HEAT PIPE TECHNOLOGY

QUARTERLY UPDATE

APRIL 1 THROUGH JUNE 30, 1972

43

Unclas

N73-33902

G3/33 15824

Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE US Department of Commerce Springfield, VA. 22151

TECHNOLOGY APPLICATION CENTER
THE UNIVERSITY OF NEW MEXICO
ALBUQUERQUE, NEW MEXICO 87106

TAC BIBLIOGRAPHIC SERIES NUMBER 1

TAC-BIBL-1 (72/2)
Heat Pipe Technology is a continuing bibliographic summary of research on the subject of the heat pipe. The first volume was published in the spring of 1971 and is cumulative through March of that year. A 1971 Annual Supplement has been published and distributed. Additional copies are available from the Technology Application Center.

This update to Heat Pipe Technology cites the additional references identified during April, May, and June of 1972. It is the second in a 1972 quarterly series intended to provide "current awareness" to heat pipe researchers.

A library containing essentially all of the articles and publications referenced in this update, the cumulative volume, and in the 1971 Annual Supplement has been established. Although a considerable effort has been made to insure that the bibliography is complete, readers are encouraged to bring any omissions to the attention of this office.

The Technology Application Center is one of six regional dissemination centers established by NASA's Technology Utilization Program to evaluate and disseminate new technology to the general public and commercial business.
CONTENTS

A. GENERAL INFORMATION, REVIEWS, SURVEYS

B. HEAT PIPE APPLICATIONS
 B.1 General Applications
 B.2 Thermionic and Thermoelectric Converters
 B.3 Aerospace Oriented Applications
 B.4 Nuclear Systems
 B.5 Electronic Applications

C. HEAT PIPE THEORY
 C.1 General Theory
 C.2 Heat Transfer
 C.3 Condensation and Evaporation
 C.4 Fluid Flow

D. DESIGN AND FABRICATION
 D.1 General
 D.2 Wicks
 D.3 Materials

E. TESTING AND OPERATION
CONTENTS

F. SUBJECT AND AUTHOR INDEX
 F.1 Bibliography
 F.2 Subject Index
 F.3 Author Index

G. HEAT PIPE RELATED PATENTS
 G.1 Patents
 G.2 Subject Index
 G.3 Author Index
 G.4 Patent Number Index
A. GENERAL INFORMATION, REVIEWS, SURVEYS

72021 HEAT PIPE AT LOS ALAMOS
B. HEAT PIPE APPLICATIONS

B.1 General Applications

72022 HEAT PIPE OVEN APPLICATIONS. I. ISOTHERMAL HEATER OF WELL-DEFINED TEMPERATURE. II. PRODUCTION OF METAL-VAPOR-GAS MIXTURES

A concentric heat pipe oven is described, which serves as an oven with a highly homogeneous temperature distribution as required by such applications as crystal growing, thermal treatment of materials, and radiation standards. The design is simpler than conventional ovens with similar temperature stability and homogeneity. The temperature control is replaced by a pressure control. This device is used in a modification of the heat pipe oven that generates homogeneous mixtures of a vapor (such as a metal vapor) and an inert gas at well-defined total pressure, partial pressure, temperature and optical path length. All the features of the previously described heat pipe oven are maintained with the additional option that allows quantitative total and partial pressure measurements without relying on vapor pressure curves.

B.2 THERMIonic AND THERmoelectric CONVERTers

72023 OUT-OF-CORE THERMIonic POWER PLANT FOR MANNed SPACE STATION

An out-of-core design for a reactor-heated thermionic power plant is described. The design strives for maximum redundancy, to permit continued operation after local failures of various components. To illustrate the concept, a specific power plant design for a manned space station is presented. In order to meet the long mission-life requirement, the design permits periodic replacement of critical system components. Sizes and weights are given, both for the replaceable items, and for the permanent parts of the power plant, which include a man-rated, isotropic 4π-shield.
The unmanned exploration of the planets eventually requires the landing of spacecraft or probes on the planet surface. Basic economic considerations and weight restrictions favor the use of efficient, solar independent, lightweight, impact-resistant power packages. In some cases estimated surface conditions preclude the use of contemporary power sources. Radioisotope-heated thermionic power sources, however, may successfully operate in these conditions and fulfill the mission requirements. An analysis was performed to define the optimum thermionic converter configuration based on mission requirements and constraints, considering reliability of the system, weight, output power, output voltage, and efficiency of the complete power package and making the maximum use of present technology. The results of this analysis were compared with existing concepts. Two of these concepts were selected for further investigation, one using a heat pipe as the heat transfer and support medium, the other using small independent converters assembled in a multi-converter array. The results obtained in the development of the first concept, a multiconverter array connected to the isotope power source through a heat pipe, are presented.

B. 3 AEROSPACE ORIENTED APPLICATIONS

It seems fitting that what may be the simplest, most efficient thermal control tool be employed on the most efficient space carrier. This paper discusses six specific applications for heat pipe (HP) devices on the Space Shuttle. These applications were chosen from 27 concepts formulated as part of a study to evaluate the potential benefits associated with HP use. The formulation process is briefly described along with the applications which evolved. The bulk of the discussion deals with the "top" six, namely HP radiators for waste heat rejection, a HP augmented cold rail, HP circuit for electronic equipment.
cooling, modular heat sink for control of remote packages, HP temperature control for compartments, and air cooled equipment racks. The philosophy, physical design details, and performance data are presented for each concept along with a comparison to the baseline design where applicable. (Author)

72026 HEAT PIPE THERMAL CONTROL SYSTEM CONCEPT FOR THE SPACE STATION

This paper presents the results of a program undertaken to design and evaluate a high reliability, long life thermal control system for Space Station application. The program consisted of three sequential steps: (1) investigate many thermal control elements to select the most reliable; (2) combine these elements into several system concepts which maintain the high reliability offered, and analytically evaluate parameters; and (3) select the most desirable approach and determine its characteristics. The result of this project is a conceptual thermal control system design that employs heat pipes as primary components both for heat transport and variable temperature control. The system is described in this paper. (Author)

B. 4 NUCLEAR SYSTEMS

72027 ISOTOPE KILOWATT PROGRAM QUARTERLY PROGRESS REPORT FOR PERIOD ENDING SEPTEMBER 30, 1971.

The organic capsule test continued during the quarter and completed 6576 h of operation. Construction of the 1/4 scale organic fluid decomposition test loop is proceeding. Most of the components have been fabricated and the measurements of the dose rates in the boiler region of the heat block shield were completed. Efforts to correct conditions that might cause a loss in the capillary pumping capacity of the heat pipe have continued to meet with little success; a pronounced loss in performance still occurs when the boiler is tilted a bit above the level of the condenser. Further investigation was discontinued due to lack of funds. Perform-
ance tests on the thermoelectric module were completed and the unit was delivered to ORNL for further testing. Two performance maps were completed for hot junction temperatures of 1000 and 1055°F (at 8 amps). The 1000°F hot junction map shows the unit output to be about 170 watts rather than the predicted value of 200 watts. Further tests of the aluminum wire screen thermal insulation-thermal fuse indicate that the combined effects of a low rate of temperature rise inherent in the application at hand, the very substantial heat of fusion of aluminum, and the inhibiting effects to the flow of molten aluminum imposed by a thick aluminum oxide film lead to a much less sharp melting of the thermal fuse than had been anticipated. To reduce thermal radiation losses, the next test sample has aluminum foil in the aluminum screen. A nitrogen atmosphere was employed to minimize the effects of the oxide film. At 15 psia and a mean temperature of 600°F the thermal conductivity was found to be 0.77 compared to 0.114 Btu/hr-ft-OF found during tests without the foil. A significant reduction in the thermal conductivity was also observed at 1.0 psia. However, during the course of this test the value of the conductivity shifted upward to form a higher curve. These tests will be repeated. A conceptual design for the dummy heat pipes for the test of the heat block with a thermoelectric module and 11 dummy modules has been prepared. A topical report reviewing the status of the development of various small turbine-and engine-generator units suitable for Navy undersea nuclear power plants was prepared. This indicates that the most promising candidate for an organic Rankine cycle system is the Sundstrand 6kW(e) turbine-generator unit. The design of a full-scale organic Rankine cycle system employing the Sundstrand kW(e) turbine-generator unit is proceeding. A layout drawing was obtained from Sundstrand showing the revised arrangement of the 13 pipes and electrical cables which must be coupled to the turbine-generator-pump unit. The installation design problems associated with these connections were reviewed with Sundstrand and a satisfactory layout evolved. Arrangements for the procurement of the turbine-generator-feed pump unit have been initiated.

B. 5 ELECTRONIC APPLICATIONS

72028 A VARIABLE CONDUCTANCE HEAT PIPE/RADIATOR FOR THE LUNAR SURFACE MAGNETOMETER

J. P. Kirkpatrick (NASA Ames Research Center, Moffett Field, California) and B. D. Marcus (TRW Systems, Redondo Beach,
A cold reservoir, variable conductance heat pipe/radiator was developed to supplement the existing cooling system of the Apollo 16 Lunar Surface Magnetometer (LSM). Analysis and tests showed that two such devices, inserted by an astronaut into receptacles on opposite sides of the electronics package, would reduce the diurnal temperature variation by about 40% and thereby would considerably increase the reliability of 50,000 welded connections. Although the Apollo Configuration Control Panel eventually decided that the heat pipe radiator was not required for flight, the usefulness and flexibility of variable conductance heat pipes in solving difficult thermal problems was demonstrated in a very real way. The LSM design constraints, selection of a variable conductance technique, heat pipe/radiator design features, and thermal performance are discussed. (Author)

72029 APPLICATION OF HEATPIPES TO ELECTRONIC EQUIPMENT COOLING

Analytical and experimental work has been performed to investigate the feasibility of applying heat pipe technology to the thermal control of electronic equipment. Temperature level and uniformity, and the amplitude and frequency of thermal cycling are known to have significant adverse effects upon the reliability and operating characteristics of electronic equipment. In order to promote heat transfer, improve temperature distribution, and reduce thermal cycling, electronic equipment cooling plates (cold plates) were provided with integral heat pipes. The experimental cold plates can be divided into three general categories: (1) a conventional fin-tube configuration, and (2) a flat, continuous cavity configuration, and (3) a fin-tube configuration with noncondensible gas chambers for temperature control. Actual and simulated electronic components were used as thermal sources. Test results have shown that the high thermal conductance of the heat pipes provided excellent temperature distribution throughout the plates, thus maintaining the attached equipment at a uniform temperature. Very close temperature control was achieved with the variable conductance heat pipes. Use of such cold plates will not only improve the reliability of electronic equipment, but will also simplify the entire thermal control system while reducing weight and pumping power requirements. (Author)
C. HEAT PIPE THEORY

C. 1 GENERAL THEORY

72030 MULTICHAMBER CONTROLLABLE HEAT PIPE

The paper shows how the rate of transfer of energy by a heat pipe is controlled by controlling the rate of transfer of vapor between the heat input surface and heat rejection surface of a heat pipe.

C. 2 HEAT TRANSFER

72031 VAPORIZATION HEAT TRANSFER IN HEAT PIPE WICK MATERIALS

Vaporization heat transfer characteristics were measured for several wick materials including five samples of felted metal (nickel, copper, and stainless steel), and three samples of sintered copper metal powder. Properties such as permeability, static wicking height and thermal conductivity were also measured. The experimental apparatus consisted of a 2.5 by 2.5 inch heated surface arranged so that the fluid was drawn to the heated surface by capillary forces up to a maximum of 12 inches. Data are presented for a vertical arrangement and for various angles including horizontal. Data for dry out, or critical heat flux, and the heat transfer coefficient are presented and compared with theory. (Author)

C. 3 CONDENSATION AND EVAPORATION

72032 EVAPORATION AND CONDENSATION IN AN ENCLOSURE IN THE PRESENCE OF A NONCONDENSABLE GAS

The elliptic form of the conservation equations governing steady state transport of momentum, mass, species and energy are solved numerically in a cylindrical tube containing a binary vapor-gas mixture. The system is an idealized heat pipe; the working fluid is water and investigated is the effect of small concentrations of air on performance. Results are presented for mass flow rates corresponding to Reynolds numbers in the range 0.0095 to 0.15.
72033 INTERNAL TEMPERATURE DISTRIBUTIONS IN AN OPERATIONAL HEAT PIPE

For the first time in an operational heat pipe, internal temperature distributions are obtained which are subsequently used to analyze the existing energy transport mechanisms. Two basic wick designs and two working fluids (water and methanol) are evaluated over a wide range of power levels and base temperatures. Results indicate that in both wicks and with both fluids a vapor film forms adjacent to the heat pipe wall at the base of the wick. Depending on the wick design and the power level, film boiling occurs and results in superheated vapor blowing through the wick into the vapor section of the pipe. The film thickness and magnitude of superheat are found to be dependent on the wick design, the power level and the saturation pressure. In all cases methanol is shown to be more susceptible to both film formation and film boiling. Despite the large vapor formations in the wick the pipe continues to operate although not isothermally, without burnout. Speculations are also offered on the burnout mechanisms of heat pipes employing low thermal conductivity fluids.

72034 BOILING TESTS PERFORMED ON OPEN GROOVE-CAPILLARY EVAPORATORS

Water was vaporized from open groove-capillary evaporators. Measurements determined water consumption and vaporization temperature as functions of applied heating power. The curve of pressure in the capillaries as the evaporators dried out was likewise measured and can be interpreted in terms of changes in the curvature of the surface of the liquid. Studies on evaporator spattering were also undertaken.

72035 DYNAMIC BUBBLE GROWTH DURING THE BOILING OF LIQUIDS ON HEATING SURFACES

A precise determination of breakaway volume must be based, among other things, upon the dynamic forces acting on the bubble. Resistance coefficients for growing steam bubbles and steam overpressure in a bubble are determined mathematically with the aid of a force analysis and an energy equation, and temperature in the bubble is determined experimentally. Interferograms showed the temperature field around a growing steam bubble. Breakaway diameters can be determined more reliably than before through the use of a bubble-growth law with variable time exponents and the equilibrium of forces described.
NEW experimental data on the axial pressure variations in a laminar incompressible flow through a porous circular tube are presented. The tube was closed at the downstream end and the fluid removed uniformly by suction through the porous cylindrical surface. Because of the similarity between this flow and the vapor flow in the condenser of a heat pipe the results should be applicable to the heat pipe. The non-similar "inlet region" solutions of Weisberg, Busse, and Bankston and Smith were found to compare favorably with the experimental data in the range $2.21 < \text{Re}_r < 5$. On the other hand, for $\text{Re}_r \geq 2.21$, the similarity solutions of Yuan and Finkelstein were found to predict pressure variations much greater than those actually measured. (Author)
D. DESIGN AND FABRICATION

D. 1 GENERAL

72037 DEVELOPMENT OF A THERMAL DIODE HEAT PIPE FOR THE ADVANCED THERMAL CONTROL FLIGHT EXPERIMENT (ATFE)

The analysis, design, fabrication, and test of the engineering model of the ATFE diode is presented. Included is a review of several diode concepts that led to selection of the liquid blockage technique for shut-off. The diode is made of stainless steel, 26 inches long, 0.375-inch nominal OD, with self-filling spiral artery wick and ammonia working fluid. In the normal heat pipe mode, at ambient temperatures, the diode capacity is 85 watts. For flight, the pipe will deliver 20 watts with a 90°F temperature difference between the external evaporator and condenser surfaces. Reverse mode conduction is less than 1.5 watts with a 260°F temperature difference. (Author)

72038 A TUNNEL WICK 100,000 WATT-INCH HEAT PIPE

The tunnel wick is a new type of heat pipe artery which can prime in a gravity environment by temperature-induced pressure differences between interior and exterior. The paper discusses the concept and its application in the design of room-temperature high-transport-capacity heat pipes. The analytical model of the system is summarized; and performance data obtained with the aid of a related computer program is included. Test data verifying the concept is presented for several pipes, including an eight-foot-long, 0.9-inch ID pipe, using ammonia working fluid, with a transport capacity in excess of 150,000 watt-inches. A brief discussion of potential applications for this type of heat pipe includes a variable conductance device to serve as a radiator header and a high capacity heat transport system. (Author)
72039 DEVELOPMENT OF A SELF-PRIMING HIGH-CAPACITY HEAT PIPE FOR FLIGHT ON OAO-C

This paper describes the development of a 0.500-inch OD heat pipe with a spiral artery designed to fill under surface tension forces in a one-g field. Capacities in excess of 12,000 watt-inches have been achieved with ammonia as the working fluid. The paper presents the analysis, design, and test of the three-foot-long development models. Also included are some design and fabrication details, along with qualification ground test data for a 12-foot-long spiral artery isothermalizer type heat pipe that is installed on the Orbiting Astronomical Observatory C Model scheduled for launch in 1972. (Author)

D. 2 WICKS

No citations in update, June 30, 1972

D. 3 MATERIALS

72040 ARC-CAST MOLYBDENUM-BASE TZM ALLOY PROPERTIES AND APPLICATIONS

General survey of the properties and applications of vacuum-melted molybdenum-base TZM alloy. The various stages of production of TZM alloy are reviewed, methods of forming and machining this alloy are discussed, and the physical and mechanical properties of the alloy are summarized. Applications of arc-cast TZM alloy in die casting, turbine power plants, heat pipes, aerospace and rocket structures, pressure vessels, furnace parts, and bearings are noted.

72041 FABRICATION AND EVALUATION OF CHEMICALLY VAPOR DEPOSITED TUNGSTEN HEAT PIPE
A network of lithium-filled tungsten heat pipes is considered as a method of heat extraction from high temperature nuclear reactors. The need for material purity and shape versatility in these applications dictates the use of chemically vapor deposited (CVD) tungsten. Adaptability of CVD tungsten to complex heat pipe designs is shown. Deposition and welding techniques are described. Operation of two lithium-filled CVD tungsten heat pipes above 1800 K is discussed.
E. TESTING AND OPERATION

72042 PERFORMANCE OF A PRECISION THERMAL CONTROL SYSTEM USING VARIABLE CONDUCTANCE HEAT PIPES.

Presented is an experimental evaluation of an assembly representative of a general concept for precise control of a surface to which spacecraft equipment radiatively transfers time-varying thermal loads for rejection by a space radiator with time-varying temperature. Two acetone heat pipes, wicked nitrogen reservoirs, active electrical feedback control, and a radiation coupler are used. Transient tests demonstrate +10°F control with thermal load changing from 10 to 100-watts and a 40°F sinusoidal sink variation. Lab-support equipment constrained sink temperatures between 65 and 125°F. A transient computer-model is described for use in predicting assembly characteristics with space radiator temperatures appropriate for typical space missions. (Author)

72043 SOUNDING ROCKET HEAT PIPE EXPERIMENT

An experiment was conducted during October 1971 aboard a sounding rocket to observe the operation of several heat pipes in a zero gravity environment. The pipe designs which were tested included a spiral artery, a pedestal artery, and a plain groove. Two control pipes without wicking were also flown. The two artery pipes were similar to those which will be used on the OAO-C satellite, while the groove pipe was similar to that used on the ATS-F spacecraft. The results of the experiment indicate that the heat pipes operated satisfactorily during the flight which included four minutes of zero gravity. (Author)
Heat pipes are devices possessing a very high thermal conductance which utilize two phase flow for the transport of mass and the latent heat of vaporization. Today, there exists a variety of practical uses for heat pipes in the temperature range between 200 K and 2000 K. In this paper, the discussion is mainly restricted to low temperature heat pipes (200 K to 500 K) while the subject of mean and high temperature heat pipes is only touched. Special problems and the necessary technological background are described. Results of performance and lifetests are also included.

Besides general problems of heat pipe construction, fabrication, and operation, there is the important field of heat pipe dynamics. In general, small power variations around the operation point of a heat pipe present no special dynamic problems. However, the startup of heat pipes is much more complicated and there are applications which require that these difficulties be overcome. A theoretical model for describing heat pipe startup is also developed, and examples for normal startup and for startup failure are then subsequently presented.

An experimental study of an annular heat pipe was undertaken to evaluate the merits of using an annular design to reduce the resistance to capillary pumping.
F. SUBJECT AND AUTHOR INDEX
HEAT PIPE TECHNOLOGY UPDATE 6-30-'72

00010 BACICULUPI R. J
FABRICATION AND EVALUATION OF CHEMICALLY VAPOR
DEPOSITED TUNGSTEN HEAT PIPE
PROPOSED FOR PRESENTATION AT THIRD INTERNATIONAL
CONFERENCE ON CHEMICAL VAPOR DISPOSITION,
SALT LAKE CITY, APRIL 24-27, 1972. SPONSORED BY
AMERICAN NUCLEAR SOCIETY. (NASA-TM-X-67987; E-6723).
8P. AVAIL-TAC.

00020 BEER H
DYNAMIC BUBBLE GROWTH DURING THE BOILING
OF LIQUIDS ON HEATING SURFACES
FORSCHUNG IM INGENIEURWESEN, VOL. 37 (1971),
PAGES 85-90. AVAIL-TAC.

00030 BRIGGS J Z BARR F C
ARC-CAST MOLYBDENUM-BASE TZM ALLOY
PROPERTIES AND APPLICATIONS
IN: PLANSEE SEMINAR, 7TH, REUTTE, AUSTRIA
JUNE 21-29, 1971. VOL. I, 100 P., 175 REFS. AVAIL-TAC.

00040 EDELSTEIN F SWERDLING B
KOSSON R
DEVELOPMENT OF A SELF-PIMING HIGH-CAPACITY HEAT PIPE FOR
FLIGHT ON OAO-C
AIAA 7TH THERMOPHYSICS CONFERENCE, SAN ANTONIO, TEXAS,
APRIL 10-12, 1972. AIAA PAPER NO. 72-258. AVAIL-TAC.

00050 EKERN W F HOLLISTER W P
PERFORMANCE OF A PRECISION THERMAL CONTROL SYSTEM USING
VARIABLE CONDUCTANCE HEAT PIPES
AIAA 7TH THERMOPHYSICS CONFERENCE, SAN ANTONIO, TEXAS,
APRIL 10-12, 1972. AIAA PAPER NO. 72-270. AVAIL-TAC.

00060 FERRELL J K ALEXANDER E G
PEVER W T
VAPOFIZATION HEAT TRANSFER IN HEAT PIPE WICK MATERIALS
AIAA 7TH THERMOPHYSICS CONFERENCE, SAN ANTONIO, TEXAS,
APRIL 10-12, 1972. AIAA PAPER NO. 72-256. AVAIL-TAC.

00070 FELDMANIS C J
APPLICATION OF HEAT PIPES TO ELECTRONIC EQUIPMENT COOLING
AIAA 7TH THERMOPHYSICS CONFERENCE, SAN ANTONIO, TEXAS
HEAT PIPE TECHNOLOGY UPDATE 6-30-72

APRIL 10-12, 1972. AIAA PAPER NO. 72-269. AVAIL-TAC.

00080 FOX R D CAROTHERS K G
THOMSON W J
INTERNAL TEMPERATURE DISTRIBUTIONS IN AN OPERATIONAL HEAT PIPE
BACKUP DOCUMENT FOR AIAA SYNOPTIC SCHEDULED FOR PUBLICATION IN AIAA JOURNAL IN JULY 1972. MARCH 10, 1972. 23 PAGES.
REFS. AVAIL-TAC.

00090 FRAAS A P SAMUELS G
ISOTOPE KILOWATT PROGRAM QUARTERLY PROGRESS REPORT
FOR PERIOD ENDING SEPTEMBER 30, 1971.
39 PAGES. AVAIL-TAC.

00100 GROLL M BROST D
KREEB H SCHUBERT K P
ZIMMERMANN P
HEAT TRANSFER LIMITS, LIFETESTS, AND DYNAMIC BEHAVIOR OF HEAT PIPES
INSTITUT FUR KERNENERGIEIK, UNIVERSITAT STUTTGART, GERMANY
28 PAGES. IN ENGLISH. AVAIL-TAC.

00110 KEMME J E
HEAT PIPE AT LOS ALAMOS
FROM ELEVENTH INTERNATIONAL CONFERENCE ON THERMAL CONDUCTIVITY, ALBUQUERQUE, NEW MEXICO. SEPTEMBER 28, 1971.
AVAIL-TAC.

00120 KIRKFATRICK J P MARCUS B D
A VARIABLE CONDUCTANCE HEAT PIPE/RADIATOR FOR THE LUNAR SURFACE MAGNETOMETER
AIAA 7TH THERMOPHYSICS CONFERENCE, SAN ANTONIO, TEXAS.
APRIL 10-12, 1972. AIAA PAPER NO. 72-271. AVAIL-TAC.

00130 KOSSON R HEMBEACH R
EDLSTEIN F TAWIL M
A TUNNEL WICK 100,000 WATT-INCH HEAT PIPE
AIAA 7TH THERMOPHYSICS CONFERENCE, SAN ANTONIO, TEXAS.
APRIL 10-12, 1972. AIAA PAPER NO. 72-273. AVAIL-TAC.

00140 MCDONALD J W DENNY V E
MILLS A F
EVAPORATION AND CONDENSATION IN AN ENCLOSURE IN THE PRESENCE OF A NONCONDENSABLE GAS
HEAT PIPE TECHNOLOGY UPDATE 6-30-72

00220 SOCKALINGAM K C SCHROCK V E
PERFORMANCE CHARACTERISTICS OF WATER HEAT PIPES
OF ANNULAR WICK CONFIGURATION
TRANS. AMER. NUCL. SOC.; 14: NO. 2, 436-437.
OCTOBER 1971. AVAIL-TAC.

00230 SWERDLING B KOSSON R
URKOWITZ M KIRKPATRICK J
DEVELOPMENT OF A THERMAL DIODE HEAT PIPE FOR THE ADVANCED
THERMAL CONTROL FLIGHT EXPERIMENT (ATFE)
AIAA 7TH THERMOPHYSICS CONFERENCE, SAN ANTONIO, TEXAS,
APRIL 10-12, 1972. AIAA PAPER NO. 72-260. AVAIL-TAC.

00240 TAWIL M ALARIC J
PRAGER R BULLOCK R
HEAT PIPE APPLICATIONS FOR THE SPACE SHUTTLE
AIAA 7TH THERMOPHYSICS CONFERENCE, SAN ANTONIO, TEXAS,
APRIL 10-12, 1972. AIAA PAPER NO. 72-272. AVAIL-TAC.

00250 VIDAL C R HALLEF F B
HEAT PIPE OVEN APPLICATIONS
I. ISOTHERMAL HEATER OF WELL-DEFINED TEMPERATURE
II. PRODUCTION OF METAL-VACUUM-GAS MIXTURES.
REVIEW OF SCIENTIFIC INSTRUMENTATION, 1971, 42(12),
P. 1779-1784. AVAIL-TAC.
F.2 SUBJECT INDEX
HEAT PIPE TECHNOLOGY UPDATE 6-30-72

00230 AL CONTROL FLIGHT EXPERIMENT (ATFE)/R THE ADVANCED THERMAL TECHNOLOGY 72037 10
00180 ISOOTYPE THERMIONIC GENERATOR (RTIG)/RADIO 72024 3
 A NOT INDEXED
00230 RNAL DIODE HEAT PIPE FOR THE ADVANCED THERMAL CONTROL FLIGHT 72037 10
 ALAMOS NOT INDEXED
00030 ARC-CAST MOLYBDENUM-BASE TZN ALLLOY PROPERTIES AND APPLICATIONS 72040 11
 AN NOT INDEXED
 AND NOT INDEXED
00220 STICS OF WATER HEAT PIPES OF ANNYLAR Wick CONFIGURATION# / 72045 14
00070 ELECTRONIC EQUIPMENT COOLING# APPLICATION OF HEAT PIPES TO 72029 6
00240 TITTLE# HEAT PIPE APPLICATIONS FOR THE SPACE SHUTTLE 72025 3
00250 TATER OF WELL/ HEAT PIPE APPLICATIONS I, ISOTHERMAL HEAT 72022 2
00030 ASE TZN ALLLOY PROPERTIES AND APPLICATIONS# AT MOLYBDENUM-B 72040 11
00030 ALLLOY PROPERTIES AND AFFLIC/ARC-CAST MOLYBDENUM-BASE TZN 72040 10
 AT NOT INDEXED
00100 MITS, LIFETESTS, AND DYNAMIC BEHAVIOR OF HEAT PIPES# /R LI 72044 14
00170 EN GROOVE-CAPILLARY EVAPOR/BIOLING TESTS PERFORMED ON CP 72034 8
00020 MIC BUBBLE GROWTH DURING THE BOILING OF LIQUIDS ON HEATING 72035 8
00020 ING OF LIQUIDS ON H2 DYNAMIC BUBBLE GROWTH DURING THE BOIL 72035 8
00220 PIPES OF ANNYL/PERFORMANCE CHARACTERISTICS OF WATER HEAT 72045 14
00010 ABRICATION AND EVALUATION OF CHEMICALLY VAPOR DEPOSITED TUBE 72041 11
00200 PIPE THERMAL CONTROL SYSTEM CONCEPT FOR THE SPACE STATION 72026 4
00140 IN THE PRES/ EVAPORATION AND CONDENSATION IN AN ENCLOSURE 72032 7
00120 R FOR THE LUNAR /A VARIABLE CONDUCTANCE HEAT PIPE/RADIATOR 72028 5
00050 NTROL SYSTEM USING VARIABLE CONDUCTANCE HEAT PIPES# /AL C 72042 13
00230 R HEAT PIPES OF ANNYLAR Wick CONFIGURATION# /STICS OF WATE 72045 14
00230 P FOR THE ADVANCED THERMAL CONTROL FLIGHT EXPERIMENT (AT 72037 10
00200 E SPACE S/ HEAT PIPE THERMAL CONTROL SYSTEM CONCEPT FOR TH 72026 4
00050 MAKCE OF A PRECISION THERMAL CONTROL SYSTEM USING VARIABLE 72042 13
00210 MULTICOMPRESSOR CONTROLLABLE TUBE# 72030 7
00070 PES TO ELECTRONIC EQUIPMENT COOLING# APPLICATION OF HEAT PIPES 72029 6
00010 ALUTION OF CHEMICALLY VAPORIZED DEPOSITED TUNGSTEN HEAT PIPE# 72041 11
00240 H-CAPACITY HEAT PIPE FC/DEVELOPMENT OF A SELF-PRIMING 72039 11
00230 E HEAT PIPE FOR THE ADVANCE/DEVELOPMENT OF A THERMAL DIODE 72037 10
00230 CE/DEVELOPMENT CF A THERMAL DIODE HEAT PIPE FOR THE ADVANCE 72037 10
00080 AL HEAT/INTERNAL TEMPERATURE DISTRIBUTIONS IN AN OPERATING 72033 8
00020 CN H2 DYNAMIC BUBBLE GROWTH DURING THE BOILING OF LIQUIDS 72035 8
00100 NSFER LIMITS, LIFETESTS, AND DYNAMIC BEHAVIOR OF HEAT PIPE 72044 14
00200 TUBE OF LIQUIDS CN H DYNAMIC BUBBLE GROWTH DURING 72035 8
00070 APPLICATION OF HEAT PIPES TO ELECTRONIC EQUIPMENT COOLING# 72029 6
00140 TION AND CONDENSATION IN AN ENCLOSURE IN THE PRESENCE OF 72032 7
00090 Y PROGRESS REPORT FOR PERIOD ENDING SEPTEMBER 30, 1971# / 72027 4
00070 CF HEAT PIPES TO ELECTRONIC EQUIPMENT COOLING# APPLICATION 72029 6
00010 R DEPOSITED/ FABRICATION AND EVALUATION OF CHEMICALLY VAPO 72041 11
00140 IN AN ENCLOSURE IN THE PRES/ EVAPORATION AND CONDENSATION 72032 7
00170 RED CN OPEN GROOVE-CAPILLARY EVAPORATORS# /NG TESTS PERFORM 72034 8
00230 ANCE THERMAL CONTROL FLIGHT EXPERIMENT (ATFE)# /R THE ADV 72037 10
00150 SCOUNDING ROCKET HEAT PIPE EXPERIMENT# 72043 13
00010 CHEMICALLY VAPOR DEPOSITED/ FABRICATION AND EVALUATION OF 72041 11
00230 THE ADVANCED THERMAL CONTROL FLIGHT EXPERIMENT (ATFE)# /R 72037 10
00040 H-CAPACITY HEAT PIPE FC/FLIGHT ON OAO-CF SELF-PRIMING 72039 11
00160 IMCOMPRESSIBLE LAMINAR FLOW WITH UNIFORM SUCTION# FOR 72036 9
 *NOT INDEXED
00140 PRESENCE OF A NONCONDENSABLE GAS# IN AN ENCLOSURE IN THE 72032 7
HEAT PIPE TECHNOLOGY UPDATE 6-30-72

00180 RADIOISOTOPE THERMIONIC GENERATOR (RTIG)
00170 LING TESTS PERFORMED ON OPEN GROOVE-CAPILLARY EVAPORATORS
00220 LIQUIDS ON H/DYNAMIC BLBBLE GROWTH DURING THE BOILING OF HEAT PIPE APPLICATIONS FOR TH
00110 HEAT PIPE AT LOS ALAMOS
00150 SOUNDING ROCKET HEAT PIPE EXPERIMENT
00040 A SELF-PRIMING HIGH-CAPACITY HEAT PIPE FOR FLIGHT ON OAO-C
00230 VELOCITY OF A THERMAL CYCLOHEAT PIPE FOR THE ADVANCED TH
00250 ISOThERMAL HEATER OF WELL/HEAT PIPE OVEN APPLICATIONS I
00200 TEMPERATURE CONCEPT FOR THE SPACE SU/S/HEAT PIPE THERMAL CONTROL SYSTEM
00060 A NEW TYPE OF HEAT TRANSFER IN HEAT PIPE WICK MATERIALS
00120 A VARIABLE CONDUCTANCE HEAT PIPE/RADIATOR FOR THE LUNAR SURFACE MAGNETOMETER/HEAT PIPE/RA
00130 UNSEAL WICK 100,000 Watt-Inch HEAT PIPE A T
00210 MULTICHAMBER CONTROLLABLE HEAT PIPE
00080 TRIBUTIONS IN AN OPERATIONAL HEAT PIPE WITH TEMPERATURE DISTRIBUTION
00100 LLY VAPOR DEPOSITED TUNGSTEN HEAT PIPE SU/TION OF CHEMICAL
00220 NCE CHARACTERISTICS OF WATER HEAT PIPES OF ANYLLAR WICK CO
00070 PMENT COOLIN/ APPLICATION OF HEAT PIPES TO ELECTRONIC EQUIPMENT
00050 M USING VARIABLE CONDUCTANCE HEAT PIPES AT THE CONTROL SYSTEM
00100 STS, AND DYNAMIC BEHAVIOR OF HEAT PIPE AT LIMITS, LIFETESTS
00060 CK MATERIALS/ VAPORIZATION HEAT TRANSFER IN HEAT PIPE WITH TEMPERATURE II.
00100 TS, AND DYNAMIC BEHAVIOR OF HEAT TRANSFER LIMITS, LIFETESTS
00250 N APPLICATIONS I. ISOThERMAL HEATER OF WELL/HEAT PIPE OVEN APPLICATIONS II
00250 OF WELL-DEFINED TEMPERATURE II. PRODUCTION OF METAL-VAPOR MIXTURES
00160 L/ PRESSURE VARIATIONS IN AN INCOMPRESSIBLE LAMINAR TURBULENT FLOW
00080 TIONS IN AN OPERATIONAL HEAT PIPE AT THE INTERNAL TEMPERATURE DISTRIBUTION
00250 AT PIPE OVEN APPLICATIONS I.
00090 ERLY PROGRESS REPORT FOR THE ISOTOPE KILOWATT PROGRAM QUARTERLY
00090 OGRESS REPORT FOR P/ ISOThOFF KILOWATT PROGRAM QUARTERLY PRO
00160 IATIONS IN AN INCOMPRESSIBLE LAMINAR TURBULENT FLOW WITH UNIFORM TEMPERATURE II.
00100 OR OF HEAT TRANSFER LIMITS, LIFETESTS, AND DYNAMIC BEHAVIOR
00100 C BEHAVIOR OF HEAT TRANSFER LIMITS, LIFETESTS, AND DYNAMIC
00020 GROWTH DURING THE BOILING OF LIQUIDS ON HEATING SURFACES/
00120 E HEAT PIPE/RADIATOR FOR THE LUNAR SURFACE MAGNETOMETER/HEAT PIPE/RA
00190 E THERMIONIC POWER PLANT FOR MANNED SPACE STATION/
00060 T TRANSFER IN HEAT PIPE WICK MATERIALS/VAPORIZATION HEAT
00250 TEMPERATURE II. PRODUCTION OF METAL-VAPOR-GAS MIXTURES
00250 PRODUCTION OF METAL-VAPOR-GAS MIXTURES/TEMPERATURE II.
00030 PERTIES AND APPLICATIONS ARC-CAST MOLYBDENUM-BASE TIZM ALLOY PRO
00210 T PIPE MULTICHAMBER CONTROLLABLE HEA
00140 CLOSURE IN THE PRESENCE OF A NONCONDENSABLE GAS IN AN ENVIRONMENT
00040 CITY HEAT PIPE FOR FLIGHT ON OAO-C/SELF-PRIMING HIGH-CAPACITY HEAT PIPE

'IN' NOT INDEXED

00170 BICLING TESTS PERFORMED ON OPEN GROOVE-CAPILLARY EVAPORATOR
00080 TEMPERATURE DISTRIBUTIONS IN AN OPERATIONAL HEAT PIPE AT L TEMPERATURE DIS
00190 PLANT FOR MANNED SPACE STATION/OUT-OF-CORE THERMIONIC POWER
00250 AL HEATER OF WELL/HEAT PIPE OVEN APPLICATIONS I.

HEAT PIPE TECHNOLOGY UPDATE 6-30-72
HEAT PIPE TECHNOLOGY UPDATE 6-30-72

00220 F WATER HEAT PIPES OF ANYLY Performance Characteristics 72045 14
00050 ERMAL CONTROL SYSTEM USING / PERFORMANCE OF A PRECISION TH 72042 13
00170 LLARY EVAPORATION EVOLING TESTS PERFORMED RN CFEN GROOVE-CAPI 72034 8
00090 UARTERLY PROGRESS REPORT FOR PERIOD ENDING SEPTEMBER 30, 1 72027 4

00120 A VARIABLE CONDUCTANCE HEAT PIPE/RADIATOR FOR THE LUNAR S 72028 5

00190 OUT-OF-CORE THERMIONIC FOWER PLANT FOR MANNED SPACE STATION 72023 2
00190 STAT/ OUT-OF-CORE THERMIONIC POWER PLANT FOR MANNED SPACE 72023 2
00050 TEM US / PERFORMANCE OF A PRECISION THERMAL CONTROL SYS 72042 13
00140 ATION IN AN ENCLOSURE IN THE PRESENCE OF A NONCONDENSABLE 72032 7
00160 COMPREHENSIVE LAMINAR TUBE FL/ PRESSURE VARIATIONS IN AN IMC 72036 9
00250 WELL-DEFINED TEMPERATURE II. PRODUCTION OF METAL-VAPOR-GAS 72022 2
00090 PCRT FOR P/ ISOPOIC KILCOWAT PROGRAM QUARTERLY PROGRESS RE 72027 4
00090 E KILCOWAT PROGRAM QUARTERLY PROGRESS REPORT FOR PERIOD EN 72027 4
00030 ST MOLYBDENUM-BASE TZN ALLOY PROPERTIES AND APPLICATIONS & 72040 11

00160 ATOR (RTIG)# RADIOISOTOPE THERMIONIC GENERATOR /? REPORT 72024 3

00150 SCANNING ROCKET HEAT PIPE EXPERIMENT# NOT INDEXED 72043 13
0040 AT PIPE FOR DEVELOPMENT OF A SELF-PRIMING HIGH-CAPACITY HE 72039 11
00090 ESS REPORT FOR PERIOD ENDING SEPTEMBER 30, 1971./ Y PROGR 72027 4
00240 E APPLICATIONS FOR THE SPACE SHUTTLE# HEAT PIPE 72025 3
00150 ERIMENT# SOUNDED ROCKET HEAT PIPE EXP 72043 13
00240 AT PIPE APPLICATIONS FOR THE SPACE SHUTTLE# HE 72025 3
00190 NUCLEAR SYSTEM CONCEPT FOR THE SPACE STATION#/OF-CORE THERM 72023 2
00090 NUCLEAR SYSTEM CONCEPT FOR THE SPACE STATION/#PE THERMAL CO 72026 4
00190 POWER PLANT FOR MANNED SPACE STATION#/OF-CORE THERMIONIC 72023 2
00200 SYSTEM CONCEPT FOR THE SPACE STATION#/PE THERMAL CONTROL 72026 4
00160 MINAF TUBE FLOW WITH UNIFORM SUCTION#/ IN INCOMPRESSIBLE LA 72036 9
00120 PIPE/RADIATOR FOR THE LUNAR SURFACE MAGNETOMETER#/E HEAT 72028 5
00020 DILING OF LIQUIDS ON HEATING SURFACES#/GROWTH DURING THE B 72035 8
00200 S/ HEAT PIPE THERMAL CONTROL SYSTEM CONCEPT FOR THE SPACE 72026 4
00050 A PRECISION THERMAL CONTROL SYSTEM USING VARIABLE CONDUCT 72042 13
00080 AN OPERATIONAL HE/ INTERNAL TEMPERATURE DISTRIBUTIONS IN 72033 8
00250 ERMAL HEATER OF WELL-DEFINED TEMPERATURE II. PRODUCTION OF 72022 2
00170 E-CAPILLARY EVAPORATION EVOLING TESTS PERFORMED ON OPEN GROOV 72034 8

00230 E HEAT PIPE FOR THE ADVANCED THERMAL CONTROL FLIGHT EXPERI 72037 10
00200 T FOR THE SPACE S/ HEAT PIPE THERMAL CONTROL SYSTEM CONCEP 72026 4
00050 PERFORMANCE OF A PRECISION THERMAL CONTROL SYSTEM USING 72042 13
00230 HE ADVANCE/ DEVELOPMENT OF A THERMAL DIODE HEAT PIPE FOR T 72037 10
00180 RADIOISOTOPE THERMIONIC GENERATOR (RTIG)# 72024 3
00190 NNED SPACE ST#/ OUT-OF-CORE THERMIONIC POWER PLANT FOR MA 72023 2

00060 TERIALS# VAPORIZATION HEAT TRANSFER IN HEAT PIPE WICK MA 72031 7
00100 ND DYNAMIC BEHAVIOR OF/ HEAT TRANSFER LIMITS, LIFETESTS, A 72044 14
00010 IN AN INCOMPRESSIBLE LAMINAR TUBE FLOW WITH UNIFORM SUCTION 72036 9
00010 F CHEMICALLY VAPOR DEPOSITED TUNGSTEN HEAT PIPE# /UATION 0 72041 11
00130 HEAT PIPE# A TUNNEL WICK 100,000 WATT-INC 72038 10
00030 IC/ ARC-CAST MOLYBDENUM-BASE TZN ALLOY PROPERTIES AND APPL 72040 11
00160 IDE LAMINAR TUBE FLOW WITH UNIFORM SUCTION#/ IN INCOMPRES 72036 9
00050 ION THERMAL CONTROL SYSTEM USING VARIABLE CONDUCTANCE HE 72042 13
00010 AND EVALUATION OF CHEMICALLY VAPOR DEPOSITED TUNGSTEN HEAT 72041 11
<table>
<thead>
<tr>
<th>Document Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEAT PIPE TECHNOLOGY UPDATE 6-30-72</td>
<td>7</td>
</tr>
<tr>
<td>HEAT PIPE WICK MATERIALS VAPORIZATION HEAT TRANSFER IN</td>
<td>13</td>
</tr>
<tr>
<td>THERMAL CONTROL SYSTEM USING VARIABLE CONDUCTANCE HEAT PIPE</td>
<td>5</td>
</tr>
<tr>
<td>E/RADATOR FOR THE LUNAR & A VARIABLE CONDUCTANCE HEAT PIPE</td>
<td>9</td>
</tr>
<tr>
<td>LE LAMINAR TUBE FL/ PRESSURE VARIATIONS IN AN INCOMPRESSIBLE</td>
<td>7</td>
</tr>
<tr>
<td>RFORMANCE CHARACTERISTICS OF WATER HEAT PIPES OF ANNYLAR W</td>
<td>14</td>
</tr>
<tr>
<td>A TUNNEL WICK 100,000 WATT-INCH HEAT PIPE</td>
<td>10</td>
</tr>
<tr>
<td>IONS I. ISOTHERMAL HEATER CF WELL-DEFINED TEMPERATURE II.</td>
<td>2</td>
</tr>
<tr>
<td>WATER HEAT PIPES OF ANNYLAR WICK CONFIGURATION /STICS OF</td>
<td>14</td>
</tr>
<tr>
<td>A TUNNEL WICK 100,000 WATT-INCH HEAT PIPE</td>
<td>7</td>
</tr>
<tr>
<td>IPE</td>
<td>10</td>
</tr>
<tr>
<td>WITH * NOT INDEXED</td>
<td></td>
</tr>
<tr>
<td>PERIOD ENDING SEPTEMBER 30, 1971. /Y PROGRESS REPORT FOR</td>
<td>4</td>
</tr>
<tr>
<td>PERIOD ENDING SEPTEMBER 30, 1971. /Y PROGRESS REPORT</td>
<td>4</td>
</tr>
</tbody>
</table>
F.3 AUTHOR INDEX
<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABBATE M J</td>
<td>72023</td>
<td>2</td>
</tr>
<tr>
<td>ALARID J</td>
<td>72025</td>
<td>3</td>
</tr>
<tr>
<td>ALEXANDER E G</td>
<td>72031</td>
<td>7</td>
</tr>
<tr>
<td>BACIGULUPI R J</td>
<td>72041</td>
<td>11</td>
</tr>
<tr>
<td>BARR R Q</td>
<td>72040</td>
<td>11</td>
</tr>
<tr>
<td>BEER H</td>
<td>72035</td>
<td>8</td>
</tr>
<tr>
<td>BRIGGS J Z</td>
<td>72044</td>
<td>14</td>
</tr>
<tr>
<td>BRUST O</td>
<td>72025</td>
<td>3</td>
</tr>
<tr>
<td>CAROTHERS K G</td>
<td>72033</td>
<td>8</td>
</tr>
<tr>
<td>DENNY V E</td>
<td>72038</td>
<td>10</td>
</tr>
<tr>
<td>EDELSTEIN F</td>
<td>72039</td>
<td>11</td>
</tr>
<tr>
<td>EDELSTEIN F</td>
<td>72023</td>
<td>2</td>
</tr>
<tr>
<td>EISEN C L</td>
<td>72042</td>
<td>13</td>
</tr>
<tr>
<td>EKERN W F</td>
<td>72029</td>
<td>6</td>
</tr>
<tr>
<td>FELDMANIS C J</td>
<td>72031</td>
<td>7</td>
</tr>
<tr>
<td>FERRELL J K</td>
<td>72033</td>
<td>8</td>
</tr>
<tr>
<td>FOX R D</td>
<td>72027</td>
<td>4</td>
</tr>
<tr>
<td>FRAS A P</td>
<td>72044</td>
<td>14</td>
</tr>
<tr>
<td>GROLL M</td>
<td>72042</td>
<td>13</td>
</tr>
<tr>
<td>HALLER F E</td>
<td>72037</td>
<td>10</td>
</tr>
<tr>
<td>HEMBACH R</td>
<td>72038</td>
<td>10</td>
</tr>
<tr>
<td>HEMBACH R J</td>
<td>72043</td>
<td>13</td>
</tr>
<tr>
<td>HOLLISTER M P</td>
<td>72042</td>
<td>13</td>
</tr>
<tr>
<td>KEMME J E</td>
<td>72021</td>
<td>1</td>
</tr>
<tr>
<td>KIRKPATRICK J</td>
<td>72037</td>
<td>10</td>
</tr>
<tr>
<td>KIRKPATRICK J P</td>
<td>72028</td>
<td>5</td>
</tr>
<tr>
<td>KNOWLES G</td>
<td>72043</td>
<td>13</td>
</tr>
<tr>
<td>KOSSON R</td>
<td>72038</td>
<td>10</td>
</tr>
<tr>
<td>KOSSON R</td>
<td>72037</td>
<td>10</td>
</tr>
<tr>
<td>KOSSON R</td>
<td>72039</td>
<td>11</td>
</tr>
<tr>
<td>KREBBH</td>
<td>72044</td>
<td>14</td>
</tr>
<tr>
<td>LEVY E K</td>
<td>72036</td>
<td>9</td>
</tr>
<tr>
<td>MARCUS B D</td>
<td>72028</td>
<td>5</td>
</tr>
<tr>
<td>MCDONALD J W</td>
<td>72032</td>
<td>7</td>
</tr>
<tr>
<td>MCINTOSH R</td>
<td>72043</td>
<td>13</td>
</tr>
<tr>
<td>MILLS A F</td>
<td>72032</td>
<td>7</td>
</tr>
<tr>
<td>PEVER W T</td>
<td>72031</td>
<td>7</td>
</tr>
<tr>
<td>PRAGER R</td>
<td>72025</td>
<td>3</td>
</tr>
<tr>
<td>QUAIL J P</td>
<td>72036</td>
<td>9</td>
</tr>
<tr>
<td>REISS F E</td>
<td>72034</td>
<td>8</td>
</tr>
<tr>
<td>ROBINSON G A</td>
<td>72026</td>
<td>4</td>
</tr>
<tr>
<td>ROUKLOVE P</td>
<td>72024</td>
<td>3</td>
</tr>
<tr>
<td>SAMUELS G</td>
<td>72027</td>
<td>4</td>
</tr>
<tr>
<td>SCHOCK A</td>
<td>72023</td>
<td>2</td>
</tr>
<tr>
<td>SCHRETTZMANN K</td>
<td>72034</td>
<td>8</td>
</tr>
<tr>
<td>SCHROCK V E</td>
<td>72045</td>
<td>14</td>
</tr>
<tr>
<td>SCHUBERT K P</td>
<td>72044</td>
<td>14</td>
</tr>
<tr>
<td>SCOLLON T R</td>
<td>72026</td>
<td>4</td>
</tr>
<tr>
<td>SHLOSINGER A P</td>
<td>72030</td>
<td>7</td>
</tr>
<tr>
<td>SÖCKALINGAM K C</td>
<td>72045</td>
<td>14</td>
</tr>
<tr>
<td>SWERDLING B</td>
<td>72037</td>
<td>10</td>
</tr>
<tr>
<td>SWERDLING H</td>
<td>72039</td>
<td>11</td>
</tr>
<tr>
<td>TAWIL M</td>
<td>72025</td>
<td>3</td>
</tr>
</tbody>
</table>

23
G. HEAT PIPE RELATED PATENTS
G.1 PATENTS
HEAT PIPE RELATED PATENTS JUNE 30, 1972 UPDATE

00001 FELDMANIS C J
COOLED ELECTRONIC EQUIPMENT MOUNTING PLATE
U.S. PATENT 3651865
MARCH 28, 1972

00002 WHITFIELD M G
SUPER-COOLED DISK BRAKE
U.S. PATENT 3651895
MARCH 28, 1972

00003 CORMAN J C KELLY P E
HEAT PIPE COOLED CAPACITOR
U.S. PATENT 3656035
APRIL 11, 1972

00004 LOO C V
FIBROUS VAPOR COOLING MEANS
U.S. PATENT 3656545
APRIL 18, 1972

00005 FREGGENS R A
INTERNAL CONFIGURATION FOR A RADIAL HEAT PIPE
U.S. PATENT 3658125
APRIL 25, 1972

00006 MOORE R D
HEAT TRANSFER APPARATUS WITH IMPROVED
HEAT TRANSFER SURFACE
U.S. PATENT 3661202
MAY 9, 1972

00007 CLEAVELAND C M
SWITCHGEAR HAVING HEAT PIPES INCORPORATED IN THE
DISCONNECTING STRUCTURES AND POWER CONDUCTORS
U.S. PATENT 3662137
MAY 9, 1972

00008 STREB A J
ENGINE EXHAUST GAS HEATER
U.S. PATENT 3662542
MAY 16, 1972

00009 ZERKLE R D
COOLING SYSTEM FOR CUTTING TOOL AND THE LIKE
U.S. PATENT 3664412
HEAT PIPE RELATED PATENTS JUNE 30, 1972 UPDATE

MAY 23, 1972

00010 WERNER R W ALEXANDER E E
COMSTOCK I J
METHOD OF FABRICATING A HEAT PIPE
U.S. PATENT 3665573
MAY 30, 1972

00011 MOORE R D
SEGMENTED HEAT PIPE
U.S. PATENT 3666005
MAY 30, 1972

00012 PAINE T D
THERMALLY CASCADED THERMOELECTRIC GENERATOR
U.S. PATENT 3666566
MAY 30, 1972

00013 FIEBELMANN P NEU H
NUCLEAR REACTOR WITH HEAT PIPES FOR HEAT EXTRACTION
U.S. PATENT 3668070
JUNE 6, 1972
HEAT PIPE RELATED PATENTS JUNE 30, 1972 UPDATE

'A' NOT INDEXED
'AND' NOT INDEXED

00006 R SURFACE# HEAT TRANSFER APPARATUS WITH IMPROVED HEAT TRANSFER SURFACE
00002 SUPER-COOLED DISK BRAKE#
00003 HEAT PIPE COOLED CAPACITOR#
00012 THERMALLY CASCADED THERMOELECTRIC GENERATOR#
00007 DISCONNECTING STRUCTURES AND POWER CABLES IN THE INTERNAL CONFIGURATION FOR A RADIAL HEAT PIPE
00005 HEAT PIPE COOLED CAPACITOR#
00003 SUPER-COOLED DISK BRAKE#
00001 PLATE# HEAT PIPE COOLED CAPACITOR#
00004 FIBROUS VAPOR COOLING MEANS#
00009 THE LIKE# COOLING SYSTEM FOR CUTTING TOOL AND THE LIKE#
00007 VING HEAT PIPES INCORPORATED IN THE DISCONNECTING STRUCTURES AND POWER CABLES
00002 SUPER-COOLED DISK BRAKE#
00001 COOLED ELECTRONIC EQUIPMENT MOUNTING PLATE#
00008 ENGINE EXHAUST GAS HEATER#
00001 COOLED ELECTRONIC EQUIPMENT MOUNTING PLATE#
00008 ENGINE EXHAUST GAS HEATER#
00013 AR REACTOR WITH HEAT PIPES FOR HEAT EXTRACTION#
00010 METHOD OF FABRICATING A HEAT PIPE#
00004 FIBROUS VAPOR COOLING MEANS#
00008 ENGINE EXHAUST GAS HEATER#
00012 THERMALLY CASCADED THERMOELECTRIC GENERATOR#
00007 DISCONNECTING STRUCTURE SWITCHGEAR HAVING HEAT PIPES INCORPORATED IN THE DISCONNECTING STRUCTURES AND POWER CABLES
00003 NUCLEAR REACTOR WITH HEAT PIPES FOR HEAT EXTRACTION#
00001 COOLED ELECTRONIC EQUIPMENT MOUNTING PLATE#
00008 ENGINE EXHAUST GAS HEATER#
00006 HEAT TRANSFER APPARATUS WITH IMPROVED HEAT TRANSFER SURFACE#
00007 DISCONNECTING STRUCTURE SWITCHGEAR HAVING HEAT PIPES INCORPORATED IN THE DISCONNECTING STRUCTURES AND POWER CABLES
00005 INTERNAL CONFIGURATION FOR A RADIAL HEAT PIPE#
00013 NUCLEAR REACTOR WITH HEAT PIPES FOR HEAT EXTRACTION#
00004 FIBROUS VAPOR COOLING MEANS#
00010 METHOD OF FABRICATING A HEAT PIPE#
00007 DISCONNECTING STRUCTURE SWITCHGEAR HAVING HEAT PIPES INCORPORATED IN THE DISCONNECTING STRUCTURES AND POWER CABLES
00003 NUCLEAR REACTOR WITH HEAT PIPES COOLED CAPACITOR#
00011 SEGMENTED HEAT PIPE#
00010 SEGMENTED HEAT PIPE#
HEAT PIPE RELATED PATENTS JUNE 30, 1972 UPDATE

00007 IN THE DISCONNECTING STRUCTURES AND POWER CONDUCTORS# /PES INCORPORATED
00005 INTERNAL CONFIGURATION FOR A RACIAL HEAT PIPE#
00013 RACTION#
00011 NUCLEAR REACTOR WITH HEAT PIPES FOR HEAT EXT SEGMENTED HEAT PIPE#
00007 S INCORPORATED IN THE DISCONNECTING STRUCTURES AND POWER CONDUCTORS# /PES SUPER-COOLED DISK BRAKE#
00006 PARATUS WITH IMPROVED HEAT TRANSFER SURFACE#
00007 RATED IN THE DISCONNECTING STRUCTURES AND POWER CONDUCTORS# /PES COOLING SYSTEM FOR CUTTING TOOL AND THE LIKE
00002 INTERNAL CONFIGURATION FOR A RACIAL HEAT PIPE#
00006 HEAT TRANSFER APPARATUS WITH IMPROVED HEAT TRANSFER SURFACE#
00009 #
00012 NERATOR#
00012 THERMALLY CASCADED THERMOELECTRIC GENERATOR#
00009 COOLING SYSTEM FOR CUTTING TOOL AND THE LIKE#
00006 HEAT TRANSFER APPARATUS WITH IMPROVED HEAT TRANSFER SURFACE#
00006 T TRANSFER SURFACE#
00006 ANSFER APPARATUS WITH IMPROVED HEAT TRANSFER SURFACE#
00006 HEAT TR FIBROUS VAPOR COOLING MEANS#
00006 HEAT TR 'THE * NOT INDEXED THERMALLY CASCADED THERMOELECTRIC GE THERMALLY CASCADED THERMOELECTRIC GENERATOR#' COOLING SYSTEM FOR CUTTING TOOL AND THE LIKE# HEAT TRANSFER APPARATUS WITH IMPROVED HEAT TRANSFER SURFACE# HEAT TRANSFER SURFACE# ANSFER APPARATUS WITH IMPROVED HEAT TRANSFER SURFACE# FIBROUS VAPOR COOLING MEANS# 'WITH * NOT INDEXED
G.3 AUTHOR INDEX
<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Inventor Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010</td>
<td>Alexander E E</td>
</tr>
<tr>
<td>00007</td>
<td>Cleaveland C M</td>
</tr>
<tr>
<td>00010</td>
<td>Comstock I J</td>
</tr>
<tr>
<td>00003</td>
<td>Corman J C</td>
</tr>
<tr>
<td>00001</td>
<td>Feldmanis C J</td>
</tr>
<tr>
<td>00013</td>
<td>Fiebelmann P</td>
</tr>
<tr>
<td>00005</td>
<td>Freggens R A</td>
</tr>
<tr>
<td>00003</td>
<td>Kelly P E</td>
</tr>
<tr>
<td>00004</td>
<td>Log C V</td>
</tr>
<tr>
<td>00006</td>
<td>Mocre R D</td>
</tr>
<tr>
<td>00011</td>
<td>Mocre R D</td>
</tr>
<tr>
<td>00013</td>
<td>Neu H</td>
</tr>
<tr>
<td>00012</td>
<td>Paine T O</td>
</tr>
<tr>
<td>00008</td>
<td>Streb A J</td>
</tr>
<tr>
<td>00010</td>
<td>Werner R W</td>
</tr>
<tr>
<td>00002</td>
<td>Whitfield M G</td>
</tr>
<tr>
<td>00009</td>
<td>Zerkle R D</td>
</tr>
</tbody>
</table>

HEAT PIPE RELATED PATENTS JUNE 30, 1972 UPDATE