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CHAPTER I

INTRODUCTION AND OBJECT



Preface

Two students' investigative papers are including in this

report. One paper is on "STATISTICAL METHOD OF DETERMINING YIELD

STRENGTH IN MILD STEEL RODS" by Mr. Thomas E. Hadnot, a major in

Civil Engineering. This paper discusses the probability distribution

of yield strength for mild steel. For the purpose of obtaining

sufficient data for statistical analysis, tensil experiment was

conducted for 50 cold rolled and 38 hot rolled m i l d steel rods.

The yield strength distribution of mild steel is assumed to follow

normal or lognormal laws. Based on 95 percent condidence level,

chi-square, kolmogro-Srriirnov and goodness-of-fit methods are

used to test the normality or lognormality of experiment results.

The other paper is on "VIBRATION ANALYSIS OF MECHANICAL SYSTEMS"

by Mr. Sanders Marshall, a Mechanical Engineering major. The

emphasis of this paper is on the application of numerical techniques

to solve mechanical vibration problems. As an example, a non- '/

linear dash-pot-speing system subjected to seismic excitation are

analyzed by using fourth-order Runge-Kutta integrated method and

the aid of IBM 360-65 Computer.

This undergraduate research was supported by NASA under

contract NCR-0*f4-03 3-002, and was conducted at School of Engineer-
\

ing of which Mr. A. E. Greaux is the Dean. :Thanks are due to

Miss Josephine Chisom for her excellent typing.



Introduction

It is common practice today in structural design offices

to pick up a value for the strength properties of materials

from specificat ion., The materials have been tested and the

strength property value published is a true representation

of the population of the materials tested. However, it cannot

be said that this value is a true representation of the same

material that w i l l be made in the future even though it is

made by the same manufacturer.

Statistical research provides a means for determining,

with a certain level of confidence, the strength properties

as well as other vital information that is of paramount

importance to a design engineer. For instance, an engineer

designs a structure with a factor of safety of 2 and exist-
-!

ing strength properties of the material. Does he know, in

fact, that this w i l l be a safe structure? No. He has to

perform certain tes't on the material himself. Then, by

using the value that he gets from his experiments, and the

value that he receives from the manufacturer, he can make a

comparison and decide whether or not the manufacturer is

supplying him with good or bad material» Then and only then
%

w i l l he know that it is safe to go ahead and build the

structure.



This problem of testing material involves a very important'

function of statistics statistical inference.' There is no

way to measure the- average yield strength of a group of

structural steel rods unless they were tested individually.

Of course, if that were done, the average yield strenght of

that group of rods could be obtained but the rods would be

useless. They certainly could not be used after they have

been ruptured. This would, of course, require another group

of rods, but they could not be used because the average

yield strength would not be known. Through, experimentation

and statistical inferences, however, a decision can be made

about the population of steel rods from the experimental

results of the sample tested.

As one can see this is not a new type of experiment.

Experiments of this type are conducted almost daily on a

small scale. It is not limited to any one type of material.

For instance, there has been statistical research done to

determine the crushing strength of concrete cubes, the

breaking strength of steel mesh wire, and of course, the

yield force of different types of steel bars, and they all

have been effective.

Object

The object of this investigative paper is concerned

with the yield strength commonly referred to as the

Samuel B. Richmond, Statistical Analysis (New York:
The Ronald Press Company, 1964), p. k.



measure of the elastic strength of materials of m i l d stru

tural steel. By using statistical methods a study of the

variation of the yield strength of each individual rod, and

uncertainty of the value of the yield strength as well as

other variations and uncertainties can be made.

The yield strength of cold rolled steel rods and hot

rolled steel rods are studied in order to determine the

probability model that best suit the distribution.



CHAPTER I

THEORY



Sampling

In order to make inferences about the population, a sample

from that population has to be taken and examined. Often

times it is too costly, too time consuming, or impossible to
i '

examine the complete population. Also, the inspection process

may be destructive, in which case sampling inspection is the
f\

only possible technique. As is the case with this investi-

gation, the inspection process would be destructive because

each individual rod would have to be stretched to its yield

and there would be none left for use.

Therefore it is generally recognized that the reason for

taking samples is one of the following: (1) Due to limita-

tions of time, money, or personnel, it is impossible to

study every item in the population; (2) the population, as

defined, may not physically exist; (3) to examine an item

may require that the item be destroyed.3

In statistical research it is important to know whether

a sample or a complete population is being investigated. A

population can consist of many samples; however, a sample

2|bid.. p. 32k.

Bernard Ostle., Statistics in Research (Ames, Iowa;
The Iowa State University Press, 1963). p. kk.



cannot be a population. The concept of a sample as opposed

to a population is very important. A sample is defined as

a part of a population selected by some rule or plan and the

important things to know are: (1) that we are dealing with a

sample and (2) which population has been sampled.

On.the other hand a population is defined as the

totality of all possible values (measurements or counts) of a

particular characteristic for a specified group of objects.

It is not general in engineering that a complete population

is investigated.

A sample can be taken f.rom different population in

various ways. Samples selected according to some chance

mechanism are known as probability samples if every item in

the population has a known probability of being in the

sample.' The accuracy of the results obtained from a
o

specified sample cannot really be judged. That is to say

that it is not known how accurate an estimate is rather the

precision of the estimating technique.

By use of statistical inference, decisions can be made
t •

about the population and be right some known proportion of

**»bid.. p. 45.

5|bid.. p. 45.

6lbid.. p. 44.

?lbid.. p. 45)
Q

Samuel B. Richmond, Statistical Analysis (New York:
The Ronald Press Company, 1964), p. 325.



the time, and on the other hand be wrong some proportion of

the time. For instance, with a 5 percent level of signifi-

cance a decision can be made that would be right in 95 per-

cent of the time in estimating population boundaries. By

the same token 5 percent of the decisions would be wrong.

The 5 percent error is unaviodable because there has to be

some degree of error. In the final, analysis the goodness or

badness of the sample is determined by the way that the

sample was obtained.

Statistical inference and the formulas for standard error

that w i l l be used in this experiment is based upon simple

random sampling in which each item of the population or

subpopulation has an equal chance of being in the sample.

After the sample has been selected, tested, and the data

calculated, the distribution curve for the mild structural

steel rods in this experiment was assumed.

Normal Distribution..

Computation of probabilities are based on probabilistic

models which have been proposed to describe the probabilistic
Q

behavior of certain physical variables. The engineer uses

his sense of practicality from observations or studies

theory to propose a probability model usch as the normal, or

lognormal distribution which are the distributions proposed

for this experiment. In another situation, for the sake of

convenience, a distribution is selected because it is

^Wilson, H. C. Tang, Notes on Statistical Inferences
(Urbana, Illinois: University of Illinois, 1970), p. 1.



believed to be a sat isfactory . descr i pt ion of the phenomenon*

In both cases the parameters of the distribution has to be

evaluated to find out whether the sample is representative

of the characteristics of the population from which the sample

has been taken; or when the characteristics are unknown,

through observations and collection of data, the parameters

can be estimated and a decision can be made as to the goodness

or badness of the research made.

The normal distribution as proposed in this experiment

is generally used for populations whose members are measured

for some characteristic such as height or yield. The

variable flows without a break from one member to the next;

it is continuous with no l i m i t to the number of members with

1 2different measurements. It should be made clear, however,

that the variables could be distributed in other ways too.

The normal distribution is one of the oldest of statis-

tical inference probability jnodels. Its equation was

published as early as 1733 by DeMoivre.

The equation of the distribution is

Where: p is the probability
x is the random variable

s the means given by the equation

I0lbid.. p. 1.
i •

'George W. Snedecor, Statistical Methods (Ames, Iowa:
The Iowa State University Press, 1956), p. 35.

12lbid.. p. 35



Where: f is the frequency
x is the random variable

O" is the standard deviation given by
the equation

cr-

The normal distribution curve is shown in figure 2.1

Fig. 2.1 Normal distribution curve

10



The Logarithmic Normal Law

A random variable x has a logarithmic normal probability

distribution if In x (the natural, logarithm of x) has a

normal probability distribution. In this case, the density

function of x is,

X r* / "y tt A 2 **r J
**̂  a 4$ I If CT

Where x~ = .E(ln.x) and ^ _ . t . . are respectively,
' SJ(/*

the mean and standard deviation of In x.

Examples of lognormal density function are shown in

f igure 2.2

.10

.0$

|0

Fig. 2.2 Lognormal Density Functions

In view of the facility for the calculation of pro-

babilities of lognormal random variables, and also because

the values of the random variable is limited on the left,

the logarithmic normal distribution is useful in many

14practical applications.

^'Alfredo, H. S. Ang, and Mohammed Amin, Probabi1i stic
Structural Mechanics and Engineering (Urbana, 111.: Univer-
sity of I l l i n o i s , 1970), p. 77.

l4lbid., p. 79.

11



Chi-Square Test

"A problem that arises frequently in sta-
tistics is the testing of the compatibility of
a set of observed and theoretical frequencies. -
If a theoretical distribution function has been
fitted to an empirical distribution the question
whether the fit is satisfactory naturally
arises. . . . It is usually assumed that the
data from a normal population and that the fitted
normal curve is an approximation of the popula-
tion distribution. Thus, the question whether
the fit is satisfactory in this case can be
answered only if one knows what sort of histo-
grams w i l l be obtained in random samples, from a
normal populat ion."15 "' "-

The chi-square test is one of the methods of testing the

goodness of fit for distribution. It involves the comparison
-.

of observed frequencies with expected frequencies. Using the

chi-square test, the test of different kinds of hypotheses

about frequencies can be made. A comparison of observed

frequencies with theoretical or expected frequencies, and a

comparison of two or more sets of observed frequencies can

be made with the chi-square test in order to determine

whether the difference among the two sets of frequencies

are significant; that is, whether the observed differences

are too great to be attributable to chance.

The general procedure for chi-square test is:

(1) The expected or theoretical frequency
is calculated.

^Wilson, H. C. Tang, Notes on Statistical Inferences
(Urbana, Illinois: University pf Illinois,1970), p. 50.

Richmond, Samuel B., Statistical Analysis (New York:
The Ronold Press Company, 196U), p. 280.

12



(2) The sample observed frequency is obtained.

(3) The frequencies are compared by computing
chi-square which depends upon the dif-
ferences between the corresponding
frequencies.

(4) The value is compared with the known
theoretical distribution of chi-square to
determine whether the value of chi-square
is significantly different from 0.

The computed value for chi-square is designated by the

Greek symbol % = X( °'" *' )

Where: 0. is the observed frequency

e. is the computed (expected or theoretical)
frequency

Kolmogorov-Smirnov Test

Another test designed to test the goodness-of-fit for

proposed distribution function' is the kolmogorov-smirnov

test. It was named for the two Russian mathematicians

whose names are attached to it. It is said to be a more

powerful test than the chi-square test and its uses is

encouraged. ' It proceeds as follows:

(1) Let F(x) be the completely specified theoretical
cumulative distribution function under the null
hypothesis.

(2) Let Sn(x) be the sample c.d.f. basen on jn
observations. For any observed x_, Sn(x) = J<
where k is the number of observations less n
than or equal to x_

'Bernard, Ostle, Statistics in Research (Ames, Iowa:
The Iowa State University Press, 1963), p. 471.

13



(3) Determine the maximum deviation, 0, defined by

D = max ' [ F(x) - Sn (x) ]

(k) If, for the chosen significance level, the
observed value of D is greater than or equal
to the critical value taken from the
kolmogorov-smirnov goodness-of-fit table,
the hypothesis w i l l be rejected.
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Procedure

With the aforementioned principles and theories of sta-

tistics in mind the experiment was conducted in the follow-

ing manner:

(1) A sample of 50 cold rolled steel rods was
selected at random; a sample of 38 hot
rolled steel rods was selected at random.

(2) These two samples were tested, at different
times, using the universal testing machine
for the yield strength. With the aid of an
extensometer used in conjunction with the
aforementioned equipment and the Baldwin
Microformer autographic stress-strain
recorder, a copy of the stress-strain diagram
was achieved for each specimen tested. The
extensometer was attached di'rectly to the
speciman which were round steel rods with a
.505 inch diameter. The gage length of the
extensometer is 2 inches and the measuring
range is 0.040 inches.

(3) The yield strength of .2 percent offset was
then calculated for each individual speciman.

(4) The data collected was then grouped, charted
and graphed as applicable.

.(5) A normal distribution probability model was
proposed, calculated, and charted.

(6) A lognormal distribution was graphed and the
theoretical frequency calculated.

(7) The chi-square test and the Kolmogrov-Smirnov
Test were applied to determine the goodness-
of-fit of the normal and lognormal distri-
bution curves'.

(8) Inferences and conclusions were drawn from
the applied theories of statistics.

16



Experimental Results

DATA

62406

62906

. 62406

61907

60909

59910

64903

59910

64903

61408

60909

62906

61250

63405

63405

62906

64903

TABLE 3.1 - YIELD STRENGTH
(COLD ROLLED STEEL RODS)

58912

62906

61158

62656

64903

62656

62406

62356

• 63656

58912

57913

64403

62656

62906

60909

62906

58412

(PSI)

64903

57913

65903

65903

62406

59910

62906

62906

59910

59910

64903

59910

58912

62406

64903

57913

17



DATA

TABLE 3.2 - TALLY SHEET .FOR DATA OF TABLE 3.1
(COLD ROLLED STEEL RODS)

YIELD
STRENGTH

57913

58412

58912

59910

60909

61158

61408

61907

62356

62406

62656

62906

63405

63656

64403

64903

TALLY

1 1 1

1

11

TW-i 1

1 1 1

11

1

1

1

~M44.

I l l

-H40. Ill

1 1

1

1

TW 1 1 1 1

FREQUENCY

3

1

2

6

3

2

1

1

1

5

3

8 .

2

1

1

9

18
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DATA

•TABLE 3.4 - CLASS INTERVALS AND POINTS
FOR NORMAL DISTRIBUTION CURVE

(Cold Rolled Steel Rods)

CLASS INTERVAL , NORMAL DISTRIBUTION *LQGNORMAL f

57.5 . 0.0246 0.08

58.5 0.0569 0.05

59.5 .0.1054 0.06

60.5 '" 0.1565 0.10

61.5 0-.1860 0.15

62.5 0.1772 0.20

63.5 0.1352 0.36

64.5 . 0.0826 0

Normal distribution equation

-'•Lognormal values taken from lognormal curve. Fig. 3.2

20



(Ct>1d Rolled Steel Rods)

Calculations for chi-square test for goodness-of-f it

Where: o; = observed frequency

e. = expected or theoretical frequency

(1). Normal

= (.06 - .0246)2 + (.08 - .0569)2 + (.12 - .1054)2

.0246 .0569

+(.06 - .1565)2 + (.08 - .i860)2 + (.34 - .1772)2

.1565 .I860 .1772

+(.06 - .1352)2 + (.20 - .0826)2

.1352 .0826

(50) = 27.02

(2). Lognormal

2 = (.08 - .0246)2 + (.05 - .0569)2 + (.06 - .1054)2
.0246 .0569 .1054

+ (.10 - .15&5)2 + (.15 - .i860)2 + (.20 - .177D2

.1565 .i860 .1771

+(.36 - .1352)2 + ( 0 - .0826)2

,1352 .0826

y? = .6320 (50) =31.6o'

21
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14

12

o" 10

8

6

4

2

0

D"

.36

.32

.28

.24

.20

.16 ~
C£.

.12

.08

.04

57-5 58.5 59.5 60.5 61.5 62.5 63.5 64.5

Yield Strength Interval

Figure 3.1 Frequency histogram and normal distribution
curve plotted from Table 3.3.
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1 .0

.8

.6

.2

57.5 58.5 59.5 60.5 61..5 62.5 63-5 64.5

Yield Strength Intervals

Figure 3-3 Sample and Theoretical Cumulative

Distribution Functions



DATA

TABLE 3.la - YIELD STRENGTH (PS I)
(Hot Rolled Steel Rods)

39940

42436

41937

39940

40439

41937

42436

39940

42436

42436

42436

40939

39940

39940

41187

39940

41937

39940

39940

41937

41687

42436

42936

42686

42436

42187

39940

41438

39441

42187

37943

42187

36994

37444

39940

37444

37444

37444

___ —

25



DATA

TABLE 3.2a - TALLY SHEET FOR DATA OF TABLE 3-la
(Hot Rolled Steel Rods)

Yield
STRENGTH

36994

37444

37943

39441

39940

40439

40939

41187

41438

41687

41937

42187

42436

42686

42936

TALLY

1

1 1 1 1

1

1

•H4J t-H-J-

1

1

1

1

1

mi

1 1 1

-H-W 11

i

i

FREQUENCY

1

4

1

1

10

1

1

1

1

1

4

3

7

1

1

26



TABLE 3.3a - FREQUENCY DISTRIBUTION AND
CALCULATION OF w, s2, AND s

(Hot Rolled Steel Rods)

AT
LEAST

36

37

38

39

40

41

42

X

BUT LESS
THAN

37
!

38

39

40

41

42

43

f

1

5

0

11

2

7

12

38

r . f .

.03

.13

0

.29

.05

.18

.32

1.00

X

36.5

37.5

38.5

39.5

40.5

41.5

42/5

fx

36.5

187.5

0

434.5

81 .0

290.5
510.0

1540.0

x - x

-4.03

-3.03

-2.03

-1.03

-0/03

.97

1.97

(x - x)2 .

16.24

9.18

4.12 '

1.06

.001

.94 '.

3.88

f(x - x)2

16.24

45.90

0

11.66

.002

6.58

46.56

126.94

38
= 4.0.53

2

126.5.4
38

_ -"



DATA •

TABLE 3.4a - CLASS INTERVALS
AND POINTS FOR NORMAL DISTRIBUTION CURVE

(Hot Rolled Steel Rods)

Class Interval -- Normal Distribution *Lognormal f

36.5 ,0.0193 0.04

37.5 • 0.0554 0.04

38.5 0.1178 0.07

39.5 ' 0.1861 0.14

40.5 0.2180 0.23

41.5 0.1894 0.48

42.5 0.1221

Normal Distribution Equation

Pi*)*

"Lognormal values taken from lognormal curve. Fig. 3-2a

28



(Hot Rolled Steel Rods)

Calculations for chi-square test for goodness-of-fit

Where; Oj is the observed frequency

e| is the expected or theoretical frequency

(1). Normal '
P- = (.03 - .0193) + ( .13 - .0554r + ( 0 - .1I78) 2

.0193 . .0554 .1178

+ (.29 - .i8602 + (.05 - .2180)2 + ( .18 - 1894)2

.1861 .2180 .189^
vy

+ (.32 - . 1221) 2 f£ = .7330x(38) = 27.85

(2) . Loanormal , ,,
^ = (.0^ - .0193)2 + (.0^ - .055^) + (.07 - .1178) 2

.0193 .055^+ .1778

+ (.1^ - .1861)2 + (.23 - .2180)2 + (.48 - .
.1861 " .2180 .1894

+ ( 0 - .1221) 2 X2 = .6260 x(38) = 23.79
. 1221

29
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Figure 3.la Frequency histogram and normal
distribution curve plotted
from Table 3.3a
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cr
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Figure 3.2a. Lognormal distribution curve
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Figure 3.3a. Sample and Theoretical Cumulative
Distribution Functions
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Analyzing the data

The hypothesis is that the distribution of the samples

tested follows the normal or lognormal probability model.
\

This hypothesis w i l l be accepted with a 95 percent level

of confidence if the area under tne'normal curve between

M. - f-1 & & anc' *&£ -f" /. ?£ O* consists of 95 percent of the

sample tested.

The 95 percent level of confidence means that if other

samples of the population were tested one could be sure

that 95 percent of the time the mean of the sample would

lie in the interval ^f + /.9& ^ and that only 5 percent

of the samples tested would lie outside that range.

After the normal distribution curve has been fitted

to the histogram of frequencies, a test as to the goodness-

of-fit of the normal distribution or lognormal distri-

bution, as is the case here, w i l l be performed. This test

w i l l enable the analyst to decide whether the sample may

be regarded as a random sample from a population with a

normal or lognormal distribution. The two tests used to

test the goodness-of-fit or the proposed distribution are:

(1) the Chi-Square test, and (2) the Kolmogorov-Smirnov

test.
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CHAPTER IV

DISCUSSION AND CONCLUSION



D i scuss ion

This experiment was designed very carefully as to the

kind of sampling to be used, the hypothesised distribution,

and the kinds of tests that were to be used to test the

v a l i d i t y of the hypothesis. ,

A statistical hypothesis is a statement made about

the population and it is tested to give the facts collected

about the sample a chance to discredit it. If the sample

data does, in fact, discredit the hypothesis, the hypothesis

w i l l be rejected and considered as false. On the other

hand, if the sample, data does not discredit the hypothesis,

the hypothesis w i l l be accepted and.considered as true.

The statistical inferences and results of this experi-

ment are based upon the simple random sampling theory.

The 50 cold rolled steel rods and the 38 hot rolled steel

rods used in this experiment were assumed to be picked up

according to that theory. It is believed that this kind

of sampling would best represent the way that the manu-

facturer or engineer would select his material as he would

begin to sell or build a structure.

Since the normal and lognormal distributions are

generally used to describe the distribution of the yield
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strength of cast iron, the distribution of the data collected

from this experiment for the yield strength of cold rolled

and hot rolled steel w i l l be assumed to follow these two

probab i1i ty 1aws.

To test the assumption of normality and lognormality

the chi-square test and the kolmogorov-smirnov test for

goodness-of-fit based on a 95 percent level of confidence

were used.

Conclus ion

The hypothesis that the distributions of yi e l d strength

of cold rolled and hot rolled steel rods are a normal and

lognormal distribution must be rejected based on the

following reasons.

l). The normal curve with,&£ = 61.78 and Q- =2.126

as shown in Figure 3.1, and the normal curve with <J"=:/.g3

and jU-=4-oft$2 as shown in Figure 3.la were examined

by use of the chi-square test. The lognormal curve in

Figure 3.2 and 3.2a were also examined by the chi-square

test.

The calculated values for chi-square by using the

observed and theoretical frequencies were calculated to be

27.02 for the normal distribution and 31.60 for the log-

normal distribution for cold rolled steel rods and 27.85

for the normal distribution and 23.79 for the lognormal

distribution for hot rolled steel rods respectively. All
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of these values for chi-square are above the acceptable

values of X2.05 = 11.07 and X2.05 = 9.49 for a 5 percent

level of significance or a 95 percent level of confidence

for cold rolled and hot rolled steel rods respectively.

Therefore, according to the"chi-square test for goodness-

of-fit of the hypothesis has to be rejected.

2). According to the theory of the Kolmogorov-

Smirnov test for goodness-of-fit, the hypothesis should

be rejected if the maximum vertical distance between the

cumulative distribution of the yield strength of the

sample and that of the proposed. ;d istri but ion exceeds the

c\
value taken from the table of critical values for £) in

the Kolmogorov-Smi rnov test for oC percent levle of

s i gn i fi cance.

From Figure 3.3 it can. be found that the maximum

vertical distance between the cumulative distribution

and the proposed distribution .for the cold rolled steel

sample is .22 for the normal and .20 for the lognormal.

Also from Figure 3-3a the maximum vertical distance

between the cumulative distribution and the proposed

distribution for the hot rolled steel sample is .27 for

the normal and .27 for the lognormal distributions.

The critical values are. D'P§ = .19 for cold rolled

steel rods and D'9 = .22 for hot rolled steel rods.
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Since the observed D values are greater than the critical

values, the hypothesis has to be rejected.

From all the data collected, in this experiment it can

be concluded that the yield strength of cold rolled and

hot rolled steel rods does not follow the normal or the

lognormal probability models.
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CHAPTER I

INTRODUCTION

The study of vibrations treats the oscillatory motion of

mechanical systems, and the dynamic condition related thereto.

It deals with the behavior of bodies under the influence of oscil-

latory forces. The vibration motion may be of regular form and

repeated continuously, or it may be irregular of a random nature.

Vibrations are accompanied by, or are produced by forces

which vary in an oscillatory manner. Such forces are frequently

produced by unbalance in rotating machines or by the motion of

the body itself. Most machines and engineering structure exper-

ience vibration in differing degrees, and their design generally

requires consideration for their oscillatory behavior.

Although the term "vibration" usually implies a mechanical

oscillation, s i m i l a r conditions prevail in other areas, such as

for alternating electric circuit, electromagnetic waves, and aco-

ustics. The condition may be related in some manner, in different

fields; for example, a mechanical vibration may produce an electric

oscillation or vice versa. The basic principles, analyses, mathe-

matical formulations, and terminology for oscillatory phenomena

are s i m i l a r in the various fields.
*

Oscillatory systems cart be broadly characterized as linear

or non-linear. For linear systems the principle of superposition



holds, and the mathematical techniques available for their

study are well-developed. In contrast, techniques for the

analysis of nonlinear systems are less well known and diffe-

cult to apply. Some knowledge of nonlinear systems is desir-

able since all systems tend to become nonlinear with increas-

ing emplidute of oscillation. Many excellent books (1 to 6)*

are available for study on this subject.

"Numbers within the parenthesis refers to the references
given in Bibliography.



CHAPTER I I

LINEAR VIBRATIONS

Vibration of linear systems fall into two general classes,

free and forced. Free vibration takes place when an elastic sy-

stem vibrates under the action of forces inherent in the system

itself. The system under free vibration w i l l vibrate at one or

more of its natural frequencies, which are properties of the

elastic system.

Vibration that takes place under the excitation of external

forces is called forced vibration. Forced vibration takes place

at the frequency of the exciting force, which is an arbitrary

quantity independent of the natural frequencies of the system.

Perhaps the simplest of a free linear vibration

problem is furnished by a mechanical system consisting of a mass

attached to a spring which.exerts a force (called the restoring

or spring force) proportional to the displacement x of the masr":.

(see Figure 2.1). If the addition, the mass is considered to

move in a medium which exerts a resistance proportional to the

velocity (a viscous damping force), the equation of motion is

m ' x + c x + k x = o (2.1)

Where m, c and k are the mass damper and spring constant of the

«

mechanical system respectively.



Equation (2.1), being a homogeneous second-order different-

ial equation, can be solved by assuming a solution of the form

x = est . (2.2)

where s is a constant to be determined. Upon substitution of

equation (2.2) into equation (2.1), we obtain the following

equat ion
c K

(s2 +,1̂  + m) est = 0 (2.3)

Equation (2.3) is sat isf ied for all values of t if and only if

2 c. k
5 + 0 ^ 5 + 1 1 1 = 0 (2.4)

Equation (2.4), which is known as the characteristic equat-

ion, has two roots

c / c k
slj2 =~2m~ !'/ (2̂ ) 2 - m (2.5)

and hence the general solut.on for the damped free vibration as

described by equation (2.1). is

X = Aeslt + Be s2t (2.6)

Where A and B are arbitrary constants depending on how the motion

is started. The behavior of the damped system of Figure (2.1)

depends on the numerical value of the radical of equation (2.5).

Consider now the motion which results when an external force

F (t) depending only on the time is applied to the previous dis-

cuss free vibration system (Figure 2.2). The force F(t) may be

harmonic, nonharmonic, or random. The equation of motion is then

the nonhomogeneous linear differential equation
\

mx + ex + kx = F(t) (2.7)

For most practical purposes F (t) is a periodic harmonic function.



Let's assume F (t) to be a simple harmonic function given by

F (t) = P sin u) t (2.8)

in which P is amplitude and a) i s the circular frequency. The

solution of equation (2.7) is '

X = Xa + Xb (2.9)

where

X., = the comol ementary solution
3 = Aeslt

= The particular solution
P s-in (#t -9)
(k -

The complementary solution is the free-vibration component, and

the particular solution represents the forced-vibration part of

the motion. The complete motion consists of the sum of these

two parts.



CHAPTER I!I

NONLINEAR VIBRATIONS

Linear system analysis serves to explain much of the behavior

of oscillatory systems. However, there are a number of oscillatory

phenomena which cannot be predicted or explained by the linear

theory. In the linear system, cause and effect are related line-

arly. In a nonlinear system, this relationship between cause and

effect is no longer proportional. For example, the center of an

oil can may move proportionally to the force for small loads, but

at a certain critical load it w i l l snap over to a large displace-

ment. The same phenomenom is also encountered in the buckling of

columns, electrical oscillations of circuits containing inductance

with an iron core, and vibration of mechanical systems with non-

linear restoring forces.

For the single-degree-of-freedom nonlinear system (Figure

3.1), the general form of the equation is

mx + f(x, x, t) = F(t) (3.1)

Such equations are distinguished from linear equations in that

the principle of superposition does not hold for their solution.
/

The general method for the exact solution of nonlinear dif-

ferential equations, is a yet known. Exact solutions which are

known are relatively few, and a large part of the progress in the



knowledge of nonlinear systems comes from approximate and graph-

ical solutions, and from studies made on machine computers.

Efforts in the search for e^act solutions of nonlinear

equations have led to 'a number of analytical techniques yield-

ing approximate solutions. Some analytical techniques include

the perturbation method, and the jump phenomenon. In particular,

iteration and perturbation can be applied to obtain directly

the solutions of differential e'quations. These methods can also

be applied more indirectly as a means of determining the coeffi-

cients of the Fourier series developments of the solutions.

Before the advent of the electronic computer, nearly all

non-linear differential equation were solved analytically. This

usaully required analytic simplification to the point where the

answers had only a remote connection with the original problem.

However, today with the use of the computer, many numerical

methods have been developed to solve nonlinear vibration problems.

These numerical methods include Euler's, Euler's modified, Runge-

Kutta, Milne's, and Hamming's methods. The methods w i l l vary in

complexity. The following chapter w i l l compare the numerical

solution of a viration system with the true solution.



. CHAPTER IV

COMPUTER TECHNIQUES IN
VIBRATION ANALYSIS

Modern computer technology-has provided a number of power-

ful tools for the vibration analyst. The tools that now permit

not only the rapid and convenient solution to vsbration pro-

blems but also the analysis of highly complex vibratory systems

may be grouped in three broad categories: circuits constructed

from electrical analogies, and analog computer, and the digi t a l

computer.

The analogous behavior for electric circuits and mass-elastic

systems has been recognized for many years. The vibratory be-

havior of complex mechanical system may be analyzed by series

and parallel combinations of resistors, capacitors, and inductors.

Systems imputs and responses in the form of voltages or currents

can be easily obtained and analyzed: For example, a simple

spring-mass-damper system may be'represented by a series resis-

tance, inductance, and capacitance circuit, where the force

excitation is represented by an imput voltage, and the velocity

of the mass is observed by monitoring the current. This system

-of elements, where inductance is analogous to mass, resistance

is analogous to vrscous damping, and capacitance is analogous

to the inverse of stiffness, is called a force-voltage analogy.

It is also possible to utilize a parallel electric circuit, in
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this case, it is termed a force-current analogy. After some

experience in dealing with analogous quantities, it is possible

to construct extremely complex electric networks to stimulate

such mechanical systems as gear train automobile suspensions,

structures, and almost any system defined by linear differential

equat ions.

There is, however, one .fundamental drawback to the utiliza-

tion of analogies for the solution of vibration problems. The

limi t a t i o n is primarily that an analogy provides a very special

computer which w i l l solve only the given physical case at hand.

If one wishes to add springs or change the number of masses,

expand the system into more degrees of freedom, or make any other

modification in the configuration of the system, it is necessary

to construct a new analogous circuit.

The general-purpose analog computer is a device that is

naturally suited for the study of'the dynamic behavior of any

vibratory system. This computer can be described as a machine

consisting of elements which, when properly coupled together,

may be used to solve differential equations or sets of diff-

erential equations. All variable are represented by voltages,

as well as system outputs or responses. The behavior of a

system may be observed and the data recorded by using oscill-

oscopes and electromechanical recorders. The accuracy by the
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precision of the components which make up the computer and the

a b i l i t y to measure voltages"accurately. Most modern commercial

computers are, however, capable of providing result sufficiently

accurate for engineering analysis and synthesis.

While the analog computer is extremely useful for analyzing

most vibratory systems, it has particular value in the study of

nonlinear systems. The outstanding f l e x i b i l i t y of analog equip-

ment is a result of modern technology and the development of

simple-to-use nonlinear function-generation components. Linear

systems are defined by linear differential equations, and many

classic solutions are available to the analyst. The principal

of superposition for linear analysis provides a degree of organ-

ized general solution that is not possible in nonlinear-problem

analysis. Thus, an analog simulation of a nonlinear problem

may be the only practical engineering approach.

The d i g i t a l computer is also very useful in vibration

analysis. It may be used simply as a means for evaluating the

response of a system for a wide variety of system parameters.

In some instances an engineer may wish to know the effects of

changing certain design parameters on the behavior of a system,

which necessitates the solving of the problem many times with

different set of data.

Many equations in engineering problems, even though they
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can be solved analytically in closed form, require a great deal

of tiresome and time-consuming work which can be eliminated

by programming the equations to a digital computer. Other equa-

tions cannot be solved analytically, and, although their appro-

ximate solution may be obtained by various numerical methods,

these often involve large number of calculations which are time-

consuming when performed manually. A d i g i t a l computer can be em-

ployed to perform the large number of calculations require,

and, since they are executed at tremendous speeds, solutions are

obtained quickly as well as accurately.
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CHAPTER V

NUMERICAL TECHNIQUE

It is frequently necessary to solve sets of simultaneous

first-order differential equations in analyzing engineering sy-

stems. Such equations occur in obtaining solutions of higher-

order differential equations which are transformed to sets of

the solution process. Runge-Kutta methods are well-suited for

the solution of higher-order differential equations.

An nth-order differential equation can be solved by trans-

forming the equation to a set of N simultaneous first-order dif-

ferential equations and applying N Rung-Kutta formulas.

Consider the second-order differentia] equation

d2x = f (t, x, dx) (5-1)
dt2 dt

Letting v = dx, equation (5-1) can be transformed to the 2 first
dt

order differential equations

dv/ = f (t,x,v)
dt ' '

' .dx = v (5-2)
• dt

The following 2 fourth-order Runge-Kutta formulas could be

.used to solve equation (5-2)
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The Runge-Kutta methods are very useful in the solution

of nonlinear vibration systems. A series of computer programs

were ran on the d i g i t a l computer•IBM/1401 at Prairie Vicw A.

and M. College and the IBM/360^ at Texas A. and M. applying the

Runge-Kutta method to the solution of the following nonlinear

system:

V + 2̂ U)n x _ 2<Jn2D tan ( 3.l4x ) = F (t) (5-9)
3.14. 2D

where

£t = damping coefficeint

k7n = natural frequency

D = displacement

F (t) = 1940 El Centre Earthquake NS
Component Excitation

Equation (5-9) can be solved by the use of the computer .program

i n the Append ix.

The nonlinear vibration system was analyze with /^ =0.01,

D = 15 inches andu)varing from 2.0 to 10.0 rad/sec. The data

obtained from the numerical solution are plotted as shown in

(Figure 5.4 to 5-8). It was observed that as the natural fre-

quency of the spring-mass system was increased the period of

oscillation decreased. Also the amplitude of the vibration

tends to decease since the stiffness of the1 spring is a funct-

ion of the natural frequency. When u) n = 6.0, the amplitude of

the oscillation increased slightly. This phenomena may be due

56



to the fact that the natural frequency of the system corresponded

to the frequency of the excitation force F(t).

A s i m i l a r computer program was ran on the iBM/l^Ol to deter-

mine the accuracy of the Runge-Kutta method. The Runge-Kutta

method was applied to a linear vibration system shown in Figure

5.1 A computer program is furnished in the Appendix. The data

obtained from the numerical solution are plotted in graphical

from in Figure (5.2) and Figure (5-3). A comparison of the Num-

erical solution and true solution is given in Table 1 and Table

2. For small step size (At), the solution computed by the Runge-

Kutta fourth-order method is extremely accurate. The truncation

error increases with increasing step size.
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CHAPTER IV

CONCLUSION

It has been shown that solution of a vibratory system

can be obtained through the application of numerical methods

to d i g i t a l computers. Today, application of computer tech-

niques in the field of vibration analysis is becoming more

widespread. Engineering methods and techniques have changed

considerable during the past decade, as a result of the ex-

tensive use of highspeed computers in the solution of vibrat-

ion problems. Therefore, it is essential for the modern vibrat-

ion analysis to be familiar with the numerical methods used in

programming problems on the computers, as well as the mathemat-

ical analysis involved.
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AFI'i-l^iX - COMPUTER PROGRAMS
l - O K T U A N

FjrUtx-A.Ni Cr/'V i LA f I,/i\ VEK 2 MOC 2
i\c I.-.:.CT K N A . ^ Y
iCP .J fcCV X ; \O I iVL S I Z r = 15999
001 l%.\ I T S r ( ;., i )
Ov,2 i F O i s T - A T ( lh 1 , 26H T I K E D I S P L V E L O C I T Y / )
O^j .<r. •..>[;. ( 1 , 2\ X , X f ; , O E L I v U r P R p T K A X
OCA ? h ^ J - . f ATI ^F 10. C) ' •

C C 6 \ = C .
O C 6 ' y p a = o r p M
OC7 3 AKl = C E L T i f f - ( X , X C )
CGb AN2 = C E L T « - F ( X^JL : L T / 2 . «XD ? XD + AK i /2« )
OC9 AKj = Or . L l « } - ( X + C : I L T / ^ . * ( X D * A K l / 2
CIO A;s',=i;HL T»J- ( X - M J L L T » < XU + A K ^ / 2 . ) ,
Oil ' X = X + CtL I * ( X D - * ( A K 1 - 1 - A K 2 + A K J ) /6« )

CL3 V.= T + 0 £ L T • '
014 IF { T .L f. FPK ) GO- TO 3
C 15 H WA L f i ? ( i» "j ) T, X, XU
C-16 5 F O ^ . V A r t l r , F 6 o 2 , 3 X , F 10« ? ,4X ,F 10,7)
Ui7 ' 1 P i ^ - T . P ; s 4 0 i P R
CIS ' 1 F { T .iff. TMAX) GO TO 6
019 GO fO 3 - •
020 • 6. STCP .:.•
021 ' . ENL ' .

H!Kn;lAV RUN

t i »'. F A AN C C,v •> i L A III! N V c i-; 2 X 0 D . 2
ii\r. cic r ic K - . ^ Y
t C O J E C T .v/ iChliJt: S t Z t = 15999
001 FUNCT1UN F ( X , X D )

u--3 -NC fL:«.\!

OCA fcNL " V
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i ' / V t l v ' A T F T V W JOR ( 10808? PVAM-,*25 ,0o'l , 59) ,» MARSHALL THESIS 4/1'
.| I DIMENSION TT( 5) , AC{ 5) , ACCEL (300)

• ' ? 1 FORMAT ( l "Hf r~26HTIME" DISPL VELOCITY/5
4 ' R F A D f 5 , 2 ) CnEFF t X ? XD ? OEL ' - . -»DTPR ? TMAX,OMEGA

1 5 2 FORMAT $ 7 F 1 0 < > 0 5
: . \ 6 11 = 1
5 7 1 2 = 4 ' ' "
:: P. T c - n

T T ( 5 ) = O o
T P R = H 0

100 RFADf5?9t < T T < I 1 » AC U ) » 1 = 11,' I 2 D
« FORMAT (4.«F6o27 F12,7M

14 _ DFL=P..OJL '_.
15 Jl=2 ,
16 IR=0 - .
17 12=12-1 "" "•
18 DO 110 1=1, 12
19 0! = (TT( I-frD-TT'U.n/OEL ' ""'

2: " ~"CHFCK=ID~ ;

22 IF(CHFCK-DI) 15, 16, 16
23 15 10=10*1 " '•
24 '.ft IF(TT{ i 5 0NEo 00 } GO TO 10 '
25 IF( I 0EQ» 3D GO TO 11 ~ """
26 GO TO 12
'27 10 IF('I oEOo'4) GO TO l"i " ' "'
2« i? TR=IR*IO
29 GO TO 14 . • • • •
30 11 IR=IR-5-IO*l
31 14 ACCF.K J1-1)=AC( I »*0«3864.
32 DO 120 J=J1, !R
33 " 120 ACCFL ( J ? =ACCEL ( J-il"+( AcYlVf j"-ACU j"»*6o"386«/61
34 Jl=ID+Jl . ,
35 110 CONT!N'JF ' v - - - - -
36 IF(TT(5) 0NEo OoKGO TO 90
37 TT« 5)=TT(4) " . " ."
33 __ AC(5)=AC(4_)
39" " 9C TT('l')sTT('5)~
40 AC(U=AC«5J
41 11=2
42 12=5
4^ ^ M1=
44 • N2 = f T *OFLT/_2o )/DEL*l«p

•&5 N 3 = < T + nELTf/OEiViT6 ...... •
= O . E L T * F ( X , XD, COEFF 7 OMFGA ? ACCEL7M1M

47 AK2=OELT*5(X+OELT/2.*XD, XD*AKl/2o» COEFF, OMEGA, ACCELIN2))
48 AK3 = OFLT*F(X*OELT/2«*< XO*AKl/2o )» KO*AK2/2« oCOEFF , OMEGA, ACCEL ( N2 5 5
49 AK4 = DELT*F.(X + OFLT*{Xn*AK2/2. Jv- XD*AK37 COEFFff OMEGA, ACCEL1N3H
50 X

r j? I F ( T S 0 L T e T P R 5 GO TO 4
53 T P R = T P R * O T P R
'J4 • W B I T E < 6 , 5 ) TS, X, xn '
55 5 FORMAT} 1H , E16.7", 3K ?"E16o7 P '4H« E16075
56 4 TS =

[ F ( T S c G E o T T C 5 U GO TO 100
1 F J T S « G E o T r iAS j GO TO 6 '



60 GO TH 3
61 6 s r n p
62 END __

6^ FUNCTION F f X , KO, CQE. :FFV OMEGA 9 A C C E L 5

\ l C n S ( 3 . 1 A * X / 2 9 . 9 8 } < - A C C E L • '
65 RETURN
66 END .... • .

/ / O O A T A

V
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TABLE '

COMPARISON OF NUMERICAL AND TURE

SOLUTION OF A VIBRATION SYSTEM

Time
sec

0.5

1.0

1.5

2.0 '

2.5

3.0

3.5

4.0

4.5

1 5.0

Numer ical
Solut ion

inch
D isplacernent

1.8668234

0,8458096

0.3832145

0.1736246

0.0786648

0.0356410

0.0161480

0.0073163

0.0033148 •

0.0015019.

True
Sol ut ion

inch
D i spl acement

1.8792000

0.8571000

0.3910000

0.1783000

0.0813000

0.0371000

0.0169000

0.0077000

0.0035000

0.0016000

!

Error

.0123766

.0112904

.0077855

.0046754

.0026352

.0014590

.0007520

.0003837

.0001852

.0009810



TABLE 2

COMPARISON OF NUMERICAL AND TRUE

SOLUTION OF A VIBRATION SYSTEM

T i me

sec

0.5

1.0

K5

2.0

2.5

3.0

'3.5

4.0

4.5

5-0

Numer ica]
Sol ut ion

i nch/sec
Velocity

-2.9559260

-1.3392533

-0.6067814

-0.2749170 .

-0.1245578 ''

-0.0564339

-0.0255688

-0.0115845

-0.0052487

-0.0023780

True
Sol ut ion

inch/sec
Veloci ty

-2.9556557

-1.3481328

-0.6149099

-0.2804725

•0.1279290

-0.0583509

-0.0266150

-0.0121396

-0.0055371

-0.0025256

Error

.0002703

.0088790
i

.0081285

.0055555

.0033712

.0019170

.0010462

.0005551

.0002884

.0001476
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Fig. 2.1. Free vibration with.viscous damping.
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Fig. 2.2. Forced vibration with viscous damping.
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Fig. 3-1. Forced vibration with viscous damping and a non-
1 inear restoring force.
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.Fig. 5.1 Free vibration with viscous damping.
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Fig. 5 - 2 . Displacement-t ime data.

r

5 - 0



0.0 1 .0

o
c

o
o

-1.0

-2..0

-3-0

- 5 -0

-6.0 _

Fig. 5 - 3 . Velocity-t ime data.
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