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The work described in this report was performed by the Guidance and
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Abstract

Considerable attention, in the open literature, is being focused on the

problem of developing a suitable set of deterministic dynamical equations for a

complex spacecraft. This paper addresses the problem of determining a

stochastic optimal controller for an n-body spacecraft. The approach used in

obtaining the stochastic controller involves the application, interpretation, and

combination of advanced dynamical principles and the theoretical aspects of

modern control theory. The stochastic controller obtained herein for a

complicated model of a spacecraft

1) Uses sensor angular measurements associated with the base body

to obtain smoothed estimates of the entire state vector

2) Can be easily implemented

3) Enables system performance to be significantly improved.
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INTRODUCTION

For deep-space missions, the requirements placed on antenna pointing,

articulation control, science platform settling times, etc. tend to continually

become more stringent. Moreover, to meet the objectives of the scientific

experiments and to provide isolation from the radiation produced by the power

source, booms are frequently employed. These facts dictate that a suitable

spacecraft model must be determined and, in addition, that sensor noise and

plant disturbances be accounted for!

Considerable attention, in the open literature, has been focused on the

problem of developing a suitable set of deterministic dynamical equations for a

spacecraft ([l] through [5]). Recently, a particularly elegant albeit complicated

set of dynamical equations for an n-hinged rigid-body spacecraft has been

developed [2]. The salient features of this set of dynamical equations are

(1) constraint torques do not appear, and (2) the number of variables involved is

equal to the number of degrees of freedom of the system. Stochastic control

theory has also been given special attention in the open literature. Ref. [6] is

devoted exclusively to linear stochastic optimal control of linear systems subject

to the average value of a quadratic cost functional. Stochastic optimal control

theory has been successfully applied to such analytical problems as

1) Obtaining a stochastic controller for a personalized rapid transit

system [?]

2) Obtaining a stochastic controller for achieving docking between an

Orbit-to-Orbit Shuttle (OOS) and a malfunctioned satellite [8]

3) Obtaining a stochastic controller for a single rigid-body model of a

spacecraft [l l].
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In the present work, the objective is to determine a controller which makes

use of the elaborate, deterministic model of the spacecraft and, in addition,

accounts for sensor noise, disturbances, etc. In essence, an optimal stochastic

controller is sought. However, because of the practical importance of ease of

implementation, simplicity, and reliability, a suboptimal stochastic controller

is determined.

In obtaining the dynamical model for the spacecraft it is assumed that

(see Fig. 1):

1) The spacecraft (s/c) can be adequately modeled as n-hinged rigid

bodies (with r degrees-of-freedom for the entire system)

2) Chains of connected bodies do not form closed loops

3) Only rotational motion at a joint is allowed

4) A joint can be dissipative and elastic

5) There is a vector constraint torque normal to the axis of rotation at

a joint whenever the rotational motion has only one or two degrees

of freedom.

The approach used in this paper for obtaining the suboptimal stochastic

controller for an n-hinged rigid body spacecraft involves the application,

interpretation, and combination of advanced dynamical principles and the

theoretical aspects of modern control theory. It is known that a solution can be

found to a linear stochastic optimization problem involving a quadratic cost

functional ([9] and [10]). However, the plant representing the dynamics of the

spacecraft is nonlinear. In addition, a single quadratic cost functional which
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accounts for all of the desired characteristics of the controller cannot be found.

Nevertheless, a suboptimal stochastic controller is obtained by:

1) Appropriately linearizing the dynamical model of the spacecraft to

obtain the plant

2) Determining an appropriate model for the measurement process

3) Invoking the "certainty-equivalence" principle of modern control

theory

4) Generating the suboptimal controller by passing the optimal

controller for the linear stochastic problem through appropriate and

desirable nonlinearities.

The contributions of this paper include the casting of the dynamical

equations for the spacecraft in a form suitable for optimal stochastic control

theory and the development of a suboptimal stochastic controller. To the

writer's knowledge, a stochastic controller based on a realistic model of a

complex spacecraft has not been previously obtained. This paper shows how

knowledge of an elaborate model of the spacecraft can be effectively used in the

design of a suboptimal stochastic controller to improve performance.

DYNAMICAL EQUATIONS FOR AN n-HINGED RIGID-BODY SPACECRAFT

In this section, the dynamical equations for an n-hinged rigid-body

spacecraft are provided. Emphasis is placed on the procedure used to obtain

the results rather than on a detailed and lengthy derivation of the results.

Consider an n-hinged rigid-body spacecraft having r degrees of freedom. The

The stochastic controller presented in this paper is to be used in analyzing the
cruise, the thrust vector control (TVC), and articulation control (ARTC)
modes of the Mariner Jupiter Saturn (MJS'77) Spacecraft.
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number of scalar constraint torques for such a system is n = 3n - r. A set of
c

r dynamical equations in which the constraint torques do not appear is given

below. The pivotal steps involved in obtaining this canonical set of equations

involve (see [z], [3] and [5]):

1) Recognizing that if the vector dynamical equations of all the bodies

are summed, then the constraint torques cancel in pairs

2) Noting that a vector constraint torque at a typical joint j can be

isolated by summing the vector dynamical equations over all bodies

that lie to one side of joint j (the constraint torques on this set of

bodies all cancel in pairs, except for the one at joint j)

3) Observing that the constraint torque (isolated in step 2) at joint j is

orthogonal to the gimbal axis at joint j.

Effectively, 3 scalar equations result from the projection of the vector

equations summed over all the bodies onto a suitable reference frame. Moreover,

r - 3 additional scalar equations result from the dot products of the r - 3 gimbal

axes and the constraint torques associated with these axes. The salient

advantage associated with the elimination of the constraint torques is the

accompanying reduction of the computer time required for integrating the

equations (this is especially true for large n)!

The procedure used to arrive at the r scalar equations entails the

following steps:

1) Writing Newton's and Euler's equations for each body X

2) Eliminating the unknown interaction force F

3) Evaluating the term

JPL, Technical Memorandum 33-640



8)

E i x F^X- X.

which represents the sum of the moments about the center of mass

of body X due to interaction forces F existing at joint j
K)

4) Interpreting Euler's equations for body X (after using the results

of step 3)) as the equations for the augmented body X relative to its

barycenter B,

5) Expressing the interaction moment M acting at joint j on body \

C j

as a sum of a constraint torque Mr' and a spring-damper torque

., i. e. ,

M = M^ + M? D = M? + T
A.. A.. A.. \ \

J J J J

6) Recognizing that if the vector dynamical equations for the augmented

bodies X are summed over all X, then the constraint torques cancel

in pairs and consequently disappear, i. e. ,

7) Recognizing that the constraint torque at joint j acting on body X

can be isolated by summing over all bodies to one side of joint j

Recognizing that the gimbal axis g. is orthogonal to the constraint
j

C
torque M, at joint j.

' j
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In vector-matrix notation, the equations aret:

21

A
12

22

0

u>
R , "Ry

(1)

or

A tl> = L

In scalar form the equations are

r-3

loo
k=l

n-1

Vk
 = Lo =

x=o
(2)

r-3

aiO
k=l

L. =i

n-1

V
\=o

i = 1,2, - " ,T-3

where

n-1 n-1

oo
=0 |Ji=0

ok w

I See Definitions of Symbols for the definitions of all terms used in this paper.
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aiO

a
ik = gi' €ix*^ ' gk

L + D. x F. + / D. x CX |F + mw x (w x D
X X X L — i XJJL M - L H H 1 V - \

T
x.

r-3

E
X X

HL k=l

A comparison of Eqs. (1) and (Z) reveals that:

1) A. , is the 3x3 matrix representation of the operator a00 • (where

an« is a dyadic, and • represents the dot product operation).

2) A-2 is the 3 x r - 3 matrix representation of the vectors aok-

3) -A?? *s the r - 3 x r - 3 matrix representation of the scalar s a.,

(with i, k = 1, 2, • • • , r-3).

Moreover, in Eqs. (1) and (2), w^ represents the angular acceleration of the

base body, cl)_ represents the relative angular accelerations y, °f the remaining
-TV. K.

n - 1 bodies, L,n is a 3 x 1 matrix, and L,D is a r - 3 x 1 matrix.
U K.
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LINEARIZED SET OF r DYNAMICAL EQUATIONS FOR AN n-HINGED
RIGID-BODY SPACECRAFT

In this section, a linearized set of r dynamical equations for an n-hinged

rigid-body spacecraft is provided. Lihea.riza.tion' is accomplished by retaining

only terms of first order in u>0, y, and their derivatives in the solution (i. e. ,

products of w_ and YI, with k = 1, 2, • • • , r-3 and their derivatives are neglected).

In addition, it is assumed that y, (with k = 1, 2, • • • , r-3) and 0. (with i = 1, 2, 3)

are small angles -- hence the direction cosine matrices take a particularly

simple form.

Typical direction cosine matrices for the linearized case become (see,

e.g. , Fig. 2)

= E -

= E -

'0

,2
'0

,3
'0

,4
'0

= C

= E -

gj * g2

• C
= [E - Y4 g4][E - V3 g3] = g4

= E - 6 = E -

0

el
_~62

"81 62

0 -63

6 3 0_

— 6

'Products such as ugV and VY are neglected in the linearization in this paper;
such terms can be retained and included in the forcing function L if it is
desirable !
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where the vector 6 consists of ordered rotations 6,, 6?, 6,1 E is a 3 x 3
J ti X

identify matrix, and a ~ over a vector represents the matrix representation of

the cross-product operation.

The relationship between the attitude rate and the angular velocity of the

base body 0 becomes (for the linearized case)

/M
°2

*>l

=

1 0 92

o i -GI

0 6j 1

/ \
r\

W2

\^l
=*

0

h\
"z

l"3/

(4)

when the small angle assumption is used and in addition products of 6. and w.

are neglected.

The elements a« can be evaluated for the linear case by recognizing that

products of Y, and y, and y, and <I>n can be frequently neglected (for

k = 1, 2, • • • , r-3). It is clear that only those portions of a« that are not

functions of Yi, are to be retained. Recall from Eqs. (1) and (2) that the a» 's

are the multipliers of <1>0 and u > _ . Effectively, this implies that the direction

cosine matrices C, (with k = 1, 2, • • • , r-3) appearing in the expressions for the
K.

a.* 's can be approximated by identity matrices. The matrix A which is

composed of the elements a/, then becomes a constant.

The terms involved in the evaluation of the forcing function L are

provided below for the linearized case. Recall that L is defined according to

(see Eq. (1))

Aw = L, (5)

where w consists of con and OOD and L consists of L,n and L0.( J i \ U K .
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Recall, too, that LO and LR, the components of L, are given by

z
x

£g 2 - ^ 6 2 X E X
X

(6)

*
The linearized versions of E. and E reduce to

A. \

Ex = M + D. x F, +
\ \ X \

/ D.
L-L

x C F + T,
H-

/

Z— <

and consequently, the linearized versions of LO and LIR reduce to

(7)

L« = > < MK + Dx x Fx + x C F (8)
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R

ix x x x x

g, •6 _. . , x x2X ) X X- X

Note that the term

x C F

g , • > e o A M + Dx x F + > D. x C', F +er-3 / j r-3. X) X. X X / j Xn H-
j £ J

is identically zero in the equation for L»n (interaction moments cancel in pairs).

Compact Forn^ for the Linearized Set of r Dynamical Equations

In this section, the linearized set of r dynamical equations for an n-hinged

rigid-body spacecraft are expressed in compact form.

First, the term

j«Jx

is examined. By summing the dynamical equations over bodies X, which are

connected beyond gimbal axis g. relative to the base body, the interaction

moment at joint i on body X can be isolated. This implies that

g. • > e.. 7 T. = g. • T.. = g. • I - K.v. - B.y. I g.
51 / ^ iX / j X. ei 11 61 L 1T1 I'lJ5!

\ i c. T J
(10)
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where

T.- = - K.v-g- -11 i'i6i B.

In Eq. (10), K. and B. are the stiffness and damping coefficients associated with

joint i. Substitution of Eq. (10) into Eq. (8) yields

n-1 n-1

R

DXO X C0 F0

gr-3 DXO x C0 F0 - <Kr-3

-

i ' 7 € - ̂r-3 / >i r-3.)

12 JPJL Technical Mernorandum 33-640



Equation (11) can thus be written as

OR
L =

RR,

0"

-K -B
(12)

or

L = |

" o"

-K -B

where

0 is an appropriately dimensional null matrix

K, B are r-3 x r-3 diagonal matrices composed of the stiffness coefficients

K. and the damping coefficients B.

n-.

Loo = Mo + D o x F o
\=i

JOR

n-1

E
\=i

M. + D. x Fx
A. \ A.

x CQ FQ - MQ + LOQ

x CX F

JRO

g,

£ i x D x o x C o F o

\o x co Fo

er-3,X DXO x C0 F0
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JRR

n-1

E
X=l

n-1

E
x=i

n-1

X M + D. x F. +
ZD>

x CX F

:2X
[x + Dx x Fx DN

g -3 ' / , £r-3,l
X=l

M + D. x F.
\ A. \

D.

^O = L00 + LOR = M0 + L00 + LOR

LR = LRO + LRR

Collecting the above results, it follows that a set of r linearized dynamical

equations for an n-hinged rigid-body spacecraft is given by

21 A22 LRO + LRR

0

-K

0"

-B
(13)

State Equations for an n-Hinged Rigid-Body Spacecraft

In this section, the linear model developed in the last section is cast in a

form suitable for use in modern control theory. Essentially, the state equations

are sought. As seen previously,

e ^ co o

and

V = WR

14 JPL Technical Memorandum 33-640



where the vectors 6 and ojn are the attitude and angular velocity of the base

body and the vectors Y andojR represent the relative attitude and angular

velocities Y, • V, for k = 1, 2, • • •, r-3. The state can thus be defined as the
K, K.

2r x 1 vector

x =

e

R

The differential equations for 6 and y are given above and those for wn and
U

can be obtained from Eq. (13).

Manipulation of Eq. (13) yields

"0 + A12 "R = L00 + LOR = L0

A21 "0 + A22 »R = LRO + LRR - KY - By = LR - Ky - By

(14)

Equation (14) can be written as

0 " A12 A22XJ1

- A12 A222 A2l] A12 A22 RR

"R
LRO + LRR - Ky - By -

JPLi Technical Memorandum 33-640 15



Redefining the bracketed matrix in Eq. (15) as a, it follows that

"0
(L00 LOR> ' 2 {

2 {A22 LRO + LRR

A12 A22 LRO RR

In vector-matrix notation, the state equations become

(16)

6

"
0

0 0

0

A12A22 B

E

e

L22

a

0

- 1

0

R

22^21" J0

(17)

where E is a 3 x 3 identity matrix and 0 is an appropriately dimensioned null

matrix. Note that Eq. (17) has the desired form

x = Fx + Gu

where x is the state and u is the control vector (G is an identity matrix in

this case).
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Stochastic Controller for Multi-Hinged Rigid-Body Spacecraft

In this section, a stochastic controller based on the dynamical model

presented above is given. It is known from stochastic optimal control theory [9]

that an optimal stochastic controller can be obtained for a linear problem subject

to a quadratic cost functional. For the general nonlinear case, however, one

must be content -with a suitable suboptimal stochastic controller. In this work,

the form of the stochastic controller appropriate for a linear problem subject

to a quadratic cost functional is retained; however, the form of the control

function for this special case is passed through desirable nonlinearities peculiar

to attitude control before being applied to the plant (see Fig. 3).

The models for .the plant and measurement process are given by

x = Fx(t) + Gu + w

(19)

z = Hx(t) + v

where x is the state vector, u is the control vector, z is the measurement

vector, H is the measurement matrix, F and G are the plant matrices, v is

the measurement noise vector, and w is the plant noise vector. As is customary

with Kabmanfilter theory and, without loss of generality, the noise processes w

and v are assumed to be white and gaussian. The well-known Kalman-Bucy

filter equations are given by [9]

A A f A T
x = Fx + Gu + K [z - Hx J

K = PHT R"1 (20)

P = FP + PFT - KRKT + Q

JPL, Technical Memorandum 33-640 17



where x is the estimate of the state, K is the Kalman gain matrix, P is

covariance of the error in the estimate of the state, and the matrices R and Q

are defined by

E [w(t) - w(t)][w(r) - w(T)]T = Q(t) 6(t - r)

E [v(t) - v(t)][v(r) - v(r)]T = R(t) 6(t - T)

(21)

The values of the matrices Q, R used in the filter are based on engineering

judgment; Q depends on disturbance torques, uncertainties in the dynamical

model, etc. ; R depends on sensor errors.

Generation of Suboptimal Controller

>**

As stated above, the optimal control function u' cannot, in general, be

determined for the stochastic problem. For the linear case subject to the

*
average value of a quadratic cost functional, the optimal u can be determined.

The equations characterizing this problem and its solution are given by [9]

i = F(t) x + G(t) u + w(t)

z = H(t) x + v(t)

J = E
f

^ xT(tf) Sf x(tf) + ̂  f (xT A" x + uT B u) dt
J L/-*

PROBLEM
FORMULATION

u = - -

C = GT S

T,=r,

yOPTIMAL
CONTROL

= SF - FTS~ + C ^ B C - A; S(tf) =

18 JPL Technical Memorandum 33-640



x = F x + G u* + K(t) [z(t) - H x]

T -1
K = PH R

P = FP + PFT - KRKT -I- Q

FILTER
EQUATIONS

In this analysis, the suboptimal vector function u~ for the base body is

obtained by

1) Generating the actuating signal u used to fire the thrusters located

on the base body according to

u = ce e + % "o (23)
rv.

2) Passing the function u through a vector deadzone function to obtain

the applied moment M« and the associated applied thrust F~ acting

on the base body; this contribution to u- is given by

DEZ uMQ =- E Mo.
T

b.b.
i i

3) Generating the terms LQQ. LQR' LRO'

The vector control function uo is given by

UQ = a -1 -XX T
b.b.1
1 1

(24)
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where TL_, LnTJ, L_n , L, are defined in Eq. (12). Correspondingly, the
VJU Uix x\U x\±\

vector control function for the remaining n - 1 bodies is given by

UR = -A22 A21 U0 + A22 {LRO + LRR> (25)

Note that the time-varying functions LQQ. LOR, L
RO> and LRR are based on Y.

Description and Uses of Suboptimal Stochastic Controller

From Fig. 3, it is seen that the stochastic controller consists of a Kalman

filter adjoined to the generators of un and u_.. The measurement vector z, in
<J K.

this paper, consists of the sensed attitude angles of the base body. The

estimated state x consisting of 6, w , y > ^p is used to generate the actuating

signal u which fires the thrusters located on the base body. In essence, the

applied moment M~ tends to null a weighted combination of the attitude and

angular velocity of the base body and the relative motion of the remaining n - 1

bodies. Note that, if it is not desirable to null a specific relative motion y, and
K.

its associated rate y, , then the appropriate components of the control gain
K.

matrices C ̂  and Cw are zero. Note, too, that the system matrices A, ,,
R _ _ _ _

A-,,, A,,, A, , , a are constant. The Kalman gain matrices Kn, K , K , Kv
L* Ct 1 £ £ i \3 ^r\ r> '

U K.

and the control gain matrices Cfl, C , C , Cv can be approximated by
U R

piecewise constant functions, if it is so desired!

This stochastic controller can be effectively used to study the effects of

interactions of an articulated science platform on the base body motion, and to

study the effects of interactions of booms on thrust vector control performance.

In fact, this controller will be used to analyze the Mariner Jupiter Saturn

(MJS'77) spacecraft in the cruise, the thrust vector control, and the

20 JPL Technical Memorandum 33-640



articulation control modes. The MJS'77 stringent accuracy requirements and

settling times associated with the articulated science platform dictates that an

elaborate dynamical model be used and that disturbances and sensor noise be

properly accounted for.

JPL Technical Memorandum 33-640 21



DEFINITION OF SYMBOLS

n Number of rigid bodies in spacecraft model

n Number of constraints

r Number of degrees of freedom

j Integer used to designate a joint

J. Set of labels for joints j belonging to body X\

S Set of labels of the ensemble of bodies \fjj.

c. Vector from c. m. of body X to joint j
A..

J

F. , M. Interaction force and moment on body X due to joint j
A. . A..J J

m.m^ System mass; mass of body }i

M Constraint moment at joint j on body X

M. Spring-damper interaction moment on body X due to
A..

joint j

A . . , A ] 2 , A 2 - , A22 Elements of partitioned matrix A appearing in Eq. (1)

A 3 + r - 3 x 3 + r-3 matrix appearing in Eq. (1)

co.~, Wp, w Angular velocity vector of base body 0; relative angular

velocity components -y, , k = 1, 2, • • • , r - 3; w has

components (*>_ and w...U K.

Lp., Ln, L Vector forcing function for base body; vector forcing
U K.

function for n - 1 remaining bodies; vector L has

components L_ and L0u ±\

aOO' aOk' aiO' aik Dyadics defined in Eq. (2)

22 JPL Technical Memorandum 33-640



Y, ,Y Relative angular motion at joint k; Y is r - 3 x 1 vector

having components Yt» k = 1, 2, • • • , r-3

«.. ( 1 if gimbal axis g. is between body X. and body 0
1 A. I 1

( 0 otherwise

]_.„, Lp Vector forcing functions used in defining L (see Eq. (12));

L_ and LR are formed from Ln and LR by not including

the terms K7+ By

L , Lnp Vector forcing functions used in defining Ln;

L>no is the contribution to L_ due to forces F_ and

moments M applied to the base body; L-np is the

contribution made by forces F. and moments M. with
A. A.

X * 0

LDr., L-,,-, Vector forcing functions used in defining L,^ ; LT, n is thei\\j t\.t\ • t\ t\(j

contribution to L,-, due to F_; L,,^ is the contributionK. U t\i\

made by F» and M with X * 0

!_.__ Vector forcing function used in defining L ; L0f) is

formed from !_,__ by not including the moment M

b. Basis vectors for base body 0, i = 1, 2, 3

U Unit dyadic

• *
E», E. Vectors used in defining terms L and L of Eq. (2)

A. X U R

D. , D. D. is vector from barycenter of body X to joint j of
A.. A.H* "•.J J

body X; D\ M - D» for all bodies (JL belonging to S, (the
A-r1 X. n..

3 J
set of bodies connected to body X via joint j)

A dyadic defined by = -m D . D^ U -

JPL Technical Memorandum 33-640 23



$,, Augmented inertia matrix for body A relative to barycenter
BX

g. Gimbal axis, i = 1, 2, • • • , r - 3

D Vector from barycenter of body X to c.m. of body X.

F. , M. Vectors representing externally applied forces and

moments to body X

C Direction cosine matrix transforming coordinates of

body |JL to coordinates of body X

E Unit (identity) matrix

6., to Attitude angles of base body 0; angular velocity measure
i

numbers of base body 0, i = 1, 2, 3

T. Vector representing spring-damper interaction torque
3 g£)

on body X at joint j (same as M )
K3

K., B. Stiffness and damping coefficients for joint i

a Matrix used in state equations (see Eq. (17))

K, B Diagonal stiffness and damping matrices

F, u, w, x F is matrix used in defining state equations (see Eq. (18));

u, w, x are vectors used in defining state equations (see

Eq. (19))

z, H, v z, v vectors used in defining measurement process; H is

the measurement matrix

A, B, S, S, Matrices used in defining average value of quadratic cost

functional
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C Gain matrix used in defining controller u; C has

components C „ C , C , Ce o>0 Y "R

x, P, R, Q, K x is estimate of state x; P, Q, R, K are matrices

appearing in filter equations (see Eq. (20))

DEZ { } Vector deadzone function

un, Up Suboptimal control vector for base body 0; subcrptimal

control vector for n - 1 remaining bodies
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NOTES:

1 . Bx IS BARYCENTER OF BODY X (X= 0 IN DRAWING).

2. Cx IS CENTER OF MASS (C.M.) OF BODY X.

3. dx. IS VECTOR FROM C.M. OF BODY X TO JOINT j.x, I

4. Sx. IS SET OF BODIES M CONNECTED TO BODY X VIA JOINT j (SHOWN SHADED).

5. Dx IS VECTOR FROM B X TO Cx.

6. D.. IS VECTOR FROM BX TO JOINT j.
*l

7. D^= Dx. FOR ALL M. SXj (IN ABOVE SKETCH, DQj = DQ, = DQ2 = 0^ = D^ = DQ5 = Dfl6).

Fig. 1. Pictorial Sketch of 15-Hinged Rigid Bodies
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NOTES:

1. d. REPRESENTS VECTOR FROM C.M. OF BODY X TO JOINT j.
*i

2. 9. REPRESENTS GIMBAL AXIS AT JOINT j.

3. p. REPRESENTS HINGE POINT AT JOINT j.

Fig. 2. Pictorial Sketch of a 5-Hinged Rigid-Body
Spacecraft Showing Gimbal Axes
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Fig. 3. Block Diagram of Suboptimal Stochastic
Controller for n-Body Spacecraft
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