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Abstract

Considerable attention, in the open literature, is being focused on the
problem of developing a suitable set of deterministic dynamical equations for a
complex spacecraft. This paper addresses the problem of determining a
stochastic optimal controller for an n-body spacecraft. The approach used in
obtaining the stochastic controller involves the application, interpretation, and
combination of advanced dynamical principles and the theoretical aspects of
modern control theory. The stochastic controller obtained herein for a

complicated model of a spacecraft

1) Uses sensor angular measurements associated with the base body

to obtain smoothed estimates of the entire state vector
2) Can be easily implemented

3) Enables system performance to be significantly improved.
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INTRODUCTION

For deep-space missions, the requirements placed on antenna pointing,
articulation control, science platform settling times, etc. tend to continually
become more stringent. Moreover, to meet the objectives of the scientific
experiments and to provide isolation from the radiation produced by the power
source, booms are frequently employed. These facts dictate that a suitable
spacecraft model must be determined and, in addition, that sensor noise and

plant disturbances be accounted for!

Considerable attention, in the open literature, has been focused on the
problem of developing a suitable set of deterministic dynamical equations for a
spacecraft ([1] through [5]). Recently, a particularly elegant albeit complicated
set of dynamical equations for an n-hinged rigid-body spacecraft has been
developed [2]. The salient features of this set of dynamical equations are
(1) constraint torques do not appear, and (2) the number of variables involved is
equal to the number of degrees of freedom of the system. Stochastic control
theory has also been given special attention in the open literature. Ref. [6] is
devoted exclusively to linear stochastic optimal control of linear systems subject
to the average value of a quadratic cost functional. Stochastic optimal control

theory has been successfully applied to such analytical problems as

1) Obtaining a stochastic controller for a personalized rapid transit .
system (7]
2) Obtaining a stochastic controller for achieving docking between an

Orbit-to-Orbit Shuttle (O0S) and a malfunctioned satellite {8]

3) Obtaining a stochastic controller for a single rigid-body model of a

spacecraft [11].
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In the present work, the objective ié to determine a controller which makes
use of the elaborate, deterministic model of the spacecraft and, in addition,
accounts for sensor noise, distgrbances, etc. In essence, an optimal stochastic
controller is sought. However, because of the practical importance of ease of
implementation, simplicity, and reliability, a suboptimal stochastic controller

is determined.

In obtaining the dynamical model for the spacecraft it is assumed that

(see Fig. 1):

1) The spacecraft (s/c) can be adequately modeled as n-hinged rigid

bodies (with r degrees-of-freedom for the entire system)

2) Chains of connected bodies do not form closed loops
3) Only rotational motion at a joint is allowed
4) A joint can be dissipatiye and elastic
. 5) There is a vector constraint torque normal to the axis of rotation at

a joint whenever the rotational motion has only one or two degrees

of freedom.

The approach used in this paper for obtaining the suboptimal stochastic
controller for an n-hinged rigid body spacecraft involves the application,
interpretation, and combination of advanced dynamical principles and the
theoretical aspects of modern control theory. ft is known that a solution can be
found to a linear stochastic optimization problem involving a quadratic cost
functional ([9] and [10]). However, the plant representing the dynamics of the

spacecraft is nonlinear. In addition, a single quadratic cost functional which
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accounts for ill of the desired characteristics of the controller cannot be found,

Nevertheless, a suboptimal stochastic controller is obtained by:

1) Appropriately linearizing the dynamical model of the spacecraft to

obtain the plant

2) Determining an appropriate model for the measurement process

3) Invoking the ''certainty-equivalence'' principle of modern control
theory

4) Generating the suboptimal controller by passing the optimal

controller for the linear stochastic problem through appropriate and

desirable nonlinearities,

The contributions of this paper include the casting of the dynamical
equations for the spacecraft in a form suitable for optimal stochastic control
theory and the development of a suboptimal stochastic controller, To the
writer's knowledge, a stochastic controller based on a realistic model of a
complex spacecraft has not been previously obtained, This paper shows how
knowledge of an elaborate model of the spacecraft can be effectively used in the

t

design of a suboptimal stochastic controller to improve performance.
DYNAMICAL EQUATIONS FOR AN n~-HINGED RIGID-BODY SPACECRAFT

In this section, the dynamical equations for an n-hinged rigid-body
spacecraft are provided. Emphasis is placed on the procedure used to obtain
the results rather than on a detailed and lengthy derivation of the results.

Consider an n-hinged rigid-body spacecraft having r degrees of freedom, The

The stochastic controller presented in this paper is to be used in analyzing the
cruise, the thrust vector control (TVC), and articulation control (ARTC)
modes of the Mariner Jupiter Saturn (MJS'77) Spacecraft,
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number of scalar constraint torques for such a system is n_ = 3n - r. A set of

r dynamical equations in which the constraint torques do not appear is given

below. The pivotal steps involved in obtaining this canonical set of equations

involve (see [2],” [3] and [5]):

1) Recognizing that if the vector dynamical equations of all the bodies

are summed, then the constraint torques cancel in pairs

2) Noting that a vector constraint torque at a typical joint j can be
isolated by summing the vector dynamical equations over all bodies
that lie to one side of joint j (the constraint torques on this set of

bodies all cancel in pairs, except for the one at joint j)

3) Observing that the constraint torque (isolated in step 2) at joint j is

orthogonal to the gimbail axis at joint j.

Effectively, 3 scalar equ_ations result from the projection of the vector
equations summed over all the bodies onto a suitable reference frame. Moreover,
r - 3 additional scalar equations result from the dot products of the r - 3 gimbal
axes and the constraint torques associated with these axes. The salient
advantage associated with the elimination of the constraint torques is the
accompanying reduction of the computer time required for integrating the

equations (this is especially true for large n)!

The procedure used to arrive at the r scalar equations entails the

following steps:
1) Writing Newton's and Euler's equations for each body \

2) Eliminating the unknown interaction force F)\
j

3) Evaluating the term
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4)

5)

6)

7)

8)

which represents the sum of the moments about the center of mass

of body \ due to interaction forces F)\ existing at joint j
j
Interpreting Euler's equations for body \ (after using the results

of step 3)) as the equations for the augmented body \ relative to its

barycenter B \

Expressing the interaction moment M)\ acting at joint j on body A

J
as a sum of a constraint torque MC and a spring-damper torque

¥
MiD, i, e.,
~j
M, =M% +M5D - MC 4o
\. \. A, A, A
J J J J J

Recognizing that if the vector dynamical equations for the augmented
bodies X are summed over all A\, then the constraint torques cancel

in pairs and consequently disappear, i.e.,

C .
NeS jeJy )

Recognizing that the constraint torque at joint j acting on body \

can be isolated by summing over all bodies to one side of joint j

Recognizing that the gimbal axis gj is orthogonal to the constraint

torque MS at joint j.
j
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In vector-matrix notation, the equations arel:

, .
At 1 Az [ Lo
----- et === ={ --- ‘ (1)
1 .
A1 1 A2 |\“r Ly
or
Ab = L
In scalar form the equations are
r-3 n-1
. + v = =
%00~ “0 20k Yk = Do Ex (2)
k=1 A=0
r-3 n-1
20" “ot 2 Y T T o8 ‘aFy o 1T L2, T3
k=1 A=0
where
n-1 n-1
200 Prp
A=0 n=0
20k szkp Oy " Bk
Aoop

TSee Definitions of Symbols for the definitions of all terms used in this paper.
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30 - gi'z , z ;eix‘bxu
Ao

L - z ,z CSinPap Bk
Ao

E: )\| l
= + + +
E) = M)\ DxxF)\ D)\ x C F mw_ x (w xD )\)

MEN
- +
X BT Z Tx.
jeJ)\ J
r-3
E\ = Ex'} >\,‘I°xp ' E :‘kp' Bk Vi
v k=1
A comparison of Eqs. (1) and (2) reveals that:
1) A11 is the 3 x 3 matrix representation of the operator ago * (where
250 is a dyadic, and * represents the dot product operation).

2) A12 is the 3 x r - 3 matrix representation of the vectors a0k
3) A22 is the r - 3 x r - 3 matrix representation of the scalars a;
(withi, k=1,2,...,1r-3).

Moreover, in Eqs. (1) and (2), doo represents the angular acceleration of the
base body, ch represents the relative angular accelerations 'y'k of the remaining

n - 1 bodies, LO is a 3 x 1 matrix, and LR isar - 3 x 1 matrix,
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LINEARIZED SET OF r DYNAMICAL EQUATIONS FOR AN n-HINGED
RIGID-BODY SPACECRAFT

In this section, a linearized set of r dynamical equations for an n-hinged
rigid-body spacecraft is provided. Linearization! is accomplished by retaining
only terms of first order in war Yy and their derivatives in the solution (i.e.,

products of w, and Yk with k =1,2,+:+,r-3 and their derivatives are neglected).

0
In addition, it is assumed that y, (with k=1,2,*++,r-3) and 6, (with i =1,2,3)

are small angles -- hence the direction cosine matrices take a particularly

simple form,

Typical direction cosine matrices for the linearized case become (see,

e.g., Fig. 2)

2 ~
) T E-v,8
4 _ -
C3 = E-v 8,

1 -
Co = E-v,8

IR

2.1 ~ ~ 5
Co = C1Co = [E-v,EJE-vE] =E-v, & -v,8

4 4 3 _ ~ > o - g - g
Cop = C3Cy = [E-v 8y J[E-v38] > E-v38;-v,8,
0 -6, 0, 1 % %
0 - a - - = -
Cy = E-8 = E-| ¢ 0 6, 6, 1 63
-6 8 0 8 -0 1
- 3 | | 2 3 _

TProducts such as wgy and YY are neglected in the linearization in this paper;
such terms can be retained and included in the forcing function L if it is
desirable!
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where the vector 6 consists of ordered rotations 63, 0 Eisa3x3

2 v
identify matrix, and a * over a vector represents the matrix representation of

the cross-product operation.

The relationship between the attitude rate and the angular velocity of the

base body 0 becomes (for the linearized case)

- =
91 1 0 92 W, wl
92 = 0 1 - 61 (—02 o~ WZ (4)
63 _0 91 1 i wgy o wj

when the small angle assumption is used and in addition products of ei and w,

are neglected.

The elements a, , can be evaluated for the linear case by recognizing that
products of Yi and 'y'k and Y and d)o can be frequently neglected (for
k=1,2,--+,r=-3). Itis clear that only those portions of ap that are not

's

functions of Yy are to be retained. Recall from Eqs. (1) and (2) that the 3 m
are the multipliers of Coo and (bR. Effectively, this implies that the direction
cosine matrices Cg (with k =1,2,-++, r-3) appearing in the expressions for the

agm's can be approximated by identity matrices. The matrix A which is

composed of the elements ag then becomes a constant.

The terms involved in the evaluation of the forcing function L are
provided below for the linearized case. Recall that L is defined according to

(see Eq. (1))
Ab = L (5)

where w consists of wg and wp and L consists of L0 and LR.
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10

Recall, too, that LO and LR’ the components of L, are given by

(6)

/gl Z ‘i
x

Lp =1 &2 E»:ezxﬁﬂ
X

\gr—3 Z ‘r-3,\ E)\
A

The linearized versions of E)\ and E)\ reduce to

A
+ + + .
N M)\ D)\ >4 F)\ E D)\p X Cp Fp E T)\J

REN jedy

1
il

(7)
E)\ = E

and consequently, the linearized versions of L0 and LR reduce to

LO = M)\+D)\XF)\+ D)\p.xCp Fp+ T)\j (8)

A HEN jedy
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N
/gl E,en M)\+D)\XF)\+§ DMLXCPFI_L+§ ™\ \
)

= . 2 : A
LR g, € M)\+D)\XF)\+ DXHXCHFP +2 T)‘j
N VEDN jeJ)\
+ Np o+ )
Br.3 " €23, ) M)""D)\XF)\ DM-LXCH Fp. T)\jf
A MEN jeJ)\

Note that the term

is identically zero in the equation for LO (interaction moments cancel in pairs).

Compact Form for the Linearized Set of r Dynamical Equations

In this section, the linearized set of r dynamical equations for an n-hinged

rigid-body spacecraft are expressed in compact form.

First, the term

is examined. By summing the dynamical equations over bodies A, which are
connected beyond gimbal axis g; relative to the base body, the interaction

moment at joint i on body \ can be isolated. This implies that

g - E , EiAE : ™. = & " Tii T & [' iVi " BiYi] g; (10)

: j
A jeJy
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where
i T " Kiv;8 - Bivig;

In Eq. (10}, Ki and Bi are the stiffness and damping coefficients associated with

joint i, Substitution of Eq. (10) into Eq. (8) yields

n-1 n-1
_ A A
Ly, = M0+D0xFO+E D)\OxCOFO +§ M)\+D)\xe+§ Dxpxchp
A=1 A=1 TEN

K#0
(11)

\ )
8 Z €1x Dro X Cg Fo - (Kyv) +Byyy)

)\ ]
n-1

+gy e dM, +D, x F, + D, xChNF, }

g1 INY VI TR E ap X G

A=1 [TEIN j
: R#£0

x .
g - E : €2x Do X Cg Fp - (Kav, + ByY,)

L = A
R n-1 \
+g2- E €5 M)\+D)\X F)\+E D)\HXCPFP
A=1 TEDN :
H£0

E : ) .
ro3° er-3,)\ DXO x CO FO - (Kr-3 Yr-3 + Br-3 Y1'-3)

A
n-1
§ : § : A
+ g3 €3\ M)\ + D)\ x F)\ + D)\p x Cp Fp.
A=1 TR

10
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Equation (11) can thus be written as

Loo * Lor 0 0
L= {----m-ome- ol il A el Y - (12)
Lro * Lrr -K -
or
T 0 0
o
L =+ y+p—-—- Y
Ly -K -B
where

0 is an appropriately dimensional null matrix

K, B are r-3 x r-3 diagonal matrices composed of the stiffness coefficients

K, and the damping coefficients B,

n-1

- A - +
Lyo = M0+D0xFO+ZD)\OxC0 F, = M, + Ty,
A=1

n-1

§ : A
= + + E
Lor M, +D, x F, D\, *C, F,

A=1 HEX
p#0

A
\gr-?: 2 €38 Do X G Fy

A
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n-1
E : E : 1N

g; : 1Y M)\+D)\XF)\+ DMJ-XCP-FP \
=1

pEN
p#0
n-1
_ ] A
LRR =18 EZK'M)\+D)\XF)\+ i DMLXCPFP
A=1 TE 2N
| . r#0
. n-1
A
g..3"° E o3 M)\ + D)\ x F)\ + E D)\P X CI_L Fl-l
A=1 P-FA
p#0
Lo = Loo tLor = My +Tgo + Loy
Lr = Lpo * Lgrr

Collecting the above results, it follows that a set of r linearized dynamical

equations for an n-hinged rigid-body spacecraft is given by

0 0

S R ] eee|y +[---]Y (13)
: L.+ L -K -B

State Equations for an n-Hinged Rigid-Body Spacecraft

In this section, the linear model developed in the last section is cast in a
form suitable for use in modern control theory. Essentially, the state equations

are sought. As seen previously,

and
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where the vectors 6 and wo are the attitude and angular velocity of the base

body and the vectors Y and wp represent the relative attitude and angular

velocities Yk’ \.(k for k = 1,2,+++, r-3. The state can thus be defined as the

2r x 1 vector

The differential equations for § and y are given above and those for wg and w

R
can be obtained from Eq. (13).
Manipulation of Eq. (13) yields
App@o tA29r T Lgo tLor T Lo
(14)
A21w0+A22wR = LR0+LRR- Ky- By = LR-KY - By

Equation (14) can be written as

[
L

o~ [Au A1z Az 21] Lor!

- I:All " A A 22 21] App A 22 (LRo Lpr - Ky - By)  (15)

| : .
wr T A2 {LRO t Lpr - Ky - By - 4y, ‘*’0}
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Redefining the bracketed matrix in Eq. (15) as «, it follows that

S | .
9o = @ " Lgg t Log) - e " Ay, Ajy { ro * - Ky - BY}
(16)
o = A 1 L. +L__ - Ky-By}-AZ} A,
R RO “RR T °Y T Py 22 o)
In vector-matrix notation, the state equations become
0 0 1 E 0 ' 0 T (3] ‘
--- e R T T T ---
: 010! e laazlk : “la_azls
“o | _ R 12322 ! @ 12722 “0
-—— L R e e i T I —— e e e -—-
v 0,0, 0 ; E Y
) 1 1 -
- O Rt SRR USRI
, 0to! aMera o la_alk i oafera, otaals | (o
l“r| |77 ez 21 BBzt 1 P22 21% “12%22)7 | |“R|
B 0 ]
-1 -1 -1
T:O -a Ale22 LR
T (17)
0
-1 1 1\ -1 -1 —
_Azz(E t A Alezz) L = A22821% Lo |

where E is a 3 x 3 identity matrix and 0 is an appropriately dimensioned null

matrix., Note that Eq. (17) has the desired form
x = Fx + Gu

where x is the state and u is the control vector (G is an identity matrix in

this case).
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Stochastic Controller for Multi-Hinged Rigid-Body Spacecraft

In this section, a stochastic controller based on the dynamical model
presented above is given. It is known from stochastic optimal control theory [9]
that an optimal stochastic controller can be obtained for a linear problem sﬁBject
to a quadratic cost functional. For the general nonlinear case, however, one
must be content with a suitable suboptimal stochastic controller. In this work,
the form of the stochastic controller appropriate for a linear problem.subject
to a quadratic cost functional is retained; however, the form of the control
function for this special case is passed through desirable nonlinearities peculiar

to attitude control before being applied to the plant (see Fig. 3).

The models for the plant and measurement process are given by

(]
I

Fx(t) + Gu +w
(19)
Hx(t) + v

N
H

where x is the state vector, u is the control vector, z is the measurement
vector, H is the measurement matrix, F and G are the plant matrices, v is

the measurement noise vector, and w is the plant noise vector. As 'is customary
with Kalman filter theory and, without loss of generality, the noise processes w
and v are assumed to be white and gaussian. The well-known Kalman-Bucy

filter equations are given by [9]

% = Fx+Gu+ K[z - Hx]
K = puY R} (20)
P = FP+PFY - KRK! +Q
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A . . . . .
where x is the estimate of the state, K is the Kalman gain matrix, P is
covariance of the error in the estimate of the state, and the matrices R and Q

are defined by

E [w(t) - W] [wir) - w(0)]T = Q) s(t - 7)

(21)

E [vit) - v(][v(7) - %(0)] T R(t) 6(t - )

The values of the matrices O, R used in the filter are based on engineering
judgment; Q depends on disturbance torques, uncertainties in the dynamical

model, etc.; R depends on sensor errors.

Generation of Suboptimal Controller

As stated above, the optimal control function u~ cannot, in general, be
determined for the stochastic problem. For the linear case subject to the
average value of a quadratic cost functional, the optimal u’~ can be determined.

The equations characterizing this problem and its solution are given by [9]

W
1}

F(t) x + G(t) u + w(t)
z = H(t) x + v(t) PROBLEM
FORMU LATION
t
£
J = E %xT(tf) §f x(tf) +%—[ (xTKx +uT§u) dt
0
ut"< = - C)’E
=1 T = OPTIMAL
c=BG'S | CONTROL
¥ = SFr-rTg+CIBC-KS(t) = 5

JPL Technical Memorandum 33-640



£ = Fi+ou +K®[2() - Hx]

_ T -1 FILTER
K = PH" R EQUATIONS
P = FP+ PFI - KRKT +Q

In this analysis, the suboptimal vector function u, for the base body is

0
obtained by

1) Generating the actuating signal u used to fire the thrusters located

on the base body according to

d+c & +cov+c o
(V) ()
wo 0 Y wR

u = C

(23)

(2] R

2) Passing the function u through a vector deadzone function to obtain
the applied moment M0 and the associated applied thrust FO acting
on the base body; this contribution to u, is given by.

3

M, =- E |Mo'
. 1
i=1

b.b.Y |- DEZ T
11

3) Generating the terms 00’ LOR’ LRO'
The vector control function u, is given by
3
= o1 T|. — -1 = -1
u, = a |- E |M0i bb, [ DEZUW+o "L +a " Loy
i=1

-a'l A, A

: .
12 822 (Lro (24)

+ LRR)
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L L are defined in Eq. (12). Correspondingly, the

OR’ TR0’ TRR

vector control function for the remaining n - 1 bodies is given by

where rOO’ L

_ -1 -1
UR T ~hzz A1 Yo T Az (Lpo t Lrg) (23)
Note that the time-varying functions f'OO’ LOR’ LRO’ and LRR are based on Y.

Descriptién and Uses of Suboptimal Stochastic Controller

From Fig. 3, it is seen that the stochastic controller consists of a Kalman
filter adjoined to the generators of u, and up- The measurement vector z, in
this paper, consists of the sensed attitude angles of the base body. The
estimated state x consisting of /9\, 30, {,\, SR is used to generate the actuating
signal u which fires the thrusters located on the base body. In essence, the
applied moment MO tends to null a weighted combination of the attitude and
angular velocity of the base body and the relative motion of the remaining n - 1
bodies. Note that, if it is not desirable to null a specific relative motion Yy and

its associated rate \'(k, then the appropriate components of the control gain

matrices C) and C,, are zero. Note, too, that the system matrices A;,,

R
AZZ’ AIZ’ ‘A‘Zl’ o are constant. The Kalman gain matrices X, Kwo, KwR, KY
and the control gain matrices Ce, C,» Cw ’ CY can be approximated by
0 R

piecewise constant functions, if it is so desired!

This stochastic controller can be effectively used to study the effects of
interactions of an articulated science platform on the base body motion, and to
study the effects of interactions of booms on thrust vector control performance.
In fact, this controller will be used to analyze the Mariner Jupiter Saturn

(MJS'77) spacecraft in the cruise, the thrust vector control, and the
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articulation control modes. The MJS'77 stringent accuracy requirements and
settling times associated with the articulated science platform dictates that an
elaborate dynamical model be used and that disturbances and sensor noise be

properly accounted for.
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All’ AIZ’ A A

21’ 22
A
Q)O, wR,(.\)
Lo LR,L

200’ %ok’ 20’ %k

DEFINITION OF SYMBOLS

Number of rigid bodies in spacecraft model

Number of constraints

Number of degrees of freedom

Integer used to designate a joint

Set of labels for joints j belonging to body A

Set of labels of the ensemble of bodies )\,pu

Vector from c. m. of body N to joint j

Interaction force and moment on body \ due to joint j
System mass; mass of body »

Constraint moment at joint j on body A\
Spring-damper interaction moment on body X due to
joint j

Elements of partitioned matrix A appearing in Eq. (1)
3+r-3x3+r-3 matrix appearing in Eq. (1)

Angular velocity vector of base body 0; relative angular

velocity components {,k, k=1,2,-+,r - 3; w has

components W and wp

Vector forcing function for base body; vector forcing .
function for n - 1 remaining bodies; vector L has

components L0 and LR

Dyadics defined in Eq. (2)
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Y,Y

€,

i\

Lo LR

Loo* Lor

Lro’ FrR

Loo

b.

1

U

Eyx Ey

Dy.» Dy
j

2\

Relative angular motion at joint k; y is r - 3 x 1 vector

having compor_lents Yk’ k=1,2,-*-, r-3

{ 1 if gimbal axis g; is between body A and body 0

0 otherwise

Vector forcing functions used in defining L (see Eq. (12));

L, and TJR are formed from L, and LR by not including

0
the terms K Y+ BY
Vector forcing functions used in defining I‘O;

L00 is the contribution to I'O due to forces FO and

moments M0 applied to the base body; L is the

OR

contribution made by forces F)\ and moments M)\ with

A=z0

Vector forcing functions used in defining T"R; LRO is the

contribution to L, due to FO; LRR is the contribution

R

made by F, and M)\ with A # 0

L is

Vector forcing function used in defining LOO; 00

formed from L‘

00 by not including the moment MO

Basis vectors for base body 0, i = 1,2,3
Unit dyadic

Vectors used in defining terms L0 and LR of Eq. (2)

D, 1is vector from barycenter of body \ to joint j of
J
body \; D, = D)\ for all bodies p belonging to S)\ (the
' J J

set of bodies connected to body \ via joint j)

A dyadic defined by @ = -m [DML . Dy U - Dyx Dy
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Augmented inertia matrix for body X relative to barycenter

By

Gimbal axis, i =1,2,:++, v - 3
Vector from barycenter of body \ to c.m. of body A

Vectors representing externally applied forces and

moments to body A

Direction cosine matrix transforming coordinates of

body p to coordinates of body )\
Unit (identity) matrix

Attitude angles of base body 0; angular velocity measure

numbers of base body 0, i =1,2,3

Vector representing spring-damper interaction torque
SD
X )

J

Stiffness and damping coefficients for joint i

on body A at joint j {same as M

Matrix used in state equations (see Eq. (17))
Diagonal stiffness and damping matrices

F is matrix used in defining state equations (see Eq. (18));
u, w, x are vectors used in defining state equations (see

Eq. (19))

z, v vectors used in defining measurement process; H is

the measurement matrix

Matrices used in defining average value of quadratic cost

functional
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9(’ P) R, Qo I_{

DEZ{ }

Yo' YR

Gain matrix used in defining controller u; C has

components C_ ., C , C , C
87 Twg ¥ Teg
% is estimate of state x; P, Q, R, K are matrices

appearing in filter equations (see Eq. (20))
Vector deadzone function

Suboptimal control vector for base body 0; suboptimal

control vector for n - 1 remaining bodies
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NOTES:

1.

By IS BARYCENTER OF BODY A (A= 0 IN DRAWING).

C, IS CENTER OF MASS (C.M.) OF BODY .

dy; IS VECTOR FROM C. M. OF BODY A TO JOINT j.

S, S SET OF BODIES 4 CONNECTED TO BODY X VIA JOINT  (SHOWN SHADED).
Dy IS VECTOR FROM By TO C,.

Dxi IS VECTOR FROM B TO JOINT j.

D)‘“= D)‘i FOR ALL ue S*i (IN ABOVE SKETCH, Doi = DO\ = D02 = 003 = DO4= DOS = DOé)'

Fig. 1. Pictorial Sketch of 15-Hinged Rigid Bodies
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NOTES:

1. d,. REPRESENTS VECTOR FROM C.M. OF BODY A TO JOINT j.
(
2. gi REPRESENTS GIMBAL AXIS AT JOINT j.

3. pi REPRESENTS HINGE POINT AT JOINT j.

Fig. 2. Pictorial Sketch of a 5-Hinged Rigid-Body
Spacecraft Showing Gimbal Axes
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Fig. 3. Block Diagram of Suboptimal Stochastic
Controller for n-Body Spacecraft
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