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FOREWORD

This report was prepared by the Man Systems Division of the URS/Matrix

Company under Contract NAS8-27013, "Design of a Terminal Pointer Hand Con-

troller for Teleoperator Applications", for the National Aeronautics and Space

Administration, George C. Marshall Space Flight Center. The NASA technical

direction was provided by Mr. Starke Cline (COR), S&E-ASTR-ME. This final

report is the summary of the technical effort extending from April 25, 1972, to

June 25, 1973.
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SECTION 1.0

INTRODUCTION

The man/machine interface remains the most difficult problem in teleoperator

design. Development of an effective manipulator control concept will be of major

importance to a comprehensive teleoperator technology development program. To

date, a number of manipulator control concepts have been proposed for application

to on-orbit telebperators. Each control concept has its own unique advantages

and disadvantages. A summary of the current manipulator control concepts is

given in Tables 1-1 and 1-2.

1.1 BACKGROUND

As may be seen in the table summaries, none of the current manipulator

concepts is totally adequate for use with an on-orbit teleoperator. To improve this

situation, the URS/Matrix Company has developed (in-house) a manipulator control

concept. This novel concept, the Terminal Pointer Manipulator Controller, was

first conceived in March 1971 and reported in the Free-Flying Teleoperator

Proposal (MBA/Matrix) to NASA MSFC in August 1971. This initial concept was

configured with the pitch, yaw, and roll axes located forward of the handle. The

concept was improved in December 1971 by placing the pitch, yaw, and roll axes of

the handle in a position coincident with the operator's wrist.

1.2 CONCEPT DESCRIPTION

The basic concept of the terminal pointer hand controller is depicted in

Figure 1-1. The controller consists of a three degrees of freedom hand controller

1.1
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SWITCH CONTROL

JOYSTICK CONTROL

RESOLVED MOTION
CONTROL;

TERMINAL FOLLOWING
MASTER

EXOSKELETAL MASTER

TABLE 1-1: Summary of Manipulator Controls

Although time to perform certain complex tasks is quite long, switch
control provides the simplest and most direct method of control.
One switch is used to activate each actuator. The switch actuation
causes the appropriate actuator to move at a fixed rate. A signif-
icant improvement on this technique can be attained by replacing
the switch with potentiometers and generating proportional rates.
This technique is generally unsuitable for force feedback or
tactile feedback; however, it is quite feasible to limit the maxi-
mum force capability to avoid breaking delicate objects if the
actuators are back driveable.

Joysticks have the same basic advantages and disadvantages as switch
control, but provide a capability of coordinating combinations of
switches simultaneously. This type of controlling may be either
isometric or non-isometric. The non-isometric control is like the
classical aircraft control stick, wherein movement of the joystick
in the appropriate direction results in the desired response.
Both proportional and single rate non-isometric joysticks have been
successfully used. Isometric joysticks are a relatively recent
development made possible by the development of miniature force
transducers. The isometric control remains fixed and provides
output proportional to the force exerted in the desired direction.
This technique has been shown to be less fatiguing to the operator
than the non-isometric joystick.

A variation of the joystick controller is one wherein the operator
considers only the end effector of the manipulator and "flies"
that point to the desired position. In this method, the joystick

.motions correspond only to directions of the tip, and some intermedi-
ate system (either a complex linkage or a computer) resolves the
desired actuator motions as a.function of the manipulator position.
This technique is currently being evaluated by the Massachusetts
Institute of Technology. The major drawback of this method is that
it is difficult to make precise motions in just one axis without
causing small motions in the other axes.

Perhaps the most popular control method for currently used manipula-
tors, is that of the terminal following master. In this method a
master model, usually geometrically similar to the slave, is used
to control the manipulator position. Each joint of the slave is
servo-controlled to the corresponding position of master. Thus,
the operator controls the position of the slave directly rather
than by guiding it at particular rates for a period of time and
then stopping in the desired position. An advantage of this
method is that transducer measurement errors and electronic biases
result^only in minor errors of the final position, which are rarely
even detectable by the operator, whereas a rate controlled manipu-
lator, such as described above, would continuously drift in the
direction of the bias.

This controller is similar to the terminal following master slave,
except:that it is strapped to the operator's arm and hence should
conform to a human arm in size, shape and range of motion. This
type of controller is the most amenable to the implementation of
force and tactile feedback. With these advanced control concepts,
the exoskeletal master controlled manipulator becomes an extension
of the operator's own arm. This type of system provides the most
versatile type of man-in-the-loop control and yields the shortest
times for task completion. The disadvantages of this type con-
troller are that it encumbers the operator with a rather bulky
array of.transducers, actuators and rigid structure and that the
operator requires a volume of space large enough that he can freely
move his arms in any direction.

1-2
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FORWARD

MANIPULATOR

RIGHT

REVERSE

NORMAL POSITION
OF MEMBERS

^SECONDARY MODEj

Figure 1-1: Terminal Pointer Concept

(pitch, yaw, roll) with a forward/reverse and a lateral proportional rate thumb control

and a dead man trigger switch as shown in Figure 1-2 (depicts original concept) .

The three degrees of freedom of the handle allow the operator to point the slave

end effector in any desired direction, that is, there is a one-to-one correspondence

between the angular orientation of the hand controller and the angular orientation

of the slave end effector in reference to the operator. Actuation of the proportional

rate thumb control results in movement of the end effector in, or normal to, the

direction in which it is pointed. As shown in Figure 1-1, the movement of the

end effector results from actuation of the proportional rate thumb control in the

forward and reverse, and right and left directions.

1-4



TRANSLATION
INPUT

PITCH
INPUT

PITCH
GRIP INPUT

ROLL
INPUT

DEAD MAN
SWITCH

YAW
INPUT

Figure 1-2: Terminal Pointer Hand Controller Concept as Delineated in Proposal

An intermediate computer subsystem transforms the input command motions

from the hand controller into individual joint command motions. The computer

system accomplishes this transformation utilizing a mathematical model of the slave

arm.

For example, to complete the task of picking up a peg and placing it in a

hole, the operator would point the hand controller such that the end effector of

the slave arm pointed in the direction of the peg (note that the operator is provided

with a visual indication of the direction of motion before the motion is initiated).

He would then activate the proportional rate thumb control in the forward direction.

This action would order the computer subsystem to command the necessary joint

rates which would create a motion of the end effector in the direction that the end

1-5
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effector is pointed and at a velocity proportional to the displacement of the propor-

tional rate thumb control. The operator can continuously adjust the direction of

the motion and rate of motion as the end effector approaches the peg. The grip

control (position) on the hand controller would be used to grasp the peg.

Next, the operator would activate the proportional rate thumb control in

the reverse direction, causing the end effector to back away with the peg. Using

the hand controller, the operator would point the peg towards the hole, and,

while continually adjusting the end effector rate and direction of motion, he would

place the peg in the hole.

The Terminal Pointer concept has several unique advantages over existing

manipulator control concepts. These advantages are summarized in Table 1-3.

1.3 POTENTIAL APPLICATIONS

The Terminal Pointer concept has many applications in the controlling of

space teleoperators. The applications could be to both the attached and free flying

classes of teleoperators, as is shown in Figure 1-3.

A concept for a dual station Terminal Pointer Hand Controller for use in

controlling the attached booms on the Space Shuttle, is shown in Figure 1-4.

The following sections of this report will discuss the four major tasks per-

formed during the course of this contract. There were:

• Concept Drawings and Model Development (Section 2.0)

• Development of Prototype (Section 3. 0)

• Development of Control Law (Section 4.0)

• Conclusions and Recommendations (Section 5.0)

1-6



TABLE 1-3: Terminal Pointer Controller Advantages

PRECISE CONTROL The Terminal Pointer concept provides complete
separation of the pointing and velocity control
operations. This eliminates the difficulty (associ-
ated with resolve rate controllers) of causing small
motions in the axis perpendicular to the desired
direction of motion. The end effector orientation
provides a predictive display to the operator of the
precise direction of motion before the motion is
initiated.

NATURAL MOVE-
MENT

All three axes of the hand controller are coincident
with the three axes of the operator's wrist. Spatial
correspondence exists between the operator's wrist
orientation and the orientation of the end effector.

SMALL CONTROL
SPACE

The Terminal Pointer has the advantage, inherent
in all hand controllers, of requiring an extremely
small control space.

SINGLE-HANDED
CONTROL

All control functions are located on a single hand
controller. The dead man switch allows the
operator to completely release his hand from the
controller (causing the hand controller to lock in
all motions) without the risk of inadvertently
actuating the manipulator. This allows a single
operator to control two separate manipulators
and to perform additional control functions as
required.

APPLICATIONS The Terminal Pointer concept has application to
a Shuttle-Attached Boom, a dexterous manipulator
arm, and to the FFTO.

1-7



TELEOPERATOR SYSTEMS

I

ATTACHED
I

FREE FLYING

BOOM(S)
I

BOOM(S)/

DEXTEROUS ARM (S)

I

I

MANUEVERING UNIT MANUEVERINGUNIT/
DEXTEROUS ARM(S)

I

SPACE TUG

Figure 1-3: Potential Applications of Terminal Pointer Hand Controller

Figure 1-4: Dual Station Terminal Pointer Controller Concept
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SECTION 2.0

CONCEPT DRAWINGS AND MODEL DEVELOPMENT

This section describes the design metamorphosis of a hand controller

intended to achieve the highest possible compatibility with the hand of the human

operator. The development of the final form of the Terminal Pointer Hand Controller

and the generation of a layout drawing and model depicting the concept comprised

the principal task in this effort, and its successful completion was accomplished by

means of the subtasks shown below in Figure 2-1.

Subtask 1

PRELIMINARY
CONCEPT
DEVELOPMENT

I
Subtask 2 .

HANDLE FORM
STUDY

Subtask 2

CONCEPT DELINEATION
(LAYOUT DRAWINGS)

Subtask 4

CONFIGURATION
MODEL DEVELOPMENT

Figure 2-1: Diagram of Developmental Subtasks

Subtask 1 - Preliminary Concept Development

In this subtask, URS/Matrix developed a preliminary concept configuration,

based on its initial proposed sketches (see Figure 2-2) and on the results of the handle

form study in Subtask 2. This effort finalized areas such as the maximum controller

envelope, the position of the control inputs, the relationships of the inputs and handle

to gimbals, etc.

2-1
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Figure 2-2: Terminal Pointer Hand Controller Concept as Delineated in Proposal
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Subtask 2 - Handle Form Study

During this subtask, URS/Matrix studied various handle configurations to

determine which form would provide the following:

• A handle that conformed anthropomorphicaMy to the operator's hand.

• Use compatibility for a wide range of the user population.

• Gimbal and roll inputs to take advantage of natural hand and wrist
movements.

• Optimum location for the thumb actuated translation control input.

Provision of each item listed above was attained by using many foam only

and foam and clay models:of candidate configurations. The form finally selected is

incorporated in the design shown in Figure 2-3.

Subtask 3 - Concept Delineation

Using the outputs of Subtasks 1 and 2, URS/Matrix generated a set of full-

scale layouts to be used by MSFC-ASTR in its preparation of manufacturing and

assembly drawings of the hand controller. These drawings are shown in Figures 2-3,

2-4, and 2-5. The layout includes all relevant information concerning materials,

dimensions, tolerances, and special components. The find numbers are referenced

and identified in Appendix A.

Subtask 4 - Configuration Model Development

After completing Subtasks 1,2, and 3, URS/Matrix fabricated a full-scale

model of the Terminal Pointer Hand Controller (see Figure 2-6), according to the

configuration delineated in Subtask 3, and used the model to verify the operator/

controller interface. The model was further used by the government contracter

during design, drafting and fabrication.

2-3
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PITCH
INPUT

ROLL
INPUT

TRANSLATION
INPUT

, - - • ',ra3*v i
. . ' i f - • t?A^

TERMINAL POINTER HAND CONTROLLER

Figure 2-6: Model of Terminal Pointer Hand Controller (Full Scale)
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The layout drawings and model configurations generated in this effort were

delivered to MSFC.
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SECTION 3.0

DEVELOPMENT OF PROTOTYPE

The URS/Matrix Company assisted the MSFC-ASTR Laboratory and

Support Contractor (Sperry Rand Corp.) by providing liaison and coordination

support from the design/drafting phase, thru the manufacturing/assembly phases

of the prototype development.

URS/Matrix also furnished NASA/Sperry with an epoxy model of the handle

(as shown in Figure 2-5), on a loan basis. This was done in order to provide the

prototype fabricator a dimensionally stable form from which to mold the prototype

handle. Molding directly from the original model eliminated the costly activity of

measuring the model, recording the dimensions on the detailed drawings, and

translation of the drawings into a machined component.

During the early phases of the detail design effort, URS/Matrix determined

that controller gimbal frames could be modified to provide a configuration that

was not only more simple in design, but also enabled the operator to have a greater

amount of flexibility during its operation. The drawing configuration is illustrated

in Figure 3-1, and the full scale model is shown in Figure 3-2.

The Terminal Pointer Hand Controller prototype assembly drawing is

depicted in Figure 3-3. This drawing, along with the detail drawings, was

produced by Sperry Rand.
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Figure 3-2: Terminal Pointer Hand Controller Full Scale^/lodeL(Mod. 2)
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SECTION

Figure 3-3: Terminal Pointer Hand Controller Prototype Assembly Drawing
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Figure 3-U shows the operator/controller interface with the controller in

various input positions. Figure 3-5 shows an operator seated at the MSFC-ASTR

teleoperator console. A close up view of the prototype is shown in Figure 3-6.

Finally, Figure 3-7 shows the Rancho Anthropomorphic Manipulator arm in

various positions.
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Figure 3-4: Terminal Pointer
Hand Controller in Various Control Positions
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Figure 3-5: Operator/Terminal Pointer Hand Controller at Console

Figure 3-6: Close-up of Terminal Pointer Hand Controller"
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Figure 3-7: Rancho Anthropomorphic Manipulator (RAM) Arm
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SECTION 4.0

CONTROL LAW DEVELOPMENT

The use of the URS/Matrix hand controller with the MSFC Rancho Anthro-

pomorphic Manipulator (RAM) requires conversion of the hand controller input

command motions to motor rate commands for the six RAM motors. This conversion

is accomplished by an on-line SEL 840 digital computer. In order to perform the

conversion, the computer must be programmed with a set of equations (control

law), the development of which is presented below.

The general form of the control law is:

0i

/
Kx

0

where 0j - 06 are the six RAM motor rate commands,

K and K are the thumb switch lateral and forward/reverse
x y

rate commands,

A is the control transformation matrix, and

<*, 6, and <j> are the hand controller pitch, yaw, and roll

commands.
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The desired response of the RAM is to have the terminal segment oriented

in the same attitude as the hand controller (see Figure 4-1), with translation in the

forward/reverse and lateral (y7 and x7 ) directions, and rotation about the terminal

X7, y7 and Z7 axes corresponding to the hand controller a, <j>, and g commands.

'HC

I

O

±k

RAM TERMINAL

AHC

HAND CONTROLLER

= HC

Figure 4-1: Desired Terminal Attitude and Translatibnal Response

Defining

w

dx7

dt~

dy7

dt~

dt Z.7

0) , and

, we can write

4-2
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the translation and rotation of the terminal in terms of the six motor rates as:

or

w

"'•/

©5

w

"
0)

(2)

(3)

where J is the Jacobian for the system of dynamic equations relating

(u, v, w; o>x / u , u>z) to Q! - 06:
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The desired translation and rotation can be described in terms of the hand

controller input command motions as

K :

w
[B]

*HC

PHC

'HC

(5)

Combining (3) and (5) the solution for the motor rate commands becomes



(6)

where a •= aur - ay <j> - <j>ur - <j>7 and § = gUr ~ 3? • The problem is
HL HC ' nL, '

now reduced to finding J and B .

The motor rotations and mechanical layout of the RAM are shown in

simplified form in Figure 4-2. Seven coordinate systems, corresponding to

the seven segments of the RAM, are used in the solution.

Derivation of the Jacobian

The J matrix is found by determining the velocity and rotation of coordinate

system 7 caused by each of the six motors.

In general, the velocity of a point (in this case, the origin of coordinate

system 7) due to an angular rotation is given by

. - > • - > - > .
V = ft x r .

where n is the rotational rate and r is the position vector from the center of

rotation to the point. Thus,
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G 6 i 6 x aj7] + [95j5 x (aj7 + b j 6 ) j

03k3 x (aj7 + bj6 + cj5 - dk\)]

e2i2 x (a j 7 + bj6 + cj5 - dk4 - ek 3 ) ] +

eiJ i x ( a j 7 + bj6 + cj5 - dk\ - ek3 + f k 2 ) ]
(7)

The velocity components u , v , and w are obtained as the dot product of V ,
s>. -\ • -^

with iy, J7 and k7/ respectively:

V = V7 • J7

w = V7

(8)

Equation (7) must be expressed in terms of a single coordinate system.

Coordinate system 7 is chosen since the required velocity and rotational movements

are expressed in this system. Transformation matrices used to convert unit vectors

in systems 1 - 6 to system 7 are derived by inspection and presented below.

••'M. is the transformation matrix from system i to

system j , thus

7

j
/N

A,

\J

" ''"I

i .
T

A

V
k.1
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c. and s. are cos 0. and sin 0., respectively

C = 7M6 =

6M

3M

2M!

~ 1
0

0

C5

0

S5

1

0

0

'C.3

-S3

0

1

0

0

CL

0

si

0 0

c5 s6

-SB ce

0 -ss

1 0

0 c5

0 0

CH *n

~S4 ck

s3 0

C3 0

0 1

0 0

C2 S2

-S2 C2

0 -Sl

1 0

0 Cl

(9)
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Therefore:

D = 7M5 =

7M

E =

1 0 0

0 c6 s6

CB 0 -s5

0 1 0

SB 0 c5

cs 0 -s5

SSS6 C6 C5S6

~c5 0 -s5 ~

S 5 S 6 C6 C 5 S 6

_ssc6 -s6 c5c.

fl

0

0

Cg S^S 5 -'-^

S5C6 (-CttS6 - Si^CsCg) (-S

(10)

0 0

C 4C 5S 6 ) (11)
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Using the above transformations we can rewrite the unit vectors in systems

1 - 6 as

^
< Oi

ki

•V
J2

k2

J3

^ 3 ,

1%

' J\

k.

is

< J5

1 k5,

1 6 /

'A
- /•>

> = HT

• • = G T ' ,

= FT

• =ET

= D

-. CT

\ 7

J7

k7

i7

J7

J7

•i?

J7

>

J7

,

i

J7

k7

=

.

^11 ^21 H31

Uio \3oo l3oo
1 £. £-£- 6 £.

H U UIQ noQ noci
i O ^ O J O

"Fll F2'i F31 ~

G12 G22 G32

G13 G23 G33

F12 F22 F32

E13 E23 E33

Du D21 D31

E12 E22 E32

E13 E23 E33

.Dn-- D21 D31

0. c6 -s6

D13 D23 D33

1 0 0

0 c6 -s6

0 s6 c6

17

J7

k7

' i?

J7

k7

J7

?7
J7

k7

1?

J7

k7

i ? .
"
J7 *

"

(15)

(16)

(17)

(18)

(19)

(20)
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The velocity Vy of coordinate system 7 from equation (7) becomes then (noting

^ ^ ^ x s / s ^ ^ . ^ ^ ^ 7 ^
first that 17 = 16, J6 = js, i5

 = ii*» k<+ = k3, i3 = 12, and j2 = Ji :

= 86(ak7)+Q5(as6 i7)-Q4{[U31(a+(b+c)c6)+(b+c)D21s5)] i7+

-L)1 i [a+(b+c)s6] j7-[(b+c)D11c6]k7}+03{[-E33(a+(b+c)c6)+

-E23(b+c)s6]i7+[(b+c)E13s6]j77+E13[a+(b+c)c6]k7}+

+e2{[-F31(a+(b+c)c6-(d+e)E23)+F21((b+c)s6+(d+e)E33)]i7+

(21)

+[Fii((b+c)s6+(d+e)E33]-.(d+e)F31E13)]j7+[Fn(a+(b+c)c6-(d+e)E23)+

+(d+e)F21E13)]k7}+01{[-G32(a+(b+c)c6-(d+e)E23)+

-G22((b+c)s6+(d+e)E33)+fF11]i7+

+[G12((b+c)s6+(d+e)E33)-(d+e)G32E13)+fF21 ] j7+

+[G12(a+(b+c)c6-(d+e)E23)-(d+e)G22E13)+fF3.1]k7}

and so
0 0

u = e5as6-0lt{D31[a+(b+c)c6]+(b+c)D21s6}+

-e3{E33[a+(b+c)c6]+(b+c)E23}-02{F3i :[a+(b+c)c6]+

(22)

+F2 i [(b<c)s6+(d+e)E33]-(d+e)F31E23)}-01{G32[a+(b+c)c6]+

+G22[(b+c)s6+(d+e)E33]+(d+e)G32E23+fF11}
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v = 0ltU11[a+(b+c)s6]+03(b+c)E1_3S6+e2{[(b+c)s6+(d+e)E33]F11+

-(d+e)F31E13}+01{[(b+c)s6+(d+e)E33]G12-(d+e)E13G32}
(23)

w = 06a+e1 +(b+c)U1 1c6+03E1 3[a+(b+c)c6]+G2{[a+(b+c)c6]F1 1+

-(d+e)(F 1 1 E 2 3-F 2 1 E 1 3)}+0 1 {[a+(b+c)e 6 ]G 1 2 - (d+e) (G 1 2 E 2 3-G 2 2 E 1 3)+

+fF 3 1 }

(24)

The top three rows of the Jacobian are now easily found from equations

(22) - (24) . For ease in computer programming and for computational

speed the following substitutions are made:
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. B! = (b + c) (25)

e2 = (b + c) c6 = e lC6 (26)

e3 = (b + c) S6 = e lS6 (27)

e^ = a + (b + c) c6 = a + e2 (28)

e5 = (d + e) (29)

e6 = ( d • + e) E13 = e5E13 (30)

ey = (d + e) E23 = e5E23 (31)

e8 = (d + e) E33 = e5E3 3 (32)

e9 = (b + c) s6 + (d + e) E33 = e3 + e8 (33)

e10 = a + (b + c) c6 - (d + e) E23 = ek - e7 (34)

Using (25) - (34) in (22) - (24) and differentiating, the first three rows of

the Jacobian are obtained.

The last three rows of the Jacobian are the partial derivatives of ^x to

and a) with respect to the individual motor rates (0^ - 06) . The rotational

rates about the (i ? j? j<7) axes (co w u> ) are found as sum of the dot products

of those axes with the individual rotational rates (0, - ©K) . Thus

QT

~ J7 '

"=• k7 •
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where
'T + 6

.
6212 + + Q + © + ©

Carrying out the above products yields

02Fn + 03E1 3

and 0.2F 31

06

©5 C 6

- ©5*6

(35)

(36)

(37)

The total Jacobian is now easily obtained from equations (22) - (24) and

(35) - (37), using the substitutions of equations (25) - (34). Equation (4)

becomes

J =

632610 + 6 2 2 6 9 +
+ Fnf

F2 ie9) (-E33eJ D 2 1e 3 ) (as 6 ) 0

- G 3 2 e 6 ) (Fne9 - F31e6) (E 1 3 e 3 ) . D n (a + e3)

G12el0 + 62266
+ F3lf

G12

G2 2

632

0 0

0 a

(38)

•11

21

'31

-13

-23

• 3 3

'11

'21

'31

0 1

c6 0

-S6 0
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It is seen from equation (38) that all elements of each transformation matrix

are not required. In fact, the required portions of each transformation matrix are:

req

"req

req

req

"si \

\

A significant savings in computer time is realized by calculating only these

elements. It will be shown later that the required elements from H are
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. Hreq =

Development of the Control F

\\\V"ir

_ \\\\\ \
Relations

From equation (6)
/

LI

V

W

. ,

•< = B
CO

X

0)y

COz
.

1 \
k

X

ky
0

.
a

<T

B'

The desired motions are:

U

V i

W .

wx

z

= GX

= . G

k
x '

k »

0

a"

» - '

where G 's *ne 9a'n f°r ti"a
X

and G^ is the gain for rol

(6)

(39)

(40)
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The angles a", fy', and 3" are the differences between the hand controller

pitch, roll, and yaw angles and those of the terminal (coordinate system 7) . The

hand controller pitch, roll, and yaw angles four, <t>ur, £ur) are obtained directly

from the hand controller resolvers. The position of the hand controller can be found

from the reference (zero) position by the following three rotations (see Figure 4-3):

(1) rotate about zref the angle 6 to obtain (i^ , j^c , k^}, then

s ± ̂  s * s \ . . • . * * • •

(2) rotate about IHC the angle a to obtain (i'' , j'' , k''),

and then

(3) rotate about j|1p the angle 4> to obtain (I'^Q / Jur '•

Figure 4-3: Hand Controller Angles
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The reference frame (X ,, Y ,, Z ,) for the hand controller corresponds

to coordinate system 1 (Xi, YI, Zi) for the arm. When the hand controller axes

are parallel to the reference axes, the terminal axes will be commanded to be

parallel to coordinate system 1. The terminal (coordinate system 7) orientation

relative to coordinate system 1 is described by the three angles a , ft, and <f>

in the same sequence of rotations described for the hand controller. Thus

1.7

J7

0 -sin<f>7

0 1 . 0

sin<f>7 0 cos<f>7

1 0 0

0 cosa7 sir\a7

0 -Sina7 COSa-

cos37 sin37 0

sing7 cos<(37 0

0 0 1

T I

J i Jl > (41)

Carrying out the multiplication and dropping the subscript 7's we obtain

cos'Bcos^+sinasinesinf sinBcos<f>+sinacosBsin<j> -cosasii

cosasinp COSaCOSfi

cos6sin4>-sinasinecos<j, sinssin^-sinacosscos*

sin a (42)
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"
i i
j =H

T I

Ji
(43)

therefore

;= [H]..

From equation (44) we find

-1
a7 = sin (H23)

21

= Sin

(44)

(45)

(46)

(47)

The above forms are chosen as the most direct and the least likely to fail due

to angles of 0° or 90°. Note that if a = 90°, equations (46) and (47) are undefined,

however the likelihood of ever having a= 90° is remote. Infact, the human operator

would find it very difficult to move the hand controller to a = 90°, so that this
HC

restriction is not considered to be significant.

Combining equations (6), (38) and (45) - (47), the control law becomes
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/ \

o

02

- J

-1
G G 0 G,

aH(--sin (H23)

-1 1 3

/COSoy'

H

\ eHC+sin

21

(48)

The operation of the hand controller, computer subsystem, and the RAM is

as follows (See Figure 4-4):

(1) the computer reads the current joint angles from the A/D converter and
calculates the elements of the transformation matrices,and the inverse
of the J matrix,

(2) the computer reads the hand controller resolver and thumb switch
signals from the A/D converter,

(3) the computer evaluates the differences between the hand controller and
terminal pitch, roll, and yaw angles,

(4) based on the differences obtained in (3) and the thumb switch signals
obtained in (2) and using the J~ matrix generated in (1), the motor
rate commands are calculated and sent to the D/A converter.
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(5) the D/A converter generates motor rate commands which cause the arm

to move as required. .

(6) the grip motor is linked directly to the grip resolver on the hand

controller—no calculations are required.

NOTE: The control law incorporates the following:

(1) instantaneous motor start/stop is assumed (linearized equations),

(2) no rate feedback is used,

(3) the pitch angle of the hand controller is; assumed to be

-90° < C < +90°.
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SECTION 5.0

CONCLUSIONS AND RECOMMENDATIONS

The URS/Matrix hand controller and the necessary mathematical control law

have been developed for use with the MSFC Rancho Anthropomorphic Manipulator.

The hand controller allows control of the RAM with a single hand, and the mathematical

control law causes the attitude of the RAM and effector to correspond directly to the

attitude of the hand controller. This correspondence greatly simplifies control of

the RAM by a human operator.

Two important points must be made regarding the operation of the system.

First, a digital computer has been chosen to convert the hand controller input

motions to individual motor rate commands. The digital computer must perform

operations sequentially, i.e., only one operation can be carried out at any given

instant in time. The time required to complete a single cycle through the system

is therefore the sum of the times required for each operation. The operations

required for the RAM system are:

(1) sampling and storing the six joint angles (one-by-one),

(2) calculating the trigonometric functions for the joint angles,

(3) calculating the required elements of the transformation matrices,

(4) calculating the J matrix,

(5) inverting the J matrix,

(6) sampling and storing the hand controller input angles and thumb switch
commands.
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(7) calculating the differences between the hand controller and terminal
pointer angles,

(8) calculating the motor rate commands, and

(9) sending the motor rate commands to the motors (one-by-one).

Step (1) requires A/D conversion of the six joint angles, step (6) requires A/D

conversion of the five hand controller input motions, and step (9) requires D/A

conversion of the six motor rate commands. As all of these operations must be

performed one at a time, the response of the RAM will be less than instantaneous.

In fact, the computation and conversion rates could be so slow as to significantly

limit the usefulness of the system. The response of the system, and therefore its

usefulness, might be improved in several ways:

(1) analog computation, which allows simultaneous operations,

(2) quaternion representation of the dynamic equations {see Appendix B)
which reduces the number of operations,

(3) polar coordinate representation of the dynamic equations, which reduces
the number of terms, or

(4) series expansion of the sine and cosine terms with truncation of higher
order terms, which reduces the number of terms.

Each of these areas offer possible significant savings of computer time and should

be investigated. Time and funds provided for the current effort did not allow such

an investigation.

The second point to be made is that, due to the construction of the RAM,

attitude commands can be generated by the hand controller that are impossible

for the RAM to execute (due to mechanical limits). Significantly, a twisting motion

about the i 1 axis is not possible. Also, rotation about the k axis is limited.

•'.. -5-2 ' ' .
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The first problem could be resolved by reversing segments 5 and 6 so that the final

motion is a roll motion, or both problems could be resolved by adding a roll motor

after segment 6.
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APPENDIX A

TERMINAL POINTER HAND CONTROLLER

PROTOTYPE PARTS LIST

ITEM
NO.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

NO.
REQ'D.

1

3

4

7

4

2

7

1

1

1

1

1

1

10

1

NOMENCLATURE:

Support, Gimbal

Potentiometer,
Linear, Bushing
Mount

Precision Ball
Bearing, Flanged,
1/4 I.D., 3/8 O.D. x
1/8 W.

Washer

Bushing

Sleeve

Set Screw, Int. Hex.

Gimbal Ring

Sleeve

Sleeve

Inner Ring, Roll

Outer Ring, Roll

Ring

Screw Ft. Hd.

Shaft

PART NO./MAT'L.:

Alum

#50 Linear

E2-11

1/32 THK, Teflon

1/2 DRA STK, CRES

1/4 STK, CRES

#4-40, CRES

Alum

1/4 STK, CRES

1/2 STK, CRES

Alum

Alum

Alum

#2-56, CRES

3/8 STK, CRES

VENDOR:

-

Computer
Instrument Corp. ,
Hempstead, N.Y.

PIC Design Corp.,
Benrus Corp.

-

-

-

-

-

-

-

-

-

-

-

-

(Item numbers are referenced from Figures 2-4 and 2~S, Section 2.0)
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PROTOTYPE PARTS LIST (CONTINUED)

ITEM
NO.

16

17

18

19

20

21

22

23

24

25

26

27

28

NO.
REQ'D

1

1

1

1

1

2

1

1

1

1

1

1

1

NOMENCLATURE:

Ball Bearing,
Type X..
5 1 / 2 I.D.,
6 O.D. x 1/4 W .

Sleeve

Precision Ball
Bearing,
3/16 I.D., 3/8 O.D. x
1/8 W.

Body

Cover

Retainer Clip

Gear Pulley,
"No-Slip"

Potentiometer -
10 Turn, Std . Mount

Positive Drive
Belt, "No-Slip",
18.557 Dia.

Switch, Isometric
Two Axis

Handle

Grip Lever

Handle Mount

PART NO./MAT'L.:

KA055XPO

3/16 STK, CRES

E1-5

Alum

Alum

Alum

FC4-18

#5010 Linear

FA-189

#469

Plastic, Cast

Alum

Alum

VENDOR:

Keene Corp . ,
Kaydon Bearing
Div., Dixie
Bearing Co.,
Decatur, Ala.

-

PIC

-

PIC

PIC

See Item 2

PIC

Measurement Sys.

-

-

-
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EB mninx

PROTOTYPE PARTS LIST (CONTINUED)

ITEM
NO.

29

30

31

32

33

34

35

36

37

NO.
REQ'D

1

1

1

1

1

1

2

2

2

NOMENCLATURE:

Precision Bearing,
1/4 I.D., 3/8 O.D. x
1/4 W.

Microswitch

Lever

Pad

Pin

Thumb Pad

Washer

Screw, Rd. Hd.

Screw, Ft. Hd.

PART NO. /MAT1 L.:

E1-5

.-

Alum

Rubber, Foam

1/16 STK, CRES

Plastic

1/64 STK, Teflon

#2-56, CRES

#8-32, CRES

VENDOR:

PIC

.

-

- •

-

-

- '

'

-
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APPENDIX B

QUATERNIONS FOR CONTROL OF SPACE VEHICLES

by

Allen C. Hendley
Sperry Rand Corporation, Space Support Division

Huntsvillo, Alabama

ABSTRACT

The historical method of representing successive rotations 'of S. 'coordinate
frame by quaternion multiplication requires that each quaternion be referenced
to a common coordinate frame.. .This paper presents a method whereby quater-
nion representation of successive'rotations utilizes quaternions referenced in
the same manner as direction cosine matrices. A product quaternion is formed
which locates the final position of the coordinate frame v/ith respect to its
original position. If the quaternion defining the instantaneous relative position
of two coordinate frames is known, the necessary control information to drive
them tov/ard coincidence can be determined directly. Incremental updating of
the quaternion is accomplished by means of quaternion multiplication involving
the original quaternion and the incremental quaternions. Each incremental
quaternion defines the incremental movement of its associated coordinate frame.
The product quaternion is the new quaternion relating the two coordinate frames
after their incremental movements. A complete development of the foregoing
updating procedure is shown. This is'followed by a simplified quaternion update
procedure currsntly being implemented for strapdovm calculations on the Skylab
vehicle. .

INTRODUCTION - ,

Quaternions were id vented by Sir William R. Hamilton in 1843 and
resulted from his attempts to form a three dimensional vector algebra in which
vector multiplication and Division could be performed. For approximately a
century, quaternions v/ere little used, being supplanted by the vector analysis of
Professor V.'illard Gibbs. Recently, however, the use of quaternions has been
shown to offer significant computational advantages when applied to the digital
solution of time varying coordinate frame transformations. In addition, If the
'Quaternion defining the instantaneous relative position of two coordinate frames
is known, the necessary information to optimally drive them toward coincidence
can be directly determined.

This paper presents a review of some of the properties of quaternions, a
development of the strapJown equations for Skylab and a brief comparison of
three methods used to formulate the direction cosine matrix relating two
coordinate frames. . '
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THE UNIT QUATERNION

A quaternion may be written as:

q = Q* + iQj -»- j Q2 + k Q3 •

where Q<. is a scalar and Q1 , Q2 anel Q3 are scalar components along the
orthogonal dextral vector triad i, j, k. The properties assigned i, j, and k
are such that;

Ij = k; Jk = 1; Jci = j; Ijk = -1

ji = -k; kj = -1; Ik = -j; jlk = 1

If the condition is imposed that:

the follov/ing relation can be established:

ft
A-"* 6 •

q = Qc + iQ, + jQ2 + kQ3 = cos — + e sin

where

• e • '•'• - : ' • ' •cos — = Q,,
. • .. £* ' • ' ' • • • •

'e «(iQv + jQa +.kQa)/(Q1-a + Qa
8 + Qa8)';1/3;

e •= i cos ct + j cos ft + k cos y

sin -|- = (Ql
2 + Q2

2 + Q3
2, Va .

£t . . .

the unit quaternion has the property:

qq"V="(Q4 + iQi - jQa -«-.kQ3) (Q.j -iQ1 -jQ2 -kQ3) =

- e e e 0
- (cos — + e sin -^-) (cos -y - esln -y) = 1

thus tiie complex conjugate of the unit quatemioa is its inverse.
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CKOMJETKICAL INTERPRETATION OF THE UNIT QUATERNION

If the unit Quaternion is written in its trigonometric form:

q = cos e sin e_
~2

The unit vector e can be regarded as
the axis about which the i, j, k
coordinate frame is rotated through the
angle 0 to the new position i', j', k '.
The direction cosines locating e with
respect to either i, j, k or i', j', k'
are the same vrith respect to either
coordinate frame. The ̂ vector e js
known as the Euler axis or the eigenaxis.
A unit quaternion can thus be considered
to represent a rotation of 8 degrees
about an eigeu ax is e of a coordinate
frame to another position. y Figure 1.

COORDINATE TRANSFORMATIONS USING QUATER>s7IONS

It has been shown^by "Hamilton that a vector transformation is achieved
by the following. quaternion multiplication: .

"1V' « qVq

where V ' is the transformed vector V. By treating each of the orthogonal
axes i, j and k as xinit vectors and "performing the indicated quaternion
multiplications: . '

J/ "
k' = qkq

Equation 1

If the indicated operations are performed in terms of Q* + iQa •»• j Qa •*• kQ3

and its inverse Q^ -iQ t -jQs -kQ3; and the results are arrayed in matrix
format there is obtained:

i'

1 * =

k '

a Q3 -Qa

Q3 -: Q2
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or In concise notation:

t Equation 2

This is the direction cosine matrix relating the i,. j, k and the i', j', k '
coordinate frames. It is expressed in terms of the four parameters (Q/,, Qlt

Qsi Qs) v/hich comprise the quaternion originally used to locate the relative
positions of the two'coordinate frames. Conversely, if. the tymsformation
matrix is known, regardless of how it was obtained, the four parameters (Q*,
Qi» Qs> Qs) rn^y he determined by a method presented in Reference 1 as
follows-; let the transformation matrix be represented by:

Qi

Then:

Qsi Qas Qaa

- Q3
8 = Q11

Q3
S =

Q

By selectively combining these four equations;

Q22 + Q33

~ ' 5-(Qaa

I f^. 3 '
Qa = i vQ4 ~- 5(Qn + Q3s) :

* • - ."

, f^ '~ 4^ * *

Qa = * -\/Q* '""• *>(Qii •*• Qsa)

The proper signs of the four parameters may be determined as follows:

a. Choose Q4 positive

b. The sign of (Q23 - Q32) is then the sign of Qj
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c. Thc^sign of (Q2l - Qa 3) is then the sign of Qa

d. The sign of (Q12 - Qsi) is then the sign of Q3

QUATERNIONS AND TRANSFORMATION MATRICES FOR SUCCESSIVE
ROTATIONS . .

In the previous section it has been shown how the transformation matrix
. relating two c do rd in ate frames can be generated by using a quaternion and its
inverse. It will now be shown how two or more quaternions can be combined
and the results used to generate a transformation matrix relating the resultant
coordinate frame to the original coordinate frame. Euler has shown that the
'result of two eigenaxis rotations represented by the equaternions qx and q2l

where qx is the first rotation and q2 is the second rotation, can be represented
by:

q = qs Qi

The resultant quaternion q is dependent on the order of rotation. Most
important qx and qs must both be referenced to the same coordinate frame.
Consider the quaternion:

V
cos 90 .

ism 90

This represents a rotation of 90
about the eigenaxis, i, in the
positive sense. See Figure 2.

Figure 2.

Know a second rotation about the original k axis of 90 is taken, the quaternion
representation is:

90 A 90
q2 =cos -^p + ksin -TT IrV-i"

Beferring to Figure 3, it is seen
that after the two eigenaxis
rotations:

i.i'k"
c 3.
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Also, if the resultant quaternion q is sought: •

90 90 90 90
q = qa lh - (cos -—• + ksin —~) (cos -—- + isin —) Equations

• ti ii . Z *•

q =
J*

1 _, 1 j.

"
(0

r = cosir estn

cos

p = 120"°

The resultant rotation is 120"° about
an eigenaxis e which has equal
direction cosmos with respect to
1, j and k. _Figure 4.

The problem with the foregoing procedure is that q3 is defined in terms of the
original coordinate system (i, j, k). It is desirable that it be defined with
respect to the immediately prior rotated or moving coordinate frame (i', j',
k'). I f this i s done: ' ' - ' ' • '

/ 90 J . , . 90q?' = cos — + 3 sin —

Where q2 ' indicates a quaternion rotation with respect to the previously rotated
(i't j ', k7) frame. Using this c on vent ion:

Q = qs' qi = (cos —— +. j' sin ——•) (cos —r- + isin ——) Equation 4
2 (• Z Z

This -quaternion multiplication cannot be performed directly because the
elgenaxes, j' and i, are referenced to different coordmrae frames. This
difficulty is resolved in the following manner; let:

e . eq2 = cos — + e sin —

B-6



•where e is any ci^onaxis referenced to the original coordinate frame.
Transform qy as follows: -

qa qs qi"1 = ̂ i qr1 cos -y * q* c ^^ sln *T •

6 6
= cos —r- + e ' sin — - = q2 '2 2

From which:

qs' = qi qsqr1

This is the quaternion transformation previously given In equations 1 and 2.
The eigenaxis e referenced to the original coordinate frame has been rotated
Into e ' in the rotated coordinate frame by means of the quaternion qa and. its
Inverse. By this procedure, the eigenaxis e ', about v/hich the rotated
coordinate frame is again rotated, can be expressed in tei'ms of the original
coordinate frame (i, j, k). Then:

q ~ qa qi = (^ QS qi'1) qi = (q

Using this result, equation 4 becomes:

q - q, qa = (cos -— * isin ~— •) (cos —-- + jsin -^-) Equation 5

'Tile results obtained using equation 3 or equation 5 are the same. In the one
case (equation 3) the second rotation is easily referenced to the original
coordinate system due to the simplicity of the first rotation (90° about i). In
equation 5, 'the second rotation is referenced to the rotated or moving coordinate
frame. This is an important advantage when a previous rotation or isolations are
not easily visualized. By an extension of the above process, it can be sho\vn
that a series of -quaternion rotations each taken with respect to the immediately
prior rotated or moving coordinate frame can be given by:

q •- q?- qs qa • • • qn
..Here again qx q2 q3 • • • qN refers to quaternion multiplication. Note that if a
series of rotations are defined by a chain matrix:

'"'« [Q3"] [Qa'3
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The qualcrion, order of multiplication is reversed trow the matrix order of
multiplicatiou. This property \vill bo used in developing the Sirapdov/u
Equations.

For example; with respect to Figure 5.

t, j and k

I ' i j ' andk ' .

1", j"andk' '

I"', j ' "andk '"

are axes of the original frame

arc axes of the first transformation
(90° about i)

are axes of the second transformation
(90° about j'j

are axes of the third transformation
(90° about k A / )

Figure 5.

90 9fJ 90 90 90 90
(cos -— + isin ~) (cos '— i •*•' j sin —-) (cos -y + 'ks ln ~ q3

cos = 0 ; —• - 90° =180

.esin l + k 14k ,o• ' • e *= — • : sin —— — l
& J2 ' 2
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Here q represents a rotation of 180° about the oigcnaxis c = (I + k)/-/2.
The throe quaternion rotations xised.to effect tho coordinate transformation:

'" = k

'" =-3

are found, to be represented by the single quaternion rotation q. By inspection
of Figure 5,. it can be seen that single rotation of 180° about the eigenaxis
(i + k)/-/2T results in the same coordinate transformation as that obtained by

rotations of 90° each respectively about i, j' and k "
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