this
report.. One paper is on '"STATISTICAL METHOD OF DETERMINING YIELD
STRENGTH IN MILD STEEL RODS'' by Mr. Thomas E. Hadnot, a major in
Civil Engineering. This paper discusses the probability distribution
of yield strength for mild steel. For the purpose of obtaining
sufficient data for statistical analysis, tensil experiment was
conducted for 50 cold rolled ;nd 38 hot rolled mild steel rods.
The yield strength distribution of mild steel is assumed to follow
normal or lognormal laws. Based on 95 percent condidence level,
chi-square, kolmogro-Sniirnov and goodness-of-fit methods are
used to test the normality or lognormality of experiment results.
The other paper is on '"WIBRATION ANALYSIS OF MECHANICAL SYSTEMS'
by Mr. Sanders Marshatll, a Mechanical Engineering major. The
emphasis of this paber is on the application of numerical techniques
to solve mechanical vibration problems. As an example, a non- 7
linear dash-pot-speing system SUbjected to seismic excitation are
analyzed by using fourth-order Runge-Kutta jntegrated method and
the aid of IBM 360-65 Computer.

This undergraduate research was supported by NASA under
contract NGR-044-033-002, and was conducted at School of Engineer-
ing of which Mr. A. E. Greaux is the Dean. 'Thanks are due to

Miss Josephine Chisom for her excellent typing.



introduction

It is common practice today in structural design offices
to pick.up a value for the strength properties of materials
from specification., The materials have been tested and the
strength property value published is a true representation
of the population of the materials tested. However, it cannot
be said that this value is a true representation of the same
material that will be made in éh; future even though it is
made by the same manufacturer.

Statistical research provides a means for determining,
wfth a certain level of coniidence, the strength properties
as well as other vital information that is bf paramount
importance to a design‘enginee;. For instance, an engineer
designs a structure with a.factor of safety of 2 and exist-
ing strength properéies of the material. Does he know, in
- fact, that this will be a séfe structure? No. He has to
perform certain .test oﬁ.the material himself. Then, by
using the value that he gefs frbm his experiments, and the
value that he receives from the manufacturer, he can make a
comparison and decide whether or not the manufacturer is
supplying him with good or bad ﬁaterial. Then and only then

will he know that it is safe to go ahead and build the

structure.



¢

This problem of testing material involves a very important'-
function of statistics---statistical inference. ! There.is no
way to measure the. average yield strength of a group of
structural steel rods unless the9 were tested individually.
0f course, if that were done,Athe average yield strenght of
that group of rods could be obtained but the rods would be
useless; They certainly could not be used after they have
been ruptured. Thi; wou]d,iof course, require another group
of rods, but they could not be used because the average
yield strength would not be known. Through experimentation
and statistical inferences, however, a decision can be made
about the population of steel rods from the ekperimental
results of the sample tested..

~ As one can see this is not a new type of experiment.
Experiments of this type are conducted almost daily on a
small scale. |{t is not liﬁited.to any one type of material.
For instance, there has been statistical research dbne to
determine the crushing streﬁgth of concrete cubes, the
breaking strength of steel mesh wire, and of course, the
yield force of different types of steel bars, and they all

have been effective.

Object

The object of this investigative paper is concerned

with the yield strength---commonly referred to as the

-

'samuel B. Richmond, Statistical Analysis (New Yorks:
The Ronald Press Company, 1964), p. 4.




measure of the ela§ticAstrehgth of materials=---of mild stru-
tural steel. By using statist%hﬁl methods a study of the
variation of the yield strength of each individual rod, and
uncertainty of the value of the yfe]d strength as well as
other variations and uncertainties can be made.

The yield strength of cold rolled steel rods and hot
rolled steel rods are studied in order to determine the

probability model that best suit the distribution.

7




'CHAPTER 11

THEORY



Sampling

In order to make inferences about the popu]ation,'a,sample
from that population has to be taken and examined. Often
times it is too costly, too time consuming, or impossible to

examine the comp]eté population. Also, the inspection process

may be destructive, in which caseﬁsampling inspection is the
only possible technique.2 As is the case with this investi-
gation, the inspection procéss would be destructive because

each individual rod would have to be stretcﬁed to its yield

and there would be none left for use.

Therefore it is generally recognized that the reason for
taking samples is one of the following: (1) Due to limita-
fions of time, money, or pefsonnel, it is impossible to
study every item in the population; (2) the population, as
defined, may not physically exist; (3) to examine an item
may require that the item be destroyed.3

In statistical research it is important to know whether
a sample or a complete population is being investigated. A

population can consist of many samples; however, a sample

21bid., p. 324.

3Bernard Ostle, Statistics in Research (Ames, lowa:
The lowa State University Press, 1963). p. &4k.
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cannot be a population. The conéept of a sample as opposed
to a population is very important.L+ A sample is defined as
a part of a population selected by some rule or plan and the
" important things to know are: (1) that we are dealing with a
sample and (2) which population has been sampled.S
On the othef hand a population is defined as the
totality of all possible values (measurements or céunts) of a
particular characteristic for a specified group of objects.6
It is not general in engineering that a complete populafion
is investigated. | |
A sample can be taken from different population in
various ways. éamp]es selected according to some chance
mechanism are known as probability samples if every item in
the population has a known prébabi]ity of being in the
sample.7 The accuracy of thé results obtained from a
specified sample cannot rea]]y.be judgéd.8 That is to say
that it is not known how accurate an estimate is rather the
précision of the es%imating technique.
By use of statistical inferehce; decisions can be made

t

about the population and be right some known proportion of

bibid., p. 45.
5i1bid., p. L5.
6Ibid., p. 4k,

7i1bid., p. 45.

8Samuel B. Richmond, Statistical Analysis (New York:
The Ronald Press Company, 1964), p. 325.




the time, and on the other hand be wrong some proportion of
the time. For instance, with a 5 percent level of signifi-
cance a decision can be made that would be right in 95 per-
" cent of the time in estimating population boundaries. By
the same token 5 percent of the decisions would be wroné.
The 5 percent error is unaviodable because there has to be
some degree of error. In the final analysis the goodness or
bédness of the sample is determined by the way that the
sample was obtained.

Statistical inference and the formulas for standard error
that will be used in this experiment is based upon simple
random sampling in which eachvitem 6f the population or
subpopulation has an equal chance of being in the sémp]e.

After the sample has been selected, tested, and the data
calculated, the distributiqnlcurve for the mild stru;tural

steel rods in this experiment was assumed.

Normal Distribution.

Computation of probabilities are based on probabilistic
models which have been proposed to describe the probabilistic
behavior of certain physical variab]es.9 The engineer uses
his sense of practicality from observations or studies
theory to propose a probability model usch as the normal, or
lognormal distribution which are the distributions proposed
for this experiment. In another situation,.for the sake of

convenience, a distribution is selected because it is

SWilson, H. C. Tang, Notes on Statistical Inferences
(urbana, I1linois: University of Illinois, 1970), p. 1.




believed to be a satisfactory,descriptionvof the phenomenon.IO
In both cases the parameters of the distribution has to be
evaluated to find out whether the sample is representative
of the characteristics of the population from which the sample
has been taken; or when tHe.characteristics are unknown,
through observations and collection of data, the parameters
can be estimated and a decision can be madé as to the goodness
or badness of the research made.

The normal distribution as proposed in this experiment
is generally used for populgtions whose members are measured

11

for some characteristic such as height or yield. The

‘variable flows without a break from one member to the next;
it is continuous with no 1imit to the number of members with

12

different measurements. It should be made clear, however,

that the variab]és could be distributed in other ways too,.

The normal distribution.is one of the oldest of statis-
tical inference probability models. |Its equation was
published as early ;s 1733 by DeMoivre.

The equation of the distribution is

- | ;(W’M>/2°-z
iy €
Where: p is the probability
X is the random-variable
A is the means given by the equation

o =2Fx

T

194, p. 1.

1 ,
]]George W. Snedecor, Statistical Methods (Ames, lowa:
The lowa State University Press, 1956), p. 35.

12/bid., p. 35



Where:  f is the frequency
x is the random variable

g is the standard deviation given by
the equation i

2
¥

The normal distribution curve is shown in figure 2.1.

/

Fig. 2.1 Normal distribution éurve

10




The Logarithmic Normal Law

A random variable x has a logarithmic normal probability

distribution if in x (the natural logarithm of x) has a
13

normal probability distribution. In this case, the density

function of x is,

-2
4“P[—;?L' (7/::.-%)]

' i
P (x) = ———onr
Where X =.E(In x) and S = 177;;;5 are respectively,

the mean and standard deviation of In x.
Examples of lognormal densfty function are shown in

(%)
figure 2.2 v

.15

4o

951

(X4 . ‘L‘O . ';a o
Fig. 2.2 Lognormal Density Functions

in Qiew of the facility for the calculation of pro-
babi]itiés of lognormal random vafiables, and also because
the values of the réndom variabie is limited on the left,
the logarithmic normal distribution is useful in many

practical app]ications.lu

]3Alfredo, H. S. Ang, and Mohammed Amin, Probabilistic
Structural Mechanics and Engineering (Urbana, I11.: Univer-
sity of Il1linois, 1970), p. 77.

14

Ibid., p. 79.

“
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Chi~-Square Test

"A problem that arises frequently in sta-
tistics is the testing of the compatibility of
a set of observed and theoretical frequencies.
If a theoretical distribution function has been
fitted to an empirical distribution the question
whether the fit is satisfactory naturally
arises. . . . It is usually assumed that the
data from a normal population and that the fitted
normal curve is an approximation of the popula-
tion distribution. Thus, the question whether
the fit is satisfactory in this case can be
answered only if one knows what sort of histo-
grams will be obtained in random samples from a
normal population.''15

The chi-square test is one of the methods of testing the
goodness of fit for distribution. [t involves the comparison
of observed frequencies with expeéted frequenc{és. Using the
chi-square test, the test of different kinds of hypotheses
about frequencies can be made. A comparison of observed
frequencies with theoretical or expected frequencies, and a
comparison of two or more sets of observed frequencies can
be made with the chi-square test in order to determine
whether the difference among the two sets of frequencies
are significant; that is, whether the observed differences
are too great to be attributable to c:h.ance.]6

The general procedure for'chi-square test is:

(1) The expected or theoretical frequency
' is calculated.

ISWilson, H. C. Tang, Notes on Statistical Inferences
(Urbana, i1linois: University of I1linois, 1970), p. 50.

]6Richmond, Samuel B., Statistical Analysis (New York:
The Ronald Press Company, 1964), p. 280.

12



(2) The sample observed frequency is obtained.

(3) The frequencies are compared by computing
chi-square which depends upon the dif-
ferences between the corresponding
frequencies.

(4) The-valﬁe is compared with the known
theoretical distribution of chi-square to
determine whether the value of chi-square
is significantly different from 0.

The computed value for chi-;duare is designated by the
. 2 Y
Greek symbol % = Z(——Z—e—g’—-)
!

Where: Oi is the observed frequency

e. is the computed (expected or theoretical)
frequency '

" Kolmogorov-Smirnov Test

Another test designed to test the goodness-of-fit for
- proposed distribution function is the kolmogorov-smirnov
test, It was named for the two Russian mathematicians
Qhose names are attached to.it. It is said to be a more

powerful test than the chi-square test and its uses is

17

encouraged. It proceeds as follows:

(1) Let F(x) be the completely specified theoretical
cumulative distribution function under the null
hypothesis.

(2) Let S,(x) be the sample c.d.f. basen on n
observations. For any observed x, Sp(x) = k
where k is the number of observations less n
than or equal to x

]7Bernard, Ostle, Statistics in Research (Ames, lowa:
The lowa State Uniwersity Press, 1963), p. 471.

13



(3)

(&)

Determine the maximum deviation, D, defined by

D = max '[ F(x) - Sn(x) ]

If, for the chosen significance level, the
observed value of D is greater than or equal
to the critical value taken from the
kolmogorov-smirnov goodness-of-fit table,
the hypothesis will be rejected.




CHAPTER 111

PROCEDURE AND EXPERIMENTAL RESULTS



Procedure

With the aforementioned principles and theories of sta-

tistics in mind the experiment was conducted in the follow-

ing manner:

(1)

(2)

(3)
(4)
(5)
(6)

(7)

(8)

A sample of 50 cold rolled steel rods was
selected at random; a sample of 38 hot
rolled steel rods was selected at random.

These two samples were tested, at different
times, using the universal testing machine
for the yield strength. With the aid of an
extensometer used in conjunction with the
aforementioned equipment and the Baldwin
Microformer autographic stress-strain
recorder, a copy of the stress-strain diagram
was achieved for each speciman tested. The
extensometer was attached directly to the
speciman which were round steel rods with a
.505 inch diameter. The gage length of the
extensometer is 2 inches and the measuring
range is 0.040 inches.

The yield strength of .2 percent offset was
then calculated for each individual speciman.

The data collected was then grouped, charted
and graphed as applicable.

A normal distribution probability model was
proposed, calculated, and charted.

A lognormal distribution was graphed and the
theoretical frequency calculated.

The chi-square test and the Kolmogrov-Smirnov
Test were applied to determine the goodness-
of-fit of the normal and lognormal distri-
bution curves,

Inferences and conclusions were drawn from
the applied theories of statistics.

16



Experimental Results

DATA
TABLE 3.1 - YIELD STRENGTH (PSI)
(COLD ROLLED STEEL RODS)

62406 58912 64903
62906 62906 57913

. 62406 61158 65903
61907 62656 65903
60909 64903 62406
59910 62656 59910
64903 | 62406 62906
59910 62356 62906
64903 - 63656 59910
61408 58912 59910
60909 57913 64903
62906 64403 59910
61250. 62656 58312
63405 62906 62406
63405 60909 64903
62906 62906 57913
64903 58412

.]7



DATA

TABLE 3.2 - TALLY SHEET FOR DATA OF TABLE 3.1

YIELD

STRENGTH

57913
58412
58912
59910
60909
61158
61408
61907
62356
624406
62656
62906
63405
63656
64403
64903

(coLD ROLLED STEEL RODS)

TALLY
111

1

. 11
e WA
111

11

111
LT
11

TR 11

18 ‘

FREQUENCY
3
1

2
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DATA

- TABLE 3.4 -~ CLASS INTERVALS AND POINTS
FOR NORMAL DISTRIBUTION CURVE

(Cold Rolled Steel Rods)

CLASS INTERVAL  , - NORMAL DISTRIBUTION *LOGNORMAL _f
. 57.5 | 0.0246 0.08
58.5 0.0569 0.05
59.5 .0.105k 0.06
60.5 » " 0.1565 0.10
61.5 0.1860 0.15
62.5_ 0.1772 0.20
63.5 0.1352 ‘ 0.36
64.5 0.0826 0

Normal distribution equation

a3
5 ) _cx=-#) /26"
% )=
Pexd= 5%
*Lognormal values taken from lognormal curve. Fig. 3.2

20



(Cold Rolled Steel Rods)

Calculations For chi-square test for goodness-of-fit

Where:

m.

(2).

A= 32z

o;j = observed frequency v
e, = expected or theoretical frequency
Normal

;{? = (.06 - .0246)% + (.08 - .0569)% + (.12 - .1054)2
0246 ~0569 105k

+(.06 - .1565)% + (.08 - .1860)2 + (.34 - .1772)2

1565 1860 1772
+(.06 - .1352)2 + (.20 - .0826)2
.1352 0826

;}E = .5405‘(50) = 27.02

Lognormal .
2 = (08 - .0246)% + (.05 - .0569)% + (.06 - .1054)2
02546 0569 7054
+(.10 - .1565)%2  + (.15 - .1860)% + (.20 - .1771)?
7565 7860 7771
+(.36 - .1352)2 &+ (o0 - .0826)? ‘
.1352 .0826

2 _ - "
X = .6320 (50) = 31.60

21



Frequency

16

14

12

mﬁ/\\/ﬁ 57?5

4

A

L

|

Jd

A

.32

.28

.20

.16

.12

.08

.0k

Relative Frequency

58.5 59.5 60.5 61.5 62.5 63.5 6L.5

Yield Strength Interval

Frequency histogram and normal distribution

Figure 3.1
curve plotted from Table 3.3.
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1.

F(x)

7(_.,-

="\ 57.5 58.5  59.5 60.5 61.5 62.5 63.5 BK.5

Yield Strength iIntervals
Figure 3.3 Sample and Theoretical Cumulative

Distribution Functions
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DATA

TABLE 3.1a - YIELD STRENGTH (PSI)
(Hot Rolled Steel Rods)
39940 39940 39940
L2436 L1187 L1438
L1937 39940 39441
39940 41937I 42187
LOL39 39940 37943
L1937 39940 42187
42436 41937 36994
39940 41687 3701
42436 2436 39940
L2436 L2936 37hkLL
L2436 L2686 37L4L
- 40939 42436 37444
39940 42187 eeee-

25
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DATA

TABLE 3.2a - TALLY SHEET FOR DATA OF TABLE 3.la
(Hot Rolled Steel Rods)

STRENGTH " 1ALy | FREQUENCY
36994 1 1
37kkh0 1111 , Ly
737943 : 1 1
39441 ] 1
39940 HH - 10
40439 - ] 1
140939 | ] | o
41187 o o
Liu38 P S
41687 . ' | ]
L1937 ERERR I
L2187 ‘ (AR 3
42436 HH 1N 7'
42686 1 I

42936 : 1 1

26



TABLE 3.3a - FREQUENCY DISTRIBUTION AND
CALCULATION OF %=, s2, AND s

(Hot Rolled Steel Rods)
AT BUT LESS
LEAST THAN f r.f. x fx X = X (x - x)2 f(x - x)2
36 Y/ 1 .03 | 36.5 | 36.5 -4.03 16.24 16.24
37 38 5 .13 37.5 | 187.5 -3.03 9.18 : 45,90
38 39 0 o | 38.5 0 -2.03 L.12 0
39 Lo 1 .29 39.5 L3L,5 -1.03 | 1.06 S 11.66
40 bl 2 “ .05 | 4.5 | 81.0 0,03 | - .00 " Lo02
41 ok 7 a8 s | 290.5 .97 94 6.58
42 43 12 .32 52,5 | 510.0 1.97 3.88 46.56
pu 38 [ 1.00 ~ [15k0.0 ©126.94
—- _2
x 2% - 1540 2.: Z{-(X-X) B 126 94 _

% § zg 4053 S st " ss 3 34 S=J334 =1.83



DATA -

TABLE 3.4a - CLASS INTERVALS
AND POINTS FOR NORMAL DISTRIBUTION CURVE

(Hot Rolled Steel Rods)

Class Interval = - Nérma];bistribution %Lognormal f
36.5 " ©0.0193 0.04
37.5 | ©0.0554 0.04
38.5 ' 0.1178 0.07
39.5 | ' 0.1861 0.14
40.5 0.2180 0.23
L1.5 0.1894 ' | 0.48
L42.5 | o221

Normal Distribution Equation

(K ) = ———em G
P=D s ¢ z

*Lognormal values taken from lognormal curve. Fig. 3.2a

-~
¢ 4

28



(Hot Rolled Steel Rods)

Calculations for chi-square test for goodness-of-fit

X=TeE )

Where: 0; is the observed frequency

e; is the expected or theoretical frequency

(1). NoEmal ) ' 2 '
A5 = (.03 - .0193)° + (.13 - .0554)% + (0 - .1178)2
.0193 . 0554 L1178

+ (.29 - .1861)% + (.05 - .2180)% + (.18 - 1894)°
. 1861 .2180 . 1894

+ (32 - a220? % = .7330x(38) = 27.85

(2). Lo%norma] . 2 )
x4 = (.0h - .0193)2 (.04 = .0554)° + (.07 - .1178)
.0193 .0554 L1778

+

£ 0k - 18612 + (23 - .2180)° + (48 - .1894)2
. 1861 .2180 . 1894
+ (0 - .1221)% ;x? = 6260 x(38) = 23.79

1221

29




Frequency

T4

12 X S ' .

10 - . , B

’ ] | - | . L" 1 2 N
J\V 36.5 37.5 38.5 39.5 40.5 L1.5 L2.5 43?Vﬂ

Yield Strength Intervals
Figure 3.la Frequency histogram and normal

distribution curve plotted
from Table 3.3a
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.36

.32

.28

.24

.20

.16

12

.08

.04

Relative Frequency



Cumulative Frequency

.01 &

Il (!

1, i

0 6.5  37.5 38.5 . 39.5 40.5  41.5  42.5

Yield Strength Intervals

Figure 3.2a. Lognormal distribution curve
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Cumulative Frequency

1

.00

_/\/ : L ) L | ) v \
36.5 37.5 38.5 3

9.5 40.5 41,5 42.5 43.5

Yield Strength Intervals

Figure 3.3a. Sample and Theoretical Cumulative
Distribution Functions
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Analyzing the data

The hypothesis is that the distribution of the samples
tested follows the normal or ]ogAOrmé] probability model.
This hypothesis will be acc;pted Qith a 95 percent level
of confidence if the area under the normal curve between

M-),?ég‘and L + /.'?é o~ consists of 95 percent of the
sample tested. /

The 95 percent level of confidence means that if other
samples of the population were tested one could be sure
that 95 percent of the time the mean of the sample would
lie in the interval ¢¢ + /. 9¢ o and that only 5 percent
of the samples tested would lie outside that range.

After the normal distribution curve has been fitted
to the histqgram of frequencies, a test as to the goodness-
éf—fit of the normal distrfbutién or lognormal distri-
bution, as is the case here, will be performed. This test
will enable the analyst to decide whether the sample may
be regarded as a random éamp]e from a population with a
normal or lognormal distribution. The two tests used to
test the goodness-of-fit or the proposéd distribution are:
(1) the Chi-Square test, and (2) the Kolmogorov-Smirnov

test.’



CHAPTER 1V

DISCUSS 10N AND CONCLUS [ON



Discussion

This experiment was designed very carefully as to the
kind of sémp]ing to be used, the hypothesised distribution,
and thélkEAds of tests that were to be used to test the
validity of thé hyp;thesis.;
| A statistical hypothesis is a statement made about
the population and it is tested to give the facts collected
about the sample a chaﬁce“to discredit it. |If the sample

data does, in fact, discredit the hypothesis, the hypothesis

- will be rejected and considered as false. 0On the other

hand; if the sample data does not discredit the hypothesis,
the hypothesis will be acceptedfénd,considered as true,

The statistical inferénces ana results of this experi-
ment are basedlupon the simple raAdom sampling theory.
The 50 cold rolled steel rods and the 38 hot rolled steel
rods used in this experiment were assumed to be picked up
according to that theory. [t is believed that this kind
of sampling would best represént the way that the manu-
facturer or engineer would select his material as he would
begin to sell or build a structure.

Since the normal and lognormal distributions are

generally used to describe the distribution of the yield

35




strength of cast iron, the distribution of fhe data collected
from this experiment for the yield strengtH'of cold rolled
and hot rolled steel will be assumed to foliow these two
probability laws.

To test the assumption of normality and lognormality
the chi-square test and the kolmogorov-smirnov test for
goodness=of-fit baspd'on a 95 percent level of confidence

were used,

Conclusion

The hypothesis that the d%stributions of yield strength
of cold rolled and hot rolled steel rods are a normal and
lognormal distribution must be rejected baeed on the
fof]owing reasons.

1). The normal curve withgéd= 61.78 and @ =2.126
es shown in Figure 3.1, and the normal curve with g = .83
and U=2053 as shown in Figure 3.1la were examined
by use of the chi-square test. The lognormal curve in
IFigure 3.2 and 3.2a were also examined by the chi-square
test. |

The calculated values for chi-square by using the
observed and theoretical frequencies were calculated to be
27.02 for the normal distribution and 31.60 for the log~
normal distribution for cold rolled steel rods and 27.85
for the normal distribution and 23.79 for the lognormal

distribution for hot rolled steel rods respectively. All



of these values for chi-square are above the acceptable
values of.Xz.OS = 11.07 and X2:Oé = 9.49 for a 5 percent
level of significance or a 95 percent level of confidence
for cold rolled and hot rolled steel rods respectively.
.ThereFore, according to the“thi-square test for goodness-
of~fit of the hypothesis has td be rejected.

2). According to. the theory of the Kolmogorov-
Smirnov test for goodness-of-fit, the hypothesis should
be rejected if the maximum vertical distance between the
cumulative distribution of the yield strength of the
sample and that of the proposed distribution exceeds the
value taken from the tab]e.of eritiéal values for f): in
the Ko]mbgorov-Smirnov test fér ¢X, percent levle of
significance.

From Figure 3.3 it can be %ound that the maximum
vertical distance between the cumulative distribution
and the proposed d?stribution.for the cold rolled steel
sample is .22 for tﬁe normal and .20 for the lognormal.
Also from Figure 3.3a the maximum vertical distance
between the cumulative distribution and the proposed
distribution for the hot rolled steel sample is .27 for
the normal and .27 for the lognormal distributions.

The critical values are.D'%é = ,19 for cold rolled

steel rods and D'gg = ,22 for hot rolled steel rods.
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Since the observed D values are greater than the critical
values, the hypothesis has to be rejected.

From all the data collected. in this experiment it can
be concluded that the yield strength of cold rolled and
hot rolled steel rods does not follow the normal or the

lognormal probability models.
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CHAPTER 1
INTRODUCT I ON

The study of vibrations treats the oscillatory motion of
mechanical systems, and the dynamic ;ondition related thereto.
It deals with the behavior of bodies under the influence of oscil-
latory forces. The vibration motion may be of regular form and
repeated continuously, or it may be irregular of a random nafure.

Vibrations are accompan}ed by, or are produced by forces
which vary in an oscillatory manner. Such forces are frequently
produced by unbalance in rotating machines or by the motion of
the body itself. Most machines and engineering structure exper-
-ience vibration in differing degrees, and their desfgn generally
requires consideration for their oscillatory behaviora

Although the term ''vibration' usually implies a mechanical
oscillation, simi]ér conditions prevail in other‘areas, such as
for alternating electric circuit, electromagnetic waves, and aco-
ustics. The condition may.be related in some manner, in different
fields; for example, a mechanical vibration may producé an electric
oscillation or vice versa. The basic principles, analyses, mathe-
matical formulations, and terminology for oscillatory phenomena
are similar in the various fields.

Oscillgtory ;ystems can be broadly characterized as linear

or non-iinear. For linear systems the principle of superposition

L3



holds, and the mathematical techniques available for their
study are well-developed. In contrast, techniques for the
analysis of nonlinear systems are less well known and diffe-
cult to apply. Some knowledge of nonlinear systems is desir-
able since all systems tend to become nonlinear with increas-
ing emplidute of oscillation. Many excellent books (1 to 6)*

are available for study on this subject.

*Numbers within the parenthesis refers to the references
given in Bibliography.
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CHAPTER 11
LINEAR VIBRATIONS

Vibration of linear systems fall into two general classes,
free and forced. Free vibration takes place when an elastic sy-
stem vibrates under the action of forces inherent in the system
itself. The system under free vibration will vibrate at one or
more of its natural frequencies, which are properties of the
elastic system. |

Vibration that takes place under the excitation of external
forces is called forced vibration. Forced vibration takes piace
at the frequency of the exciting force, which is an arbitrary
-quantity independent of the natural frequencies of the system.

Perhaps the simplest of a free linear vibration
problem is furnished by a mechaﬂica] system consisting of a mass
attached to a spri&g which exerts a force (called the restoring
or spring force) proportional to the displacement x of the mas:
(see Figure 2.1). If the addition, the mass is considered to
move in a medium which exerts a resistance proportional to the
"velocity (a viscous damping force), the equation of motion is

mx+cx+kx=o0 . (2.1)

Where m, ¢ and k are the mass damper and spring constant of the

°

mechanical system respectively.
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Equation (2.1), being a homogeneous second-order different-

ial equation, can be solved by assuming a solution of the form

x = eSt L (2.2)
where s is a constant to be determined. Upon substitution of
equation (2.2) into equation (2.1), we obtain the following
equation

c K
(s2 + W +T) est = o (2.3)

Equation (2.3) is satisfied for all values of t if and only if

k
S +ms+m=o (zoL{')
Equation (2.4), which is known as the characteristic equat-

ion, has two roots

¢ +, C_ 2 5
51’2 =_'2—m— - (Zln) - m (2.5)

and hence the general solut.on for the damped free vibration as

described by equation (2.1) is
X = AeSTt 4 ge S2t (2.6)

Where A and B are arbitrary constants depending on how the motion

is started. The behavior of the damped system of Figure (2.1)

. depends on the numerical value of the radical of equation (2.5).
Consider now tne hotion whj#h results when an external force

F (t) depending only on the time is-applied to the previous dis-

cuss free vibration system (Figure 2.2). The force F(t) may be

harmonic, nonharmonic, or random. The equation of motion is then

the nonhomogeneous linear differential equation

mx + cx + kx = F(t) ' (2.7)

For most practical purposes F (t) is a periodic harmonic function.
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Let's assume F (t) to be a simple harmonic function given by

F(t) =?sin ot (2.8)
in which P is amplitude and Wis the circular frequency. The

solution of equation (2.7) is -

X =X, + Xp (2.9)
where

X. = the compTementary solution
= A651t 4+ Beszt
The particular solution
Psin {(dt - 9)

(k - m8) + (cw)?

><
o
i

The complementary solution is the free-vibration component, and
the particular solution represents the forced-vibration part of
the motion. The complete motion consists of the sum of these

two parts.
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_CHAPTER 11
NONLINEAR VIBRATIONS
Linear system analysis serves to explain much of the behavior

of

oscillatory systéms; However, there are a number of oscillatory
phenomena which cannot be predicted or explained by the linear
theory. In the linear system, cause and effect are related line-
arly. In a nonlinear system, this relationship between cause and
effect is no longer proportionaii For example, the center of an
oil can may move proportionally tolthe force for small loads, bhut
at a certain critical load it wi]i snap over to a large displace-
ment. The same phenomenom is also encountered in the buckling of
éolumns, electrical oscil]afions of circuits containing inductance
with an iron core, and vibration of mechanical systems with non-
linear restoring forces. |
For the single-degree~of-freedom nonlinear system (Figure
.3.1), the general form of the equation is
mx + f{x, x, t) = F(t) (3.1)

Such equations are distinguished from 1inear equations in that

the principle of superposition does not hold for their solution.
The general method for the exact solution of nonlinear dif-

ferential equations is a yet known. Exact solutions which are

known are relatively few, and a large part of the progress in the
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knowledge of nonlinear systems comes from approximate and graph-
cical éo]utions, and from sfﬁdies made on machine computers.
Efforts in the search for.exaét solutions of nonlinear
equations havé led to a number of analytical techniques yield-
ing approximate solutions. Some analytical techniques include
the perturbation method, and the jump phenomenon. In particular,
iteration and perturbation can be applied to obtain directly
the solutions of d}fferentiai EQUations. These methods can also
be applied more indirectliy as a meaﬁs of determining the coeffi-
cients of the Fourier series developments of the solutions.
Before the advent of the glectronic computer, neariy all
non-linear differential equatién were solved analytically. This
usaully required analytic simplification to the point where the
answers had only a remote connection with the original problem.
However, today with the use of the computer, many numerical
methods have been developed to solve nonlinear vibration problems.
These numerical methods inc]ude Euler's, Euler's modified, Runge-
Kutta, Milne's, andﬂHamming‘s methods. The methods will vary in
complexity. The following chapter will compare the numerical

solution of a viration system with the true solution.
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. CHAPTER 1V

COMPUTER TECHN{QUES .IN
VIBRATION ANALYS!S

Modern computer technology. has provided a number of power-

ful tools for the vibration aralyst. The tools that now permit

not only the rapid and convenient solution to vibration pro-

biems but also the analysis of highly complex vibratory systems

may be grouped in three broad categories: circuits constructed

from electrical analogies, and analog computer, and the digital

computer.

The analogous behavior for electric circuits and mass-elastic

systems has been recognized for many years. The vibratory be-

havior of complex mechanical system may be analyzed by series

and parallel combinations of resisfors, capacitors, and inductors.

Systems imputs and responses in the form of voltages or currents

can be easily obtained and analyzed. For example, a simple

spring-mass-damper system may be represented by a series resis-

tance, inductance, and capacitance circuit, where the force

excitation is represented by an imput voltage, and the velocity

of

the mass is observed by monitoring the current. This system
elements, where inductance is analogous to mass, resistance
analogous to vikscous damping, and capacitance is analogous
the inverse of stiffness, ig called a force-voltage analogy.

is also possible to utilize a parallel electric circuit, in
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this case, it is termed a force-current analogy. After some
experience'in dealing with analogous quantities, it is possible
to construct extremely Complek electric networks to stimulate
such mechanical systems as gear train automobile suspensions,
structures, and almost any éystem defined by linear differential
equations.

There is, however, one.fundamental drawback to the utiliza-
tion of analogies for the soiution of vibration problems. The
lTimitation is primarily that an analogy provides a very special
computer which will solve only the given physical case at hand.
If one wishes to add springs or chénge the number of masses,
expand the system into more degrees of freedom, or make any other
modification in the configuration of the system, it is necessary
to construct a new analogoué circuit.

The general-purpose analog computer is a device that is
naturally suited for the study of the dynamic behavior of any
vibratory system. This computer can be described as a machine
consisting of elements which, when properly coupled together,
may be used to solve differehtial equations or sets of diff-
erential equations. All variable are represented by voltages,
as well as system outputs or }esponses. The behavior of a
system may be observed and the data recorded by using oscill=

oscopes and electromechanical recorders. The accuracy'by the
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precision of the components which make up the computer and the
ability to measure voltages-accurately. Most modern commercial
computers are, however, capable 9f~providing result sufficiently
accurate for engineering analysis and synthesis.

While the analog computer is extremely useful for analyzing
most vibratory systems, it has particular value in the study of
nonlinear systems. The outstanding flexibility of analog equip-
ment is a result of modern technology and the development of
simple-to~-use nonlinear fuﬁctién—geheration components. Linear
systems are defined by linear differential equations, and many
classic solutions are available to the analyst. The principal
of superposition for linear ana&ysis provides a degree of c¢rgan-
ized general solution that is not possible in nonlinear-problem
analysis. Thus, an analog simuiation of a nonlinear problem
may be the only practical engineering approach.

The digital computer is also very useful in vibration
analysis. 1t may be used simply as a means for evaluating the
response of a system for a wide variety of system parameters.

In some instances an engineer may wish to know the effects of
changing certain design parameters on the behavior of a system,
which necessitates the solving of the problem many times witﬁ
different set of data.

Many equations in engineering probiems, even though they
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can be solved analytically in ciosed form, require a great deai
of tiresome and time-consuming work which can be e]imingted

by programming the equations to a digitel computer. Other equa-
tions cannot be solved analyticaliy, and, although their appro-
ximate solution may be obtained by various numerical methods,
these often involve large number of calculations which are time-
consuming when performea manually. A digital computer can be em-
ployed to perform the large nuﬁbér of calculations require,

and, since they are executed at tremendous speeds, solutions are

obtained quickly as well as accurately.



CHAPTER V
NUMER {CAL TECHNIQUE

It is frequentliy necessary to solve sets of simultaneous
first-order differential equatfons in analyzing engineering sy-
stems., Such eguations occur in obtaining solutions of higheyr-
order differential equations which are transformed to sets of
the solution process. Runge-Kutta methods are well-suited for
the solution of higher-order differential egquations.

An nth-order differential equation can be solved by trans-
forming the equation to a set of N simultaneous first-order dif-
ferential equations and applying N Rung-Kutta formulas,

Consider the second-order differential equation

¢Zx = £ (t, x, dx) (5-1)
.2 dt

Letting v = dx, equation (5-1) can be transformed to the 2 first
dt
order differential equations

flt,x,v)

dv
d

[

dx = v (5-2)

dt
The following 2 fourth-order Runge-Kutta formulas could be

used to solve equation (5-2)
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Where

and

whera

where

Vitl = v; &y Ky + 2¢, + 2K3 + Ky) (5-3)
U ) f e, Xis v
2= ) £ (4 A, x; Al vix ki
2 2
K3 = (at) ¢ (t;, +a¢ Xitgl oy, + K2) (5-4)
2, .2, 2
k#- (at) £ ( t, +ac, i *oa3, v, + K3)
Xitg i /6 (q; + 2qp + 393 + q4) (5-5)
91 = (At) vi
g2 = (At) (v; + k1)
2
3= (at) (v, . k2)
(5-6)
9% = (at) (v, + k)

P2 X,’ Vi)
K2 = (at) ¢ (¢ + a¢, M LE, oy, TR (-9
2 2
5= ) 5 (e, PAE N+ g, FALK, v 4 g
2 2 4
Kk =

= (8t) £ (t; +4¢, it (At) y, +%k2, Vi Ks)



The Runge-Kutta methods are very useful in the solution
of nonlinear vibration systems. A series of computer srograms
were ran on the digital computer-iBM/1401 at Prairic Vicw A.
and M. College and the 1BM/360 at Texas A. and M. applying the

Runge~-Kutta method to the solution of the following nonlincar

system:
X + 24wy % _ 20,2 tan ( 3.1hx ) = F (t) (5-9)
3.14 2D
where

A = damping coefficeint

«Wn = natural frequeﬁcy
D = displacement
F (t) = 1940 El Centro Earthguake NS

Component Excitation

Equation (5-9) can be solved by the use of the computer program
in the Appendix.

The nonlinear vibration system was analyze with & =0.01,‘
D = 15 inches andw varing ffoﬁ 2.0 to 10.0 rad/sec. The data
obtained from the numerical solution are plotted as shown in
(Figure 5.4 to 5.8). It was observed that as the natural fre-
quency of the spring-mass system was increased the period of
oscillation decreased. Also the amplitude of the vibration
tends to decease since the stiffness of the spring is a funct-
ion of the natural frequency. When Q)n = 6.0, the amplitude of

the oscillation increased slightly. This phenomena may be due

Y
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to the fact that the natural frequency of the system corresponded
to the frequency of the excitation force F(t).

A similar computer program was ran on the {BM/1401 to deter-
mine the accuracy of the Runge-Kutta method. The Runge-Kutta
method was applied to aAlinear vibration system shown in Figure
5.1 A computer program is furnished in the Appendix. The data
obtained from the numerfca] solution are plotted in graphical
from in Figure (5.2) and Figure (5.3). A comparison of the Num-
erical sojution and true solution is given in Table 1 and Table
2, For small step size (At), the solution computed by the Rungei
Kutta fourth-order method is extremely accurate. The tryncation

error increases with increasing step size.
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CHAPTER 1V
CONCLUS 10N
it has been shown that soiutéon of a vibratory system

can be obtained through the application of numerical methods
to digital computers. Today, application of computer tech-
niques in the field of vibration analysis is becoming more
widespread. Engineering methods and techniques have changed
considerable during the past decade, as a result of the ex-
tensive Qse of highspeed computers in the solution of vibrat-
ion problems. Therefore, it is essential for the modern vibrat-
ion analysis to be familiar with the numerical methods used in

programming problems on the computers, as well as the mathemat-

ical analysis involved,
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TABLE !
COMPARISON OF NUMERICAL AND TURE

SOLUTION OF A VIBRATION SYSTEM

Numerical True
Solution Solution
Time Error
sec inch inch
Displacement Displacement
0.5 1.8668234 1.8792000 .0123766
1.0 0.8458096 0.8571000 .0112904
1.5 0.3832145A 0.3910000 .0077855
2.0 - ‘0.1736246 0.1783000 . 0046754
2.5 0.0786648 0008]30QO .0026352
3.0 0.0356410 0.0371000 .0014590
3.5 0.016}480 | 0,0162000 . 0007520
4.0 0.0073]53 0.0077000 .0003837
L,5 0.0033348 - 0.0035000 .0001852
5.0 0.0015019  ” 0.0016000 .0009810




TABLE 2
COMPARISON OF NUMER!CAL AND TRUE

SOLUTION OF A VIBRATION SYSTEM

Numerical True
Time Solution ' Solution Error
inch/sec inch/sec
sec Velocity Velocity
0.5 -2.9559260 ‘ -2.9556557 .0002703
1.0 -1.3392533 | -1.3481328 .0036790
1.5 -0.6067814 ' -0.6149099 .0081285
2.0 -0.2749170 . NN -0.2804725 . 0055555
2.5 -0.1245578 ' -0.1279290 .0033712
3.0 ' -0.0564339 . ' -0.0583509 ,0019170
3.5 -0.0255688 -=0.0266150 .0010462
4.0 -0.0115845 | -0.0121396 . 0005551
4.5 -0.0052487 | -0.0055371 000288k
5.0 -0.,0023780 -0.0025256 .0001476
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