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ABSTRACT

This is the final report for the most recent year of a continuing

program of research in the field of artificial intelligence. This work

follows previous projects that resulted in the design, construction,

and demonstration of a "first generation" robot system. The work re-

ported here consists of new research aimed at the development of a more

sophisticated "second generation" robot. Although the robot vehicle

itself will be essentially unchanged, it will be controlled by a com-

pletely new computer hardware and software system. In particular, this

report contains detailed descriptions of the computer configuration and

the bottom-level software design, two new bases for problem-solving

systems (called STRIPS and QA4), and new directions in visual scene-

analysis techniques.
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I INTRODUCTION

This is the final report for the most recent year of a program

of research in the field of artificial intelligence. The present pro-

ject began in October 1969 as a direct continuation of work performed

*
under a previous contract. It is expected that the work will be con-

tinued under new support. Therefore this is a report on the present

status of a continuing research program.

An Interim Scientific Report was -prepared in April 1970 which

describes activities during the first six months of this project. "This

present report therefore emphasizes more recent work and is designed

to augment, rather than replace, the Interim Report.

II BACKGROUND

In our previous projects, research was focused on the applica-

tion of techniques of artificial intelligence to the control of a

mobile automaton in a realistic .laboratory environment •. This work

culminated late in 1969 in some demonstrations of a complete automaton

system, which is documented in numerous papers and reports and in a

25rminute motion picture entitled "Shakey.'• A First Generation Robot.

As a result of that work we discovered a variety of limitations, both

i
in the capabilities of our computer facility and, more important, in

the techniques we were using for various conceptual portions of the

system design. .. -. '

Contract F30602-69-C-0056 with the Advanced Research Projects Agency
and the Rome Air Development Center.

L. J. Chaitin et al., "Research and Applications—Artificial Intelli-
gence," Interim Scientific Report, Contract NAS 12-2221, Stanford
Research Institute, Menlo Park, California (April 1970) .



During the past year we have been converting our hardware to a

new» more powerful computer configuration. As a result, the physical

robot vehicle has not been available for experimentation. This change-

over period provided us with an excellent opportunity to make basic

studies in several areas, and thereby redesign the major software com-

ponents of the system. As a result of this redesign, we have now

established the framework for our second-generation robot system, which

will be implemented during the coming year. Table I summarizes the

major departures between our first and second robot generations. The

remainder of this report describes the technical considerations that

resulted in various aspects of the second-generation framework.

Ill REPORT OUTLINE -

Instead of preparing the customary single, large, integrated

report, we have decided to make this final report consist of a brief

document that summarizes our accomplishments, supported by several

appendices, including some Technical Notes, that contain the technical

details of the work. As discussed in Section II, the bulk of our work
/-

this year has consisted of several separate basic studies. The appended

Technical Notes, also available separately, provide documentation for

the present status of each of these studies. In the year ahead we

plan to integrate some of these results.

Section IV contains summaries of our progress during the past

year and provides a guide to the contents of the appendices. Finally,

Section V contains descriptions of publications and presentations by

our staff members during this past year with the support of this pro-

ject. .
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Table I

MAJOR SYSTEM CHANGES

Subject

Computer Facility

Problem Solving

Vision

Implementation

First Generation

SDS-940
Core memory 64K,
24-bit words, 0.5M
word drum

QA3
Theorem-proving
approach, using state
variables

Analysis based on
local detection of
line segments,
followed by global
considerations

Dual grid and list
models; parallel use
of FORTRAN and LISP
systems

Second Generation

PDF-10
Core memory 192K,
36-bit words, 1.5M
word drum, 20M word
disc, PDP-15 periph-
eral computer

STRIPS
A problem-solving
executive that uses
a theorem prover as
a subroutine

Analysis based on
regions and early
use of global infor-
mation

Single tuple model;
LISP operating system
in control; new QA4
language under devel-
opment



IV SUMMARY OF RESULTS

A. Computer System

A new computer facility, purchased by the government (partly

under Contract F30602-69-C-0056 with Rome Air Development Center) for

the use of this project and its possible successors, was procured and

installed. This installation is now essentially complete. We expect

to have the complete system operational within a few months. Mean-

while, the robot and camera hardware have been attached to the new

system and are almost completely operational. Appendix A describes

the new configuration.

B. Bottom-Level Software

Transferring the SRI robot from the SDS-940 to the PDP-10/

PDP-15 system has given us the opportunity to replace the rather com-

plicated robot software interface on the 940 with one more tailored

to the user's view of what the robot does. By carefully defining the

actions that the computer can ask the robot to perform, their possible

consequences, and so on, we hope to achieve logical clarity and, at the

same time, enhanced usefulness. Appendix B describes the "front-side"

interface to the bottom-level robot software (i.e., the interface

through which the routines are called as operators or subroutines by

other software in the robot program hierarchy). It also describes,

when appropriate, the "back-side" interface between the bottom-level

software and the PDP-15/robot complex, and the internal structure of
r •

the bottom-level software itself.



C. Problem-Solving Research

Problem solving was done in the first-generation robot system

by QA3, a theorem-proving and question-answering system based upon first-

order predicate calculus. Although mathematically elegant, the approach

used to generate plans of action became extremely inefficient in all but

the most trivial situations. The major difficulty was due to the "frame

problem}" the problem of creating and maintaining an appropriate infor-

mational context or "frame of reference/' which is discussed in detail

in Appendix C. Additional difficulties arise because QA3 fails to

distinguish between two phases of problem-solving activity: planning

courses of action, and executing the resulting plans. (The particular

importance of the execution phase of robot problem-solving activity was

discussed by J. H. Munson in Appendix F to the Interim Report.)

A new problem-solving system called STRIPS has now been de-

fined and is described in Appendix D. It consists of an executive that

makes use of a theorem-proving program, as a subroutine, to make vari-

ous tests such as whether a proposed action is applicable to a given

situation. STRIPS contains, however, considerably more flexibility

than would a theorem prover alone.

The QA3.5 system, an upgraded version of QA3, can be modified

to interface with STRIPS. (QA3 is a question-answering system, described

in the cited final report of the ARPA-RADC project, that contains a

theorem-proving program for first-order*predicate calculus.) In addition,

this project has been partially supporting the development of a new

system called QA4. Originally conceived as a next-generation theorem



prover based upon higher-order logic, QA4 has evolved into the speci-

fication of a programming language particularly well-suited for use in

the design of new theorem-proving and problem-solving systems. Future

versions of STRIPS and QA3, as well as separately supported projects

for automatic program construction or verification, will probably be

programmed in the QA4 language. The status of the QA4 development is

described in Appendix E. .

D. Vision

The vision part of the first-generation system was based

on the detection of line segments in the picture. Scene analysis was

accomplished by a decision-tree program whose structure reflects the

known constraints and relations in the robot's visual world. This

program added information to the robot's model but did not use any

information previously stored in that model.

General scene analysis in the second-generation system will

be based on the detection of regions in the picture. A quite complete

library of routines for region analysis has been coded. Current plans

for scene analysis envision replacing the decision tree by a search

procedure that will allow an explicit, formal, and easily modifiable

description of the known constraints and relations. A detailed descrip-

tion of this approach is given in Appendix F.

As the robot's model of the world becomes more complete,

the role of vision changes from one of exploring an unknown world to

one of providing visual feedback. A typical task here is that of

sighting landmarks and using them to update the robot's knowledge of

its own location and orientation. A program that accomplishes this is



described in Appendix F. The use of specific information in the model

to aid scene analysis is expected to play a prominent role in the

second-generation system.

V PUBLICATIONS AND PRESENTATIONS

A. Publications

Following is a list of technical notes and papers generated

by the staff of the Artificial Intelligence Group of Stanford Research

Institute with the support of this project:

(1) J. Munson, "A LISP-FORTRAN-MACRO Interface for the

PDP-10 Computer," Technical Note 16 (November 1969).

(2) C. Brice, C. Fennema, and S. Weyl, "AROS—Algorithms

for Partitioning a Picture/' Technical Note 18

(January 1970).

(3) J. Munson, "The SRI Intelligent Automaton Program,"

Technical Note 19 (January 1970) ; published in Proc.

First Natl. Symp. Industrial Robots, pp. 113-117

(1970).

(4) R. Duda and P. Hart, "Experiments in Scene Analysis,"

Technical Note 20 (January 1970); published in Proc.

First Natl. Symp. Industrial Robots, pp. 119-130 (1970)

(5) L. Coles, "Bibliography of Literature in the Field of

Robots," Technical Note 23 (March 1970).

(6) R. Yates and B. Raphael, "Resolution Graphs," Technical

Note 24 (March 1970); to be published in Artificial

Intelligence, December 1970.



(7) J. Ellis and L. Chaitin, "PDP-15 Simulator," Technical

Note 25 (April 1970) .

(8) R. Waldinger, "Robot and State Variable," Technical

Note 26 (April 1970) .

(9) R. Kling, "Some Remarks on Resolution Strategies,"

Technical Note 28 (April 1970).

(10) J. Munsoh, "A Cost-Effectiveness Basis for Robot

Problem Solving and Execution," Technical Note 29

(January 1970) .

(11) B. Raphael, "Robot Problem Solving without State Vari-

ables," Technical Note 30 (May 1970).

(12) J. Munson, "The SRI Robot as a Candidate Domain for

Vocal Conversation with a Computer," Technical Note

31 (May 1970).

(13) D. Luckham (Stanford University) and N. Nilsson (SRI),

"Extracting Information from Resolution Proof Trees,"

Technical Note 32 (June 1970); to be published in

Artificial Intelligence.

(14) B. Raphael, "The Frame Problem in Problem-Solving

Systems," Technical Note 33 (June 1970); published in

Proc. Adv. Study Institute.

(15) Z. Manna (Stanford University) and R. Waldinger (SRI),

"Towards Automatic Program Synthesis," Technical Note

34 (July 1970).

(16) J. Munson, "Bottom-Level PDP-10 Software for the SRI

Robot," Technical Note 35 (August 1970).



(17) R. Duda and P. Hart, "A Generalized Hough Transforma-

tion- for Detecting Lines in Pictures," Technical Note

36 (August 1970); to be submitted for publication in

the IEEE Trans. Computers.

(18) R. Kling, "SRI—TRACE Package for PDP-10 LISP," Technical

Note 37 (September 1970) .

(19) C. Rosen, "An Experimental Mobile Automaton," Technical

Note 39 (July 1970) ; to be published in Proc. 18th

Conf. Remote Systems Technology.

(20) L. Coles, "An Experiment in Robot Tool Using,"

Technical Note 41 (October 1970); paper presented at

IEEE Systems Science and Cybernetics Conference

(abstract published in Proceedings) .

(21) J. Rulifson, J. Derksen, and R. Waldinger, "QA4 Work-

ing Paper," Technical Note 42 (October 1970).

(22) N. Nilsson and R. Fikes, "STRIPS: A New Approach to

the Application of Theorem Proving to Problem Solving,"

Technical Note 43 (October 1970) .

(23) R. Klihg, "Design Implications of Theorem-Proving

Strategies," Technical Note 44 (October 1970) .

(24) C. Brice and J. Derksen, "The QA3 Implementation of

E-Resolution," Technical Note 45 (October 1970).

(25) R. Duda, "Some Current Techniques for Scene Analysis,"

Technical Note 46 (October 1970) .



B. Presentations

Following is a list of presentations made by stalf members

of the Artificial Intelligence Group during the period of this con-

tract :

(1) L. Coles, "An Overview of the SRI Robot Project,"

Workshop and Symposium on Robotics, North American

Rockwell Corporation, Thousand Oaks, California,

October 9, 1969; talk and movie.

(2) R, Yates, "Techniques for Robot Problem Solving,"

Workshop and Symposium on Robotics, North American
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Institute," Oregon State University, Department of
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Electrical and Electronics Engineering, Corvallis,
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Institute," University of Alberta, Department of
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talk and movie.
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APPENDIX A

COMPUTER CONFIGURATION

by

Leonard J. Chaitin
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The Artificial Intelligence Group computer complex consists of

the following parts:

• PDF-10 computer and peripherals

• PDP-15 computer and peripherals (including the robot)

• An interprocessor buffer to connect the two computers.

These are interconnected as shown in Figure 1.

The PDP-10 system has 192K (K=1024) words of 36-bit memory. 32K

is DEC MD10 memory. The rest is Ampex RG10 memory, consisting of one

32K memory with interface and one 128K memory interface and four modules

of 32K each. All memory has four ports. These are occupied by:

• PDP-10 central processor

• DF10 data channel

• Bryant drum controller

• DA25C interface.

The Bryant drum is a high-speed autolift drum which has a 1.5-

million-word capacity. It is planned that it will be used for swapping

and some system files. The drum controller interfaces directly into

the memory rather than going through a data channel.

The DF10 data channel is used to handle I/O from two peripherals:

the disk pack drives and the TV A/D converter.

The interface between the disk pack drives and the DF10 data

channel was built by Interactive Data Systems, Inc.

The disk pack drives are manufactured by Century Data Systems

and handle the 20-surface disk packs. This means that each disk pack

has a 5-million-word capacity. The packs themselves are manufactured

by Caelus Inc. The disk pack system is used as secondary storage.

15



Currently, we are also using one disk pack drive as a swapping device

for the time-sharing system.

The TV A/D converter is an SRI-designed and -built device. It

handles data from the robot TV camera at a rate of one word every 1.5

microseconds. It is capable of processing either 120X120 or 240X240

pictures with 32 levels of gray scale.

The DA25C is the PDP-10 side of the interprocessor buffer. It

handles data at one 36-bit word every 8 microseconds. We have pro-

grammed it such that the PDP-10 is always in control and can interrupt

any transmission in order to initiate one of its own.

The DA25D is the PDP-15 side of the interprocessor buffer. Each

PDP-10 word is split into two PDP-15 words (18 bits each). It also

does the reverse operation. It operates on the PDP-15 I/O bus as a

single-cycle device; however, its internal logic uses three cycles per

word.

The PDP-15 has 12K of core memory and an I/O processor. All devices

are "daisy chained" on the I/O bus. These include an Adage display,

paper tape, DEC tape, A/D converter, D/A converter (not yet delivered),

ARPA .network IMP (not yet implemented), and the SRI robot.

The Adage display provides a high-speed graphics capability. It

will be refreshed from the PDP-15 core. The display lists will be pre-

pared in the PDP-10 and executed from the PDP-15. Capabilities include

incremental mode, print mode, dotted lines, and intensity control.

16
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APPENDIX B

BOTTOM-LEVEL PDP-10 SOFTWARE FOR THE SRI ROBOT
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August 1970

BOTTOM-LEVEL PDF-10 SOFTWARE FOR THE SRI ROBOT

by

John H. Munson

Artificial Intelligence Group

Technical Note 35

SRI Project 8259

This research is sponsored by the Advanced Research
Projects Agency and the National Aeronautics and
Space Administration under Contract NAS 12-2221.
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Transferring the SRI robot from the SDS-940 to the PDP-10/PDP-15

system has given us the opportunity to replace the rather obscure and

complicated robot software interface on the 940 with one more tailored

to the user's view of what .the rqbot does. By carefully defining the

actions the computer can ask the robot to perform, their possible con-

sequences , and so on, we hope to achieve logical clarity and, at the

same time, enhanced usefulness. This note describes the front-side

interface to the bottom-level robot software (i.e., the interface

through which the routines are called as operators or subroutines by

other software in the robot program hierarchy). It also describes as

appropriate, the "back-side" interface between the bottom-level soft-

ware and the PDP-15/robot complex, and the internal structure of the

bottom-level software itself.
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THE ROBOT ACTIVITIES

The robot presently has four degrees of mechanical freedom: it

can tilt and pan its "head," containing the TV camera and rangefinder,

and it can rotate its two drive wheels. If the drive wheels (mounted

on either side of the robot on a common axis) are rotated together in

the same direction, the robot rolls forward or backward. If they are

rotated in opposite directions, the robot turns about its center point.

Thus, there are currently four robot activities that cause robot motion.

Each has a single argument giving the magnitude of the motion:

Activity Argument

TILT Number of degrees upward from present position

PAN Number of degrees right (clockwise) from present
position

TURN Number^ of degrees right (clockwise) from present
position

ROLL Number of feet forward.

Negative values of the arguments lead to directions of motion opposite

to those listed above.

(The robot also has the ability to turn only one of its drive

wheels, thus pivoting about the other. Since no actual demand to use

this ability has arisen to date, the two corresponding activities are

not currently provided.)

The robot presently has three sensory modes: TV, rangefinder, and

catwhiskers. The first two of these can be activated on command. The

command RANGE causes a reading of the distance to the nearest surface,

along a path that is nominally in the center of the field of view of

24



the camera. The command SHOOT causes a quantized TV picture to be

read into the POP-10 memory. An auxiliary TV activity, TVMODE, is

provided to enable setting of the picture resolution and (potentially)

other aspects of the TV system, such as beam current and target voltage,

or color filters in front of the camera. Two other auxiliary TV ac-

tivities, IRIS and FOCUS, operate motors on the robot to control the

iris setting (f-stop) and the distance of best focus of the camera.

The catwhiskers (and the push-bar) are affected only when the robot

moves, through TURN or ROLL. At the conclusion of each such activity,

a report of the status of these sensors is sent to the PDP-10 and

stored. Thus, there is no activity corresponding directly to this mode

of sensory input. However, an option exists as to whether changes in

the status of the whiskers and push-bar during a TURN or ROLL cause

the robot to halt immediately (the "normal" case), or whether the motion

proceeds to completion (in which case we say the "overrides" are on).

This option is controlled by activity OVRID. Details of the catwhisker

operation are contained in a later section.

Thus, there are presently the following sensory-related activities:

Activity Argument

RANGE None

SHOOT (Picture array location in PDP-10)

TVMODE 0

OVRID 0
1
2
3

Set picture resolution to 120X 120
Set picture resolution to 240x240

Turn all overrides off
Turn on the catwhisker override only
Turn on the push-bar override only
Turn on both classes of override

25



Activity Argument

IRIS Number of exposure-value (EV) units by which to
open up the iris (see below)

FOCUS ( Number of feet by which the focal distance is to
be increased.

In subsequent sections we will take a closer look at these activi-

ties. First, we must digress to consider some general characteristics

of the bottom-level software package.

26



GENERAL CHARACTERISTICS AND DESIGN PHILOSOPHY

A call to one of the (LISP) functions implementing the activities

listed above only starts that activity. That is, the called function

causes the PDP-10 to communicate with the PDP-15 (through the routine

START15), telling the PDP-15 to undertake the required action. Then

the called function returns control to the program that called it. Thus,

the robot program does not "hang up" in the called function while the

activity is being carried out.

This design has several ramifications. First, it allows noncon-

flicting activities to be carried out concurrently. Conflicting activi-

ties are those for which the robot's actions literally interfere with

each other (e.g., taking a TV picture while moving), or for which the

maintenance of the robot's model would be garbled if one activity is not

laid to rest before the other is begun. A table, included in this paper,

shows the conflicting activities. The bottom-level software checks for

conflicts and hangs up the robot program in an activity call until all

conflicting activities from earlier calls are complete. There is no

provision made for queuing such conflicting calls and allowing the robot

program to proceed, since the need for this seemed too unlikely to

warrant the effort.

Second, control may be almost anywhere in the robot program hierarchy

when the previously requested activity terminates. Since the LISP system

is not structured to allow arbitrary program interrupts, the robot pro-

gram is not informed when an activity has terminated. The program has

contact with the status of a previously requested activity only in the

following instances:
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(1) The program calls an activity that conflicts with the
previously called one

(2) The program attempts to access information in the robot's
model (using the N-tuple storage system routines whose
names begin with M, for model), which information might be
changed by the previously called activity.

In either of these instances, the bottom-level software automatically

causes the PDP-10 to obtain from the PDP-15 a reading of the status of

the previously called activity. If the activity has terminated, the

software performs necessary bookkeeping and allows the new request to

proceed. If not, the new request is hung up in a wait loop until a

subsequent reading from the PDP-15 indicates that the former activity

is terminated.

In any casei information about the status of the external activity
*

does not even enter the PDP-10 until it specifically requests a reading

from the PDP-15, no matter how far in the past the activity may have

terminated. This is a consequence of the fact that the PDP-10 initiates

all intercomputer transfers; it may be viewed as a scheme of receiving

information from the PDP-15 and robot only on a "need-to-know" basis.

An important corollary of this design is that requests to the robot

model to access information which may be affected by robot activities

should always be made via the N-tuple storage system functions beginning

with "M," not those beginning with "NT." Otherwise, the necessary inter-

locking will not occur, and obsolete information could be accessed.
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THE ACTIVITY STATUS VARIABLE (ASV) AND
MODES OF TERMINATION

We have seen that information flows from the PDP-15 to the PDP-10

only when the PDP-10 requests a status report on an activity. The

first data element of such a report is called the activity status vari-

able (ASV) . For the particular activity being interrogated, the ASV

tells whether that activity has terminated, and, if so, in what way.

If the activity is still in progress, the ASV has the value -1, and the

remainder of the report is meaningless. If the activity has terminated,

the ASV has a nonnegative value, which is subsequently available in the

robot's model.

Various (nonnegative) values of the ASV have specific meanings for

different activities, which will be described subsequently. Certain

values, however, have meanings common to all the activities:

ASV Mode of Termination

6 Time-out occurred

7 Activity was STOP-ped by PDP-10

8 Terminated by panic in PDP-15.

Time-outs are determined by the PDP-15. One of our design

decisions was that every activity would terminate after some specified

time, no matter what the condition of the robot or its communication

link (assuming only proper operation of the PDP-15). Thus, the user

can avoid the common frustration of having his program hang up on the

external equipment and needing to restart it from scratch.

There is a provision (which we expect to be very rarely used) for

the robot program, after starting an activity, to abort it (whether or

29



not it has terminated). This is done by invoking the STOP15 routine.

On receiving the corresponding command, the PDP-15 halts the action of

the robot. The subsequent status report (which, as always, does not go

to the PDP-10 until requested) will have an ASV of 7. We will endeavor

to provide, in such status reports, valid information on the terminal

status of motor registers, etc., in the robot. *

The panic ASV is a catch-all for reporting hardware or software

malfunctions with which the PDP-15 cannot cope.

In what follows, an ASV value of 0 generally represents the most

common or "most normal" mode of termination. The precise meaning of

this and other ASV values, however, depends on the activity.
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ADDITIONAL CHARACTERISTICS OF PAN AND TILT

Sometimes the user (by which we mean either a person at a Teletype

or some higher-level program in the PDP-10) may want the robot to pan

incrementally (i.e.> turn its head x degrees left or right of where it

is currently), and sometimes an absolute positioning is desired (x degrees

left or right of the forward position) . The activities specified in an

earlier section are parameterized on an incremental basis, so the incre-

mental case is handled directly. (For every statement made in this

section about PAN, an analogous statement applies to TILT.)

For absolute positioning, let us first make the assumption that an

entry in the robot's model in the PDP-10 contains the current value of

the pan angle of the robot's head. Then a routine (call it PANTO) whose

argument is an absolute pan angle, in degrees, can proceed as follows:

first, PANTO accesses the model to determine the current pan angle;

second, PANTO subtracts the current value from the desired one, to

determine the necessary increment; third, PANTO calls PAN, specifying

this increment. PAN.causes the action to be performed, and updates the

robot model.

Now consider the case" in which the model is not assumed to have an

accurate value of the pan angle. This case can arise in the start-up

of an experiment, through malfunction or error, or as a result of steady

accumulation of uncertainty. In this case a user can establish the pan

position by first requesting a pan activity with an excessive increment

(which will drive the pan mechanism against one of its limit switches),

setting the pan angle to the value of that limit in the robot model,

then performing a PAN or PANTO to the desired position. What is required
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in addition to the basic PAN activity is knowledge about the limit

value. Since this is a constant of the robot hardware, it can be deter-

mined and coded into the appropriate program or programs.

Zero for the pan coordinate occurs when the head assembly is facing

straight ahead on the robot. Zero for the tilt coordinate occurs when

the axis of the TV camera and rangefinder is horizontal.

The input parameter for the routine PAN is expressed in degrees

(a floating-point number), as is the value of the pan angle in the robot

model. For a communication to the PDP-15 and the robot, the pan angle

increment is expressed in counts of the digital register that drives

the pan motor on the robot. (This is a matter of removing all possible

computational burdens from the PDP-15.) The bottom-level software per-

forms the necessary conversion using a constant PANFACTOR = counts/degree.
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TERMINATION MODES FOR PAN (AND TILT, BY ANALOGY)

ASV=0. The pan activity achieved the requested increment. The

value of the pan angle in the model is updated at the time this status

report is received.

ASV=1. The pan carriage ran into one of its limit switches. From

knowledge of this fact and of the requested pan direction, the value of

the pan angle in"the model is updated to the limit value.

No other normal terminations of PAN are possible.

The same codes and analogous results apply to TILT;
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THE CATWHISKERS

The catwhiskers are the tactile sensors of the robot. They consist

of arcs of wire looping out from the robot's body and attached to micro-

switches at both ends. A modest pressure on a whisker at almost any

point will activate at least one of its two switches, which are arranged

in parallel. In this event} we say that that whisker is "on."

Although the logic of the hardware catwhisker operation is compli-

cated, there are only three cases that should be of interest to the user.

Case 1: At the beginning of a roll or turn activity, all cat-
whiskers are off and the catwhisker overrides are off.
If nothing happens to the whiskers, the activity should
go to completion. If a catwhisker is turned on by con-
tacting some object during the activity, the robot will
begin to decelerate. Then, if the catwhisker turns off
(because it merely brushed an object) before the robot
stops, the robot is supposed to pick up speed and complete
its activity. Otherwise, the robot will quickly come to
a stop. The robot will fall short of its desired positipn,
unless it should happen to attain its goal while stopping.

Case 2: When a roll or turn is requested, a catwhisker is on and
the overrides are off. In this case the robot will not
move, and the action will be terminated.

Case 3: The overrides are on. Whether or not the catwhiskers
are on or come on during the activity, the robot is not
halted and should complete its activity.

The user receives, in the status report of a terminated roll or

turn activity, three quantities: the ASV, the residual count in the

wheel-motor register (zero if the desired position was achieved), and

a word whose bits give the status of the catwhiskers on termination.

From these values it is possible to reconstruct what happened.
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TERMINATION MODES FOR ROLL (AND TURN, BY ANALOGY)

ASV=0. A full roll was completed. No catwhiskers came on. The

residual count and the catwhisker word should be zero.

ASV=1. A full roll was completed. Catwhiskers came on, but were

ignored. This implies that the catwhisker overrides were on. The

residual count should be zero, and the catwhisker word should reflect

whatever status the whiskers had on termination.

ASV=2. A full roll was not completed. A bump or bumps occurred,

and the catwhisker override was off. The residual count is in general

not zero. The catwhisker word reflects the terminal status. This

outcome could arise from either Case 1 or Case 2 above.

ASV=3. A full roll was not completed, because the push-bar (see

below) became free (and the push-bar override was off) . Residual count

and catwhisker word are as in ASV=2.

In the case of ASV=0, the user can conclude that the activity

proceeded as intended. In other cases, it seems that the residual

count and the terminal catwhisker word are more valuable than the ASV.

In all cases, the bottom-level software updates the model with the new

values of the robot's X and Y location and angular position, based on

the old values, the requested move, and the residual count. The cat-

whisker status value in the model is also updated with the new terminal

value.
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THE PUSH-BAR

The robot is presently fitted with a push-bar on the front, with

two switches. One switch'is to tell when the bar is pushing against

an object; the other, when the bar is encountering excess resistance

from an unmoving object or a wall. The former signals the PDP-15 (i.e.,

generates a special interrupt) whenever it goes from on (contacted) to

off (free). This is to tell the program when a pushed object has slipped

off the bar. Normally, this will cause the PDP-15 to stop the robot;

however, this can be overridden. The status of this switch on termina-

tion of an activity is reported as one of the bits in the catwhisker

status word.

The second switch, signaling excess resistance, will cause the

PDP-15 to execute and subsequently report an ASV=8 p"anic stop.
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OVERRIDES

There are presently two overrides, one for the catwhiskers as a

group and one for the first switch on the push-bar. These are entirely

separate and operate somewhat differently. The catwhisker override,

which goes to a hardware register on the robot, blocks the robot from

executing-its early shutdown sequence (see Case 1, above) that other-

wise occurs whenever a catwhisker is on. The push-bar override blocks

the PDP-15 from stopping the robot whenever the first push-bar switch

makes a transition from on to off.

When the robot is pushing an object, the catwhisker override must

be on. When the robot is backing off from an object, the catwhisker

override must always be on and-the push-bar override must be on if the

robot is to back off beyond the point of disengagement in one motion.

Activity OVRID turns the overrides on and off according to the

value of its argument, as follows:

ument

0
1
2
3

Catwhisker
Override

OFF
ON
OFF
ON

Push-bar
Override

OFF
OFF
ON
ON

Being an nativity, OVRID is subject to the ASV discipline. A

program that calls OVRID and theni say, TURN or ROLL may have to wait

momentarily for the termination of OVRID. On termination, the only

ASV's that are likely to occur are ASV=0 (completed) or ASV=8 (panic;

probably transmission error) .
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ADDITIONAL CHARACTERISTICS OF TURN AND ROLL

The input parameter for ROLL is expressed in feet; that for TURN,

in degrees. As with PAN and TILT, the arguments are converted to motor

counts for communication with the PDP-15. Motion is inherently incre-

mental, there being no limit switches involved and no absolute knowledge

of position except what can be deduced by the robot program. Whenever

the robot executes TURN, the bottom-level software updates its angular

position, 6, in the model. When the robot executes ROLL, the software

updates the robot's location:

X«-X + (cos 9) • (distance moved)

Y-Y + (sin 6) • (distance moved)

It is implicit that the current X, Y, and 0 are always available in the

model, although they are subject to revision by higher authority (i.e.,

the user) at any time.
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RANGE AND SHOOT

Activity RANGE has no arguments. Activity SHOOT may have as an

argument the location of an array in the PDF-10 to receive the TV pic-

ture. The terminal ASV's that are to be expected are ASV=0 (completed),

ASV=6 (timeout), and ASV=8 (panic).

Both of these activities require a turn-on time measured in seconds,

to bring the rangefinder mirror up to speed in one case and to warm up

the TV electronics in the other. (These and other operating modules

in the robot are normally kept off to conserve power.) To avoid wait-

ing for the turn-on every time during a period of repetitive use, without

burdening the user with predicting such periods, we have established

time-outs for these modules, controlled by the PDP-15. After RANGE or

SHOOT, the corresponding module will be kept on for a period of, say,

a minute. When this time has passed since the last such activity, the

module will be shut down. This will be done without effort on the

user's part.

39



TVMODE, IRIS, AND FOCUS

These activities are used to prepare for taking a TV picture.

They may be called at any time.

Activity TVMODE prepares lor 120X 120 pictures to be read sub-

sequently if its argument is zero, and for 240X240 pictures if its

argument is,l. Like OVRID, TVMODE has an ASV whose terminal value

should only be 0 or,8.

IRIS and FOCUS operate raptors with limit switches. In most re-

spects, these activities are analogous to PAN and TILT. ' IRIS and FOCUS,

however, perform a nonlinear transformation between the input argument

and the drive-motor count. Multiplying the desired increment by a

constant factor does not suffice; the true transformation is determined

by calibration and stored within the bottom-level software.

The argument for IRIS is expressed as an increment in the exposure

value (EV), which is logarithmically related to the f-value of the iris

opening. No matter what the current EV number, increasing it by one

doubles the light reaching the camera.

The argument for FOCUS is expressed as an increment, in feet, by

which the distance to the plane of best focus (f) is to be increased.

This form of the argument is chosen because it is most convenient for

the user, but it leads to a problem for the software. The motion of the

focus drive motor is highly nonlinear in f_, being more nearly linear in

1/f. A tiny motion of the drive motor carries f_ all the way from, say,

100 feet to infinity.

We thus establish the following convention for the argument of

FOCUS. Any increment that carries f_ beyond 100 feet is treated
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by driving the focus carriage to its outer limit (i.e., focus at infinity),

and the value of f in the robot model is set to 100 feet. Of course, any

subsequent increment that reduces the focal distance will be treated

relative to an initial f_ of 100 feet.

The user can avoid any concern with this issue by using a routine

POCUSTO, analogous to PANTO, that takes an absolute distance argument

rather than an incremental one.
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APPENDIX C

THE FRAME PROBLEM IN PROBLEM-SOLVING SYSTEMS
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I INTRODUCTION

The frame problem has taken on new significance during recent

attempts to develop artificially intelligent systems. The problem deals

with the difficulty of creating and maintaining an appropriate informa-

tional context or "frame of reference" at each stage in certain problem-

solving processes. Since this is an area of current researchf we are

not prepared to present a solution to the frame problem; rather, the

purpose of this paper is to sketch the approaches being pursued, and to

invite the reader to suggest additions and improvements.

Although broader interpretations are possible, we think of an

"artificially intelligent system" as meaning a programmed computer, with

associated electronic and mechanical devices (e.g., a radio-controlled

robot vehicle and camera) , that is intelligent in the sense defined by

(1).*McCarthy and Hayes:

"... we shall say that an entity is intelligent if it has an

adequate model of the world (including the intellectual world of

mathematics, understanding of its own goals and other mental

processes), if it is clever enough to answer a wide variety of

questions on the basis of this model, if it can get additional

information from the external world when it wants to, and can

perform such tasks in the external world that its goals demand

and its physical abilities permit."

Reference (2) discusses the research significance of attempting to build

such an intelligent robot system.

* References are listed at the end of this paper.
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The intelligent entity, as defined above, will have to be able to

carry out tasks. Since a task generally involves some change in the

world, it must be able to update its model so that it remains as accurate

during and after the performance of a task as it was before. Moreover,

it must be able to plan how to carry out a task, and this planning process

usually requires keeping "in mind," simultaneously, a variety o_f possible

actions and corresponding models of the hypothetical worlds that would re-

sult from those actions. The bookkeeping problems involved with keeping

track of these hypothetical worlds account for much of the difficulty of

the frame problem.

II THE FRAME PROBLEM

We shall illustrate the frame problem with a simple example. Suppose

the initial world description contains the following facts (expressed in

some suitable representation, whose precise form is beyond our immediate

concern) :

(Fl) A robot is at position A.

(F2) A box called Bl is at position B.

(F3) A box called B2 is on top of Bl.

(F4) A,B,C, and D are all positions in the same room.

Suppose, further, that two kinds of actions are possible:

(Al) The robot goes from x to y, and

(A2) The robot pushes Bl from x to y,

where x and y are in {A,B,C,D]. Now consider the following possible tasks:

Task (1): The robot should be at C.

This can be accomplished by the action of type Al, "Go from A to C.

After performing the action, the system should "know" that facts F2
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through F4 are still true, i.e. they describe the world after tho action,

but Fl must be replaced by

(Fl') The robot is at position C.

Task (2) : Bl should be at C.

Now a push action must be used, and both Fl and F2 must be changed.

One can think of simple procedures for making appropriate changes

in the model, but they all seem to .break down in more complicated cases.

For example, suppose the procedure is :

Procedure (a): Determine which facts change by matching the task

specification against the initial model.

This would fail in task (1) if the problem solver decided to get the

robot to C by pushing Bl there (which is not unreasonable if the box were

between the robot and C and pushing were easier than going around), thus

changing F2.

Procedure (b): "Specify which facts are changed by each action

operator."

This procedure is also not sufficient, for the initial world description

may also contain derived information such as

(F6) B2 is at position B,

which happens to be made false in task (2).

More complicated problems arise when sequences of actions are

required. Consider:

Task (3) : The robot should be at D and, simultaneously, B2 should

be at C.

The solution requires two actions, "Push Bl from B to c" and "Go from C

to D," in that order. .Any effective problem solver must have access to
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the full sets of facts, including derived consequences that will be true

as a result of each possible action, in order to produce the correct

sequence.

Note that the frame problem is a problem of finding a practical

solution, not merely finding a solution. Thus it resembles the famous

traveling salesman problem or the problem of finding a winning move in

a chess game, problems for which straightforward algorithms are known

but usually worthless.

McCarthy and Hayes divide intelligence into two parts: the

epistemological part, which deals with the nature of the representation

of the world, and the heuristic part, which deals with the problem-solving

mechanisms that operate on the representation. They then proceed to con-

centrate upon the epistemological questions related to several aspects of

intelligence (including the frame problem). Here, on the other hand, we

are concerned with constructing a complete intelligent system, including

both the world representations and the closely related problem-solving

programs. In the following we shall assume that the representations are

basically in the form preferred in Ref. (1), namely sets of sentences in a suit-

able formal logical language such a predicate-calculus; and we shall

describe candidate organizations for the "heuristic part," i.e. the

problem solver, of an artificially intelligent system that can cope with

the frame problem.

Ill CURRENT APPROACHES

A. Complete Frame Descriptions

A frame can generally be completely described by some data

structure, e.g. by a set of facts—expressed as statements in a predicate
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calculus. If we think of each such frame as an object and each possible

action as an operator that can transform one object (frame) into another,

(3)then we may use a problem-solving system such as GPS for attempting

to construct an object for which the desired goal conditions are true.

Unfortunately, when the data base defining each frame reaches a non-trivial

size, it becomes impractical to generate and store all the complete frame-

objects. For example, suppose each possible frame is defined by 1000 elementary

facts, an average of six different actions are applicable and heuristically

plausible in any situation, and a typical task requires a sequence of four

actions—not unreasonable assumptions about a simple robot system. Then the

search tree of possible frames may have about 1000 nodes; it is not practical to

store 1000 facts at each node. If each action causes changes in, say,

three facts, then storing just the change information at each node is

practical-—provided appropriate bookkeeping is done to keep track of which

of the original facts still holds after a series of actions. This book-

keeping seems to require considerable program structure in addition to

(and quite separate from) the basic object, operator, and difference struc-

ture of a GPS-type system. The following approaches are concerned with this

new bookkeeping problem.

H. State Variables

One way to keep track of frames is to consider each possible

world to be in a separate state and to assign names to states. In

this formulation, actions are state transition rules, i.e. rules for

transforming one state into another. Since action rules are generally

applicable to large classes of states, the description of an action can

contain variables that range over state names.
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Green describes an approach of this kind in detail in Ref. (4).

Each fact is labeled with the name of the state in which it is known to be

true. Additional facts that are state-independent describe the transitional

effects of actions. For example, if S is the name of the initial state

and At(ob,pos,s) is a predicate asserting that object ob is at position

pos in state s, then the conditions of the previous example may be partially

defined by the following axioms:

(Gl) At(Robot, A, SQ) (from Fl)

(G2) At(Bl, B, S ) (from F2)

(G3) Box(Rl) A Box(B2) (Bl and B2 are boxes)

(G-l) (Vx,y,x) [. At (Robot, x,s) =) At (Robot,y ,go(x,y, s)) ] (from Al) .

At this point some explanations seem in order. Box(x) asserts

that x is a box. Perhaps it would have been more consistent to write,-e.g.,

Box(Bl, S ), because we only know that Bl is a box in the initial state.
\J •̂•M̂ ™™

However, we do not contemplate allowing any actions that destroy box-ness,

such as sawing or burning, so we could add the axiom (Vs)Box(Bl,s). Since

we would then be able to prove that Bl is a box in all states, we suppress

the state variable without loss of generality.

Each action, in this formalism, is viewed as a function. One

argument of the function is always the state in which the action is applied,

and the value of the function is the state resulting after the action. Thus,

e.g., the value of go(A,C,S0) is the name of the state achieved by going to

C after starting from A in the initial state.

The appeal of this approach is that, if we have a theorem-proving

program, no special problem-solving mechanisms or bookkeeping procedures

arc necessary. Action operators may be fully described by ordinary axioms
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(such as G4 for the go operation) and the theorem-proving program, with

its built-in bookkeeping, becomes the problem solver. For example, task (1)

may be stated in the form, "Prove that there exists a state in which the

robot is at C," or in predicate calculus, prove the theorem:

(*) (3s) At(Robot,C,s)

From (Gl) and (Gr), we can prove that (*) is indeed a theorem. By answer

tracing during the proof (Ref. (5)), we can show that s = go(A,C,S ), which

is the solution.

For more complex actions, however, the major problem with this

approach emerges: After each state change, the entire data base must be

reestablished. We need additional axioms that tell not only what things

change with each action, but also what things remain the same. For example,

we know that Bl is at B in state S (by G2), but as soon as the robot moves,

say to state go(A,C,S ), we no longer know where Bl isl To be able to

figure this out, wo need another axiom, such as

(Vx,y,u,v,s) [At(x,y,s) A x^ ROBOT =>At(x,y,go(u,v,s))]

( When the robot goes from u to v, the object x remains where it is at y.")

Thus a prodigious set of axioms is needed to define explicitly how every

action affects every predicate, and considerable theorem-proving effort

is needed to "drag along" unaffected facts through state transitions.

Clearly this approach will not be practical for problems involving many

facts.

C. The World Predicate

Instead of using a variety of independent ('acts 'to represent

knowledge about a state of the world, suppose we take all the facts about

.a particular world and vii.-w the on tire collection as a single entity, the
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model fn. We may then use a single predicate P, the "world predicate,"

whose domains are models and state-names, P(tTl,s) is interpreted as meaning

that s is the name of the world that satisfies all the facts in tfi. One

possible structure for In is a set of ordered n-tuples, each of which rep-

resents some elementary relation; e.g., (At, Robot, A) and (At, Bl, B) are

elements of the initial model, fft..

The initial world is defined by the axiom P(TU.,S ) (except

that the complete known contents of IH. must be explicitly given). We

can now specify that an action changes a particular relation in IU, and

does not change any other relations, by a single axiom, e.g. the go

action is defined by the axiom • •• . .

(Vx,y,w,s) [P({< At, Robot, x),w},s) =>P(«At, Robot ,y) ,w} ,go(x,y ,s)) ]

Here w (renrt -"w-bar") is a variable whose value is~ an indefinite number

of elements of a set, namely all those that are not explicitly described.

This approach preserves the advantages of the previous.state-

variable, approach ; namely, the problem solving, answer construction, and

other bookkeeping can be left to the theorem prover. In addition, proper-

ties of the model are automatically carried through state changes by the

barred variables. On l.hu other hand, several difficulties are apparent:

theorem-proving strategies may be grossly inefficient in the domain of

problem solving; the logic must be extended to include domains of sets and

n-tuples; complex pattern-matching algorithms will be needed to compare

expressions c.onta.ining variables that range over individuals, n-tuples,

sets, and indefinite subsets; and the fact that properties of the world

are stored as data, instead of as axioms, constrains the problem-solving

process by restricting the class of inferences that are possible. Further

study is necessary to determine the feasibility of this approach.
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(7)
D. Contexts and Context Graphs

Suppose we lot a state correspond to our intuitive notion of

a complete physical situation. Since the domain of our logical formalism

includes physical measurements such as object positions, descriptions,

etc., every consistent statement of first-order logic is either true or

false for every state. We think of each such statement as a predicate

that defines a set of states, namely those for which it is true. We

call such a set of possible states the context defined by the predicate.

We shall find it convenient to allow certain distinguished

variables, called parameters, to occur in predicates. Since each such

predicate with ground terms substituted for parameters defines a context,

a predicate containing parameters may be thought of as defining a family

of possible contexts—and encli partial instantiation oi' parameters in

the predicate defines a subfamily of contexts (or, if no parameters

remain, a specific context).

For example, the predicate At(Bl,B) defines a1context (the

set of all states) in which object Bl is at position B. If x and y are

parameters, At(x,y) defines the family of contexts in which some object

is located any place. At (Bl,y) is a subfamily of this family in which

the object Bl must be located at some (as yet unspecified) place.

A problem to be solved is specified by a particular predicate

called the goal predicalc. The problem, implicitly, is to achieve a

goal staU?> i.e., produce any member of the context defined by the goal

predicate.

An action will consist of an operator name, a parameter list,

and t:wo predicates—Liu- preconditions K 'and thi; results 11. In addition,

57



any of the elementary relations in the preconditions may be designated

as transient preconditions. For example, the go action is defined by

name parameters

go (x,y)

K[At(Robot>x) | At(Robot,y)}R ,

where underlining designates n transient condition. Each action operator

thus corresponds to a family of specific actions. An action is applicable

in any state that satisfies.K; when an action is applied, the resulting

state no longer need satisfy the transients but must satisfy R.

In this approach, the conjunction of predicates in the robot's

model of the world is an initial predicate I, defining as an initial con-

text the set of nil states that have, in common, all the known properties

of the robot's current world. The goal context, defined by a given goal

predicate, is the set of satisfactory target states. When an operator

is applied in a context, it changes the defining predicate (roughly, by

deleting transients and conjoining results), thereby changing the context.

The problem-solving task is to construct a sequence of operators that

will transform the initial context into a subset of the goal context.
V

Any context that can be reached from the initial context by

a finite sequence of operators is called an achievable context. Any

context: from which a subset of the goal context can be reached by a

finite sequence of operators is called a sufficient context. The main

task may be restated, then, as finding an operator sequence to show

that the goal is achievable, or that the initial context is sufficient,

or, more gc7ierally, that some achievable context is a subset of some

sufficient context (and therefore is itself sufficient).
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The main loop of the problem solver consists of two steps:

(1) Test whether any known achievable context is a subset

of any known sufficient context. If so, we are done.

(2) Either generate a new achievable context by applying

some operator in a known achievable context ( working

forwards '), or generate, as a new sufficient context,

one that would become a known sufficient context by

the application of some operator ( working backwards ).

Then return to step 1 to test the newly generated con-

text.

An advantage of this approach is that all states and all

properties of operators are defined by first-order predicates, so a

standard theorem-proving program can do most of the work of testing

operators and results and selecting values of parameters. On the other

hand, a separate data structure, called a context graph, is needed to

keep track of the trees of achievable and sufficient states and the

operators that relate their nodes. For example, suppose we wish to

get from A to D in the directed graph:

13 C D

—•"
A<

E«

We shall abbreviate by £ the predicate that gives the graph's topology:

£ Path(A,B) A Path(B.C) A Path(C,D) A Path(A,F) A Path(E.D)

The initial predicate is 1 = At(A) A £ . The goal predicate is G At(D)

We shall define the operator go, for this problem, by:
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go(x,y)

Path(x,y)
At(x)

At(y)

(5)

The operator is applicable in context I only if we can prove

that

C*x,yHl :=> At(x) A Path(x,y)]

is a theorem. The proof can be done by resolution with answer tracing.

The above statement can be shown to be a theorem when x = A and y is

either B or F. Therefore, the go operator can be used two ways to generate

new achievable contexts Cl and C2, with corresponding predicates

P = JlJ A At(B), P =Jft A At(F) . To keep track of actions and instantia-
\s J> \~t £t

tions, we shall draw the context graph:

Similarly, from Cl we can prove the applicability of go(B,C) , which, when

applied, gives C3

C3 At

To illustrate working backwards, consider whether the result of a go

implies G. The relevant problem for a theorem prover is

(3y)[At(y) => At(D)]

This is trivially true if y = D, so any state that satisfies the pre-

conditions of the operator go(x,D) is sufficient (because the operator

will then be applicable, and will produce the goal). Thus a new sufficient

context is given by the preconditions,

= At(x) A Pnth(x.D)
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(Note that C4 is really a family of contexts, because of the parameter

x.) The context graph is now:

C4

Finally, the theorem prover can show that

PC3 = PC4 When X =C '

completing the solution.

Most problems are considerably more difficult than the above

example because of several complications. Suppose in trying to work

backwards from G (using an operator Op with preconditions K and results

R) we find t.hat we cannot prove R ̂ > G, but instead discover a statement

S such that H A S -5 G . We may still work backwards with Op, but the new

sufficient context is defined not by K alone but rather by K A S.

Furthermore, some extra bookkeeping must remind us that S may not be

disturbed, in a valid solution, by applying Op — e.g., no transients of

Op may appear in S. Similar additional subgoals — and bookkeeping com-

plications — arise from each incomplete attempt to prove that an achiev-

able context is contained in a sufficient context.

Additional complexities arise from dependencies . That is,

when an expression K is deleted by a transient during an action, other

expressions that wore deduced from K in previous contexts can no longer

be guaranteed to be true in new contexts. Thus each deduced expression

is said to depend upon all its ancestors, adding to our growing burden

of bookkeeping problems .
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On the other hand, the context graph can take care of much

of the bookkeeping automatically. Each logical expression need only be

stored once, with notations telling in which contexts it was created and

destroyed, rather than being either copied or rederived from context to

context. Finally, if predicates of achievable contexts and operator

results are stored in clause form, and predicates of sufficient con-

texts and operator preconditions are stored in negated clause form,

preliminary experiments show that most of the nuts-and-bolts work of

attempting solutions and generating new contexts can be done in a

straightforward manner by an existing resolution-type theorem-proving

program,

E. Other Approaches

Several other approaches to the frame problem have been

suggested, although few have been worked out in sufficient detail to

test on a computer.

Richard E. Fikes at SRI is developing a system whose formal

framework is similar to that of D above ("contexts and context graphs ),

but which does not use resolution techniques. Instead, proofs are

strongly dependent upon the semantics of the logic, and the problem

solver proceeds by a heuristic, goal-directed, case-analysis approach.

This work is still in an early stage of development.

Eric Sandcwnll at Stanford is extending some ideas suggested

by John McCarthy for formalizing the concepts of causality and time

dependence, using a method proposed by ,1. Alan Robinson for embedding

higher order logic in first-order predicate calculus. The resulting

system provides an interesting model i'or inevitable sequences of events
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(e.g. "if it is mining then things will get wet,") but may not be as

useful for describing alternative possible actions by an external agent

(e.g.i the robot). :

Methods for proving theorems in higher order predicate calculus

are being developed in several places, and the use of this more powerful

formalism may eventually vastly simplify our tasks. Finally, McCarthy

and Hayes suggest some other approaches including modal logics and

counterfactuals, but the details have not been extensively explored.

IV CONCLUSIONS

This paper has described the frame problem and the principal

methods that have been proposed for solving it.

Let us review the approaches listed above. A, complete frame and

frame-transition descriptions, was simply a st.age-setting "straw man"

that we would not consider actually using. B, the logic-cum-state-

variable approach, is beautifully elegant for toy problems, but both the

representational effort and the theorem-proving effort grow explosively with

problem complexity. C, the world predicate idea, preserves some of the^

elegance of approach B while carrying along necessary frame information

implicitly; however, it places a burden on theorem-proving abilities in

new domains and requires an awkward use of two levels of logical repre-

sentation (that is, relations among the n-tuples in the model must be

defined in terms of the world predicate), so that the practicality of

the approach is open to serious question. Approach D, the use of contexts

and context graphs (without explicit state names in the logic), is a more-

or-less brute-force attempt to combine the use of first-order theorem-

proving methods with a GPS-like structure of subgoals and operators;
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although the bookkeeping problems are complicated, they seem to bo tractable,

so that the approach is reasonably promising. Finally, under K we mentioned

several interesting ideas that warrant further exploration before they can

be meaningfully compared with the other approaches.

Until now most research in problem solving has dealt with fairly

static situations in narrow subject domains. As we become interested

in building complete artificially independent systems, a new kind of

problem-solving research emerges: We must study how to solve problems

in an environment containing a large store of knowledge, while consider-

ing the possible effects of a variety of sequences of actions. This

paper has described some of the first exploratory steps into this

important area of research.

V „ ACKNOWLEDGMENT- - - - - • - - . - - - - -

Many of the ideas discussed above, including development of the

contexts and context graphs approach, are the result of joint discussions

between the author and L. S. Coles, R. E. Fikes, J. H. Munson, and

N. J. Nilsson. The "world predicate" idea is completely due to

R. Waldinger. C. C. Green developed the state variable approach, and he

is largely responsible for our early realization of the importance of

the frame problem.

The research described herein is supported by the Advanced Research

Projects Agency of the Department of Defense, and by the National Aero-

nautics and Space Administration under Contract NAS12-2221.

64



REFERENCES

1. McCarthy and Hayes, "Some Philosophical Problems from the Stand-

point of AI," Machine Intelligence 4, B. Meltzer and D. Michie,

eds. (Edinburgh University Press, Edinburgh, Scotland, 1969).

2. B. Raphael, "The Relevance of Robot Research to AI," in Formal

Systems and Non-Numeric Problem Solving by Computer (Springer-

Verlag, 1970).

3. G. VV. Ernst and A. Newell, GPS: A Case Study in Generality and

Problem Solving (Academic Press, New York, N.Y., 1969).

4. C. C. Green, Application of Theorem Proving to Problem Solving,

Proc. International Joint Conference on Artificial Intelligence,

Washington, D.C.,-May 7-9, 1969.

5. C. Green and B. Raphael, "The Use of Theorem-Proving T chniques

in Question-Answering Systems, Proc. 1968 ACM Conference, Las

Vegas, Nevada (August 1968).

6. R. Waldinger, "Robot and State Variable," TN 26, Artificial

Intelligence Group, Stanford Research Institute, Menlo Park,

California (April 1970).

7. I). Raphael, "Robot Problem Solving without State Variables,"

TN 30, Artificial Intelligence Group, Stanford Research Institute,

Menlo Park, California (May 1970).

65



APPENDIX D

STRIPS: A NEW APPROACH TO THE APPLICATION OF
THEOREM PROVING TO PROBLEM SOLVING

67



Page Intentionally Left Blank



Page Intentionally Left Blank



I INTRODUCTION

A. Overview of STRIPS

This note describes a new problem-solving program called

STRIPS (STanford Research Institute Problem Solver) . The program is

now being implemented in LISP on a POP-10 to be used in conjunction

with robot research at SRI. Even though the implementation of STRIPS

is not yet complete, it seems to us important to discuss some of its

planned features so that they can be compared with other on-going work

in this area.

STRIPS belongs to the class of problem solvers that search

a space of world models to find one in which a given goal is achieved.

For any world model, we assume there exists a set of applicable opera-

tors each of which transforms the world model to some other world model.

The task of the problem solver is to find some composition of operators

that transforms a given initial world model into one that satisfies some

particular goal condition.

This framework for problem solving, discussed at length by

1*
Nilsson, has been central to much of the research in Artificial

Intelligence. A wide variety of different kinds of problems can be

posed in this framework. Our primary interest here is in the class of

*
References are listed at the end of this technical note.

It is true that many problems do not require search and that special-
ized programs can be written to solve them. Our view is that these
special programs belong to the class of available operators and that
a search-based approach can be used to discover how these and other
operators can be chained together to solve even more difficult problems.
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problems faced by a robot in rearranging objects and in navigating.

The robot problems we have in mind are of the sort that require quite

complex and general world models compared to those needed in the solu-

tion of puzzles and games. Usually in puzzles and games, a simple matrix

or list structure is adequate to represent a state of the problem. The

world model for a robot problem solver, however, needs to include a

large number of facts and relations dealing with the position of the

robot and the positions and attributes of various objects, open spaces,

and boundaries.

Thus, the first question facing the designer of a robot

problem solver is how to represent the world model. A convenient answer

is to let the world model take the form of statements in some sort of.,

general logical formalism. For STRIPS we have chosen the first-order',

predicate calculus mainly because of the existence of computer programs

for finding proofs in this system. Initially, STRIPS will use the QA3

2
theorem-proving system as its primary deductive mechanism.

Goals (and subgoals) for STRIPS will be stated as first-order

predicate calculus wffs (well formed formulas). For example, the task

"push a box to place b" might be stated as the wff (3u)[BOX(u) A AT(u,b)],

where the predicates have the obvious interpretation. The task of the

system is to find a sequence of operators that will produce a world model

in which the goal can be shown to be true. The QA3 theorem prover will

be used to determine whether or not a wff corresponding to a goal or sub-

goal is a theorem in a given world model.

Although theorem-proving methods will play an important

role in STRIPS, they will not be used as the primary search
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mechanism. A graph of world models (actually a tree) will be generated

by a search process that can best be described as GPS-like (Ernst and

3
Newell ). Thus it is fair to say that STRIPS is a combination of

GPS and formal theorem-proving methods. This combination allows objects

(world models) that can be much more complex and general than any of

those used in previously implemented versions of GPS. This use of world

models consisting of sets of logical statements causes some special

problems that are now the subject of much research in Artificial Intelli-

gence. In the next and following sections we will describe some of these

problems and the particular solutions to them that STRIPS employs.

B. The Frame Problem

When sets of logical statements are used as world models,

we must have some deductive mechanism that allows us to tell whether or

not a given model satisfies the goal or satisfies the applicability con-

4
ditions of various operators. Green implemented a problem-solving

system based on a theorem prover using the resolution principle.

In his system, Green expressed the results of operators as logical state-

ments. Thus, for example, to describe an operator goto(x,y) whose effect

is to move a robot from any place x to any other place' y, Green would use

the wff

(Vx,y,s) [ATR(x,s) => ATR(y .goto' (x,y, s) ) ] ,

where ATR is a predicate describing the robot's position. Here, each

predicate has a state term that names the world model to which the predi-

cate applies. Our wff above states that for all places x and y and for
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all states s, if the robot is at x in state s then the robot will be

at y in the state goto7(x,y,s) resulting from applying the goto operator

to state s.

With Green's formulation, any problem can be posed as a

theorem to be proved. The theorem will have an existentially quantified

state term, s. For example, the problem of pushing a box B to place b

can be stated as the wff

(3s) AT(B,b,s)

If a constructive proof procedure is used, an instance of the state

2
proved to exist can be extracted from the proof (Green, Luckham

and Nilsson ). This instance, in the form of a composition of

operator functions acting on the initial state, then serves as a solu-

tion to the problem.

Green's formulation has all the appeal (and limitations) of

any general-purpose problem solver and represents a significant step

in the development of these systems. It does, however, suffer from

some serious disadvantages that our present system attempts to over-

come. One difficulty is caused by the fact that Green's system combines

two essentially different kinds of searches into a single search for a

proof of the theorem representing the goal. One of these searches is

in a space of world models; this search proceeds by applying operators

to these models to produce new models. The second type of search con-

cerns finding a proof that a given world model satisfies the goal

theorem or the applicability conditions of a given operator. Searches

of this type proceed by applying rules of inference to wffs within a

world model.

74



When these two kinds of searches are combined in the largely syntactically

guided proof-finding mechanism of a general theorem prover, the result is

gross inefficiency. Furthermore, it is much more difficult to apply any

available semantic information in the combined search process.

The second drawback of Green's system is even more serious.

The system must explicitly describe, by special axioms, those relations

not affected by each of the operators. For example, since typically the

positions of objects do not change when a robot moves, we must include

the statement

(Vu,x,y,z,s) COBJECT(u,s) A AT(u,x,s) => AT(u,x,goto'(y,z,s) ]

Thus, after every application of goto in the search for a solution, we

may need to prove that a given object B remains in the same position in

the new state if the position of B is important to the completion of the

solution.

The problem posed by the evident fact that operators affect

certain relations and don't affect others is sometimes called the frame

problem. ' Since, typically, most of the wffs in a world model will

not be affected by an operator application, our approach will be to name

only those relations that are affected by an operator and to assume that

the unnamed relations remain valid in the new world model. Since proving

that certain relations are still satisfied in successor states is tedious,

our convention can drastically decrease the search effort required.

Because we are adopting special conventions about what happens

to the wffs in a world model when an operator is applied, we have chosen
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.to take the process of operator application out of the formal deductive

system entirely. In our approach, when an operator is applied to a

world model, the computation of the new world model is done by a special

extra-logical mechanism. Theorem-proving methods are used only within

a given world model to answer questions about it concerning which opera-

tors are applicable and whether or not the goal has been satisfied. By

separating the theorem proving that occurs within a world model from the

search through the space of models we can employ separate strategies for

these two activities and thereby improve the overall performance of the

system.

II OPERATOR DESCRIPTIONS AND APPLICATIONS

The operators are the basic elements out of which a solution is

built. For robot-like problems we can imagine that the operators corre-

spond to routines or subprograms whose execution causes a robot to take

certain actions. For example, we might have routines that cause the

robot to turn and move, a routine that causes it to go through a doorway,

a routine that causes it to push a box and perhaps dozens of others.

When we discuss the application of problem-solving techniques to robot

problems, the reader should keep in mind the distinction between

an operator and its associated routines. Execution of routines actually

causes the robot to take actions. Application of operators to world

models occurs during the planning (i.e., problem solving) phase when an

attempt is being made to find a sequence of operators whose associated

routines will produce a desired state of the world. Since routines are
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programs, they can have parameters that are instantiated by constants

when the routines are executed. The associated operators will also have

parameters, but as we shall soon see, these can be left free at the time

they are applied to a model.

In order to chain together a sequence of operators to achieve a

given goal, the problem solver must have descriptions of the operators.

The descriptions used by STRIPS consist of three major components:

(1) Name of the operator and its parameters,

(2) Preconditions, and

(3) Effects.

The first component consists merely of the name of the operator and the

parameters taken by the operator. The second component is a formula in

first-order logic. The operator is applicable in any world model in

which the precondition formula is a theorem. For example, the operator

push(u,x,y) which models the action of the robot pushing an object u

from location x to location y might have as a precondition formula

(3x,u)[AT(u,x) AATR(x)]

The third component of an operator description defines the effects

(on a set of wffs) of applying the operator. We shall discuss the process

of computing effects in some detail since it plays a key role in STRIPS.

When an operator is applied, certain wffs in the world model are no longer

true (or at least we cannot be sure that they are true) and certain other

wffs become true. Thus to compute one world model from another involves

*
copying the world model and in this copy deleting some of the wffs and

*
In our implementation of STRIPS we employ various bookkeeping techniques

to avoid copying; these will be described in a later section.
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adding others. Let us deal first with the set of wffs that should be

added as a result of an operator application.

The set of wffs to be added to a world model depends on the results

of the routine modeled by the operator. These results are not completely

specified until all of the parameters of the routine are instantiated by

constants. For example, the operator goto(x,y) might model the robot

moving from location x to location y for any two locations x and y. When

this operator's routine is executed, the parameters x and y must be

instantiated by constants. However,/we have designed STRIPS so that an

operator can be applied to a world model with any or all of the operator's

parameters left uninstantiated. For example, suppose we apply the opera-

tor goto(a.x) to a world model in which the robot is at some location a.

If the parameter x is unspecified, so will be the resulting world model.

We could say that the application of goto(a,x) creates a family or schema

of world models parameterized by x. The power and efficiency of STRIPS

is increased by searching in this space of world model families rather

than in the larger space of individual world models.

If we are to gain this reduction in search space size, then we

must be able to describe with a single set of predicate calculus wffs

the .world model family resulting from the application of an operator with

free parameters. One way in which this can be done is to use a state

term in each literal of each wff. Thus, the principal effect of applying

the operator goto(a,x) to some world model s , say, is to add the wff

(Vx) 0?s)ATR(x,s)

*
We shall adopt the convention of using letters near the beginning of
the alphabet (a,b,c,etc.) to stand for constants and letters near the
end of the alphabet (u,v,w,x,etc.) as variables.
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which states that for all values of the parameter x, there exists a world

model s in which the robot is at x. With expressions of this sort, a

set of wffs can represent families of world models. Selecting specific

values for the parameters selects specific members of the family.

Anticipating the use of a resolution-based theorem prover in

STRIPS, we shall always express formulas in clause form.

Then the formula above would be written

ATR(x,goto'(a,x,s ))

where goto'(ajx,s ) is a function of x replacing the existentially

quantified state variable. The value of goto'(a,x,s )» for any x, is

that world model produced by applying the operator goto(a,x) to world

model s . Recall that any variables (such as x in the formula above)

occurring in a clause have implicit universal quantification.

The description of each operator used in STRIPS contains a list

of those clauses to be added when computing a new world model. This

list is called the add list.

The description of an operator also includes information about

which clauses can no longer be guaranteed true and must therefore be

deleted in constructing a new world model. For example, if the operator

goto(a,y) is applied, we must delete any clause containing the atom

ATR(a). Each operator description contains a list of atoms, called

the delete list, that is used to compute which clauses should be deleted.

Our rule for creating a new world model is to delete any clauses contain-

ing atoms (negated or unnegated) that are instances of atoms on the delete

list. We also delete any clauses containing atoms of which the atoms on

An atom is a single predicate letter,and its arguments.
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on the delete list are instances. The application of these rules might

sometimes delete some clauses unnecessarily, but we want to be guaranteed

that the new world model will be consistent if the old one was.

When an operator description is written, it may not be possible to

name explicitly all the atoms that should appear on the delete list. For

example, it may be the case that a world model contains clauses that are

derived from other clauses in the model. Thus from AT(Bl,a) and from

AT(B2,a+A) we might derive NEXTTO(B1,B2) and insert it into the model.

Now, if one of the clauses on which the derived clause depends is deleted,

then the derived clause must be deleted also.

We deal with this problem by defining a set of primitive predicates

(e.g., AT, ATR, BOX) and relating all other predicates to this primitive

set. In particular, we require the delete list of an operator descrip-

tion to indicate all the atoms containing primitive predicates which should

be deleted when the operator is applied. Also, we require that any non-

primitive clause in the world model have associated with it those primitive

clauses on which its validity depends. (A primitive clause is one which

contains only primitive predicates.) For example, the clause NEXTO(B1,B2)

would have associated with it the clauses AT(Bl,a) and AT(B2,a+A).

By using these conventions we can be assured that primitive clauses

will be correctly deleted during operator applications, and that the

validity of nonprimitive clauses can be determined whenever they are to

be used in a deduction by checking to see if all of the primitive clauses

on which the nonprimitive clause depends are still in the world model.
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In the next section, we^shall describe the search process for

STRIPS and also present a specific example in which the process of

operator application is examined in detail.

Ill THE OPERATION OF STRIPS

A. Computing Differences and Relevant Operators

In a very simple problem-solving system we might first apply

all of the applicable operators to the initial world model to create a

set of successor models. We would continue to apply all applicable

operators to these successors and to their descendants until a model

was produced in which the goal formula was a theorem. Checking to see

which operators are applicable and to see if the goal formula is a

theorem are theorem-proving tasks that could be accomplished by a deduc-

tive system such as QA3. However, since we envision uses in which the

number of operators applicable to any given world model might be quite

large, such a simple system would generate an undesirably large tree of

world models and would thus be impractical.

Instead we would like to use the GPS strategy of extracting

differences" between the present world model and the goal and of identi-

fying operators that are relevant to reducing these differences. Once

a relevant operator has been determined, we attempt to solve the sub-

problem of producing a world model to which it is applicable. If such

a model is found then we apply the relevant operator and reconsider the

original goal in ihe resulting model.

When an operator is found to bo relevant, it is not known

where it will occur in the completed plan; that is, it may be applicable
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to the initial model and therefore be the first operator applied, its

effects may imply the goal so that it is the last operator applied, or

it may be some intermediate step toward the goal. Because of this

flexibility, the STRIPS search strategy combines many of the advantages

of both forward search (from the initial model toward the goal) and

backward search (from the goal toward the initial model) .

Two key steps in this strategy involve computing differences

and finding operators relevant to reducing these differences. One of

the novel features of our system is that it uses a theorem prover as an

aid in these steps. The following description of these processes assumes

that the reader is familiar with the terminology of resolution-based

theorem-proving systems .

Suppose we have a world model consisting of a set, S, of

clauses, and that we have a goal formula whose negation is represented

by the set, G, of clauses. The difference-computing mechanism attempts

to find a contradiction for the set S U G using a resolution theorem

prover such as QA3 . (The theorem prover would likely use, at least,

the set-of-support strategy with G the set receiving support.) If a

contradiction is found, then the "difference" is nil and STRIPS would

conclude that the goal is satisfied in S.

Our interest at the moment though is in the case in which QA3

cannot find a contradiction after investing some prespecified amount of

effort . Let R be the set consisting of the clauses in G and the resolv-

ents produced by QA3 which are descendants of G. Any set of clauses D in
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R can be taken as a difference between S and the goal in the sense

that if a world model were found in which a clause in D could be contra-

dicted, then it is likely that the proof of the goal could be completed

in that model.

STRIPS creates differences by heuristically selecting subsets

of R, each of which acts as a difference. The selection process considers

such factors as the number of literals in a clause, at what level in the

proof tree a clause was generated, and whether or not a clause has any

descendants in the proof tree.

The quest for relevant operators proceeds in two steps. In

the first step an ordered list of candidate operators is created for each

difference set. The selection of operators for this list is based on a simple

comparison of the clauses in the difference set with the add lists in the

operator descriptions. For examplei if a difference set contained a clause

having in it the robot position predicate ATR, then the operator goto

would be considered a candidate operator for that difference.

The second step in finding an operator relevant to a given

difference set involves employing QA3 to determine if clauses on the add

list of a candidate operator can be used to "resolve away" (i.e., continue

the proof of) any of the clauses in the difference set. If, in fact, QA3 can

produce new resolvents which are descendants of the add list clauses,

then the candidate operator (properly instantiated) is considered to be

a relevant operator for the difference set.

That is, a proof could be completed if this new model still allows a
deduction of this clause in D.

i
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To complete the operator-relevance test STRIPS must determine

which instances of the operator are relevant. For examplet if the differ-

ence set consists of the unit clauses -ATR(a) and -ATR(b), then goto(x.y)

is a relevant operator only when y is instantiated by a or b. Each new

resolvent which is a descendant of the operator's add list clauses is

used to form a relevant instance of the operator by applying to the

operator's parameters the same instantiations that were made during the

production of the resolvent. Hence the consideration of one candidate

operator may produce several relevant operator instances.

One of the important effects of the difference-reduction

process is that it usually produces specific instances for the operator

parameters. Furthermore, these instances are likely to be those occur-

ring in the final solution, thus helping to narrow the search process.

So, although STRIPS has the ability to consider operators with uninstan-

tiated parameters, it also has a strong tendency toward instantiating

these parameters with what it considers to be the most relevant constants.

B. The STRIPS Executive

STRIPS begins by attempting to form differences between the

initial world model, s , and the main goal (as described in the previous

section). If no differences are found, then the problem is trivially

solved. If differences are found, then STRIPS computes a set of operators

relevant to reducing those differences.

Suppose, for example, that STRIPS finds two instantiated

operators, OP and OP , relevant to reducing the differences between

s and the main goal. Lot the (instantiated) precondition formulas for
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these operators be denoted by PC and PC , respectively. Thus STRIPS

has found two ways to work on the main problem:

(1) Produce a world model to which OP is applicable,

apply OP , and then produce a world model in which the

main goal is satisfied, or

(2) Produce a world model to which OP is applicable, apply

OP , and then produce a world model in which the main
£

goal is satisfied.

STRIPS represents such solution alternatives as nodes on a

search tree. The tree for our example can be represented as follows:

(S ,(G ,G )) (S ,(G0,G ))o 1 o o 2 o

where G ,G , and G are sets of clauses corresponding to the negations
O J- £i

of the main theorem, PC and PC , respectively.j. ^

In general, each node of the search tree has the form

(World model),(goal list)). The subgoal being considered for solution

at each node is the first goal on that node's goal list. The last goal

on each list is the negation of the main goal, and each subgoal is the

negation of the preconditions of an operator. Hence, each subgoal in

a gOLil list represents an attempt to apply an operator which is relevant

to achieving the next goal in the goal list.

Whenever a new node, (s.,(G ,G ,,...,G,,G )), is constructed
i m m-1 1 o

and added to the search tree as a descendant of some existing node, the

new node is tested for goal satisfaction. This test is performed by

QA3 which looks for a contradiction to s DO.
i m
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If a contradiction is found and m is o (i.e., the node has

the form (s.,(G ))), tlien the main goal is satisfied in s. and the
i o i

problem is solved. If a contradiction is found and m is not o, then

•G is the negation of a precondition formula for an operator that ism

applicable in s.. STRIPS produces a new world model, s', by applying

to s. the operator corresponding to G . The node is changed to
i m

(s.'(G ,,...,G ,G )) and the test for goal satisfaction is performed
i m-1 1 o

on it again. This process of changing the node continues until a goal is

encountered which is not satisfied or until the problem is solved.

If no contradiction is found in the goal satisfaction test,

QA3 will return a set R of clauses consisting of the clauses in G
m

and resolvents that are descendants of clauses in G . This set of- - — - - - • • m

resolvents is attached to the node and is used for generating successors

to the node.

The process for generating the successors of a node

(s.,(G ,G ,,...,G, ,G )) with R attached involves forming differencei m m-1 1 o

sets ID.} from R and finding operator instances relevant to reducing

these differences (as described in the previous section). For each

operator instance found to be relevant, a new offspring node is created.

This new node is formed with the same world model and goal list as its

parent node. The goal of finding a world model in which the relevant

operator instance can be applied is added to the new node. This is

done by creating the appropriate instance of the operator's preconditions

and adding the negation of the instantiated preconditions to the begin-

ning of the new node's goal list.
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Since the number of operators relevant to reducing sets of

differences might be rather large in some cases, it is possible that a

given node in the search tree might have a large number of successors.

Even before the successors are generated, though, we can order them

according to the heuristic merit of the operators and difference sets

used to generate them. The process of computing a successor node can

be rather lengthy, and for this reason STRIPS actually computes only

that single next successor judged to be best. STRIPS adds this successor

node to the search tree, performs a goal-satisfaction test on it, and

then selects another node from the set of nodes which still have uncom-

puted successors. STRIPS must therefore associate with each node the sets of

differences and candidate operators it has already used in creating

successors.

STRIPS will have a heuristic mechanism to select nodes with

uncomputed successors to work on next. For this purpose we will

use an evaluation function that takes into account such factors as the

number and types of literals in the remaining goal formulas, the number

of remaining goals, and the number and types of literals in the difference

sets.

A simple flowchart of the STRIPS executive is shown in

Figure 1.
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C. An Example

An understanding of how STRIPS works is aided by tracing

through a simple example. Consider the configuration shown in Figure 2

consisting of two objects B and C and a robot R at places b, c, and a,

respectively. The problem given to STRIPS is to achieve a configuration

in which object B is at place k and in which object C is not at place c.

The existentially quantified theorem representing this problem

can be written

(AT(B,k,s) A~AT(C,c,s)]

If we can find an instance of s (in terms of a composition of operator

applications) that satisfies this theorem, then we will have solved the

problem. The negation of the theorem is

G : ~AT(B,k,s) V AT(C,c,s)
o

Let us suppose that STRIPS is to compose a solution using

the two operators goto and push . These operators can be described as

follows :

1. push(u,x >y) : Robot pushes object u from place x to

place y.

Precondition formula :

C^u.x.s) [AT(u,x,s) A ATR(x,s)]

Negated precondition formula :

~AT(u,x,s) V ~ATR(x,s)

Delete list :

AT(u,x,s)

ATR(x.s)
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FIGURE 2 CONFIGURATION OF OBJECTS AND ROBOT FOR EXAMPLE PROBLEM
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Add list:

/ *AT(u,y,push (u,x,y,s ))

ATR(y,push/(u,x,y,s ))

*
where s is the state to which the operator is applied.

2. goto(x,y) : Robot goes from place x to place y.

Precondition formula:

C3x,s)ATR(x,s)

Negated precondition formula:

~ATR(x,s)

Delete list:

ATR(x.s)

Add list:

ATR(y,goto'(x,y,s*))

The initial configuration can be described by the following

world model :

s : ATR(a,s )
o o

AT(B,b,s )
o

AT(C,c,s )
o

In addition, we have a universal formula, true in all world models,

that states if an object is in one place, then it is not in a different

place:

F: (Vu,x,y,s) [AT(u,x,s) A (x 4 y) => ~AT(u,y,s) ]

The clause form of this formula is

F' : ~AT(u,x,s) V (x = y) V~AT(u,y,s)
i

We assume that F' is adjoined to all world models.
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STRIPS first constructs the node N , consisting of the list
o

(s , (G )), as the root of the problem-solving tree and tests it for a
o o

solution by attempting to find a contradiction for the set s U [G }.

No contradiction is found but some resolvents can be obtained; among

them are two resolvents of G and F':
o

RI= ~AT(B,k,s) V (c=y) V~AT(C,y,s)

and R : ~AT(B,k,s) V (x = c) V~AT(C,x,s)
^

Additional resolvents can be produced also, but these happen all to be

t
tautologies and can thus be eliminated. A sophisticated system would

detect that R and R are identical, so let us suppose that R is the

only resolvent attached to N .

— ~ Next STRIPS selects a node (N is" now the only one available)

and begins to generate successors. First it selects a difference set

D, from the set of resolvents attached to N . In this case it sets
1 o

D = {R }. Then STRIPS composes a list L of candidate operators for

reducing D . Here L would consist of the single element push.

Next STRIPS attempts to reduce D using clauses on the add

list of push. Again using theorem-proving methods we obtain two resolv-

ents from D and AT(u,y,push'(u,x,y,s ):

~AT(B,k,push''(C,x,y,s*)) V (c = y)

and ~AT(C,y,push'(B,x,k,s )) V (c = y)

We are assuming a set-of-support strategy with the initial support
set consisting only of the negated theorem.
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Assuming that these resolutions represent acceptable reductions in the

difference, we extract the state terms of the resolvents to yield

appropriate instances of the relevant operator. This gives us:

OP.̂ : push(C,x,y)

and OP : push(B,x,k)
<j

Next, we construct the negated versions of the precondition

formulas for OP and OP :
1 ^

GI: ~AT(C,x,s) V ~ATR(x,s)

and G0: ~AT(B,x,s) V ~ATR(x,s)
t̂ i

These formulas are then used to construct two successor nodes

N.: (s , (G.,,G ))
1 o 1 o

and N : (s ,(G.G ))
- o / o

These nodes would be immediately tested for solutions. For brevity, let

us consider just N . In testing for a solution STRIPS attempts to find

a contradiction for s U Gn .o 1

Again no contradiction is found, but the following resolvents

are obtained:

R0 : ~ATR(c,s ) from Gn and AT(C,c,s )3 o 1 o

and R.: ~AT(C,a,s ) from G, and ATR(a,s )
4 o 1 o

Although these clauses represent differences between s and G , we do

not insist that these differences be reduced in s . We would accept a

reduction occurring in any world model, so STRIPS rewrites the clauses

as :

R ' : ~ATR(c,s)
*J «

and R ': ~AT(C,a,s)
4
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These clauses refer to preconditions for pushing object C. To contradict

R ' the robot must be at c; to contradict R ' object C must be at a.
o . . 4

Suppose our system recognizes that an attempt to contradict R ' is cir-

cular and attaches just the set [fi '} to node N .
O J-

Next STRIPS selects a node for consideration. Suppose it

selects N . In generating successors, it sets the difference set, D ,
1 ^

to[R3'}.

The list of operators useful for reducing D consists only of

goto. STRIPS now attempts to perform resolutions between the clauses on

the add list of goto and D . The clause in D resolves with ATR(y,goto'
^ ^*

(x,yjS )) to yield nil, and answer extraction produces the instance sub-

stituted for the state term, namely

s •=• goto' (x,c,s ) . - —

Thus STRIPS identifies the following instance of goto :

OP : goto(x.c)o

The associated negated precondition is

G : ~AT(R,x,s)
* . ) • - ' • . ' -

STRIPS then constructs the successor node

N : (s , (G ,G ,G ))
3 o 3 1 o .

and immediately attempts to find a contradiction for s U G . Here a
O - o

contradiction is obtained, and answer extraction yields the state term:

goto' (a,c,s )

Thus STRIPS applies goto(a,c) to s to yield

s : ATR(c ,goto' (a,c,s ))

AT(B,b,goto' (a,c,s ))

AT(C,c,goto' (a,c,s ))

Node N is then changed to

N : (s. .(G1 ,G )•1 1 1 o
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and STRIPS immediately checks for a contradiction for s U G . Again a

contradiction is found; answer extraction produces the following instances

for x and s:

x = c

and s - goto'(a,c,s )

Thus STRIPS applies the following instance of OP :

push(C,c>y)

The result is the world model family s0 consisting of the following clauses

s : ATR(y,push'(C,c,y,goto'(a,c,s )))
£ ' ' O

AT(B,b,pushx(C,c,y,goto'(a,C|S )))

AT(C,y,push'(C,c,y,goto'(a,c,s )))

Note that this application of the operator push involved an uninstan-

tiated parameter! y.

Node N is then changed to

and STRIPS checks for a contradiction for s U G . In doing so it pro-
^ O

duces the following tree of resolutions:

~AT(B,k,s) V AT(C,c,s) ~AT(u,x,s) V (x = y) V~AT(u,y,s)

AT(B,k,s) V

AT(C,y,push'(C,c,y,goto'(a,c,s

-AT(B,k,push'(C,c,y,goto'(a,c,s )) V (c=y)
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The clause at the.root produces one of the resolvents to be attached

to N^, namely
o

R,_ : ~AT(B,k,s) V (c = y)
O

Suppose STRIPS selects N next and begins generating successors
o

based on a difference D = LR,-}' Tne operator list for this difference
*j D

consists solely of push, and the relevant instance of push is found to be

OP : push(B,x,k)

Its (negated) precondition is

G4: ~AT(B,x,s) V ~ATR(x,s)

A successor node to N is then
D

N6: (S2'(G4'G0)) '

STRIPS then finds a contradiction between s and G and extracts

s = push'(C,c,b,goto'(a,c,s ))

and x = b. Therefore, it applies push(B,b,k) to an instance of s_
* £1

(with y = b) to yield

s : ATR(k,push'(B,b,k,push'(C,c,b,goto'(a,c,s ))))
»j O

AT(B,k,push'(B,b,k,push'(C,c,b,gotox(a,c,s ))))

AT(C,b,push'(B,b,k,push'(C,c,b,goto'(a,c,s ))))

Node N_ is then changed to nodeb

N : (s .(G )) .
7 3 o

STRIPS can find c\ contradiction between s., and G [assuming that the
J o

equality predicate (b=c) can be evaluated to be false] and exits

successfully. The successful plan is embodied in the state term for

s . We show the solution path in the STRIPS problem-solving tree in
O '

Figure 3.
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FIGURE 3 SEARCH TREE FOR EXAMPLE PROBLEM
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D. Efficient Representation of World Models

A primary design issue in the implementation of a system

such as STRIPS is how to satisfy the storage requirements of a search

tree in which each node may contain a different world model. We would

like to use STRIPS in a robot or question-answering environment where

the initial world model may consist of hundreds of wffs. For such

applications it is infeasible to recopy completely a world model each

time a new model is produced by application of an operator.

We have dealt with this problem in STRIPS by first making

the assumption that most of the wffs in a problem's initial world model

will not be changed by the application of operators. This is certainly

true for the class of robot problems we are currently concerned with.

For these problems most of the wffs in a model describe rooms, walls,

doors, and objects, or specify general properties of the world which

are true in all models. The only wffs that might be changed in this

robot environment are the ones that describe the status of the robot and

any objects which it manipulates.

Given this assumption, we have implemented the following

scheme for handling multiple world models. All the wffs for all world

models are stored in a common memory structure. Associated with each

wff (i.e., clause) is a visibility flag, and QA3 has been modified to

consider only clauses from the memory structure which are marked visible,

Hence, we can define a particular world model for QA3 by marking that

model's clauses visible and all other clauses invisible. When clauses

are entered into the initial world model they are marked visible and
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given a variable as a state term. Clauses not changed will remain

visible throughout STRIPS' search for a solution.

Each world model produced by STRIPS is defined by two clause

lists. The first list, DELETIONS, names all those clauses from the

initial world model which are no longer present in the model being

defined. The second list; ADDITIONS, names all those clauses in the

model being defined which are not also in the initial model. These lists

represent the changes in the initial model needed to form the model being

defined, and our assumption implies they will contain only a small number

of clauses.

To specify a given world model to QA3, STRIPS marks visible

the clauses on the model's ADDITIONS list and marks invisible the clauses

on the model's DELETIONS list. When the call to QA3 is completed, the

visibility markings of these clauses are returned to their previous

settings.

When an operator is applied to a world model, the DELETIONS

list of the new world model is a copy of the DELETIONS list of the old

model plus any clauses from the initial model which are deleted by the

operator. The ADDITIONS list of the new model consists of the clauses

from the old model's ADDITIONS list as transformed by the operator plus

the clauses from the operator's add list.

To illustrate this implementation design we list below the

way in which the world models described in the example of the previous

section are represented :

s : ATR(a,s)

AT(B,b,s)

AT(C,c,s)
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DELETIONS: ATR(a,s)

ADDITIONS: ATR(c,goto'(a,c,s ))
o

DELETIONS: ATR(a,s)

AT(C,c,s)

ADDITIONS: ATR(y.push'(C,c,y,goto'(a,c,s )))

AT(C,y,push'(C,c,y,goto'(a,c,s )))

DELETIONS: ATR(a,s)

AT(C,c,s)

AT(B,b,s)

ADDITIONS: ATR(k,push'(B,b,k,push'(C,c,b,goto'(a,c,sQ))))

AT(B,k,push'(B,b,k,push'(C,c,b,goto'(a,c,s ))))

AT(C,c,push'(B,b,k,push'(C,c,b,goto'(a,c,SQ))))

IV FUTURE PLANS AND PROBLEMS

The implementation of STRIPS now being completed can be extended

in several directions. These extensions will be the subject of much of

our problem-solving research activities in the immediate future. We

shall conclude this note by briefly mentioning some of these.

We have seen that STRIPS constructs a problem-solving tree whose

nodes represent subproblems. In a problem-solving process of this sort,

there must be a mechanism to decide which subproblem to work on next.

We have already mentioned some of the factors that might be incorporated .

in an evaluation function by which subproblems can be ordered according

to heuristic merit. We expect to devote a good deal of effort to devis-

ing and experimenting with various evaluation functions and other order-

ing techniques.
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Another area for future research concerns synthesis of more complex

procedures than those consisting of simple linear-sequences of operators.

Specifically we want to be able to generate procedures involving itera-

tion (or recursion) and conditional branching. In short, we would like

4 8 9
STRIPS to be able to generate computer programs. Several researchers ' '

have already considered the problem of automatic program synthesis

and we expect to be able to use some of their ideas in STRIPS.

Our implementation of STRIPS is designed to facilitate the definition

of new operators by the user. Thus the problem-solving power of STRIPS

can gradually increase as its store of operators grows.

An iden that may prove useful in robot applications concerns

defining and using operators to which there correspond no execution

routines. That is, STRIPS may be allowed to generate a plan containing

one or more operators that are ficti.tious. This technique essentially

permits STRIPS to assume that certain subproblems have solutions without

actually knowing how these solutions are to be achieved in terms of

existing robot routines. When the robot system attempts to execute a

fictitious operator, the subproblem it represents must first be solved

(perhaps by STRIPS). (In human problem solving, this strategy is employed

\\IHMI we say: I won't worry rtbout ih.it fsubl problem until I get to it. )

Wt; aro also interested in got ting STRIPS to define new operators

for itself based on previous problem solutions. One reasonable possi-

bility is that after a problem represented by (S ,(G )) is solved,

STRIPS could automatically generate a fictitious operator to represent

the solution. It would be important to try to generalize any constants
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appearing in G ; these would then be represented by parameters in the

fictitious operator. The structure of the actual solution would also

have to be examined in order to extract a precondition formula,

delete list, and add list for the fictitious operator.

A more ambitious undertaking would be an attempt to synthesize

automatically a robot execution routine corresponding to the new operator.

Of course, this routine would be composed from a sequence of the exist-

ing routines corresponding to the individual existing operators used in

the problem solution. The major difficulty concerns generalizing con-

stants to parameters so that the new routine is general enough to merit

saving. Hewitt discusses a related problem that he calls

procedural abstraction." He suggests that from a few instances of a

procedure, a general version can sometimes be synthesized. We expect

that our generalization problem will be aided by an analysis of the

structure of the preconditions and effects of the individual operators

used in the problem solution.
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I GENERAL GOALS OF THE LANGUAGE

A. The Language and Its Data Base

The QA4 language is an enhanced omega-order language1 em-

bedded in a system of control statements. The declarative facets of the

language include atomic symbols, tuples, unordered tuples, sets, function

definitions, and applications; the imperative facets include (in addition

to normal program control features) set iteration, backtracking, and

parallelism. The language is intended to be a natural formalism for the

description of problem-domain-oriented theorem-proving strategies. More-

over, the specification of problems to be solved by QA4 programs have a

natural, compact formulation in the same language. That is, the state-

ment of theorems to be proved or the specification of programs to be

written is a task similar in nature to writing theorem provers or program

synthesizers. For this reason, the data base for QA4 programs is QA4

expressions. A preliminary description of the QA4 syntax appears in

Ref 2.

B. Properties of Expressions

In addition to the syntactic component that uniquely distin-

guishes it from all other QA4 expressions, every QA4 expression has a

property list. This list stores arbitrary properties and their values,

*
References are listed at the end of this note.
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the values being, in turn, QA4 expressions. The properties are used by

QA4 programs both to store information for the interpreter, and to guide

strategies and communicate information about the data on which the

programs are working. These properties fall into three categories:

interpreter bookkeeping, semantic, and pragmatic.

The standard semantic properties of an expression include its

value, the set of expressions it is known to equal, the sets of expressions

it may not equal. Rules for evaluation and simplification are also se-

mantic properties. It is assumed that partial evaluation or simplifica-

tion of expressions will be an important strategy in all QA4 problem

.solvers. The QA4 interpreter comes equipped..with such a partial

evaluator. It is, however, incomplete, but can be enhanced through

the use of appropriate semantic properties. Finally, it is often useful

to write a strategy in terms of a particular data structure, say a set.

The programs may be clear and concise, making the strategy transparent

and flexible. Yet, for reasons of efficiency it may be necessary to rep-

resent the set outside the standard QA4 framework, say with a LISP array.

Such representation information is handled by the use of semantic pro-

perties.

Pragmatic properties are peculiar to each individual problem.

The properties are used by strategy programs to communicate and note

information about expressions. They take the flavor of statements such

as "I've tried this before and it didn't work."
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C. Expression Manipulations

Expression manipulation is accomplished by decomposition and

construction. Decomposition, in QA4, means naming parts or components

of an expression. The naming is done with pattern matching. Patterns

may occur at many points in the language: in functional variable bindings,

assignment statements, and conditional tests. Transformation of ex-

pressions is done through a complete set of constructors: add an element

to a set, add onto tuples, or construct a lambda expression, to name a

few. There is also a large set of primitive operators on the structural

data forms, e.g., set union, arithmetic addition, and Boolean conjunction.

D. Control Statements

In order to solve large problems and carry out long proofs,

it is necessary to have highly goal-directed search strategies. More-

over, many of the searches done in QA4 strategy programs simply do not

have appropriate numerical means of guiding them. That is, the semantic-

pragmatic search techniques are guided by programs making local decisions

on current information. Any attempt to centralize the search or have

uniform procedures cannot be done easily. For this reason, the QA4

language makes directly available, through statements in the language,

many well-known search procedures. This means that each particular

problem-domain-oriented strategy program can use appropriate search

techniques at its own local level. Strategies may thus search in parallel,
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grow search trees, or backtrack whenever such methods are appropriate.

Accordingly, one can no longer characterize a QA4 program as doing a

particular kind of search while it is problem solving; in most cases,

many (if not all) kinds of search are being done.

The search-oriented statements of QA4 fall into three categories:

Iteration over sets—taking the form of selection

through patterns and for each statements.

Parallelism—Appearing as coroutines, parallel

strategy execution, and when statements.

Backtracking—Taking place in the program failure

mechanism and the choice function (choices many times

being made from possible matches to a pattern).

II ORGANIZATION OF THE INTERPRETER

A. User Interface

The QA4 programmer views the system as an interactive pro-

gramming tool. He types commands in the form of QA4 expressions to a

top-level function. These commands may input or modify expressions or

values of properties of expressions; define, modify, or execute pro-

grams; or perform debugging tasks. Roughly speaking, the system is

divided into three parts: input/output, editor, and interpreter.

The input/output system is an expression parser, which trans-

forms QA4 infix syntax into prepolish or internal format. The parser

uses the BIP package3 and has the advantage of being readily modified.
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Similarly, an output function takes the internal expression form and

outputs a corresponding infix output stream. Thus, the user always

communicates with QA4 in an infix mathematical-style notation.

The editor is still conceptual. While we feel it is an

essential part of a useful human-oriented system, it is yet to be

specified.

The QA4 interpreter is an EVAL function resembling LISP EVAL.

It accepts QA4 expressions and, with the aid of an extensive library of

primitive functions, executes them. At this time we have no plans to

make interpretations of expressions that do not have an immediate, obvious

Value (say, FORALL statements). We hope that experience with theorem-

proving programs will show ways of automatically extending the basic EVAL.

B. Expression Storage

The storage and retrieval of expressions is fundamental to the

QA4 system. That is, given a syntactic form for an expression, a funda-

mental operation is to look the form up and find the properties already

i
assigned or known about the form. This is an extension of LISP1s atom

property feature to expressions in general. Internally, a QA4 expression

is a property list consisting of a property EXPV, whose value contains

the syntactic information about the expression, and whose remaining

properties are semantic or pragmatic. When an expression is stored, a

lookup is made to determine whether or not the expression has been stored

115



before. If so, the old expression is returned, and if not, a new ex-

pression is added to the general store. Thus, only one copy of each

expression is retained by the system.

The storage mechanism is a discrimination net. To understand

the workings of the net, suppose the system contained only the expressions,

in internal format,

(SET A B), (TUPLE A B), (TUPLE C B)

The net automatically created for storing these expressions might be

STYPE
SET /̂  -TUPLE

(SET A B) /\1

(TUPLE A B) (TUPLE C B)

The net is a tree. Each node of the tree contains

(1) A function, which extracts an atomic piece of

syntactic information, and

(2) Either a terminal node or a list of branches. (A

terminal node contains an expression, and a branch

is a pair—an atom and another node).

A syntactic form is looked up in the net by applying the .

feature extraction at the top node, choosing the appropriate branch, and

continuing until a terminal node is reached or there is no appropriate
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branch. If no branch exists, then the expression does not occur in the

net and a new terminal node may be added.

When a terminal node is reached, the input expression must be

checked against the syntactic property on the expression at the terminal

node. If they match, all is well and the property list for the form

has been found. If they do not match, a new branching node must be

created. To construct the feature selector the two expressions are

compared in a structural depth-first manner until the first difference

is noted. The results of this search are encoded into a list and in-

stalled as the feature selector of the new node. A terminal node for

the new expression is constructed, the two new branches made up, and the

net is transformed to hold the property list for the new form.

If two QA4 expressions are identical except for the names of

their bound variables, they go into the same internal representation.

Thus, bound variables may not be used as selector functions. Moreover,

in order to store sets and bags in the net, an index is assigned to

each element of a set or bag expression the first time it is stored.

If the same set is then stored a second time (perhaps with some expressions

permuted), the elements are first sorted by the index numbers and then

discriminated upon syntactically. Thus, if a user types in the set

{A, B, C], the elements are assigned indices A *- 1, B «- 2, C «-3. If the

set {c,B, A} is entered, it is sorted into {A,B,C} and then found to
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already occur. The net functions also maintain statistics concerning

the number of references made to each expression and discrimination for

future optimizations.

C. Equality Partitions

The efficient treatment of the equality predicate is crucial

to the operation of any problem-solving system. Rather than axiomatize

the equality rules, we have built them into the QA4 system by introducing

equality partitions. Each expression in a context has (as its value

property for that context name) the set of expressions known to be

logically equal to i.t in that context. When two expressions are asserted

or proved equal in a context, their "equality sets" are merged to form

a new set for each. Moreover, each expression has (in context) a set

of sets of expressions that are known to be unequal to the given

expression. That is, each set in the "unequal set" contains a set of

expressions known to be not all equal. Again, when a new equality

assertion is made, these sets are updated correspondingly. Consequently,

whenever an equality assertion causes a contradiction via the equality

rules, it is immediately known. An additional advantage to maintaining

the equality information is to be able to select the "best" expression

equal to a given expression for a certain purpose.
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Ill CONTEXTS

A. Intent and Uses

Variable bindings are implemented in the QA4 interpreter with

a "context" mechanism. This method of storing all the changeable

property values of expressions simplifies the execution of parallelism

and backtracking in the interpreter. The same facilities, moreover, are

made available to the users as a method of data manipulation in programs

dealing with the frame-problem, conditional proofs, or variable bindings.

The mechanism simulates a branching pushdown stack. Each node in the

tree corresponds to a process or state of the world. When a process

changes properties of an expression, the changes are only effective for

the process and its descendants. The property values of the ancestors

of the process are unchanged.

B, Example

1. Coroutines

For example, suppose a process P is being interpreted,

and it creates two coroutine subprocesses PI and P2. With each creation,

the interpreter creates a new context, and each is an extension of P.

We might represent this as:
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.2. Backtracking

Backtracking is slightly different. If P is terminal

(that is, it has no subprocesses when a backtracking point is reached),

then a new context is created; however, the new context is an extension

of P. This is done so that further changes in variable values in P

will not destroy the old values, and the state at the backtracking point

can be readily restored:

©

If P already had subprocesses, then the new context is

an extension of P, which interposes itself between the original P and

the subprocesses:

/
P

C. A Note of Caution

When the interpreter and programs use the same data base, case

must be taken by user programs during property list manipulation. These

concerns come naturally to a LISP programmer who confronts the same

problem when he uses properties of atoms. The usefulness of the

feature, however, certainly makes it worthwhile. The problems of the

interpreter and user programs are very similar, and mechanisms useful
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for one are probably useful for the other. It is important, therefore,

that QA4 programmers fully understand the context mechanism and exploit

it in their programs to gain the full power of the language.

D. Implementation

A data item of type context is a list of numbers, say (5, 3, 1).

Each number corresponds to a node in the graph representation of the pro-

cess structure. For example, suppose the current process structure was

then (5, 3, 1), (4, 3, 1), (2, 1), (3, 1) are all possible contexts.

Process P3's context is (3, 1), while P4's context is (4, 3, 1). The

extension of a context is handled by the function XCTX, which creates

a new unique context number and puts it on the front of a context.

The values of properties of expressions are stored as property

lists themselves, where the context numbers are property names. For

example, an expression might look like:

(NETEXPRESSION EXPV (TUPLE 1 2) PI (CONTEXTLIST 5 Q 3 R)).

This internal representation means that the value of property PI for

the tuple (l, 2) was set to Q under a context headed by 5, say (5, 3, 1)

and set to R under a context headed by 3, say (3, 1). In the sample

above, P3 may have set the value to R, while P5 set it to Q.
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E. Lookup

The lookup routine CTXGET takes an expression, a property name,

and a context as arguments. If e were a pointer to the above expression,

then (CTXGET e "Pi" "(3 1)"), would first get the LISP values of property

PI, the list (CONTEXTLIST 5 Q 3 R). It would then look for a value under

context number 3, and if that fails under 1. In our example, it finds

one under 3 and returns R.

F. Changing Contexts

Contexts are popped by the function POPCTX, properties are

added_ with CTXPUT,. and .removed, with_CTXREM The context functions, note--

all current contexts and discard all else during garbage collection.

*

G. Summary

The whole notion of the discrimination net as a means of

accessing expressions is a method of extending the LISP idea of property

list from atoms to expressions in general. The inclusion of bound variable

expressions and sets in the net causes some concern, but can be handled.

The context mechanism is an extension in a similar vein. The values of

properties can be with respect to a given state or binding level. LISP

programs sometimes do this when the value of a property is treated as

a pushdown stack. However, a simple stack is not enough for parallelism

and backtracking. The context mechanism appears to be a concise, natural
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method of extending the basic notions. It even carries along the

features of garbage collection, something which change lists and other

approaches have difficulty with.

H. Example
i

The QA4 theorem prover uses high-level rules of inference.

Thus, one QA4 proof step may represent many formal steps. QA4 rules

of inference may be very special-purpose: In any situation, we expect

the system to select, from a large collection, those rules that might be

advantageously applied.

We see the QA4 theorem prover working at the same level as a

human mathematician, and a finished QA4 proof should read like a proof

in a mathematical textbook. To illustrate this point we present a

fairly difficult theorem, and a protocol of the projected QA4 proof

procedure applied to this theorem. The following discussion presents

only the "correct" branch of the hypothetical QA4 solution. A problem

solving strategy that would generate this solution, among others, is

described in the next section of this note.

The theorem to be proved arises in a program-synthesis problem.

We are given a recursive program to compute the Fibonacci sequence

1,1,2,3,5,8, ... in which each term is the sum of the preceding two terms.

The program we are given is

fib(x) = if x £ 1 then 1 else fib (x - 1) + fib(x - 2)
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This program is grossly inefficient, requiring many redundant recursive

computations of the function on the same argument. We would like to

construct an equivalent iterative program.

Of the many possible QA4 rules of inference, the following are

useful in this problem.

(1) Induction (Going-Up Iterative4): To prove a theorem

of the form (Vx)P(x), where x is a natural number,

prove P(0) and prove (fc)P(x) => P(x + 1)).

(2) Resolution: The equivalent of Robinson's rule,5 but

expressed in terms of QA4 expressions with quanti-

fiers.

(3) Partial Evaluation: Take a function that is de-

fined in the system, and expand it according to

its definition. For example, replace fib(x + 2)

by fib(x + 1)4- fib(x)). The rule especially applies

to expressions of the form f(a) or f(x 4- a), where

a is a constant.

(4) Conditional Split: Replace an expression of the

form if P then Q else R by (P z> Q) A (-,p Z> R).

(5) Conditional Derivation: To prove a theorem of form

P O Q, assume P and prove Q.
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(6) A-Split: To prove a theorem of form P A Q, prove

P and prove Q. When an assertion of form P A Q is

made, assert P and assert Q.

(7) Functional Split: To prove a theorem of form (3z)

z = f(t ,...t ), prove a theorem (3z) z = t A ...
I n . - 1 1

A (3z ) z = t .
n n n

. (8) Equality: To prove a theorem of form t = t , where
\_ £

the t. are terms, replace the existentially quanti-

fied variables of the t. so that the two resulting

terms are identical.

(9) Change of Variables: Replace an expression of form

(Vx) [x ^ a ~3 P(x)], where x is a natural number,

by (Vx) [P(x + a)] (replacing x by x - a).

(10) Simplification: Replace 1 + 1 by 2, 0 • X by 0,

and make other such improvements.

These rules are roughly stated; for example, the forms that

A-split, conditional split, and the equality rule are applied to may have

certain quantifiers. In practice these rules would be separate, complex

programs in the QA4 language.

Now let us examine the behavior of the system when faced with

the program synthesis problem. We first assert

(11) Assert fib = Xx if x <. I then 1 else fib(x - 1) +

fib(x - 2).
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(12) Assert (Vx) (x S 1 => fib(x) = 1)

and

(13) Assert (Vx)xS2 r> fib(x) = fib(x - 1) + fib(x - 2).

To produce (13) the system used the simplifier to replace

—i(x ^ 1) by x ^ 2; we will not always mention the actions of the simpli-

fier explicitly. We then give the system the goal

(14) Construct an iterative program that satisfies the

input-output relation, z = fib(x), where x is the

input and z is the output, and fib is not taken to

be "primitive."

The condition that fib not be primitive means that fib is not

permitted to appear in the iterative program. This restriction is in-

tended to prevent the system from producing the following iterative

program.

z - fib(x)

Print(z)

(This program is correct, iterative, and every bit as in

efficient as the original recursive program.)
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When the system is given this program-synthesis goal, it may

transform it into a theorem-proving goal by using a standard technique.x

Thus, it produces the new goal

(15) Prove (Vx)(3z) z = fib(x).

From its collection of inference rules, the system selects

those that seem relevant to the proof of this theorem. These are in-

duction, equality, and resolution (against 12 or 13). Induction is an

expensive routine; we will defer trying it until we have explored the

other possibilities. Equality tries to substitute fib(x) for z; however,

the stipulation that fib is not primitive prevents that substitution from

being made; otherwise, the proof would be concluded and the trivial

program above would be produced. In this case, however, the equality

rule fails. "Resolution" of (15), with (12) produces

(16) Prove (Vx) x ;> 2 =3 (3z) z = fib(x).

This goal is more attractive than the original goal (15)

because it is a special case of (15); (16) is the consequent of (15).

Therefore, the attention of the system is focussed on (16), and work on

(15), including application of the induction rule, is delayed. The system

then selected those rules that seem relevant to the proof of (16). The

rules selected include change of variables (9), conditional derivation

(5), and induction. Change of variables is applied before the other

rules, producing a new goal
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(17) (Vx)(3z) z = fib(x -t- 2).

The form of (17) suggests the immediate application of the

partial evaluation rule (3). This produces (with simplification)

(18) Prove (Vx)(3z) z = fib(x - 1) + fib(x).

This goal is in the proper form for functional splitting (7).

The new goal,

(19) Prove (Vx)[(3z )z = fib(x + 1) A (3Z ) z = fib(x)],
1 1 £ £

is produced. Although the form of this expression suggests A-splitting,

this tack quickly proves to be a dead end: of the two goals produced,

(20) Prove (Vx)(3z ) z = f.ib(x + 1) and

(21) Prove (Vx)(3z ) z = fib(x),
" "

the second proves to be identical to the original goal (15). Since both

these goals must be achieved in order that (19) be achieved, both (20)

and (21) are discarded. Having exhausted the other possibilities, the

system ventures to try induction on (19). The two new goals generated

are:

(22) Prove (3z ) z = fib(l) A (3z ) z = fib(O), and
X X £ £

(23) Prove (Vx) [((3z ) z = fib(x + 1) A (3z ) z = fib(x)) =>
1 1 £ i £

((3z') z' = fib(x + 2) A (3z') z' =.fib(x + 1))] .
J. 1 £ £t

Both these goals must be achieved if the theorem is to be proved. The

system considers the first goal first. The most appropriate rule to be

applied is A-split, which produces two new goals,
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(24) Prove (3z ) z = fib(l) and

(25) Prove (3z ) z = fib(O),
2 2

both of which must be achieved. Partial evaluation applies to both

goals, producing

(26) Prove (3z ) z =1 and

(27) Prove (3z ) z = 1.
^ . j£

Then the equality rule is applied to each of these goals with success,

so that (22) has been achieved. Attention now focusses on (23). Con-

ditional derivation (5) allows us to make the assumption

(28) Assert (3z ) z = fib(x + 1) A (3z ) z = fib(x), and
1 1 ' 2 2 • .

create the goal

(29) Prove (3z') z' = fib(x + 2) A (3z') z' = f ib(x + 1).
1 1 - 2 2

The A-split rule, applied to the assertion (28), produces two new

statements,

(30) Assert (3z ) z = fib(x + 1) and

(31) Assert (3z ) z = fib(x).

The same rule, applied to the goal (29), results in the establishment

of two other goals

(32) Prove (3z') z' = fib(x + 2)

and

(33) Prove (3z') z' = fib(x + 1),
2 2 ' . . :

both of which are to be achieved.
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The resolution rule applies between goal (33) and assertion

(30) resulting in a success. Partial evaluation, applied to goal (32)

constructs;

(34) Prove (3z') z' = fib(x + 1)4- fib(x).

As before, function splitting produces

(35) Prove (3z ) z = fib(x + 1) A (3z ) z = fib(x),
o *3 44

and A-split produces

(36) Prove (3z ) z = fib(x + 1) and
«5 *3

(37) Prove (3z ) z = fib(x).
4 4

These goals resolve with assertions (30) and (31) respectively, com-

pleting the proof.

We have included mostly those steps in the search that actually

did lead to the proof. The system would examine some of the false paths

too, although it does not rely on blind search and discontinues a line

of reasoning when another appears more profitable.

Program synthesis techniques allow us to produce the program

illustrated in Figure 1, from the proof.4 This program turns out to be

far more efficient than the original recursive program.

In this section we have discussed the behavior of a problem

solver without specifying a mechanism that exhibits this behavior. In

the next section we outline a system capable of carrying out such reasoning.
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FIGURE 1 ITERATIVE FIBONACCI PROGRAM

IV The QA4 PROBLEM SOLVER •

This section gives an overview of the goals, overall structure, and

flow of control of the QA4 problem solver.

A. Goals

• The problem solver should be easy to guide with intuitive

knowledge about various forms of problem solving. If we run a proof,

for example, and we see the problem solver doing an obviously stupid

thing, then it should be possible to modify.the proof strategy or give

additional information in an easy way so that the system does not make
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the same errors in a second run of the problem. Thus, the problem

solver should also be easily modifiable.

• A large body of pragmatic information in the system

• A natural and compact formulation not only of goal

statements but also of strategies in a unified language.

For example, we would not write the theorems to be proved

in first-order predicate calculus while writing strategies

in LISP.

B. Statements

"The system is given information with four sorts of statements:

• Goal statements: e.g., Prove (Vx)(3z) z = fib(x)

• Assertions: e.g., factorial = \x if x = 0 then

1 else x • factorial (x - 1)

• Eval rules: e.g., change of variables (Vx). x ̂  a

t3 P(x) transforms to (Vx)p (x + a)

• Strategies: e.g., a linear equation solver.

The goal statements and assertions are analogous to the theorems and

axioms of a resolution-type theorem prover. The eval rules and strategies

are expression transformation rules.

An eval rule is a single-expression transformation rule. It

takes an input expression, matching a pattern given in the first half
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of the eval rule, and transforms it under given conditions (when a

predicate is true) into an output expression according to the second

half of the eval rule.

A strategy is a program made up of control statements, eval

rules, and other strategies. The program tells how to apply several

transformations, sequentially or in parallel, for example.

C. Basic Method

The system is goal-directed. A problem entered in the system

is the first goal statement. The system tries to find eval rules and

strategies that may aid in achieving the goal. From these rules it

constructs a single strategy associated with the goal. This strategy

is applied to the goal; if this strategy does not succeeed at once, the

system may create one or more subgoals. In the same way, subgoals are

given associated strategies, which control their processing.

The eval rules and strategies relevant to a given goal or

assertion are selected by the "filter."

D. The Filter

The filter is a program that analyzes expressions and the

associated semantic and pragmatic information kept on the expression's

property list. The filter's main task is to find in an efficient way

all eval rules, strategies, and typed-in pragmatics applicable to
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(matching with) a given expression. After it has found the relevant

information, a combined strategy is put together, put on the property

list of the expression, and given to the interpreter.

E. How Statements are Processed

Let us see how the system processes each sort of QA4 input

statement. First, consider the case of an assertion given to the

filter. An assertion must be entered in the data base of the problem

solver. It is possible that whenever an assertion of a certain form

(matching a given pattern) is made, other assertions also should be made.

We can give a great number of this sort of rules in the form of eval

rules. An example is the conditional-split rule, which is applicable

to the assertion fib = Xx • if ... in the example of Section IV. Two

additional assertions must be made according to this rule. Matching

rules are found by the filter. A strategy is made up and interpreted

that puts the initial assertion and the assertions discovered by the

filter in the data base.

In the case of a goal statement, an expression is given to the

filter together with advice. For example, the goal statement "Prove

z = fib(x)" is given to the filter, together with constraints and advice,

such as: "the given expression is an input/output relation, this is a

program-writing problem, write an iterative program." The filter tries

to find the relevant eval rules and strategies with the information
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residing in the filter. It will do some pattern matching to find

relevant expression transformation rules, and use the constraints and

advice given, together with the goal statement, in the search for the

right rules. In the example, the filter puts the strategy "try the

theorem-proving approach" together. This strategy creates the new sub-

goal "Prove (Vx)(3z) z = fib(x)." The strategy gives the subgoal,

together with the advice "try only techniques that give iterative solu-

tions," to the filter. Now the whole procedure will be repeated until

success is achieved and the goal can be proved true.

The filter is changed by entering new eval rules and strategies.

The front end of an eval rule (a pattern) will.get its proper place
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among the already collected patterns in the filter; e.g., the eval rule

change of variables will cause the filter to be updated with the pattern

(Vx)x S a ̂  P(x). When an expression of that form is passed through

the filter, the change-of-variables rule will be selected.

F. How Problems are Solved

All strategies, eval rules, the filter, a simple monitor, and

other high-level programs of the problem solver are written in the QA4

language. For this language, a simple LISP-like EVAL is being written.

The flow of control in the system is governed by strategies,

interpreted by a simple monitor. Strategies are put on property lists

of expressions according to certain conventions. The task 01 the monitor

is to interpret strategies, under a set of conventions. The monitor also

hands expressions to the filter and utility functions; for example, a

function that puts typed-in information about a problem statement on the

property list of this expression. The monitor interprets the control

functions and in general connects the complex of strategies and system

functions. The task of the monitor is, however, a mechanical task:

All "cleverness" resides in the strategies.

The situation of a strategy creating one subgoal- can get more

complex when more eval rules or strategies are applicable; e.g., in the

example of the fib function: Try partial evaluation, resolution, or

induction. Now the system can work on one subgoal, but should not give
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up on the other subgoals. It could work for a time on the goal generated

by the partial evaluation but then decide that the goals are getting

worse (compared with the original) and try the induction step.

To be able to work in such a fashion, a set of functions for

controlling strategies are available. They will be all realized with a

simple coroutine mechanism that makes use of the contexts as described

in Section III.

G. Control Functions

To give the flavor of the control functions, some are described

below. A strategy can create two or more goals and ask the problem

solver to prove them all. An example is induction, in who-c'i two subgoals

(the zero case and the step case) must be proved true. The system uses

for this purpose the AND statement (AND set strategy). All the strategies

in the set are run in parallel, and the relative speed of each program

is controlled by the strategy. Sometimes it is necessary for a program

in the set to communicate with the.controlling strategy. For example,

the program sees its progress is poor and wants to give this information

to the controlling strategy of the AND, so that another program in the

set can be given a turn or other action can be taken. For this purpose

a program (strategy) can use the WAIT statement (WAIT x). The value of

x is given to the strategy associated with the AND and the calling program

is suspended. The OR statement (OR set strategy) operates in a similar
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way. For example, in the Fibonacci problem, three alternative rules are

proposed for the goal CVx)(3z) z = fib(x): induction, resolution, and

the equality rule. These rules are combined by an OR statement and

equality is tried first, but fails. Now resolution is selected by the

strategy associated with the OR statement. Induction is only tried when

the resolution strategy fails or produces poor results, in which case

a return to the OR statement is made. In the case of the Fibonacci

example the resolution was successful.

H. Advice to the System During a Proof

The problem solver :is able to take advice during a proof.

A natural point to do this is whenever a strategy calls the i'liter and

gives a new goal (or new goals) to be analyzed! We can envision among

others two ways of giving advice:

(1) Changing a strategy, mainly strategies controlling

AND and OR statements; and

(2) Supplying a new strategy in the set of an AND or

OR, which gives rise to a new subgoal.
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I INTRODUCTION

The purpose of the visual system is to provide the automaton with

important information about its environment, information about the loca-

tion and identity of walls, .doorways, and various objects of interest.

By adding new information to the model, the visual system gives the autom-

aton a more complete and accurate representation of its-world. The role

of vision is not independent of the state of the model. If the automaton

hns entered a previously unexplored area, the visual scene must be ana-

lyzed to add information about the new part of the environment to the

model. In this situation, the model can provide so little assistance

that it is often not referenced at all. On the other hand, if the autom-

aton is in a thoroughly known area, the role of vision changes to one of

providing visual feedback to correct small errors and verify that nothing

unexpected has happened. In this situation, the model plays a much more

important role in assisting and actually guiding the analysis.

Until recently our attention has been directed primarily at the

general scene-analysis problem. Every picture was viewed as a totally

new scene exposing completely unknown area. More recently we have

addressed the problem of using a complete, prespecified map of the floor

area to update the automaton's position and help in tasks such as going

through a doorway . Another use of this kind of visual feedback would

be the monitoring of objects being pushed.

In trying to solve these problems, we have tended to take one or

the other of two extreme approaches. Either we tried to develop general

methods that can cope with any possible situation in the automaton's
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world, or we tried to exploit rather special facts that allow an effi-

cient special-purpose solution. The first approach involves the more

interesting problems in artificial intelligence, but it provides more

capabilities than are needed in many situations, and provides them at

the cost of relatively long computation times. The second approach pro-

vides fast and effective solutions when certain (usually implicit) pre-

conditions are satisfied, though it can fail badly if these conditions

are not met. Eventually, of course, some combination of these two

approaches will be needed, since the automaton actually operates in a

partially known world, rather than one that is completely unknown or

completely known. However, we have decided to concentrate on these two

extreme situations before addressing" the intermediate case. The remainder

*
of this note describes the current status of our work in these areas.

II REGION ANALYSIS

A. The Merging Procedure

Our work in general scene analysis is based on dividing the

picture into regions representing walls, floors, faces of objects, etc.

3
The basic approach has been described in detail elsewhere, and only a

brief summary will be given here. The procedure begins by partitioning

the digitized image into elementary regions of constant brightness.

This usually produces many small, irregularly shaped regions that are
, -. ^

fragments of more meaningful regions. Two heuristics are used to merge

Our earlier work in scone analysis is described in Reference 1. Addi-
tional information on more recent work is contained in References 2-5..
References are listed at the end of this report.
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these smaller regions together. Both of these heuristics operate on

the basis of fairly local information, the difference in brightness

along the common boundary between two neighboring regions. The heu-

ristics are not infallible; they can merge regions that should have

been kept distinct, and they can fail to merge regions that should have

been merged. However, they reduce the picture to a small number of large

regions corresponding to major parts of the picture, together with a

larger number of very small regions that can usually be ignored.

The effect of applying these heuristics is best described

through the use of examples. Figure 1 shows television monitor views of

three typical corridor scenes. Figure 2 shows the results of applying

the merging heuristics to digitized versions of these pictures. The

boundaries of the regions in these pictures are directed contours, and

can be traced using the correspondences shown in Table I. Generally

speaking, important regions can be separated from unimportant regions

purely on the basis of size. Figure 2a, for example, contains four

large, important regions. Three of them are directly meaningful (the

door, the wall to the right, and the baseboard), and the fourth is the

union of two important regions (the floor and the wall to the leff> .

An inspection of Figure 2b shows similar results. Figure 2c shows the

result of applying the technique to a complicated scene; while some

useful information can be obtained, the resolution available severely

limits the usefulness of the results. .

Our only complete scene-analysis program is oriented toward

identifying boxes and wedges, objects with triangular or rectangular
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(a) DOOR

(b) HALL

(c) OFFICE WITH SIGN

TA-8259-20

FIGURE 1 THREE CORRIDOR SCENES
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faces, in n simple room onv.i ronment.' For this task, we begin by fit-

ting the: boundaries ol! the major regions by straight'lines'. Regions

are identified as being part of the floor, walls, baseboards, and faces

of objects by such properties as shape, brightness, and position in the

picture. Objects are identified by grouping neighboring faces satisfy-

c
ing some of the simpler criteria used by Guzman. In the process,

certain errors caused by incorrect merging are detected and corrected.

We have yet to complete a similar analysis program for the conditions

encountered in corridor scenes. However, we have investigated the

problem of 'obtaining a scene description that is internally consistent;

the next section describes the analysis approach for this problem.

B. A Procedure for Scene Analysis

If we assume temporarily that the merging heuristics have

succeeded in the sense that all of the large regions are meaningful

areas, then the only basic problem remaining is the proper identifica-

tion of each region. Examination of the corridor pictures indicates

the need to be able to identify a number of different region types,

including the'following:

(1) Floor
(2) Wall
(3) Door
(•1) Door jamb
(5) Object face
(6"> Baseboard
(7) Baseboard reflection
(8) Sign*
(9) Window ' ' '

By sign we mean a dark vertical, bar on l:he \v:ill used, as illustrated
in Figure Ic, to identify an office.
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(10) Clock .
(11) Doorknob
(12) , Thermostat
(13) Power outlet
(14) Automaton.

Each of these regions has certain properties which tend to

characterize it uniquely. For example, the floor region is usually

large, bright, and near the bottom of the picture. However, most

regions can be identified with greater confidence if the nature of their

neighbors is considered as well. Thus, the presence of a baseboard or

baseboard reflection at the top of a region almost guarantees that the

region is the floor; conversely, the presence of wall area immediately

above a region guarantees that it can not be a baseboard reflection.

If regions are identified without regard to how that choice affects the

overall scene description, the chance for error is increased. Moreover,

the resulting description can be nonsensical.

Many, though by no means all, of the relations between types

of regions relate to neighboring regions. Table II indicates those

types of regions that can and cannot be legal neighbors. We can easily

add to this further restrictions, such as the fact that the baseboard

must have the wall as a neighbor along its top edge. These are some of

the important known facts about the general nature of the automaton's

environment. The problem is to use facts such as these to aid in the

.analysis of the scene.

One approach to solving this problem is to use these facts

as constraints to eliminate impossible choices. Suppose that each

significantly large region in the picture is tentatively classified
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on the basis of the attributes of that region alone. Suppose further

that a score is computed for each region that measures the degree to

*
which it resembles each region type. For any selection of names for

regions, we can define the score for the resulting description as the

sum of the individual scores. Then, we can analyze the scene by trying

to find highest scoring legal selection of region names. With no loss

in generality and some gain in convenience, we can work with the losses

incurred by selecting other (than the highest scoring choice. In terms

of losses, we want the legal description having the smallest overall

loss .

This problem is basically a tree-searching problem. The

start node of the tree corresponds to the first region selected for

naming. The branches emanating from that node correspond to the possible

choices of names for that region. A path through the tree corresponds

to a unique labeling of the picture. Thus, if there are N possible

region names and R regions, there are potentially N possible paths

through the tree. Each path passes through R+l nodes from the start

node to the terminal node. Every terminal node has a loss value, which

is the sum of the losses incurred for the choices along the path to that

node. A goal node is n terminal node corresponding to a complete, legal

scene description. We seek the goal node with the smallest overall loss.

This is n standard problem in tree searching, and optimum

search procedures nre known. Assume that some choices have been made

for some of the regions so that we have a partially expanded tree.

*
This score might be interpreted as the logaritlun of the probability
that the given region is of the indicated type.
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7
Using the Hart-Nilsson-Raphael terminology, some of the terminal nodes

of this tree are open nodes, candidates for further expansion. Each open

node has an associated loss g, the sum of the loss.es from the start node

to that node. If we assume that there is no reason to believe that zero-

loss choices cannot be made from that node on, then the optimal search

strategy is to expand that open node having the minimum g.

To expand a node, we must select a region not previously con-

sidered and examine the possible choice for that region, ruling out any

choices that are not legal. Different strategies can be used for select-

ing the next region. It seems advantageous to ask it to be a neighbor

of the regions selected previously, since this maximizes the chance of

detecting illegalities. In general, we will have several neighbors for

candidate successors. Of these, it seems reasonable to select the one

having the highest score, under the assumption that the first choice

name for this region is most likely to be correct.

After a region has been selected, it is necessary to examine

the choices one can make for its name to see which ones are legal. If

we limit ourselves to pairwise relations between neighboring regions, we

need merely compare each choice with previously made choices on the path

*
to this point and test each for legality. The node expanded is removed

from the list- of open nodes, the resulting new nodes are added, 'and the

process is repeated until the algorithm selects a goal node for further

expansion. This is our final result, a legal scene description having

the minimum loss. . •• •

*
When an illegality is found, that choice is deleted. One can argue that
few relations are so strong as to be absolutely illegal, and an alterna-

tive approach would be to introduce various additional losses for the
different observed relations.
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C. Examples

The following examples serve to illustrate the action of

this scene-analysis procedure. Consider first the simple scene shown

in Figure 3. For simplicity, we assume that there are only five types

of allowed regions—floor, wall, door, baseboard, and sign. Consider

Region 1. On the basis of its brightness, size, vertical right bound-

ary, and possession of a hole, it should receive a high score as a wall,

and lower scores as floor, door, sign, and baseboard. Region 2 might,

perhaps, score highest as a door, and so on. Thus, the following table

of scores, although purely imaginary, is not unreasonable. Missing

entries correspond to scores too low to be seriously considered.

Reg i cm -~-~

1

2

3

Floor

5

3

Wall

6

3

Door

2

7

5

Base-
board

!

Sign

5

1

The following table gives equivalent information in terms of the losses

associated with each choice.

~̂ ^̂ L
i
2

3

Floor

1

2

Wall

0

2

Door

4

0

0

Base-
board

6

Sign

2

4

Max
Score

6 .

7 .

5
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FIGURE 3 A SIMPLE SCENE
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Let us use our tree-searching algorithm to obtain the minimum-

loss, legal description of this scene. Initially the successor function

is unconstrained by neighbor restrictions, and selects Region 2 merely

because it has the highest score. At this point, all of the choices for

Region 2 are legal, and the tree has three open nodes; the numbers shown

next to each node give the loss accumulated in reaching that part of the

tree.

Baseboard/' Sign \Door

d6 62 o°
The search algorithm requires that the open node having the

least loss be expanded next, which corresponds to tentatively calling

Region 2 a door. The successor function finds only one neighbor to

choose from, Region 1, and considers its alternatives:, wall, floor,

and door. None of these choices is a legal neighbor surrounding Region

1, and hence all are rejected. Thus, this open node has no successors.

Baseboard/ Sijgn \Door

o o
Door/
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Returning to the choices for open nodes, Region 2 is tenta-

tively called a sign. The successor-function again selects Region 1,

*
and this time finds one legal successor, the wall. The loss associated

with this choice is 0, and the overall loss is 2. The list of open

nodes still contains two members.

Door

Door/Floor \VVall
Door/ Floor \ Wall

The search algorithm selects the open node with loss 2, and

the successor function has only Region 3 to select from. All of the

choices for Region 3 are all legal with respect to calling Region 2 a

sign and Region 1 a wall. The least loss results from calling Region

3 a door, and the scene analysis is completed.

Note thnt our successor function,will always produce a tree with R+l
levels. At any level, the same region will always be selected by the
successor function. The actual successors, however, will be limited
by the legality requirement.
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Baseboar
X

Door

Door/ Flbor \Wall Door/ Fl Dor \\Vall

Sign/'Wa./! Fioor\ Door

a o4 o4 »2

A somewhat more realistic example involving 10 regions and

14 region types is illustrated in Figure 4. Table III gives the hypo-

thetical scores. Based on these scores alone, half of the regions would

be incorrectly identified. Figure 5 shows the tree produced by the

search algorithm. The development of this tree is too complicated to

describe in detail. It should be noted, however, that, considerable

backtracking occurred because a low-scoring third choice was needed for

Region 8, the doorknob. Whether or not this can be circumvented without

causing other problems is not known.

D. Remarks

To date, this procedure has only been used on some hypothetical

examples. We lu\ve modified -a general tree-searching program to adapt it

to some special characteristics of this problem. However, we have not

started the important task of writing programs to measure characteristics

of regions and to use these characteristics to produce recognition scores.
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TA-8259-27

FIGURE 4 A MORE COMPLICATED SCENE
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TABLE III HYPOTHETICAL REGION SCORES

TYPE

FLOOR

WALL

DOOR

DOOR JAMB

OBJECT FACE

BASEBOARD

BASEBOARD
REFLECTION

SIGN

WINDOW

CLOCK

DOORKNOB

THERMOSTAT

POWER OUTLET

AUTOMATON

REGION

1

1

7

3

1

2

5

7

1

3

11

3

4

5

6

2

5

9

5

6

2

. 5

6

7

6

8

8

1

2

6

3

9

4

3

6

10

3

6

4

TA-8259-29
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TA-8269-28

FIGURE 5 THE ANALYSIS TREE
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in addition, we have not implemented any legality conditions beyond the

simple conditions given in Table II.

This approach to scene analysis has several potential advan-

tages. It is not necessary to identify every region correctly at the

outset to obtain a correct analysis, provided that the "syntactic ' rules

are sufficiently complete. By providing a limit on the allowable loss,

a partial scene description can be obtained that may be Useful even though

incomplete. Perhaps most important, the operations of merging, feature

extraction, classification, and analysis are clearly separated, allowing

fairly independent modification and improvement. In particular> the

general knowledge about the environment can b'e expressed explicitly as

rules for legal scenes, and if .the environment -is changed-it-is possible

to confine the program changes to modifying these rules.

One of the major problems with this approach is the lack of ah

obvious way to detect erroneous regions, regions that are fragments of

or combinations of meaningful regions. We are currently working oh this

problem; since progress toward its solution is needed before implementa-

tion of this system can be begun. Another problem is that it is not

clear how specific information contained in the model can be used to

R'dide the analysis. Thi's problem of working in a world that is neither

completely known nor completely unknown is one of the major unsolved

problems in visual scene analysis.

Ill LANDMARK IDENTIFICATION

. -When the environment is completely known, the visual system

can provide feedback to update the automaton's position and orientation.
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The x-y location of the automaton and its orientation Q can be determined

*
uniquely from a picture of a known point and line lying in the floor.

Such distinguished points and lines serve as landmarks for the automaton.

This section describes our present program that uses concave corners,

convex corners, and doorways as landmarks to update position and orienta-

tion.

A flowchart outlining the basic operations of this program is shown

in Figure 6. The program begins by selecting a landmark from the model

that should be visible from the automaton's present position; if more

than one candidate exists, one is selected on the basis of range and the

*
amount of panning of the camera required. The camera is then panned and

tilted the amount needed to bring the landmark into the center of the

field of view, and a picture is taken. The baseboard-tracking routine

2
described previously" is used to find the segments of baseboard in the

picture and to fit them with long straight lines.

Exactly what happens next depends on the landmark type. For a

door, the long line nearest the center of the picture is selected, and

the true image of the landmark is assumed to be the endpoint of the

baseboard segment on that line and nearest the center of the picture.

An additional check is made to see that the gap from that point to the

next segment is long- enough to be a passageway. A convex corner viewed

from an angle such that only one side is visible is treated as if it

were a door. Otherwise, the intersection of long lines nearest the center

*
If no landmark is in view, a suitable message is returned together
with a suggested vantage point from which a landmark can be seen. This
is one of several "error" returns that can be obtained from the program.
The program can also be asked to select a specific landmark, or a land-
mark different from the ones previously selected.
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of the picture is assumed to be the true image of the landmark, and a

check is made to see that the baseboard segments near this point have

the right geometrical configuration. The location of the landmark in

the picture gives the information needed to compute corrections for the

automaton's position and orientation.

The operation of this program is illustrated in Figure 7. In

this experiment, the automaton was approximately 7.5 feet away from a

wall along which there were four landmarks, both sides of a doorway,

a convex corner, and a concave corner. The pictures in Figure 7 show

how closely the panning and tilting brought the landmarks to the center

of the pictures. For scenes as clear as these, the program operates

very reliably. Presently, we can use this routine to locate the robot

with an accuracy of between 5 percent and 10 percent of the range, and

to fix its orientation to within 5 degrees. Since the errors are random,

the accuracy can be improved further by sighting a second landmark.

Further increases in accuracy, if needed, will have to be obtained by

improving the tilt and pan mechanism for the camera.
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i
SELECT MOST
CONVENIENT
LANDMARK

FROM MODEL

PAN AND TILT
CAMERA TO
CENTER ON
LANDMARK

Concave corner

FIND
INTERSECTION

OF LONG LINES
NEAREST LANDMARK

TAKE PICTURE,
TRACK BASEBOARD,

AND FIT WITH
LONG LINES

FIND LONG
LINE NEAREST

LANDMARK

FIND TRACK
ON THAT LINE

NEAREST
LANDMARK

CHECK FOR
CONCAVITY

CHECK FOR
CONVEXITY

I

CHECK FOR
DOOR-WIDTH

GAP IN TRACK

TA-8259 22

FIGURE 6 BASIC FLOWCHART FOR LANDMARK PROGRAM
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