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Abstract

This investigation is concerned with the dynamics of a gravity-
gradient stabilized flexible satellite in the neighborhood of a deformed
equitibrium configuration. First the equilibrium configuration is deter-
mined by solving a set of nonlinear differential equations. Then stability
of motion about the deformed equilibrium is tested by means of the ' |
Liapunov direct method and the natural frequéncies of oscillation of the

complete structure calculated. The analysis is applicable to the RAE/B

satellite.
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1. Introduction

With the advent of large spacecraft, f1exibility'has become an in-
" creasingly important factor in the system attitude stability. Early de-
signs of spacecraft were based on rigid body analysis, according to which
rotational motion is stable if it takes place about the axis of maximum or
minimum moment of inertia and unstable if the body rotates about the axis
of intermediate moment of inertia (see, for example, Ref. 1, Sec. 6.7).
The erratic behavior of the Explorer I, a satellite stabilized about the -
axis of minimum moﬁent of inertia, prompted a re-examination of the rigid
body assumption. Indeed, Thomson and Reiter2 were able to attribute the
.behavior of the Explorer I satellite to energy dissipation resulting from
the vibration of flexible antennas. This conclusion was corroborated by
Meirovitch.3 References 2 and 3 used the so-called "energy sink" approach.
Their main conclusion was thét a flexible satellite cannot be stabilized
about the axis of minimum moment of inertia, leaving as stability criterion
what has come to be known as the “greatest moment of inertia" requirement.

For a number of years, no significant additiona) work on the
stab{lity of flexible spacecraft was performed. Some work on cable-connected
space stations cannot be really considered pertinent. Some investigation
that can be regarded as being related to flexible spacecraft is that by
Hooker and Margu]fes,4 who model a satellite as "a set of n rigid bodies
interconnected by dissipative elastic joints," and forming so-called
"topological trees.”

The first serious attempt to treat rigorously the flexibility ef-
fects on_the attitude stability of flexible satellites can be attributed
to Meirovitch and Nelson.? Reference 5 investigated a sate111te with

elastic appendages by means of an infinitesimal analysis. It appears that

Ref. 5 uses modal analysis for the first time in conjunction with the



stability of fTexib]é spacecraft. ﬁt the same time, Nelson and Meirovitch6
used the Liapunov direct method to investigate the stability of a rigid
satellite with elastically connected moving parts. The motion of a satel-
Tite consisting of two rigid bodies connecteﬂ by an elastic structure was
investigated by Robe and Kane7 by means of an infinitesimal analysis. Simu-
lating a spacecraft by a set of rigid masses interconnected by massless
elastic members, L1'k1'ns8 derived the corresponding equations of motion, and
indicated that a solution can be obtained by modal analysis. Reference 8,
_however, does not produce an a1gorithh for the solution of the equations.
Thermal effects and solar radiation préssure were found by Etkin and Hughes9
'to cause the anomalous behavior of spinning satellites with long flexible
antennas. The flexibility effects on the attitude motion of spacecraft

were also investigated by Modi and Berenton10 but the validity of their
analysis is in doubt, as they restrict the satellite vibration to pTanar.

An interesting paper by Newton and Farre11]] presents a method for
evaluating the natural frequencies of a flexible gravity-gradient stabi-
lized satellite. In the process, Reference 11 linearizes the equations of
motion about the deformed équi1ibrium. As genera]ized'coordinates, the
investigators considerfcomp1ete deformation patterns of the satellite.

This prbcedure is not only unorthodox but a]éo tends to 1imit the number of
degrees of freedom of the simulation, not to mention the fact that one must
guess in advance configuration patterns. Moreover, there is some question
as to the eva]uatjon of the equilibrium configuratfon; Nevertheless, thé
paper contains some interesting ideas. A paper by Likins and ﬁirsching12
proposes to introduce the concept of "synthetic modes" in conjunction with
a "hybrid" coordinate system, where the latter is defined as a set of co-’

ordinates consisting of rotational coordinates of the spacecraft as a whole



and modal coordinates for the flexible éppendages. This idea, however,
was introduced earlier in Reference 5.

A1l preceding investigations have one thing in common, namely,
they are all discretization schemes. Some use lumping of the distributed
mass of the elastic members, a procedure referred to sometimes as spatial
discretization, and others use series trunﬁation in conjunction with modaT
analysis. In a first attempt to apply Liapunov's direct method to hybrid
systems from the area of satellite dynamics, i.e., without using any dis-

" cretization scheme, Meirovitch]3’14=]5 studied the stability of spinning
rigid bodies with elastic appendages. It should be pointed out that the
term "hybrid" refers here to a system defined by éets of both ordinary and
partia]ldifferential equations, a concept different from that used by
Likins and '.nﬁr‘s.ching.]2 Several new ideas were introduced in Ref. 13, such
as the use of the bounding properties of Rayleigh's quotient to eliminate
spatial derivatives from the problem formulation and the use of testing
density functions.

The ideas of Refs. 13-15 have been pursued by Meirovitch and
calicol®:17 for the case in which testing density functions cannot be de-
fined readily. References 16 and 17 develop the so-called "method of
integral coordinates," whereby certain integrals are identified and defined
as generalized coordinates. Then, using the bounding properties of
Rayleigh's quotient as well as certain Schwarz's inequalities for functions,
a function « bounding the Hamiltonian H from below is obtained, « < H, so
that « can be used as a testing function in conjunction with Liapunov's
direct method. The method of integral coordinates is basically a dis-
cretization scheme.

One problem that has received 1ittle attention in the technical
literature is that of deformed equilibrium, which can be referred to
mathematically as “"nontrivial equilibrium.” Such problems arise in the

case of gravity-gradient or spin-stabilized satellites with very flexible



appendages that are not a1igned‘with the satellite's principal axes. Find-
ing the equilibrium configuration can be quite a problem in itself,
especially if the governing equations are nonlinear. Addressjng himself

to this problem, FT.‘;\t]ey]8 obtained the nonlinear eguilibrium configuration
of the Radio Astronomy Explorer (RAE) satellite by means of an analogue
computer. Deformed equilibrium has also been considered in Ref. 11, but
the details are not clear and no plot of the deformed equilibrium is shown.
In seeking stability statements for the RAE/B satellite, Meirovitch19 ab-

~ tained as a by-product the nonlinear deformed equilibrium, thus confirming
the results of Ref. 18.

The present study is concerned-with.the stability of a hybrid dy-
namical system about nontrivial equilibrium. It contains many of the for-
mulations and results of Ref. 19. Qualifative stability statements are ob-
tained for the RAE/B satellite by both the Liapunov direct method and by an
infinitesimal analysis. In connection with the infinitesimal analysis, the
natural frequencies of oscillation about the nonlinear nontrivial equilib-
rium were obtained by a method developed by the first author of this re-
port.20 The method of Ref. 20 considers a state vector consisting of
generalized coordinates and velocities, where the coordinates include both
rotations and elastic,defonnations, and develops an eigenvalue problem in
terms of real quantitieé alone. The stabﬁ]ity statements of Ref. 19 and
corresponding statements obtained from the solution of the eigenvalue prob-

lem agree completely.

© 2, Problem Formulation

We .shall be concerned with the mption of é body consisting of n + 1

parts, of which one part is rigid and n parts are elastic. The domain of



extension of the rigid partiis denoted by Dp and those of the elastic parts
when in undeformed state by Dy (i‘= 1,2,...,n) (see Fig; 1). Correspond-
ingly, the masses associated with the domains Dy are denoted by my

(i = 0,1,...,0), so that the total mass is m = 120 m;. The elastic domains
are rigidly attached to Dy and have common boundaries only with Dg.

The body m is assumed to move in a central-force gravitational
field, with its mass center describing.a given orbit about the center of
force C.F., where the latter is assumed to be fixed in an inertial space.

In describing the motion of m it will prove convenient to identify
a system of axes xyz (see Fig. 1) with the undeformed state. The origin c
~of xyz is taken to coincide with the mass center of m in the undeformed
state and axes xyz themselves coincide with the principal axes of m in the
came state. Note that the system xyz is embedded in the rigid part Dg but
" is not necessarily a set of principal axes for that part. UWe shall assume
" here that the nature of the elastic motion is such that the mass center of
the entire system remains at the origin of xyz. In measuring elastic de-
formations, we consider reference frames X;¥;Z4 fixed retative to the
elastic domains Dj (i =1,2,...,n), where the direction of these axes is
chosen parallel to that of the elastic deformations. The origin of axes
X:¥3Z; is denoted by 0; and 1in general it need not coincide with c.

Next let us denote the radius vector from the mass center c to a
point in the domain Dy (i = 0,1,...,n) by hy + xj, where the point coincides
with the position of an element of mass dm; when the body is in undeformed
state. The constant-magnitude vector h; denotes the radius vector from c
to 04; clearly hg = Q. On the other hand, r; is the radius vector from 0;
to the point in question, and its components represent the independent
spatial variables associated with a point in the domain D;. Denoting by ij,

Jj, and ki the unit vectors along axes Xj, ¥i and z;, respectively, we can

write hy + 1y = (heq + x)i5 + (hyg + yidis * (hyy + z9)ky (= 0,0,0.00m).



In describing the elastic deformations, we can use the Lagrangian or the
Eulerian approach. According to the Lagrangian approach the independent
variables are those of the body in undeformed state,'wﬁereas in the
Fulerian description of motion the independent variables are those of the

" body in deformed shape. qu jnfinitesimally small deformations the two
points of view coalesce, but for large deformatioﬁs they do not. When it
is necessary to calculate the stresses in a body undergoing large deforma-
tions, the Eulerign approach is more convenient. Although we shall be con-
cerned with relatively large deformations, we have no interest in the in-
ternal stress distribution, and because of kinematical considerations we
shall find it more convenient to use the Lagrangian approach. Hence, de-
noting by uj the elastic displacement vector of dmi, and recognizing that
the vector depends both on spatial position and time, we can write it in
the form yj = “1(x1’yi’zi=t)ii + Vi(xf’yi’zi’tlii + wi(xi,yi,zi,t)gi,‘where
us, vi and wy are.disp1acemént components measured along xi, y4 and z;,
respectively. If R. is the radius vector from the Center of force C.F. to
the mass center c, then the position relative to the inertial space of a
mass element dm; in deformed state is given by_Edi = R+ hj +r;+uj.

. ame

It should be noted that, by the definition of the mass center,
n

iZo fmf (hy * x5 + Ujddmg = 0.

In view of the above discussion, the kinetic énergy'can be writteh as

n
- . 'l . "I + -
=—J Ry: ¢+ Rys dm: = —mR. - +—zJ (h. + r.
m; w~di di i 2 c = 37 520 /M i i

) oy

NI
e

b ry + ) | ()

where the first term on the right side of Eq. (1) is recognized as the kinetic

enefgy of translation of the mass center ¢ and the second one as the kinetic



energy due to motion relative to c. Dots.denote derivatives with respect to
time. Denoting by m-the angular velocity of the set of axes xyz, hence also
of the sets x; Y45 (i = 1,2,...,n), and recalling the expression for the
time derivative of a vector expressed in terms of rotating coordinétes, we

gbtain

- .. a —-I ]
ni+r_.i+~l£_i-u_i+wx(h1+r.+u1.) (2)

. . et ] -

“in which H% = u;i; + vid; * wgi is the velocity of dm; relative to ¢ due

to elastic effects alone. Introducing Eq. (2) into (1), we arrive at

R Rotgucda-ate

[ B s =

: fm (hy + rj + 4g) x ydm;

1 j

n . .
T I u% . g% dm, (3)
=1 Im

where Jj is the inertia dyadic of the body in deformed state about axes

XYZ.

Equation (3) is most conveniently expressed in matrix form. The
matrix forms of the vectors R and w are simply {R.} and {w}, respectively.

The inertia dyadic Jdd and the term on the right side of Eq. (3) require
140

further attention. The inertia dyadic can be written as Jy = ;Z, wdT >

where gé}) (i = 0,1,...,n) is the inertia dyadic associated with domain

D; when the corresponding mass is in deformed shape. The superscript
i indicates that the dyadic is expressed in terms of the base x;¥iZj.
This would reguire that we express u in the same base. It is simpler,
however, to express every Jdi in the base xyz instead. Denoting the

(0) (1)

and r.

vector r. by rs when expressed in the base xyz and X, Y. 5250

respectively, and by {r 0)} and {r( )} the associated column matrices,



(0)

the relation between the two can be written as,{r- [ ;] {

T (1)

where [2 ] is the matrix of direction cosines between axes x. Y325 and

(0) (1)

xyz. In a similar fashion, if we denote by Jd and J the inertia
dyadics when expressed in the base xyz and X Y% respect1ve1y, and

by [JS "] and [J§1)] the associated inertia matrices, then the relation
between the two can be shown to have the form [J( )] = [2;] [J( )][21]-
With the understanding that the inertia matrices imply the body in deformed
shape, we can drop the subscript d. Moreover, we shall drop the super-
script i when it agrees with the subscript. Hence, thelinertia matrix for
the entire body, expressed in the base xyz, takes the fdrm [J(O)] =

1% [Li]T[Ji][zi]. We note that [eg] = {11, where [11 is the unit

matrix. A similar analysis can be performed with regard to the third
'term on the right side of Eq. (3}). It follows that Eg. (3) can be written

in the matrix form

. 1 T . 1 n T T 70 0
T=zm iR} R} +5 I {ob [23] [31025]0} + ) 3 f [hg )
. i=0 i=] m.i .
(0 . (0, T p T |
fro g 1] tugddmy + 5 2 fm. {u3} {ujldm, (4)
() , (o), (0)
where [h; ri 0oty 1 is a skew-symmetric matrix whose elements satisfy

i

( 0 3 (0) 0 0
1m% * rgm% + “533 ) 221 “nme (hig $£) gﬂ))’ in which

is the epsilon symbol (see Ref. 1, p. 109). Clearly, {ﬁ%} represents

the relation h
“nme
the matrix notation of Q%.

The potential energy results from two sources, namely, gravity and
elastic deformations, denoted by Vg and VE,.reSpective1y, so that
V= Vg + V. From Ref. 15, we conclude that the gravitational potential

energy can be written as
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where tr denotes the trace of a matrix, and {g,} is the column matrix of
d1rect1on cosines between the direction of the vector R, and axes Xyz.
The elastic potential energy, also known as strain energy, requires
special attention, particularly in the case of large deformations. No
general expression, such as for T and Vg, can be written for Vg This is

so because an explicit form requires the knowledge of the type of elastic

members involved. For the moment, we shall be content to write

Ve (6)

where Vp. (i = 1,2,...,6) is the elastic potentia]_ehérgy associated with
the member occupying the domain D; when the member is undefofmed. We
shall return to the elastic potential energy shortly.

At this point it appears desirable to determine the functional
dependence of the kinetic and potential energy in order to derive general
Lagrange's equations of motion. To this end, we must specify the nature of
the elastic members. We shall be concerned'with one-dimensional members
capable of flexure in two orthogonal directions. Any axial displacements
will be assumed to be a result of change of length caused by the trans-
verse displacements and not because of axial flexibility. In essence, the
members are cantilevered bars undergoing large transverse displacements
(see Fig. 2). Although we shall use nonlinear theory for the elastic

motion, this will be because geometric nonlinearities and not as a result




of nonlinear stress-strain relations. The mass distribution is arbitrary,

but some of the members carry tip masses.
Letting the radius vector r; be aligned with axis x; when the bar

is undeformed, we conclude from Fig. 2 that

G) .. |
'Ia - Ii - xi li » 1 F ],2,...,n (7)
and
(1) , o
up o= g (xgut) = v (gt F w5 T = Th2seeen (8)

In view of this, the elements of the inertia matrix for the rigid member

can be written as

Jo11 = Po » Jo22 T Bo 2 Jo33 = Co o)

= J = J =N

Jor2 = Jg21 = Yo13 T 031 = Y023 = Y32

where Ay, By, Cy are the principal moments of inertia of the rigid part,

whereas these for member i are

H 32 2 2 2
Jﬂ] N JO p'i[(h_yi + v‘i) + (hZ'i + w‘i) ]dx-i + mi[(hyi + V-i) + (hZ'i + W.-i) ] -
1

LS 2 2 2 2
= fO p'i[(hxi + Xi) + (hZ'i + Wi) ]dxi + m'i[(hX'i + X-i) + (hZ'i ¥ Wi) 1

“ 2 4 2 2 2
= JO o;Llhgg + %) + (hyy + vy) Jdx; +m[(hygg + %) # (hyi + v;)]

'
. 1
itz = dia1 7 - IO pilhgi + Xi)(hyg + vyddxy - mylhyg + x5)(hyg + vq)

i13 i3

%

10



Yiga T Jize T [0 pglhyg + Vi) lhgy % widdxy = mylhys + vi)lhyy +w;)

i=1,2,...,n (10

Note that p; and m; are mass densities and tip masses, respectively, and
hxi’ hyi’ hzi denote the coordinates of the points of attachment of the
booms measured from the mass center along axes X;¥;Z; (i = 1,2,...,n).
We shall not specify the mass densities at this point.

The desired equilibrium configuration is that of gravity-gradient
stabilization. That implies that the mass center ¢ moves in a circular
orbit with'the constant angular velocity @ (see Fig. 3), and the set of
axes Xyz coincides with a set of orbital axes abc, where a coincides
with the direction of the radius vector ﬁc’ b is tangent to the orbit
and in the direction of the motion, and c¢ is normal to the motion. Note
that the orbital axes abc rotate relative to an inertial space with angular
velocity g about axis ¢. The orientation of axes xyz with respect to abc
is given by three angles 85 and {w} depends on these angles and angular
velocities éj (j = 1,2,3). Because the first term in the kinetic energy,
Fq. (4), is constant for a circular orbit, it will be ignored in future

discussions. Moreover, the last term depends on the elastic velocities,

so that the functional dependence of T is

v, va, W W) 5 3= 12,35 1= 1,250 (11)

T= T(ej, B» Vi

The gravitational potential energy Vg contains the matrix {£,}, which

is defined as the matrix of direction cosines between R. and xyz. Since

11



xyz can be obtained from abc by means of the rotations 6; (i = 1,2,3), it

follows that
Vg = Ve (ej, Vi wi) s J=1,2,3 531 =1,2,....n (12}

It remains to establish the functional dependence of Vg. This
requires some elaboration, particularly because of the geometric nonlineari-
ties involved. First we wish to distinguish between the potential energy
Vpp due to axfal motion, and the potential energy Vpg .due to flexure.

Next let us consider Fig. 4 and denote by s; the distance to any element
of mass dmi when measured altong the deflected bar and by x; when measured
atong the original direction of the undeflected bar. We shall assume that

the bar is inextensional, sd that these two distances remain the same,

$; = X;. An element of length along the deflected bar can be obtained

from
2 2 2
(ds)? = (dx; + dup)® + (av;)? + (cwy) (13)

Assuming that dui is one order of magnitude smaller than dv, and dwi,

recalling that ds; = dxi, and rearranging Eq. {13), we arrive at

1 [[dvi)2 , (i) .
du'i = - -é- [[a‘)‘(?] + [a_x'%'] }dxi 3 T = 1,2,.-.,n (]4)

so that the axial displacement resulting from the transverse displacements
is negative. Because for inextensional motion the axial force Pxi does
not depend on the axjal displacement, and, moreover, because a tensile

force opposes the motion, we have
2

25 ov; w4 2
e [ & T (e
0 ' ! :

n

Vea = = L J P .. du, =
SRR I PR UL

M| —
H.M >

12



where total derivatives have been replaced by partial derivatives in
recognition of the fact that the displacements are functions not only of
spatial position but also of time.

The flexure potential energy is due to the'bending displacements v;
and W - We shall denote the bending moment associated with the displace-
ment v, by M,; and the change in slope corresponding to an element of
length in deformed state by d¢zi because they both take place about the
‘ zi-axis. Accordingly, the analogous guantities associated with flexure
about y; are denoted-by Myi and d¢yi’ respectively. It follows that the

flexure potential energy can be written as

™M 3

_ 1
Veg = 3

i=1 Izi (My; doyq + My doyy) (16)

But the bending moments Myi and Mzi can be written in terms of the

associated flexural stiffness and radii of curvature, as follows

21 (17)

ds. . ds_ .
R i = _d_._ﬂ. . Rz‘i = d 21 (18)
M ¢"y1° b2
in which
dv:y271/2 dwsy211/2
- i _ i dx.
dsz_i = [.' + [-a-x—%—] ] dx.i s ds.yi = [.I + (’a’)'(?} ] ] (]9)
Moreover
dvi dw, .
Fe St ez v Fx T N (20)



From Egs. {20), it follows that

v,
dv s Yi
d d {“‘ dx-2
N -1 9vy dx;) i dxs
dd’z-f = d (tan d ] = = XT
X dvs)2 dvi)?
1+ 1+f~_4
dXiJ dxi)
(21)
[dwl" d?w,
d ————
dx; 2
-1 d j dx :
do . = d [tan o) - L dx,
y1 dx;) [dwi*2 dw ]2
1+{ L 1+ 1
Finally, introducing Eqs. (17) through (21) into Eq. (16), we obtain
2
1" ' 1" (doz4)
Ve = & E J M,; do,: +M . do .) =75 £ [ EI
EB 2 i1 J ey zi “Yzi yi Ty 2 i=1 Jo; ] zi dszi
dzv.]2 {dzw.]z
2 3 11
Woyid 1 4 nopag dxy? ax?)
+El; |77 Bl —g + EL; dx;
R - =T
. dei X.i
(22}

Recalling that the flexural displacements depend also on time, and writing

binomial expansions for the denominators in Eq. (22), we arrive at

. n L BZV' 2 oV 2 32w. 2
et P e (0 2B e 29
: 2 i=1 70 3X{ 2 3% Y1 \ox; L
pd
S
"2 (axi] ]}dxi - (23)

14



where the terms invo1vihg av;/3x; and awi/axi are recognized as the cor-
rections due to the geometric nonlinear effect.

In view of the above, the potential energy has the general functional

form

Vea * Vep

= Ve (vi, v, Wi wi) , 1=1,2,...,n (24)

Ve

where primes indicate differentiations with respect to X3

 From Fig. 4, we conclude that we must still account for the dis;
tributed forces pyi and Py Regarding these forces as nonconservative,
and assuming that they do not depend on the elastic deformations, we can

account for their effect in the form of the nonconservative work
W, = f (p. . Vi + P, w.I)dx_I (25)

so that the total work can be written as
W= wc + wnc = -y + wnc : (26)

where the conservative work has been recognized as being equal to the
nhegative of the potential energy.
The system differential equations of motion, and the appropriate

boundary conditions, can be obtained from the extended Hamilton's

principle (see Ref. 1, Sec. 2.7}

ts
J (6T + SW)dt = 0 ‘ (27)
t-I . : }

15



where all the virtual displacements must be set equal to zero at
t = ty,t,. Introducing the Lagrangian L = T - V, Eq. (27) can be written
as

t, .
L (6L + W )dt = 0 (28)
]

where the Lagrangian has the functional form

R w;.') , j=1,2,3 51 =1,2,...,n

L = L(ej? 9', V'{ V.s Vi, Vi’ wis W1 i
(29)

J 1 1 1

It will prove convenient to separate the Lagrangian into that
associated with the rigid domain Dg and those associated with the elastic
domains D;. Hence, let the Lagrangian have the general functional form

(see Ref. 19)

n Ei“
Lit) = Lpft) + © jo L (xgt)dx + Ly(2450) (30)

where

Lo(t) = Lole;(t), 65(£)], 5 =1,2,3 (31)

Ei(xist) = Ei[ej(t)séj(t)svi(xist)s ;i(xiat):V%(Xist),V$(Xi,t),
wi(xi,t),...,wy(xi,t)]

F21,2,0..9m (32)

Li(gist) Li[ej(t)séj(t)svi(ziat)s;i(list):wi(gi!t):ﬁi(gi!t)]

in which Ly is the Lagrangian corresponding to the system in undeformed
state,'Ei the Lagrangian density associated with any point of the elastic

member i, and L; the Lagrangian corresponding to the tip mass. Moreover,

16



%; represents the length of member i. From Egs. (30}, (31), and (32), we

conclude that

3 (s L n e pal; al ali
1 1 1
sL = T ——-.—66-+—-'Tt59- + L - [—-*:'(Sv_|+-——6v -—----r<'3\)'1
o1 985 J BGJ J i=1 U0 vy v 1 A
J
CA TN R, EORACL R ali .
+ av-lil 6vi 3W1 6W.] + 73';;;'1_ 5W.i + 3W.% GWi + aw-'i' 5W.i dX.i

+

‘ aL . 9L s
{0s 1 s + 1 ey
av;(%y,t) ovilegst) *+ 30, (05 5t) 5v;(24,t) awitz};fjiawa(21=t)

ol
1 -
* aws (L3.0) ﬁwi(ﬁist)} (33)
In addition,
’ n R.-i
e i Jo (Py3vi * Ppy Wi )dx; (34)

Inserting £qs. (33) and (34) into (32), and integfating by parts with

respect to t, we arrive at Lagrange's equations for the rotational motion

b _d EﬂL% =0 L, j=1,2,3 (35)

BBj dt BGJ-

Moreover, integrating by parts with respect to t and X5, we obtain

Lagrange's equations for the transverse displacements, and the associated

boundary conditions, in the form

als aL; oL ; 2 [sL4
il e ¢1]_3 {'{]+32[ﬂ+py1.=0,0<x1.<£i,
vy At (avq) - X avil o av;)
i=1,2,...50 (36a)
and )
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i=1,2,...5n (36b)

~

3l ; 3L;) al s
- ] - 3 1 s = - 1 ! = . =
[av—% ax-i [BV!”}GV.I 09 m (SV.‘ 0 at X,] 0

Equations similar ‘in structure to Eqs. (36) can be written for wj by

simply replacing v, by Wy .

3. Nontrjvial Equilibrium

Let us consider the case in which Pyi = Pzi = 0 and define an
equilibrium configuration as a set of dependent variables 83, Vi, ¥j
constant in time and satisfying Lagrange's equations. Because these

variables do not depend on time, they must satisfy the equations

Loop, §=1.23 (37)
J
and
ol o) 52 [oL4)
i_ 3 i] 4 2 il _ .
vy % [BV%J ax% [av;J 0, 0 < x5 <24, 1=1,2,...50 (38a)
al 4 oL aL ol
1 ] i i B _
[évé ax; {av?] av1] svy = 0, pyw dvy = 0 at x5 = 24

i =1,2,...50 (38b)

as well as a set of equations similar to (38) for W, We shall denote the

solutions of Eqs. (37) and (38), together with the set of equations for w;,
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by 850> Vio(xi)’ Wio(xi)’ where the firstAare constant and the latter

" functions of the spatial variables x; alone. - ——— -

4. Perturbations About Equilibrium. The Variational Equations of Motion

The interest lies in the stability of the system in the neighbor-

hood of the nontrivial solutions 8jg. Vio(xi)’ Wio(xi)‘ We shall seek

stability criteria by means of Liapunov's direct method, and, to this end,
we let the solutions of Egs. (35) and (36) and the companion equations to
(36) have the form
6;(t) = 850 * 851(t), § = 1,253
(39)

Vi(xi ,t) = V‘iD(x'i) + V'i'l(x'i’t)’ W-i(X.i ,t) = w'iO(x'i) + wﬂ(x'i’t)’

i=1,2,...4N

where ej1(t), Vil(xi°t)’ wi1(xigt) are small perturbations. Inserting
Egs. (39) into Eq. (30}, and expanding a Taylor's series about the non-

trivial equilibrium, we obtain

L = L{B:nsVinaVinsVs Wy W aWio) + g [—QL—-e. s 2L 5.
j0°Yi0°Y10°7i0°"10°710°740 | jl L |

~ -~ ~ ~

no {2 (el aly - 5L oL ol
+ L T g+ e o 2y ¥ 1 .
1 [} [3V10 Vit T atp 11 T avig Vit T avig Vi1 T Bwgg Wig T e

i=1 ‘o
oL 3L oLy
oy W9 T (v Vi ARERNREE TP | Li = 4
1 33 [ 32L 2L : 2L l
b~ 3 5 | 98t 2 = 040 P 0540
. k :

1%



ponfeg PR, 9Ly ep 2Ly 2 9Ly 2 oLy 2
f7 )l 7 Vi1t s Vit i T Y Tt
i=1]} 0 [3V%y V¢ avig 1 avy 1 CUE 1
L
azLi ‘o azLi ? s 32L1 2, ) 3 32L1
+ o Wy + -——Z-W! ———?-WU T j—— 0.4V
awio 1l BW%O il awgo 1l j:] 39j03ViO J1 il

2L . azii .. 32L . .
———— B Vs e B3 Vaq F ... F T B Wy

521 . 22l . . azﬂi
————— aaWey T VW F ——————— Wy Viq T .
BVTOBWiO i1Trit BViDBWiO i1741 swioavio .11 il

2y 2 2 2

acL. 3L 5 acl. atl. .

' 1 1 1" 1 ' " i .2 1 2
+ Vi v Y “"“'”“‘Wi1will}dxif+ {7;?‘ Vi * o Vi

+ 2

] 1" 1 1l ‘2
Wi02Vio Mioio 5o 3o
2 L2 2 2
3cL; 9 ¥CLs -2 3 4L ek,
i i i
+ Woe ¥+ — LW, ¥2 I BsqVz —————e— By Vsq
il . ] L j171 . MASL
BW%O BW%D 1 J_] [Bejoavio aejoavio
L. . . 221, 321,
+ *1———;~— BaWs + ——*~—l-—-v_ w.. + ——w—-%~— VoW
2650350 j1thil L V3 03W3( T dvyp9Wyg 17l
WL, . 2Ly - ]] o)
b e Weq V.t V-1W- + ...
Wi 03%ig THT 7 avggavy il N

i
o =6 , etc. But the term L(ejo,vio,...,wgo)
| J jog e o n
is constant. Moreover, by virtue of Egs. (37) and (38) and the companion

where aL/aejo = BL/aej

equations for Wy s all the linear terms in the perturbed variables in
expansion {40) reduce to

3 4. - n JQ{ afi . aLi L0 [aL_i .
2 851 * 2 — V. W {dx, t )73 Vs
Iy 3gg 31 aaillo avyg 11 g )T o il
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oL ] : .
+ oW ‘ (41)
aw‘iU 11 X.-! = RI_i

which are all linear in the generalized velocities éjl’vi]’wi1' In view
of this, if we retain terms through second order only, the Lagrangian

becomes

L=Toy T3 + Ty - Y (42)
where '
- o
3 3 2 .. 1 n e 2L . 3°L. .2
1 9 L - 1 ) 2 ]
T = - I e 9']Bk'| 3 _E f l'-—--——— V.. + - W,
2172 321 ket 2850980 i=1 |'0 _av§0 i awfo 1
* BZEi VoW, * 2 g ( azii 6, Viq + azii 8 1W ] dx
avigawig 11 1] j=1 Laéjoaﬁio jril 36503%iQ il i]J i
[%2L1 azLi BzLi .o 3 [ 2L,
+ Vio t 5wy 2 VeWiq + 2 BV
2 1 2 il : i1741 - 2 e jriit
by I (43)
+ ————— B W,
aejoawio j17i1 X = 1 _

is quadratic in the generalized velocities,

3 3 2
_ a’L
Ty = 2

. n [21 3 ( Es‘zL_i .

LI ———0 6370 + I z —— 5, V.

21 21 2
2L, 22L 4 22L

———— GV + ——m—— . R -————-—-'—GW
: Vi . 111 : 31
38309V40 263050 J 283093

+
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aZLi 32L ' 3 [ 321
ViqWsy T VigWeq|dXs + | 2 857V
avigaiig 1 aVigaMyg LA DAL B l39303vio T
+ — BiqV . BsqWiy t — B:1W3
aejoavm 31 il 26 03""10 31 1 aejoawm 31 1l
2 2
3L, . 3¢l .
+ '-"——""-"T—'— V_i-lw_i-l + -—_""-—'—J-—“ V.i'lw.i't (44)
Bvioawio avipeWip Xy = 2
is linear in the generalized velocities, and
33 54 n Jﬁi[%zLi 2, LASI:
Taq - V7 = T I 8..8 _ + I ' 5 V!
01 1 J=] k=1 aejoaeko J] k1 i=1 0 3\’%0 il BV_iO il
2/ 2 20 2( 2y
dly o Ly 2 a¢ly 2 %Ly 2 3 3¢k
+—'“';2'V'-' +——2‘—'W- +‘—;'2‘W! +""'72'W'-’ + 2 3 :
avif 1V awsy T awig 17 awis 1 521 taejpavip I
+ 3']W' + 2= VLW, +""_|_"'"—|T-'V: v"
aejoawio J 114 lavioawio 1741 VigdVip 1791
2, 2y 2 2
L. ) 5°L 3¢L 3 [ »°L.
——— Wy Wy }dxi ¥ [ 5 V?l e W?] te 2 [ T 051Viy
32Li ]
F o 0 W, 45
Bejoawm J] 'I.lJ X: = % ( )

is free of generalized velocities.

In view of the above, the perturbed Lagrangian can be written inf

the general functional term

L = L(83758572¥31-V415Vi100 o Wiy Do

(46)

=1,2,3; 1 = 1,2,...,n
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Consequently, the variational equations_can be written in the form of
the Lagrange equations, Egs. -(35) and (36), but with the subscripts j and
i replaced by j1 and i1, respectively. Unlike Eqs. (35) and (36), the

variational equations possess trivial equilibrium.

5. Discretization by a Rayleigh-Ritz Approach

The variational equations discussed in the preceding section con-
stitute a set of hybrid differential equations, in the sense that the
equations for the rotational motion are ordinary differehtia] eduatfons
and those for the elastic displacements are partial differential equations,
where the latter are subject to given boundary conditions. It will prove
convenient to transform the system inte one consisting of ordinary
differential equations alone. This can be done by using a discfetization
" procedure based on the Rayleigh-Ritz approach. Indeed, let us introduce

the notation

031(£) = q5(t), = 1,2,3

. pt3 2p+3
viq(x5t) = j£4 ¢3(x)a;{t) Wy (x5t) = P ¥3(x1)9;(t)
| (47)
3p+3 - ap+3
Voq(%5st) = j=2§+4 45(xx005(t)s Wy (xy,t) = J_3§+4 v (xp)a,(t)
(2n-1)p+3 | 2np+3
v {xgst) = j=2(n§1)p+4 83 (xp)a5(t)s wyy (xy,) = j=(2n§1)p+4 vjlx,)a;(t)

- where ¢3(x;) and y5(x;) are admissible functions, taken as the eigen-

functions of the Tinearized system. With this notation, Eq. (43) can
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where [m] is a constant symmetric matrix having the elements

2
jo°7ko
i (xp)e *[BZL (’}
M., = —————--—-—-—¢ Xz X — i, X
k f : K : k
J 0 3850940 28509V 0 )
Xi-li

j=1,2,3; k = 2(i-1)pt4, 2(i-1)p+5,...,(21-1)p+3,

i=1,2,...50

~

[ﬂ.-i 321. ( )d 32L ( )
Mes .,...._._.__.._._.- 1p x x + ___._...__._-_- Y x
k k k

(48)

(49a)

(49b)

= 1,2,3; k = (20-1)pth, {2i-1)p#5,...,2ip+3, 1 = 1,2,...5m

) 29
2 a2, 281, (45¢)
IR I TS o xy5;) + —L 6500000}
vig i0 X5 = by
.k = 2(3-1)p+h, 2(i-1)p+5,...,(2i-1)p*3, i = 1,2,....n  (49d)
8 82, T 825
g * | s OO | )
I, = 2,
S 1
j = 2(i-1)p+4, 2(i-1)p+5,...,(21-1)p+3,
i=1,2,....n (49e)
k = (2i-1)p+4, {21-1)p+5,...,2ip+3,
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Ly .20 T2
zj i 3 Doy (g D+ F—E— [ (x: Dy (% )}
0 ow

0 i = g

X.i i
= (29-1)p*h, (20-1)p#5,...,2ip+3, 1 = 1,2,...01
On the other hand, Eq. (44) leads to the matrix form

= {q(t)}[FIMa(t)}

where [f] is a constant square matrix with the elements

e g k=1,2,3
Jk aejoaéko
0 92L, ) [ o2 ( )
fop = f ———  (x;)dx; + -———~———-¢k X4
3k T 1y 88509V 283503V1q X = 44

i=1,2,3; k=2(i-1)p+d, 2(i-1)}p+5,...,(2i-1)p+3, i =

. £ azLi : (x:)d 32L (
. o= —— X )X - 1 X3
ik JO BBj(}BWiO ‘pk 1 1 aeJoawm Yk 1 ;
| X5 % 4

i =1,2,3; k = {21-1)p+4, (2i-1)p*5,...,2ip*3, 1 = 1,2,.

2 32L 32L
= J ¢J(x Jdx, + [ -

— - J(x )
0 3dypavip aekoa\'io X = 2

= 2(i-1)pt4, 2(1-1)p+5,,..,(21-1)p+3, i=1,2,....n;
k =1,2,3

U
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(51a)
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(51b)

]
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f *fz’ i,
qk_ 0 98gdwig 3

J = (2i-1)pH4,
azﬂ

j = 2(1-])p+49

k = (2i-1)p+4,
2L,

3\’10
j = (21‘1)p+4:
k = 2(?'])p+4,

from Eq. {45), we can write

Toy -

kjk="'

azf.
28509V40

A
0

Jj=1,2,3; k=

(x )dx

(2i~1)p+5,...,

2(i-1)p+5,...

(2i-1)p+5,.

(21-1)p+5,..

2(1-])p+5,-|-’

2

2y,
+ _;_..__"_..w,(x
[aekoaww J

2ip+3, i

321 .

i

.,2ip*3,
2

10

. .2ip+3,

(2i-1)p+3

vy = - Ha(t)) [kla(e)

i)]
x.

¢J(X Jog (xg)dx; + [é;"“"%-“

i0

»{2i-1)r+3,

]

; L
——-—~——-¢k(x Ju; (x5 dx; + [-ri——~——

0

1.2,...

i T

¢j(xf)wk(xi)]

X5

i=1,2,...aN

¢k(x )l{l (xq )J
&
1,2,...

i= N

where [k] is a constant symmetric matrix with the elements

3L .
- J’k = ]!253
(x;) 2 (x3)
$ X dX - [t X
K 303 i0 ¢k Xs = Rz
1 1
2(i-1)p+4, 2{i-1)p+5,....(2i-1)p+3,
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i=1,2,...,5n

il

.n: k =1,2,3 (51e)

(51}

(519)

(52)

(53a)

(53b)



~

2

. - J’ﬁ‘ 2°L; 2oL,
Jk 0 36503Wip ka(x'i)dxi - Joaw 0 wk( 1) X

i~

§=1,2,3; k = (2i-1)p+d, (29-1)p+5,...,2ip+3, i = 1,2,...,0

(53c)
[ Dt P )
ik JD 13\!2 (x ';a_v':_z'?j(x-i)(ﬁk(xi) 2 x )¢ Xs
i0 vVio
azl: '
o o3 (g )og 0xg) + 02 (xp)ep (%)
avi Oav.]D
, |
3L'i ‘
-&;;j? ¢j(xi)¢k(xi)}x L
i0 35 R
= 2(i-1)p+4, 2(i-1)p+5,...,(2i-1)p+3, i = 1,2,...,n (53d)
e = - [0 i SRRV N RO TR
s = - -———~——-¢ Xs 1o (Xs dx N b (X N (X5
- 1
§ = 20i-1)p+h, 2(3-1)p45,...,(21-1)p+3,
, i=1,2,...,n (53e)
k = (2i-1)p+4, (29-1)p+5,...,2ip+3
K E"BZL()()—azi"()()aq()()
jk=“f X ﬂJk + 211.!' X_i lle X.i IJJ"X 'JJ X‘.i
0 |owh wig I R y
32L )
* e |10 vg) 0 (x wk(x )”
i0 i0

27



32L1
- ;,—E wj(xi)\pk()(.i)
Y0 X.I
jok = (2i-1)p+4, (2i-1)p+5,...,2ip+3, 1 = 1,2,...,n (53f)

Introducing Eqs. (48), (50), and (52) into Eq. {(42), we can write

the Lagrangian in the matrix form
L= LTl + @ 70Fe - @'kl (54)

Using the approach of Ref. 21 (see Sec. 3-4), we can write Lagrange's

equations in the matrix form
%E’{%} - {%} = {0} (55)
Hence inserting Eq. {54) into (55), we obtain the eﬁuations of motion
[nlia} +([F1T - [FD)4&} + [K)@) = (0 (56)
so that, introducing the notation
[o] = [f]' - [] | (57)
where [g] is a skew-symmetric matrix, [g]T = -[g], we obiain
[ml{q} + [g1(g) + [k]{a} = {0} (8)

where [m] is identified as the inertia matrix, [q] is a "gyroscopic"

matrix and [k] is a stiffness matrix which includes terms due to elastic,

gravitational, and centrifugal effects.

28



6. Liapunov Stability Analysis

We shall seek criteria for the stabi]ify of motion in the neighbor-
hood of the nontrivial equilibrium by means of the Liapunov direct method.
This is equiﬁa]ent to the problem of stability of the perturbed motion
about the trivial solution. 1In terms of the discretized system, the
perturbed motion is described by the vector {g(t)}, so that the interest
lies in a stability analysis about the trivial equilibrium {q} = {0}.

. It was shown in Ref. 15 that the Hamiltonian is a suitable
Liapunov function for the type of problem at hand. Assuming that the
system possesses a certain amount of internal damping, however small, the
equilibrium is asymptotically stable if the Hamiltonian is positive
definite. In terms of the perturbed variables, the Hamiltonian has the

form

W=t -7 = L) Tlta(t)+ Ha(t)y Tkla(t)r  (59)

nth =z
But the function T,; is positive definite in the generalized velocities

éj(t) by definition. Hence, if the function
1 T
k = 7{q(t)} [k]{a({t)? (60)

is positive definite in the generalized coordinates qj(t), then the
Hamiltonian is a positive function in the generalized coordinates and
velocities and the equilibrium is asymptotically stable. The function

K is positive definite if the matrix [k] is positive definite. Whether
fk] is positive definite or not can be ascertained by means of Sylvester's
criterion (Ref. i, Sec. 6.7). The matrix [k] will be referred to as a

Hessian matrix.
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7. Natural Frequencies of the Complete Structure

The Liapunov direct method provides qualitative information con-
cerning the stability or lack of stability of an equilibrium configuration.
‘Simiiar information can be extracted from the system of equations (58)
via the eigenvalues. In addition, the eigenvalue problem yields results
of a more quantitative nature in the form of the system natural frequen-
cies and the normal modes for the complete structure, where the latter are
defined later. It turns out that Egs. (58) lead to an eigenvalue problem
of a special nature. The nature of the eigenvalue problem can be con-
veniently discussed by converting the set of equations from second order
to first order. Indeed, if the configuratidn vector {gq{t}} is of
dimension N, then we can introduce the 2N-dimensional state vector
{x{t)} in the form

[{q(t)}

Ix(t)} = (61)
t{q(t)}J

No confusion should arise from denoting the state vector by {x(t)}, because
thé symbo1 X; used to denote the position of a point in the elastic
members represents a spatial coordinate independent of time and not a

time-dependent generalized coordinate. Accordingly, if we introduce the

m] [0] [a] [k]
M] = ,» [68]-= (62)
[03 [kl -[k] [0]

then the set of N equations (58) can be transformed into a set of 2N

2N = 2N matrices

first-order equations having the watrix form
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[MICx(t)} + [6]x(t)} = {0} (63)
where [M] is symmetric and [G] is skew-symmetric,
=M, [e] = -6’ (64)

because [m] and [k] are symmetric and [g] is skew-symmetric.

The matrix equation (63) is of the special form treated in Ref. 20,
so that the eigenvalue problem can be solved by the method developed

there. Hence, letting

x(t)} = e*tix) (65)
where A and {x} are constant, we obtain the eigenvalue problem
AMI{x} + [G]{x} = {0} . (66)

It is shown in Ref. 20 that the solution of the eigenvalue problem (66)
consists of 2N eigenvalues XA, and eigenvectors {x}r'(r = 1,2,...,2N),

where the eigenvé]ues consist of pairs of pure imaginary éomplex conjugates,
Ap = £ iwp, and the eigenvectors also consist of pairs of associated com-
plex conjugates {x}, and {x*}, (r = 1,2,...,N). Moreover, the eigenvectors
are orthogonal in a certain sense. Reference 20 provides an algorithm where-
by the eigenvalue problem can be solved in terms of real quantities. The

method will be used later in this work to solve the eigenvalue problem for

a specific spacecraft.

8. Lagrange's Equations in Explicit Form

Lagrange's equations, Egs. (35) and (36), are written in a

general form. Before obtaining the nontrivial equilibrium and the
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corresponding variational equations, we must express them in a form in
which the various coordinates appear explicitly. By virtue of the assump-
tion that the satellite mass center moves in a circular orbit with

2 ip Eg. {5). Moreover, the

orbital velocity &, we can replace k/Rg by @
first tefms in Eqs. {4} and {5) can be ignored because they are constant.
In view of this, if we recall that the Lagrangian can be written as
L=T-VYq - VEA - VEB’ then we can substitute Egs. (4), {5), (15), and

(23) into L, and obtain

L(t) = 3 T30y + wiTeky + 7 + 2 Per[a(0)]

3 2., Trq(0 LRI 2, .2
- 5 0°{8,} Lol )]{na} -5 .z ! [Py (vi™ +wih)
‘ _ i=1 70
+ ELvi200 - 2 vi®) + E1 (1 - §.w'2)]dx | (67)

where Py; is the axial force at any point of the slender rod, and

S L B VR L AR 7 (682)
i=0

i=0

(K} = 21 [[21 o080+ 0 00 re 9 Tei e, + m, [t ) {0)

W0
1

][zi]T{ﬁi} I o (68b)
2

M3

fﬂi RN TS R }| (68c)
1 0 it L L i i X; = 25

PO

.i
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in which [J(D)} ié the inertia matrix of the body in deformed state in
terms of the reference system xyz, {K} is an angular momentum matrix due
-to the eIastic've1ocities, and Tg is the kinetic energy due to the elastic
~velocities. The elements of [Ji] are given by Egs. (9) and (10). Intro-
ducing the notation

-~

iy = p,-[(hj',i+v1.)2+(hz1-+wi)21, J571(25) = mi[(hy1-+v1-)2+(hz1-+wi)21 -y

[y
I

| , |
22 = oilngitg) gy )21, 340 (00) = my i+ ) 24 (0 404)2]

Jigz = eillhggix)Pihy#vi)2s 9i5a(a) = mi O 4% 24 (hy v

X =2,
1 1
I512 = 421 7 =ilbgix g hygrvgds Jyqp0ag) = Jipy (03] = -mlhy
| | |
+x'i)(h.yi+y1')[xi=2.1-
Jiqg = Jy31 = =04 (hes#xq ) gty )y J5q3(85) = dizleg) = -my(hy
) gy o
i 1 1
Jing = Ji3p = ~plhy Vi) hzitwi)s Jyag(s4) = Jigp(4) = -mylhy;
Hidhgitid |y ;
i i=1,2,...50 (69)
we can write
85 - - |
(970 = | 1 D32ex; + [95089)] " (70)
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In a similar way, from the second of Eqs. (68), we have

n 2'1. " .
0= ] T ke () ()
i=1 [Jo | |

In view of the above, the Lagrangian densities can be written as follows

[1-(x1 ,t) = —{ }T[J( )]{w} + {w} {K b+ 91{u ¥ {u o+ —ﬂ Zer [J(O)]
- {E ¥ [J(O)]{Ea} - xi(v + w'z) v$2(1 - g—v{Z)
2 .
- ;—EIyi Wit - gw%z), P12, | (72)

whereas the parts of the Lagrangian associated with the discrete masses

are

Litasat) = 3 w000 (203w + 1) Tek; ()3 + 5 w3 ey
. X744

2ol )1 - 2 Pyl (73)

+
i\)j--‘

From the context it should be obvious when brackets and braces denote
matrices in Eqs. (67) through (73) and when they do not.
| Substituting Eq. (67) into Lagrange's equations for the rota-

tional motion, Eqs. (65), we obtain

[a—g— {w}T] 87wy + [5%—

T 2 (2 T 4(0)
3 fw} ] (K} -3¢ {E‘EJ" {2, ] (4940}

% [ @ w0y 0 52023 ()
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Moreover, Lagrange's equations for the transverse displacements v; are
1 T
5 {u) ( [JIO)J] W) + (Wl f——— 1K }] 1o? tr ( [J‘O)J]

-3 g,V [ [J(O)]]{la - 5%.{{M}T 3 1K) + 91]

Y
v n2 2 ) n
- 2 (= Pyivi + 2 ELy vivy )¢ [-EI,; v, {1
o%; xivi ?.A zi 1 axiz Frzi i
5 v 2)7 + =0 0 - 1,2 (75a)
'2’”1’ ] py_i = . <x.i <E1' s T = lafsseaghl .

which are subject to the boundary conditions

-(p 5 e1.. V;z) vi+ 33;-[E121 vi (1 - g-v§2)]

xi =¥ Fzi
+ L a?(1w7 2 [J(O)]{w} v tr g 0007 30" - 10000,
1

({ 32 = (KE+ o ¥3) = 0

at x1=21, i

1

1,25...40 (75b)

n 5 ] =
EI,; V) ('I-é-v1) 0

v. = 0, v% =0atx;. =0,1=1,2,...,n (75¢)

Similarly, Lagrange's equations for the displacements W, are

. %'{w}T {53? [3§°)]]{w} Ny {-__ e }] 1a?tr (55;‘L3§°)]]

W
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2 T|a (0 3

W1

(1

Mjen

2 .
| ||2 3
-EI . w,

2 .
- g—W; J1+p, =0, 0<x <hj, 1=21,2,..00m

which are subject to the boundary conditions

~(Py: - 2 FI
( 5 E

X1

II2 L] L1 5 12
21 Wi°) wi + gﬁ;-[EIy1 wi(1 - 5 Wi V]

(76a)

4 ; a2 [{ 2 [a(o)] (W} + tr 2 [a(o)] -3 (1037 B [J(O)]{SL }

R S T 8 _ ¥ opatg.l =
v [{m} s 1 p1w1J 0
tat x =%, 1= 1,2,...,n
il _

n 5
EIy.i W.i(1 - -2-W

=
]

>

=
u

0 at X, = 0, i =1,2,....n

9. Equilibrium Equations in Explicit Form

For a gravity-gradient stabilized satellite, the angles 05 (j =

1,2,3) are measured relative to an orbiting system of axes. The orbit

(76b}

(76c)

being circular, with the orbital angular velocity being equal to @, the

orbital axes rotate relative to an inertial space with angular velocity @

~about an axis normal to the orbital plane. This axis is denoted by ¢ (see

complete definition later). Hence, the angular velocity matrix {} can

be written as

36



{w} = al2.} + {w}, (77)

_where'{zc} = {2¢(05)} is the matrix of direction cosines between axis ¢
and the reference system xyz, and {wl, = {m(sj,éj)}r is a matrix whose
elements are the angular velocity components of system xyz relative to
the orbital axes. They are linear combinations of the velocities éj
(i = 1,2,3).

The equilibrium equations can be obtained by deleting from Egs.
(74} -'(76) all the tems involving derivatiﬁes with respect to time.
This implies that we can replace {w} by @{2:.} in these equations. Hence,
the nontrivial equilibrium must satisfy the general equations for the
rotational motion

TRUMOS 5‘2’; (et - 30 0001 2 gy = 0, 5 = 1,2,3 (78)
J

as well as the boundary-value problems defined by the differential equa-

tions
0 ~(0)
oo o 100 + e 20 - s S 6500
+ 5%;'[(Pxi - g-E r2)v ] - 5;_.[5121 1(1 - —-v )]

1

0<x; <5, 1= 02,000 (79a)
and the boundary conditions

-(Py4 —g Z,v;' )v +-—)(—1;[ 2ivi(1 - % :2)] +]2-92 (2} T [J( )]{z }
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? ,0), . T ® (0)
av; L9 ].- 32} gy 1957102, =0
at xi=£i, i=1,2,...,50 |
- EL;vi(1 - E.v-z) =0 (79b)
V.l' = Dg V_% = 0 at x.i = 03_ 7‘ = ]’2’---gn . (79C)

Moreover, it must satisfy a set of equations similar in structure to Egs.

(79), but with v; replaced by W,

10. The Variational Equations for the Discretized System

The variational equations for the discretized system Qererbtained
~earlier in the form (58), where the métrices [m], [9], and [k} are defined
by Egs. (49), (51), (53), and (57). Although the equations just mentioned
have the advantage of revealing the symmetry of [m] and [k] and the skew-
symmetry of [g], the formulas for deriving the elements of the matrices
are not the most suitable from a compufationé] point of view. Indeed, we
wish to present a procedure whereby the actual defivatioh of the variational
equations is perfbrmed by a digital computer.

Consistent with earlier notation, we shall denote quantities
~associated with equilibrium by the subscript 0 and perturbed quantities

by the subscript 7. With this in mind, we can write the Lagrangian in

the form
L=1Lg+ Ly (80}
Ly = —-{ } [J(O)]g{m}o + {N}E{K}O + Tgp *+ %_92 tr[J(o)]0
- g-ﬂz {ﬁa}g[J(o)]o{za}o - Vgp | | C(81)
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and

T - T : 1. . . T..(0)4
L = N gt + L 1o [Tt + F wrgla! @

. T
+ {m}1T[J(°)]]{m}0 + {m}jT{K}O + {ulhy{K}y + {m}-IO_{K}-l + Ty

- : T :
+ %.92 tr[J(O)]T . anz{za}1[d(0)30{za}o - g-nz{za}I[J

-5 92{2 } [J(O)]1{z g - 302 {231 [J(D)]]{z Yo - Vg

in which

Lo

{w} = {m} + {UJ}-] = Q{Ec}o + iz1[[§§_-6{w}] 'I [55—1;]—{&}] }

Nf—*

3 3 : 52 _
I fl———{u}|4;9; * 2y ——=——{w} 9394
i=1 j=1 Be-ioaﬁjo aajoaem _

3
{Ea} = {Ea}o + {Rca}'l = {,Qa}o + Z

3 .
—{251|4q;
i=1 [391‘0 a] ‘

303( 2
AN ey e LT
i=1 3=11%%10°%30

™| =

(007 - _'z'ouiftai][zi] : At ]TU [3;Jax; + 94 (s )J] [24]
'.'_"

[J(D)]O + [J(O)] [J(D)] * E [”'] “ Hzgm] il
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(82)

(83)

(84)



831 ] 8231 2 BZJi BZJ1 2 d
+ |, 5 |——viq + ViW; Wi1| %%
Wi i1 2 av?o il 210 Ll A B B 3W$g il
r— - . .2
3di( L3 adi(z ) acds (2 2
o | Mo vip(24) * i8] i1(24) ?1" 1(21) i1(%4)
Wig | Mg V10
. )
3%J. (2.} 1 (@ J'(R')
ey Ca IWea (s ) + 12 (E ){0e4] (85)
BV{0Mq e (eg) + 7 awig

L
n 2:' BR- B’k ak' ak'
1 i . i i ' i !
{K}, = ¢ J NI, N P N N Rt e TR 2L R, rverme B2
1 i=1 Jo {aviﬂ} il {3wi0} il {avio} il {Bin} j]
a%K, 22K T LTt
¥ LW w;qldx 23
+ woo (23) + {———p vi (24 7 1(24)
[ Mg il 3Vig il
2
3 K (2;) 3%, (2;)
+ vipleg i {eg) + do——1 viy (24 w37 (24) (86)
avygauggl TN T avigaeggf 1
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Note that Egs. (83) ~ (86) represent Taylor's series expansions of {uw},

{25}, [J(O)], and {K} about equilibrium. Moreover, we have

and
n | re;
_ 21 1 _.T- N
Tey 5'151[10 pjiay} {ui}dxi + mi{ui} {ui} x; = 21}
14" Jﬂi e 2, . 2ydxe + e 2, . 2)‘ (88)
2 PR PR L B FEies B A1 B K P 5.
as well as

oW 0 2 5 ow 2 '
+ EI 1 1 18] +lgx. (89)
7 [3"12 ] [ ’ {3"1 ] } 1
and
5y on Vip 3V Win W aviq)l wag)2
R JE1 o o Mio 2Viy |, BWap gy fAviy) (oW
Bl -2 52y Jo | X1 axy axy aX;  O%; 2%, J 3X;
2., 12 2 2
3
A v]ol 3 V;O avﬂ ) E—EI ? V%O]Z[avi]]
z1i i Z1 .
2%, J | axg 3% J ax; J
fav. 12]{32 ] 2 ] 2 ]2
v v, | aly av, 2| ]3%y
T+ 2 EIZ'] 1 - é i0 i0 il + EIZ-I 1 - _g_ iD il
2 ax; 2% J axZ o c ey J ax¢ J
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2, 2 2 ]2 ’2
5 EI aww] " 10 aw‘,] -5 il M
- yi {axi } ax? § X 2 "yl T2 J o1 J
I 2.2 2 ] 5 ]2
+2 Bl |1 - 5-[3w‘°] i w%”] : w%] + Ely |1 - 51 ™50/%]|? w}]
yi 3 ; 2
] |24 J 3x j axE I%, J ax ]
M.n 3W.q | OW, ] 22w, I
- 10 EI.. i0 i0 il] i1
Thaxg axg (e [l ek | O (90)

To obtain the variational equations in terms of the discrete co-
ordinates qj(t) (i =1.,2,...,2np+3), we must insert the modal expansions
(47) into Ly and perform the indicated integrations over the spatiai
variables x; {i = 1,2,...,n). Because the resulting expressions are very
lengthy, we shall not write them explicity, but proceed with the derivation
of Lagrange's eguations instead. To this end, it will prove convenient to
denote constant terms by the subscript ¢ and terms that are linear in the
generalized coordinates qj(t) and generalized velocitfes éj(t) by the sub-

script 2. This enables us to write

oL
- {wﬁ] gt iy e [,

L
+ ([O1)), tuly + ({K}1)i} i=T1,2.3 (91a)
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i N r{w}T] {——3 K ] ' el {—*{K}] + [———3 T }

5L 2 [3c. w 7. El

BQj l 1 an. 1)C 0 BqJ 1) BqJ 2
j=4,5,...,2np+3 {91b)

24 -——{m} [J( 11, (0} -—~—£w} [J(D)l r{m}
95 |99 o|* 30; 0 )

»

‘ {
¥ ([J(O)]]L {w}y + ({Kh]z} - 302 [5—23 {za}h [J(O)]Q {23}0]

- 302 (_.'E}.; (2 }']FL [[J(O)] [{26\}1]2 + [[J(O)J ) {Ra}o}

&

’ j = 19233 ‘ (Q]C)

aL
8l T
T W [2 (5-3; raf0)y ] tulg + [ K ] ]

(o, [ v

1.2 0 3.2 ., 4T (0)
5‘9 sz ( [J( )] ] 2.92 {ga}o {aqj ra ]TI {2 }0

of. 1) [a 0 8
- 30 [H }1L [‘”’qa [J )] ] {23}0 + [gqj VE]L

j=4,5,...2np+3 (914)

which enables us to write Lagrange's equations for the perturbed motion

in the compact form

43



| T 07 s (o T 0)y
[533- {m}1L [[J( 1, {m}()]"'- (5-3; {m}1L [[J( 1, [{m}-l}g

S (
(0)4 2 T 0
+ [[J ]TL{M}O + {{K}i]’l - 30 ngJT {Ra}‘L \[J()]O {Ra}o]

T . ’ ~
- 302 [5-3- {ga}]]c {[3(0)30 {{aa}]J + [[J(O)]T 2 “’a}oJ

J .
_d (0)- - 3 T (0)
SN % 11 I 1 S Ao W% Y ) N /6 L I S A W
o gy ) (5 ] g5 o] [ e,
+ [[J(O,)]]L (v}, + [{K}1]J>,f 0,j=1,2,3 | (92a)

T/1 \
(w}y <-2— {ﬁg [0(0)1 J Wy, * [an (x, £>
(©) r
: ({w} } <[3qa (97 L Wo * 547 {x}]D

1.2 3 (0) 3.2 (0)
+ =0 3 ltr [J - 20 {JL} J {e.}
2 aqj[ ]]]L 2 0 {an [' ] 2 *o

a2 T (0) 3
ot ], [y 00, v v

i (
.4 AR A Pl B I B ;
¢ <l{w} } [T X3 ] w, [aﬁj {‘K}]L [aéj TE]L> 0

§ = 4,5,...,2np+3 " (92b)
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As mentioned aiready, the advantage of Lagrange's equations (92) over
those derived in Sec. 4 is that Egs. (92) permit automatic derivation by
means of a digital computer.

Before specializing the equations to a particular sate]]ité, let
us derive an expression for the axial force P,y in terms of matrix nota-
tion. The axial force P,; is due to centrifugal and differential gravity
effects. Introducing the modified potential energy density associated 7

with member i

V; mod = - %.532'({2c}T[31(0)]{zc} + r[a{07 - 3{ga}T[3_§°)']{za})
L (a0 1) + 6ol 0]

- 3{za}T[J§0)(xT-)J{saa})a(xi - 24) (93)

where the terms inside parentheses and multiplying G(Xi-zi) are due to the
tip masses, the axial force density can be written in the form

Vi mod

Pyilxs) = - 2%

1

- L2t g + sl - s T30, ()

in which we introduced the notation

GO7 = 2130+ 2 ) To0xpon) (95)

Observing from Eq. (67) that P,; is multiplied by (v%2 + w%z), we ignore
any transverse terms in [J$0)];, so that using the first of Egs. (68) and

Eqs. (69) we obtain the approximation
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0 0 ¢
{7 = 2(hyg + xi)<ipi +_m16(x1-21):> 207 {0 1 of [g51  (96)
0 0 1

Inserting Eqs. (95) and (96) into Eq. (94), we can write the axial force

Pxi at any point X3 in the form of the integral

2 R . T j A 0 1
Pei = | P, (g5)dg; = (1) [ ]Jg ) (67)dg;1{ac)
Iy, 1 X
i i
PN i ~(0)' |
+ trl fx‘ Jgo)'_(Ei)dﬁi] - 3{Jla}T[ jx’ JEO) {(£5)dE5112,1) (97)
; i

where, assuming that p; = const, we have

i ~(0)" - 2
[ 337 6000 = iltnggran)? = (hggox)?]

i
i
0 00

+ 2mg(heg+2 DI [0 1 0] [24] (98)
0 0 1

It follows that the desired expression has the form

_ 2/ 2 2
Pyi = @ <§ pillhyi*24)" = (hyy¥x;)°]

0 00 0 00
T T
10 1 0| [eiltech - trle3]" [0 1 0f [x;]

0 0 1] 0 0 1

- T
¥ mi(hxi+£i)> {ach L2y

46



0 ¢ ¢
- 30,1 Le51T [0 1 0] [eiHey (99)
0 01

11. The RAE/B Satellite. General Formulation.

a. Equations of motion

Next let us specialize the equations to the case of a satellite
consisting of a rigid core with six flexible booms, as shown in Fig. 6.
First, we wish to determine the matrices {2;] of the direction cosines

between axes X:¥5Z; and xyz. From Fig. 6, it is easy to verify that

[ ca Sa 0] [~ca Sq 0

{231 = {-sa Ca ol , [25] = {-sa ~Ca 0
| 0 0 1) _ 0 0 1]
-ca -Sa 0] [ ca -Sa 01

[23] = | So ;Cu or [£4] = So Ca 0 (100)
|0 0 1] 0 0 1]
0 SR CB] T 0 -$8  -CB

[25] = ] 0 0 ’ [26] = 1 0 0
0 C8 -SR] | 0 -c8 S8

where sa = s5in a, Ca = €0S a, 5B = Sin B, and cB8 = cos 8. Moreover, to

write the angular velocity matrix {w} in explicit form, we must specify
the rotations e; (j = 1,2,3). Assuming that system xyz is obtained from
‘system abc by meéns of the rotations 6o about y, -87 about x, and 93
about z, and recalling that axes abc rotate about c with the constant

angular velocity @, matrix {w} can be shown to have the expression
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)
|~(s8y cog + 587 CBp S83) ~c83 €8y s83 O |4
{fw} =0 592 583 - 567 C92 C83 + 563 CB] C63 0 92 (]0])

€87 ¢6y 0 564 1 éBJ

where s64 = sin 81, €8y = cos 01, etc. Because the direction of the
radius vector R. coincides with that of axis a at all times, the direction

matrix {na} can be written as

cs coz - $07 592 $83
{23} = {-{coo so3 + s8y sop cd3)| (102)

It will prove convenient ta rewrite matrices {w} and {2,} as follows

W} = [oly [6¥]y 6} + 1623 + 0 [o]3e]y 10}y (103)
where
- - r 1
ceg se3 Of -1 0 0 0
(61, = |-s63 co5 O] ., [6"]y= |0 coy 0f . {ol3=40
0 0 1 0 se; O 8
! d 0 s 0 | %)
B T f 3 (104)
] 0 0 ~sez‘
[e]1 = |0 c8y -sBy| » {8}y = 0
0 B
L > ] CB.IJ [ 682 J

Introducing Eq. (103) into (4), and reca}]ing Eq. (68), the kinetic energy

becomes

48



1= 1w’ 7w’ fE
- L' te*]¥ [63] 19093 [e35 [6") 63 + 837 [0*]] L3} 10101 o,
+ L] 10007 gy + (3T 0¥ [03] 10 ¢+ 3] 10+ T
+ 0 (03] [o1] o1} [3(0)] [o]y [6*]; 63 + @ 13] [s]] [e1] [3(D1 13,
v 0 03] [e1] 61 (k1 + 3 o2 (03] [o1] [ed} [0 o1, [o1y (o3,

= 1 (o) [0¥]] [0%] [6%]y 183 + (83T[6*]y [03] V] (63g

(8T [87) M+ ;“ J33 éi + Kgog + Tg

v a o] [o1] [0%1 [0%], €83 + o (03] [o1] [e1} [9] (03,
+ 8 {a}; [e]{ {K*} + %,92'{e}g [a]{ [9%1 [e]y (e, (105)

where [J*] = {8]5 [J(O)] [83] and (K*y = [e]g'{K}. Moreover, inserting
Eq. (103) into (5), and recognizing that {na}T = - ({e}é)T [e]{ (o)1,

we obtain the gravitational potential energy in the form

vg = - 3o or 0007+ 202 (o) re3] 103] 190T Lo, Lo, (-t03,)

8}

- Lo o 014 302 (copp)' [01] [9*] Lo 1oy (106)

where primes indicate differentiation with respect to 68p. Expanding the
matrix involved in T and Vg, and recalling that L = T ~ Ve - Vea - Ves the

Lagrangian L can be written in the form

R U O LY kL2 * 22
L= E'[J 7 81 * (355 %8y + Jaz 5%y + 2 Jpg s6ce) 5
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+

2 (J53¢0) + J33587) 8pb5]

| ' 6 2 .2 .2

¥*- * * - % ., '[ . .
- K181.+ (Koceq + KBse]) 8p + Ky 83 + 5'151 Jm (ui v F Wi)dmi
' i

+q ({9159, + 37, seqcey - )3 cojcey)ey + [-dy, coy s6p

*

*
- d 33

oo $87C61CE * J

581chyChy - J?s $9y58p + J;3 CBsy (Cza]
- s%67)16p + (U35 cojcoy - J73 502 - Uy, 567CO2)83 - KY s6,
*
- K5 sojcop + K§ corcop) + 02 [7 {3y + dp + d33) + 7y (578

. 3c292) + %’Jz2 5261 (C282 - 35292) + 4 J?Z §61589CH7

*

a3

1
2

6 [ | (v, 2 [aw.’z

2 ] 1 i i

- C e )] - E I P . —— + RN | dx.
29 " Tyl { ] } i

c291 (Czez - 3s%9,) - 4J;3 cOys8p Coy + 023 561C67 (35292

ax,-

.2 ' _ A
i g {fl_] ] d, (107)

To obtain Lagrange's equations for the rotational motion, we intro-

duce Eq. {(107) into Egs. (35), and obtain

* * Z »2 +* * . .
[(335 - 952) seqcoy + Jpg (cPoy - s°61)105 + (37, sy - 33 ¢0y)818,.
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+ (-J§33se] + J§3 €8y)6564 - (KE s81 - K; ca1)é2
* . * * * *
+ Q {J-lz CBTCBZ + J-l3 SB]CBE)B'! + [J]Z SB-ISBZ - J-|3 CB]SBZ
+ (935 - J5p)(coy - s209)cop - 4 Jpg cBysoyCeplé
95 + 355 co1c0p)b3 - K} K3

- (35 se7c07 + Jog ca1c92)e3 - Ky ca]ceg - K3 s81 cop}
+ g2 (4 J?Z cH7S8pcE7 + (J;Z - J§3) $87C8 (c292 - 35292)
+ 4 J;3 $01s8ocen + J53 (c261 - 5261)(35282 - c292)]

d * < * . * *
- a,‘t- [J'” et - (J'lz ce + J-Is 59])92 - J}3 93 - K-l

+ 0 (J;1 sgp + J;Z $87C6p - J73 coycep)] = 0 {(108a)

gf{[df1 cop - J?Z 5071500 + 0?3 co150,167 + [-97; celce? + d;z se1sazcei
- J33 coysaysey - Ji3 soycey - Jog sea(cley - s207)16, - (355 coyses
+ J]3 cop - J33 s01s02)d3 - Ki cop + K} seysey - K3 coqsey)
+ 92 [4 37, sep cop + 4 37, seq(c2e, - s%ey) -‘4 J;E 526156,C6y
-4 JTS ce](czez - s2g5) + 8 053 se1c91592§92 -4 J§3 cze]sezcezj
- 95 (133, cPoy + 3% sPo; + 2 D55 soyceyléy - (], cop + ok $89)81
+_(J§3 coy + J3, $61)63 + K3 coy + K3 seq + @ [3J¥2 CH1562 |
- 335 $67¢87Coy - J74 561532 + 135 (cZey - seq)ce,

+ J§3 soqceqcez]} =0 ‘ . / . (108b)
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* 2 * 2 : * '2‘ * * " P
- J12 57 + (J_12 c“ey + Jy3 se]ceﬂez + [(.122 - Jyplcey + J23 591]9192
* - . * T e a * T * . .
g3 8983 * Jy3 Coy8p83 * Ky 01 * Ky 818y
+ 9 {[-2 J], s6, * (J;‘1 - Jp,) s87C8, + U35 coyc0p18q

(33, - JJp) ceqsey - 2Jy, s8yce1cey * J;3 561582 |

+

+

J;3‘(CZB1 “7529])C92]éz + (J;B 592 - J?S.SG]CBZ)é3 + K; $67

Ky soqcep} + a2 [-3F, (s%e; - 3cZep) + 4(J3; - J35)s69585¢8,

+

J?z 5261 (6282 - 35282) + 4J53 C87565CHo

. , . .
973 se]ce1('c262 - 35262)] - ’g'-f [-973 61 * (d3 cop + J33 567)82
+J33 83 + K3 + 9 (-J}3 s6p - 53 seqcep + J33 cejcop)] = 0 (108c)
" Considering Eq. (36) in conjunction with Eqs. (69), (93), (100),
and (102), and letting i = 1, we obtain the differential equati'on for vy

py {(hyy + X]) [(m]Cu + mzsu)(m]SQ - wpCa) - 302 (za]Ca + laZSa)(Eaisq

Lapca)] + (hy] + vy) [lwjce + wZSa)2'+m§ + 292 - 302 <(£a]Ca :

+

2 ' .
2azs0)? + 2,30 1+ (hyy + wpdluglusa - wyca) - 30° 23 (24750

2926)] + Wy (cawy + sawp)} = Zppq [-(wy + hyy){wrca + upsa)

+

(hx-l + X-I) wy + ':"l]

3 /2 o 2, ,2 2
-é-iT <-, 22 {(I&C]Sa - £c2CCt) | + 2‘(:3 +2 - 3[(Ra'|50‘. - Eazca) _
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2 y ) ]
+ 2y30tx G oqllhg + )2 = (hyy +x)2T +mp (g + 21D} ¥}
5 1 g 32 : n 5 . '2 =
PR )t S LBy v (- 2Tl teyy = 0,
1
0 < X'I < -Q,]

which is subject to the boundary conditions
vi(0) =0 , vi(0) -

my {(hxl +27) [(w]cG + wpsa) (m]Sa - wpca) - 3 92 (£a1Ca
+ 13259) (2g75a - £59¢a)] + (hy1 + vy) [(@]Ca + m25a)2

+ b+ 2 o

woCe) - 3 Q2 223 (2315a - 250ca)] + Q] (cowy + sawp)

3 .
T [~(w1 + hz1) (w]Ca + szu) + (hxl + 2]) wz + v]]

2

1

R.]) Vil +“5‘EI \4r'\.!"2
1 2 "zl Ty o

+

+ah [H21V1(]‘ V1)ﬂ Xy = 2y =0

EL; vy (1 --—v1 )1 =420

Similarly, the differential equation for w, s
p1 {{hyy + %) [-w3(wqca + wpse) + 30° 2a3(2a1€a + £,980)]
+ (hyl + V-l) .[m3(u}'|3a - wgCa) - 392 2'33 (£a1Sa - JlaECa)]
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(10%a)

(109b)

p
- 3¢° <(Ea1Ca,+ 2a25a)2 + 2a3>:]*'(hz] + wq) [93(m1Su

o? <(Ec-|5a - ECZCa)Z + 23 + 2 - 3[{2,150 - raazcae')2 + 2a§]> (hyq
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2 2
1 + zaz)]

+

2 . 2 2 ..
(hzl + wq) [w] *a, 4 202 - 30° (p.a

. ’ ]
2 (m]Ca + wZSa)} - 5T Pl [(hx1 + x]) (mISa ~ wZCa)

+

' . s /2 2
(hy'l + v-l)(m.[Cu + woSa) + Wy ]~ E)Z]_ <— Q {(Eclsa - Rczca)

2

+ +
£c3

2 2 |
2 - 3[(2 50 - £,0ca)" + 133]}-5{-;— p1 [lhyy + 21)2

2 . ‘ I 5 ' u2
(hx'[ + X'l) ] +. m](hx] + 2:])} W] + vl EI,}’] w1w] >

32 n 5 12 :
;_)(—2- [-EIy]WT (] = '2— w’] )] + Pz] =0 , 0 < X'I < 2] ’ (.’]03)

+

where Wy must satisfy the boundary conditions
‘w](o) =0 , w(0)=0 . ~ (110b)
my {(hy1 + 27) [-wzlwyca + wpsa) + 30° 253 (237Ca + £505a)]
‘+ {hyy + ;) [uzlwysa - wpca) - 30° 233 (J;a];a - 59Ca)]

z 2 2 ¢, 2 2
(hpy +wy) [af + o+ 20° - 30° (2.5 + 2,5)]

+

- N
V-l (m‘ICa + mzsu) - -a—-_-t— [(hx-l + JZ.]) (w'ISOL - wZCa) + (hy] + V]) (m]Ca

-+

. 2
wpSa) + wil - @ <(2C]Sa - 2.'c2ch)2 + }ch + 2 - 30(e 50

2 -
2a2c°‘)2 + Ea34:>(hx1 * 4wt 4 g'EIy1 w]wfz

___3__ n 5 ¥4
¥ 3)(" [EIy]W] (] _‘:2- W] )]lX] = E" =0
(110¢)

" 5 12y
EIﬂw] (1 - 3w )|x1 —
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In the above

- 2(s65c8, + 507C6,503) - c93é] + ca1se3é2

m] =

wp = (sByS83 - $01COHCE5) + 58367 + CoqcOghy (111a)
wy = QCB]CGZ + 59162 + 63

2'a-' = C62C93 - 591582593 ;
Rap = -{cepse, + 56156,C0,) | (111b)

2 -(sezce3 + 597C6,503)

cl

fep = S69S83 - S87CH,CO3 ' (1Mc)

QJCB = C6~|C62

The equations of'motion and boundary conditions associated with the booms
2, 3, and 4 ére obtained from Egqs. (109) and (110) by replacing a by |
m-a, mta, and 2m-o, respectively, and, of course, éhanging the sub-
écripts of vy, and W accordihgly.

Following the same procedure as that used to obtain Egs. (109)

and (110), the eguation of motion and boundary conditions for Vg are

Pg {(hXS + 35) [—m1(w256 + w3CB) + 392%&1(26258 + Ea3CB)]

2

3 + 292

2 2
+ (hyg + v5)luh + u - 38° (335 + 1,301 + (b5 + wg)luy(ugse
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- wzcs) - 392 231 (2a358 - £a2cs)] + (wscB + wasa)ﬁs}

- %E-ps L{hg + Xg){wpcB - wysB) = (hys + w5){wssB + w3cB) + 05]

3 2 ,. 2 12 2 ‘ 2
" g (O {agy * (2908 - 24358)" + 2 - 3[e ] + (2,008 - 2,358)°]} x
1 , 2 2 ] ) 12
{E oy [(hXS + 25) - (hxs + X5) 1} Vs + > EIZ5 VSV'S
32 yh 5 2 .
2 [ EL; vg (1 - 5 Vs )] + Pys = 0 ., 0<xg <25 (112a) -
5 , .
vg(0) =0 , vi(0) = 0 (112b)
5 1oHg 5 . 5 |2 ' . -
7 Elpg vg¥s® + 5 [ELg v (1 - 2vg")] xg = tg 0
‘ (112¢)
EI LI [ _E_)_ V"2 =0
25 ¥5 ( 5 5 ) Xg = 5

and those for"w5 are
05 ({5 + x5) [lugse - wycB)(upss + wgcs) - 302 (2,358 - 2,,C8) (1,58

+ 253¢8)] - (hyg + v5)luy(wpeB - wysg) - 307 221 (23008 = 2.358)

+ (hyp + wg) m% + (wpsg + m3CB)2 + 20 - 307 [za$ + (2,88

+ 233CB)2]> - ‘;’5 (wsz + m3CS)}

- 5T 05_[-(hx5 +xgluy + (hog + vg)(uges + upse)]

- 3 {2 + (2 CB -4 58)2 + 2 - 3[2 (g cCR ~ # 58)2]}‘x
g cz c3 a2 a3 |

{ 5 [(hx5 + £5) - (hx5 + x5) ]} w5 5 wéw"2:>

56



2

+ '2:('2" ['EIyswg (1 - -g—wSlz)] + pzs =0 K 0 < xs < 25 ('Haa)
W5(0) = 0, wg(0) = 0 (113b)
5 Y4 d ‘ " - i 2 -
z Flys sns® + g [ELygmg (1= 2w, =0
) } (113¢)
n _5 i 2 -
EIySWS (] é- Ws ) xs = £5 C

The equations for boom 6 are obtained from Eqs. (112) and {113) by an

appropriate change in subscript, and by replacing g by m+8.

b. Perturbation solution of the equilibrium problem.

The first problem in attempting a solution of the equations of
motion, Egs. (108), (109), (112), and (113), is to identify the equilibrium
configurations. To this end, we must let all the veiocitiés and accelera-
tions equal to zero iﬁ these equations. This leaves us three transcendental
equations for the rotations 03 {j = 1,2,3) and twelve nonlinear differential
equations for the elastic displacements Vi wi‘(i «1,2,...,6). |

We shall consider the solution of the nonlinear equilibrium problem

in the form
Vigtki) = Vigg{xi) + vigr(xy)s wiglxi) = wigg(xq) + wig (%), |
i=1,2,..,6 (114)

where the third'subscripts on the right side of Eqs. (114) indicate the

solution of the linearized problem if the subscript is zero and relatively
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Smali_pefturbations if the subscript is 5ne. It follows that the inertia

matrix of the deformed body can be written as

6 6
R A TR OSSR K = ] (8)
i= i=

where [J(O)]0 is the inertia matrix as if the body was entirely rigid, in
which

As, d

Aos Jog20 = Bo> Jo3z0 = Co

Jd =
0110
i {116)

J 0

Jor20 = Jo210 = Y0130 = Y0310 = 0230 ~ Y0320

are the moments of inertia of the rigid hub, and

I
_ i 2 2 2 .,2
Jitng fo pi(hyythy; Jdxytm, (hy j+hzy)

Gevo = (M1 oL h o) 2402 x4 [ h e )2ehE. ]
i220 0 PIL i ™ rA LRl B ALY Rhd 75

Sigz0 = [ [Chg#x; )2+hZ, Jdx +m, [ (h, 5+ ‘2+h2 ]
1330 0 Py X1 xi yi xi mi i 21) vi
i=1,2,...,6 (117)
2 :
"i120 ™ Y210~ —fo Pl +¥s My ydxg-mg (hys+egdhyg
o2
Y130 7 igng T -JO 0 {hy i X Mz ydx; -ms (hyg+e4)h, g
%
Ji230 = iz = 'J pifyihyjdxi-mihy i,y

0

are the moments of inertia of the appendages when in undeformed state,

expressed in terms of Tocal coordinates. Moreover, [J(O)]1 is the change -
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in the inertia matrix due to first order elastic displacements, which has

the elements

24
] 2
Jigg = [o 01 (2h,1V. 00"V 00 2ha Wi 06" g 8%,

2
+me(2hy V00" 100+2hz1w100+wi00)lx1. = 1,

o ) i )
Jio1 = fopi(2“ziwioo+wioo)dxi+mi(2 ziwi00+w100);xi =

Jinar = [ Tos(2n +vZ,0)dx. 4, (2h 2 )‘
i331 Jo 1 (2hy3V;00%V500 4%y (2hy1v400*Vi00 Xi = L1
Y21 = i © -jo o1 (%3 ¥ 098%y = mj (hy i+ )vigg X{ = 1;

i
i131 = Jdizny * 'jo o7 (Myi*xy Mygodx; = my (b 34x; Jwigg Xi =

J = J +h

2
i231 ~ Y4321 T -fo 1(hy3W;00*hy 4 Vi00™Vi00%1 00 9%

i=1,2,...,6 (118)

To linearize the algebraic equations for the angles o = 1,2,3)

3 (3
we would have to assume that the angles are small, This, however, is not
always true fok an arbitrary satellite, so that linearization cannot be
justified. Fortunately, it is not difficult to solve the nonlinear
algebraic equations for the angles 0 (3 = 1,2,3) by means of Newton-

Raphson method for the moments of inertia given. As a first iteration,
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we insert the moments of 1ﬁert1a of the sate1]ite regarded as'rigid into

i {j = 1,2,3), and obtain some

preliminary values for these angles. Hence, letting all terms in Egs.

the tree transcendental equations for ¢

(108) involving time derivatives equal to zero, we obtain
* * * * .
4dq,c0 s8,Cop + (J220 ~ J330)s07Coy (cze] - 35?62) + 4J,5,58756C8)

+ J;30(c291 - 5291)(33262 - c%9y) = 0 (119a)

o * 2 2 * 2 * 2
4J]]Osezc62 + 4J12056](C 8o -rs 62) - 4J2205 8156909 - 4J]30c91(c 89

2 * * 2 P
- s%8,) + 80,3058,C8150¢H, - 4334C 01582c0p = 0 (119)

-120(5%02 - 3c%ep) + 4(373 - Tppg)serssace; + jpps2ey (e, - 35%6)
; ' * 2 2 .\ .
+ 4dy30Cy882C0, - Jyzps81coy(cep - 3s%8p) = 0 (119¢)

where [J*]0 = [e]g [J(O)]0 [e]3 in which [6]3 is given by the first of
Eqs. (104). Regarding the angles 85 (i = 1,2,3) as known constants, we
can T1inearize Egs. (109), (110}, (112), and (113) with respect to Vis W
and their derivatives, and solve for the perturbed elastic displacements.
Hence, inserting Egqs. (114} into (109), we obtéin the equations for Y100
in the form

2
p] {(hx] + X'I) [(w-mCu. + UJZOSCG)(N‘IOSU - NZOCG) - 39 (EalOCa
+ za205a)(2a]05a -2500¢a)] + (hy1 + v1b0) [(m}OCa + w20$a)2 + “%0

. 2 '
+ 207 - 30° <(Ea1 0 + 2ap05a)” + 2,30 )] + (hyy + wygg)Lugp(wygsa
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wZOCa) - 3&‘32 2a30(£a]05a - RaZQCu)]} - V?OO oh| (hx]

: 2

+

-+

2 i " - ’ 2 2
ta301} * Vigg # (301 [lhg + 21)° - (b + x)°]

2 2
+ m1(hx] + E])} {(RCIOSa - ECZOCG) + £C30 + 2 - 3[(£a105u
- 2pnca)? + 22013 - EI von (120a)
a20 a3od 100 : .
where V100 is subject to the houndary conditiohs
va(O) =0 , v]'OO(O) =0 (120b}

my {(hx1 + 9,]) [(w]OCoL + mZOSa)(w.IUSa - “’ZOC“) -392 (za]or:a

* 4ap050) (105 - 2406a)] * (hyy + vygg)[{uygca + wpgsa)’

+

w§0 + 202 - 302 <(2.a-wCrx + zaZOSu)z + zag(}) 1+ (hz]

+

: 2
Wigo) [wgglurgsa - wpgca) - 307 a30(e,105a - 2490ce)]

Vigo 92 (hyq + 29) <(2c105“ - .Q,CZOCC!.)Z + zcgo + 2 - 302 qp80

) '2 o
La20C0) t £a3o>}_-+ ET vido Xy = 2 =0
f (120¢)

ET vy =0
100y, = 4, |

The quantities wi0s %330 and %¢30 (3 = 1,2,3) appearing in Eqs. (120) are to

be calculated by using By (j = 1,2,3) as given by Eqs. {119). Note that
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now primes designate total derivatives with respect to X because vypg

depends on x alone and not on t. Similarly, for Wygp We have
” {(hx-l + x])[~m30(m10(‘:u + wzosa) + 3922a30(2a]0ca + Razosa)]

+ (hy] + V]Do) [m30(m105u - mzﬂca) - 3922&30(261050 - RaZOCa)]

+

2 ? 2
(hy1 + wygg) [leyg + who) + 202 - 302(2,30 + 2,50) 1}

. | 2
- o7 wigg (hyy + ) @ Uegggsa = seagea) + 230 + 2 = 3Llzgg8n

2a202)% + 235013 + Wigg 82 o1 [lhyg * 29)% = (hy + 1)1

+ m](hx] + &])} {(RC]OSa - Eczoca)z + QC%O + 2 - 3[(Ea105&

. 2 Z o :
£a20C&) + 2330]} '_EIy] W]OO =0 : (]213)
where wy g0 is subject to the boundary conditions

wg(0) = 0, w0 (0) = 0 (121b)

m] {(hx1 + ET) [-w30(mTOCa + méosd) + 3921a3(2a]00a + 262050)]

+ (h 1 + V?OO) [Lu30(m-|05a - m20Cu) - 392233(231050: - ﬂ.aZDCa)]

y
+ (hyy + wigg) [l + wdg + 202 - 302 (2.0 + 2,50)]

: 2
- wiop 9 (hq + 21) ((2grpsa - aepoee)® + ac3p + 2 - 3[(2qqqse

2 2 ) i = 1
- zazoco:) + 2a30]>} + EI W100 x] 21 0 :
(121¢)

EI Wiop|x

[{]
he
o |

1
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The differential equations and boundary conditions for Vi00 and Yi00
(i = 2,3.4) are obtained from Eqs. (120) and (121) by replacing the sub-

scripts of Y100 and w by the appropriate ones and the angle o by m-q,

100
7+, and 2n-a, respectively. On the other hand, the differential

equations and boundary conditions for V500 and w are obtained from

500
Egs. {(112) and (113) in the form

D5 {(hXS + XS) [-mlo(mzosﬁ + m30CB) + 3922&10(232058 + ﬂaBOCB)]

2

| 2, 2 2, 2 . .2
+ {hyg + vggg) [ugg + u3g + 207 - 307 (250 + 2,30)]

+

. 2 ]
(hzs + W500) [wTO(w3OSB = wzocs) - 30 la]0(2a3058 - ﬂaEOCB)]}

- »
V500 05 % (hyg *+ X5) {26$0 + {2500C8 - Lc3058)

+

2 | 2 . 1

+

15)% - (hyg + x5)%1) {zc%o *+ {Rgoqe8 - zcsoss)z + 2

2 2 o
32a70 * (432008 - 2,3056)°1 - El 5 vgoo = O (122a)

where Veao satisfies the boundary conditions

v0{0) = 0+ Vg (0) = 0 - (122b)
s vsho T 0 Elyg g =0 (122c)
5~ *5 X5 % A5

as well as
i {{hg + x5) [uzpse - wypcB)(wyoSB + wageB) - 392(133053
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22208 ) (230058 + 2335C8)] - (hy5 + Vgag) [ogglusge - w3gs8)

2
30741012208 - %23058) + (hy5 * Wsgq) Tufy + (upgss * ugees)”®

2

-+

2 2 2 ' 2
20° - 30° [1,]g + (2,0058 + 2a30cB) I} - Wgoq P50 (hys

- | | 2
xg) fo * (ac008 - 1cgpe8)’ + 2 - 3Lz, + (23208 = 2a30%8)" ]}

+

+

1] ‘ 2 . 2
wigp 82 3 o5 [(hyg + 25)% = (hys + x5)°1} {2cYg + (2cp0c8

. 2 wir
2.3058)° * 2 - 3[za$0 + (250008 = 2,3058)71) - EL g wgqq = 0 (123a)

Weg(0) =0, ”éoo(o) =0 {123b)

n

" =0 , EI 0 (123¢)

EI _ w
y5 500 ¥ =

w!l
y5 500 -
5~ %5 Xg = 5

The differential equations and boundary conditions for V600 and Wgog are
obtained by replacing in Eqs. (122) and (123) Vggo and wéOO by vggq and
Wgoo @nd B by w8, respectively.

On the other hand, the boundary-value problem for the perturbation

Y101 is defined by the differential equation

p]v]o] {(N]QCO" + (-0205:0&)2 + w30 + 292 - 392 [(Rau)COL + -R,azosot)z + Rago]} |
] _ 302
+ oiwygy Lugglugpse - wpgca) - 30%2,30(2a105% - 25p0¢e)]

. 2 -,
+ VTO] {'D-IQ (hx-l + X',) <(EC‘,DSU - E'CZOCQ) + EC3O + 2
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and that for the perturbation Y01 by
p1v1g7 Lugplergsa - wpgca) - 30%2,30 (257089 - 24p000)]
+ P1%101 [“’%0 + ""SO + 292 - 392 (ﬂ.a?o + lago)]
. 2 N 2 .
wigy (=12 (hyy + x7) ({ecrpse - 2epce) + 230
2 2 ' "t
-.3[(£a]05a - Razoca) + Ea301> 4'EIy] []0 Wioowloo
+ 5 Wifowigeld + wigy 197 <1§ 01 [y + 29)% - (hy + %)%
2
byl + 20 <(9‘c105°‘ " fepote) * ez * 2 - 3L(zgygse
2 .2 15 2 o w
- 2a20Ca) + 2a30]> + EI_Y] [—2— (W‘lloo) + 10 W]OOW‘-IOD]}
+ Elywig) (10 wigowioo)
n n

nn 5 2 — 5 1l 3 1
- Elyy wigy [0 - 5 (Wgp)®] = - Elyy [3 (wjog)™ + 10 wjoqwingHino

- 5 ny [] 2
* 5 oo Wigo) ] (125a)

w]O](O) =0 , wi01(0) =0 (125b)

m]V]O] [mso(W]OSG - NZOCG) - 3922a30(1a1053 - EazOCa)]

2 - 302 (2,30 + 150)]

2 2
tiWg Lt *up * 20
+ wi {mnz(h +2,)<(m sa - & Cu)+£2 +2--3[(z Sa
101 x1 7 cl10 c20 c30 alo

2 2 B I l no-y2
- LappCa)” * '°’a30]> - 5 ELy [2wiogwypg * (W]gg)<]
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- Elyy wigy (Swiggwigo)

m 2 2 l!| h
t ELy wygp [1 - "(W1oo) 1= ”‘Ely1 [(wigo)™ wigo
+ 2 i 1]
"i00 (wigg)*] X5 = 2
| ! (125¢)
- Elyy [(1 - 3 (wjg)?] wigy
100 Too"iond = y1(”100) "100| 4, = %s

with companion equations for Viol and W3 01 (i = 2,3,4). In a 1ike manner

2 _ 352_2-( 2

2 2 2
p5V50] [wpp *+ w3g + 20 %220 * %3307

+

psW5] Lwygluggse - wygeB) - 3”2"a10(2a30SB - 2320¢8)]

+

Vg {58 (heg + %5) <2'c%0 + (2ep0c8B - 2.3958)% + 2

2 m nin ]
3[ag70 * (2590¢8 - a3053)3>’+ EIg [10 VEgqvs0p * 5 VEGoVEool?

n ’ 2 ] 2 2 2
tvgg 1o <§ p5 [lhys + 2£)° = {hyg + xg) ]> <Ec]0 + {reppce

2 | .
2c3058)" + 2 - 32, 5o + (29008 - Ea3055)2]> + Elg [13 (vgg)

+

10 vgoovsnpdd + El5 vy, (10 vaaqviEny)
ini 5 1 2 — 5 11 3
- Bl g vigr [T - 5 (vhpo)®] = - Elg [3 (vggq)

(1] 5 ”ll 1 2
*+ 10 v500500¥500 * 5 Y500 (VS00)“] (126a)

(b) =0 , (0)=0 | _ (126b)

Vso1 Vso1.
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5 ] 1] n 2 1 : ] :] 1
Elg {- 5 [2 vipovapo + ("soo) 1 v501 - 5 v500¥500Y501

+[1 - 3 (vg0)2T viy?

Hy

_ 5, : , “
= 5 Elg [("500’ V500 * 2 Vggp (vigp)?]

5 1 2 1l =
- EIZS {[(] ~ -2— (VSOD) :l VSU] } at XS = 25

1] 1 ‘ — I 2 L]
- 5 v300¥800vs01) = - 2 Elzs (Vagp)” Vo)

and
o501 Lo10(inch - w3s8) - 3% 110( %208 = %a3058)]
+ o5W50) (w:%o + (uggss + wgoes)? + 202 - 3% [2,3g + (24058
* 2a3058)23> + wlgy 1= pga® (hyg + Xp) <’?c'120 + (2¢p0c8
2 2 | 2
- 2:3058)¢ + 2 - 3[2,70 * (2a20c8 - 2a308)°]

+ Elyg [10 wspgwihg + & wsgows0l}

i y, 2
W50 {92<%F’5 [(hys + 25)% - (hyg + X5)2]> <£cm + {29008

(126¢)

2 2 (. 29N 4 er 115 a2
- 230390 + 2 - 30180 ¥ (15008 - 2a3058)71 ) ¢ ELyg [13 (o)

1]

+ 10 w5poWeg} Elys WEp) (10 wgyo¥500)

- -5 (w327 = - S n 43
Elys wso1 [1 = 5 (ws0p)™1 = - Elys [ (wgpg)
1 " s B un
+ 10 wenoWs00%500 * 5 W500 (Wsoo) ]
W51(0) = 0, w501(0) = 0
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: b ' - 2 ' )
Elyg (- 2 [2 waogWsho * (Wggp)°1 Wggy - § wpgWEgosor
_5 21
+ [T - 5 (wggg) ™ Wyt
{13 ]

=5 2 12
= 5 Elyg [{wgp0)™ wapg + 2 wgpy (Wigg)©]

- 5 1 2 " =

¥ [§] | = 5 2 1]
- 5 w5ogWsagMs01} = - 5 Elys (Wgn)® wigo | -

It should be pointed out that this particular perturbation scheme
- enables us to solve first Eqs. (119} for the first approximation rotations
9500 (j = 1,2,3) independently of the elastic displacements. The rotations
are then introduced into Egqs. (120) - (123), yielding the first approxi-
mation for the elastic displacements vio0 and w;np (i = 1,2,;..,6)
indeﬁendent]y of one another. Inserting the first approximation Vioo

and wijgg into Egs. (124) - (127), we can obtain the corrections Vip and
wigt to the e1a§tic displacements. The sums of these solutions yield Vip
and w;q (i =1,2,...,6) according to Egs. (114). Then, inserting Vig and
wig (1 =1,2,...,6) back into Eqs. {119), we dbtain the angles 830

(i = 1,2,3). In the vast majbrity of cases, this approximation is suf-
ficient. 1IF not, having the new angles, we can iterate once more to

improve the elastic displacements Vig and Wig. as well as the angles 830

c. Liapunov stability analysis and the eigenvalue problem.

The values 850+ Vip» and Wig obtained above, together with sets
of admissible functions ¢j(xi) and wj(xi), are subsequently introduced

into Eqs. (49), (51), and (53), to obtain the coefficients Mis Fiks and
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k- The coefficients M3y and kjk yield the symmetric matrices [m] and
[k], whereas using Eq. (57) the coefficients fjk yield the skew symmetric
matrix [g].

From Sec. 6, if [k] represents a positive definite matrix, then
the nontrivial equilibrium is asympototically stable. On the other hand,
to obtain the natural frequencies, we must solve the eigenva1ue‘prob1Em
in the form (66). However, before the nontrivial equilibrium can be
determined, the ﬁystem stabi]ity tested, and the natural frequencies cal-

culated, it is desirable to use specific values for the system parameters.

This is done in the next section.

d. The shortening of the projections effect ‘

As indicated in Sec. 2, the booms are assumed to be inextensional,
so that there is no longitudinal vibration. However, because of the
transverse disp1acement§, there is a shortening of the projection on the
nominal axis of any element of length of the boom. In fact, from
Eq. (14), the change in length of projection of any element of Tength dx,

is

2 2
Vs oW,
du; = .;.H ‘] + [ f] ]dxi , 1=1,2,...,6 (128)

axij 9x1J

We shall treat this shortening as a perturbation of the spatial

coordinate X5, SO that we can write
X; = Xig v X1 s 0 < X028 i=1,2,....6 (129)

1 -1

where X;q are the original spatial coordinates and X3y are the

70



perturbations. From Egs. (128), however, we conclude that the shortening
is a second-order effect. Hence, it will not affect Eqs. (120) - (123)
except that x; are to be regarded in these equations as Xip (i =1,2,...,6).
This enables us to solve for Vigo and 100 and write the shortening of

the projections in the form

i=1,2,...,6 (130)

where Z.

i is a dummy variable. On the other hand, the perturbation equa-

tions, Eqs. (128) - (127), must be modified to account for the shortening

effect. For example, the boundary-value problem for v;qy becomes

2

2, 2 2, |
V101 {lwqgta * wpgsa)” + w3g + 20° - 30 [(za]DQa_+~zazﬁga}2 + 82301

+

o1¥yg Luggluggsa - wpgta) = 30%8,30 (257052 - 2aggce)]

+ vigy (= 0122 (g * Xq0) ((8eqp8e = Aeopee) + 2chn * 2

_ . - . 2 + 2 + E (-1 " ul + na 1
3[(8,705% - 2220%%)° + 2a30 1,7 (10 v{govios * 5 Vigovico)?

+oypo (a2 (] [{hyy + 2 )2 - {h + )2] + m, (h
101 7 P1 L T Mg x1 7 %10 111

+ 21n) (R,.9n50 = & cix)2+z2 + 2 - 3[(2. 1050 - % c)2+52.2
10 105~ %c20%) * %30 al0 a20%)” * fa30}

¥ ELe [2 (v )2 + 10 vinavih T3 + vty (10 v vy |

21 77 (vigo vigo¥igodd * Elyy {vioy (10 vigo¥igo!
- nu 5 1 2 5 1 2 I 1E

nu 1 2 .
+ 3 vio (Vigo)1 + 3 o1 [uggea + wppsa)lupgsa - upgea)
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2 X
- 3a° (&_1pCe + 25005%) (23105 - 2520C) LJ

Wy a2 :
100
* L7ﬂ5_4 ]d51 » 0 =x9 2499

3V]

2
00
351

(131)

subject to boundary conditions (125b) and (125c), where in the latter

%] must be replaced by the shortened Tength gq,.

12. The RAE/B Satellite. Numerical Results.

The general formulation of Sec. 11 has been used to obtain the

nontrivial equilibrium configuration of the RAE/B satellite, to test the

stability of equilibrium, and to calculate the natural freguencies of

oscillation about the nontrivial equilibrium. The system parameters are

as follows:

A0=

(2l

my =
2 =
El
El

yl
¥h
hy1

hy1
h1
Q

87.74 slug ft~, Bb = 83.74 slug ftz, CO = 18 slug ft

2

2

Pp = p3 = pg = 4.348 X 10°4 slug £t o5 = pg = 4.596

x 1074 slug ft-}

Mp = M3 =mg =
22 = 2.3 = 2'4 =
= EIZ] = EIyz =

El,y = Elyg = Elyg

= hyg = 0.973 ft, hy, =

..hy4

hyp = hz3 = h,p = hyg
4,653 x 10~% rad sec™!

= 0.705 ft, hyz = -h

hx3 -

v3

= hyg

600 ft, 25 = 25 = 315 ft

2’B=2

2.40 x 1073 slug, mg = mg = 0

5 o .

= = 2 = 20°
. = EI4 = 15.278 Tb ft®, a = 30
= 13.889 1b ft

0.878 ft, hyc = hyg = 0

= -0.760 ft, h
=0

y5 = Ny

g = -1.800'ft

We shall present the results of the analyses in the order listed above.

72



a. Nontrivial equilibrium

Inserting the above data into Eqs. (116) and (117), as indicated

~in Eq. (115), and solving Egs. (119), we obtain

8109 = 0.13537 rad = 7.756 deg.
8500 = -5-63789 x 1078 rad = -3.2302 x 1070 deg.
0300 = 1-37374 x 1076 rad = 7.87096 x 107 deg.

We note that 844 is caused largely by the damper booms. The fact that
the rods are not attached at the satellite mass center turns out to have
an insignificant effect on 6599 (i = 1,2,3).
To evaluate the elastic disb1§éements vipo{x;) and inO(xi)
(i =1,2,...,6). We assume the solution of Egs. (120) - (123) in the form
Vio0(*1) =

ril ari0¢r(xi)

=126 (132)
- ’ p
"igof*i) = I brigtrixi)

where

¢p(x;) = A.[(cos Bpts * cosh 8.24)(sin gpx; - sinh ByX)

- (sin Bp2; + sinh B.25)(cos B.x5 - cosh Bpxj)] (133)
are eigenfunctions corresponding to a bar in bending with the end x; = 0 |

fixed and having a mass m; attached at the end Xj = 24. The eigenvalues

Byt are solutions of the characteristic equation
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Mas
= 1 : .
(1 + cos Bpetj cosh Bpli) = Bply oty (sin 824 cosh Bpg;

- cos B2 sinh Bp2q) (134)

Moreover, the amplitudes A. are such that the eigenfunctions op(x;) are

orthonormal, i.e., they satisfy the relation
]0 10 (x: ) (%2 ks + miop(21)85(21) = 8y (135)
where §.. is the Kronecher delta. Limiting the series in (132) to two

terms, p = 2, the first two roots of Eq. (134) and the amplitudes A.

corresponding to i = 1,2,3,4 are

By2; = 1.85813 A = 0.47696  slug™'/2 (13%)
' 36
By2; = 4.65310 A, = 0.03789  slug /2
In addition, the coefficients a..q, big (1 =1,2,3,4) are
Table I.
i 3140 3240 b1ig baip
1 -0.13656 x 10° -0.98055 x 10~ 0.55184 0.46385 x 1072
2 0.13652 x 102 0.97981 x 107 0.55188 0.46385 x 1072
3 -0.13652 x 10° -0.97980 x 10~  -0.55187  -0.46384 x 1072
4 0.13656 x 102 0.98054 x 10"  -0.55184  -0.46385 x 10~2

The first two roots of Eq. (134) with m; = 0, and the amplitudes Ay and

Ao corresponding to i = 5,6 are
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1/2

825 = 1.87511 A; = 0.63510 slug”
' | (137)
Boki = 4.69414 Ay = 0.04899  slug /2
whereas the coefficients - and bri are
Table II

i 40 3210 b1i0 b2i0
5 -0.93855 x 102 -0.12900 x 10”5 0.17756.  0.70688 x 1073
6  -0.93840 x 1072 -0.12000 x 10 0.17756  0.70688 x 1073

It will prove of interest to 1ist the elastic displacements of the end

points, as calculated by means of the linearized equations.

placements are

Vapo(ts) = -52.191 ft,
V400(24) = §2.204 ft,

= . -2
V500(25) 4,8655 x 107 Tt,
Veoolte) = -4.8648 x 1072 ft,

These dis-
Wigo(t1) = 2.1071 ft,
w300(2,3) = ‘2-1072 ft,
Waop(ta) = ~2.1071 ft,

The above values of Vioo(”i) and wioo(xi) (i =71,2,...,6) enable

us to solve Egs. (119) for the angles 850 (3 = 1,2,3) and Eq. (131) and

the companion ones for the perturbations ViOI(xi)“ wigr{x;) (i = 1,2,...,6).

The resulting angles are
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0.19695 rad = 11.2846 deg.

%10 =
050 = -6.54250 x 1078 rad = -3.74858 x 107° deg.
630 = 1.37608 x 1075 rad = 7.88438 x 107> deg.

Instead of listing the perturbations v;py and wigy, we shall Tist the
complete solutions v and Wig in the form of the seriés
2
ViolXi) = I apiselxg)
=

i=1,2,...,6 (138)

2
Wiglxi) = E brjen(xq)

where ¢ri(xi) are still given by Egs. (133), in which the eigenvalues
Bpti and amplitudes A, (r = 1,2) are given by (136} and (137). The final

results are tabulated as follows

Table ITI
i a4 31 by by
1 -0.13803 x 102 -0.86379 x 107! 0.54865 0.46378 x 1072
0.13800 x 102 0.86313 x 107 0.54869  0.46378 x 1072
-0.13800 x 10° -0.86313 x 10”1 -0.54869  -0.46378 x 10°2
0.13803 x 102 0.86379 x 1071 -0.54865  -0.46378 x 1072

-0.93855 x 10°2  -0.12900 x 10™>  0.17756  0.70670 x 10”3

L= SRR & 1 BRI - S 7% S A S

-0.93840 x 1072 -0.12900 x 1073 0.17756 0.70670 x 1073
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Moreover, the final end displacements are

Vo) = 52,816 ft, Wyg(e7) = 2.0048 ft,
Voq(2y) = 52.803 ft, Woo(2p) = 2.0950 ft,
vo(23) = -52.803 ft, Waglly) = -2.0950 ft,
vaol2y) = 52.816 ft, Woltq) = -2.0948 ft,
veo(t5) = - 4.8655 x 1072 ft, wgo(%g) = 0.92962 ft,
vgo(te) = - 4.8648 x 1077 ft, Weoltg) = 0.92962 ft,

and we note that the nonlinear effect is virtually zero for booms 5 and 6.
‘The nontrivial equilibrium is depicted in Fig. 7, where only the radial
booms are shown because the displacements of the damper booms are in-

significant.

b. Liapunov stability analysis

A stability analysis using k, as given by Eg. (60), as a testing
function has been carried out. Essentially, the analysis reduced to
testing the matrix tk] for positive definiteness, where the elements of
[k] are given by Egs. {53). The numerical values of the elements for

the particular configuration at hand are listed in the next subsection.

The matrix was found to be positive definite, so that the equilibrium is -

asymptotically stable.

C. Eigenvalue problem

Using Egs. (49), (51), (53), and (57), in conjunction with the

above data, we obtain the elements
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Table IV

3.42090 x 10 0 -6.31727 x 1073 4.78807 x 1071 -7.67484 x 10
m -4.78845 x 107" -7.67515 x 10 2.78840 x 1071 7.67512 x 10 . -4.78808 x 107
7.67480 x 10 8.49246 x 10°°  6.81765 x 10 -8.49247 x 107°  6.81765 x 10
0 1.12564 x 10° 2.20835 x 10 3,44739 x 10 -1.57077 x 10°
my;  3.44664 x 10 1.57032 x 102 3.44664 x 10 1.57032 x 102 3.44739 x 10
-1.57077 x 10° 5.48304 x 10 -3.23228 x 10  -5.48305 x 10 3.23042 x 107
-6.31727 x 10°3  2.20835 x 10 1.31824 x 105 1.77103 x 102 0
M3 ; 1.77064 x 102 0 1.77064 x 102 0 1.77130 x 10°
0 -2.89735 x 10 -4.94522 x 10”1 2.89734 x 10 4.94522 x 107
4.78807 x 101 3.44739 x 10 1.77103 x 102 1 0
0 0 0 0 0
-7.67484 x 10 -1.57707 x 10° 0 0 1
mg s 0 0 0 0 0
0 0 0 0 0




-4.78845 x 1071 3.44664 x 10 1.77064 x 10°

6l

mﬁ,j 1 0 0
0 0 , 0
-7.67515 x 10 1.57032 x 102 0
m75j 0 1 0
0 0 0

4.78840 x 1071 3.44664 x 10 1.77064 x 10°
m8?j O 0 1
0 0 | 0
7.67512 x 10 1.57032 x 10% 0
mg,j 0 . 0 0
0 - 0 | 0

-4.78808 x 1071 3.24739 x 10 1.77103 x 10°
™o, 0 0 0

0 0 0N




08

7.67480 x 10 -1.57077 x 102 0
mTl,.j 0 0 0
1 0 0
8.49246 x 1070 5.48304 x 10 -2.89735 x 10
m-lzsj 0 ) 0 0
0 1 0
- 6.81765 x 10 3.23228 x 1071 -2.94522 x 107
m.|39j 0 0 0
0 0 1
-8.49247 x 10™°  -5.48305 x 10 2.89734 x 10
mm,j 0 0 0
0 0 0
6.81765 x 10 3.23042 x 107 4.94522 x 107!
mTS’J- 0 0 0
' 0 0 0




8

0 6.59282 1.29341 6.74937 x 1073 -3.36689 x 10~
9 ;  6.74965 x 1073 -3.36715 107" 674958 x 1073 3.36711 x 1011 6.74031 x 1073
3.36689 x 10711 5.09923 x 1072 -6.36069 x 1078  -5.09924 x 1072 -6.36071 x 10~°
-6.59282 0 -4.23315 x 1077 1.14630 x 1072 2.64825 x 103
9p; -1.14635 x 1072 2.64836 x 1073 1.14634 x 1072 -2.64834 x 103 -1.14630 x 10°2
-2.64824 x 1073 -6.88069 x 1078  -4.10887 x 1072 0.88070 x 0% -4.10889 x 10-2
-1.29341 4.23315 x 1077 0 -1.24289 x 1072 1.40029 x 1072
93,  1-24054 x 1072 1.40035 x 1072 -1.24053 x 1072 -1.40034 x 1072 1.24288 x 1072
-1.40028 x 1072 -4.97588 x 107%  2.17121 x 1072 -4.97587 x 10°%  2.17121 x 10-2
-6.74937 x 1073 -1.14630 x 1072 1.24289 x 1072 0 9.12262 x 1070
9%.,; 0 0 -0 0 0
0 0 0 0 0
3.36689 x 107'1  -2.64825 x 10"3  -1.20020 x 1072 -9.12262 x 10”7 0
gs,j 0 0 0 N 0
0 0 0 0 0




28

-6.74965 x 1073

2

_1.24054 x 10°2

1.14635 x 107¢ 0
- 5 :
%1 0 9.12263 x 10 0 0
0 0 0 0
3.36715 x 10°11  -2.64836 x 1073 -1.40035 x 10~2 0
-5 :
975  -9.12263 x 10 0 0 0
0 0 0 0
.6.74958 x 10°3  -1.14634 x 10°2  1.24053 x 10”° 0
-5

% 0 0 0 -9.12258 x 10
0 0 0 0
-3.36711 x 10°1V  2.64834 x 1073 1.40034 x 1072 0

-5

9. ; 0 0 9.12258 x 10 0
0 0 0 0.
-6.74931 x 1073 1.14630 x 10°2  -1.24288 x 1072 0
gTO,j 0 0 0 0
-9.12259 x 1072 0 0 0




£8

-3.36689 x 10”1

2.64824 x 1073

1.40028 x 1072

0 0
01,3 0 0 0 0 9.12259 x 107

0 0 0 0 0

-5.09923 x 10~2 6.88069 x 1078 4.97588 x 1074 0 0

92,j 0 0 0 0 0

0 0 -7.49379 x 1074 0 0

6.36069 x 108 4.10887 x 1072 -2.17121 x 1072 0 0

0 7.49379 x 1074 0 0 0

5.09924 x 1072 -6.88070 x 1078 4.97587 x 1074 0 0

9]4,‘]' 0 0 0 0 0
0 0 0 0 7.49380 x 1074

6.36071 x 1078 4.10889 x 102 -2.17121 x 1072 0 0

95 1 0 0 0 0 0

0 0 0 -7.49380 x 107% 0
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Table VI

4.33117 x 1073 0 -2.98546 x 1079 5.43385 x 1078 -1.53634 x 1075
ky ;  -5.43408 x 10 -1.53641 x 10°° 5.43405 x 1076 1.53640 x 10™°  -5.43384 x 1076
1.53634 x 1075 -1.59271 x 1011 -4.36481 x 1076 1.592715 x 10”11 -4.36488 x 1076
0 8.50047 x 1072 1.66943 x 1072 1.72626 x 10°®  -1.35856 x 1074
Ky s 172556 x 1070 13817 x 107 L7zsse x 1078 sz x 10t 172628 x 107
-1.35856 x 107  -4.74228 x 1075 -2.79485 x 10°7  4.74229 x 107°  2.79513 x 1077
-2.98546 x 1070 1.66943 x 102 5.21464 x 10" 6.59442 x 10°5  -6.66325 x 1076
k3,3 6.59170 x 1075 6.66133 x 10~6 6.59174 x 1072 6.66134 x 1075 6.59447 x 102
-6.66325 x 1078 1.64685 x 10°5  -3.34538 x 1077 -1.6468% x 107> 3.34444 x 1077
5.43385 x 1070 1.72626 x 1072 6.59442 x 107° 3.49500 x 1076 -3.60230 x 1078
e 4 0 0 0 0 0
0 0 0 0 0
-5 | 4 -6 -8 . 6
-1.53634 x 10 -1.35856 x 10 _6.66325 X 10 -3.60230 x 10 4.02153 x 10
ks 5 0 0 0 0 0
0 0 0 0 0
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-5.43408 x 1076

-5

6.59170 x 107°

1.72566 x 10 0 0
kg,j  3-49896 x 1008 3.60220 x 1078 0 0 0
0 | 0 0 0 0
-1.53641 x 107° 1.35817 x 1007 6.66133 x 10°% 0 0
k7 3 3.60229 x 1078 4.02153 x 1076 0 0 0
0 0 0 0 0
5.43405 x 1070 1.72558 x 10°®  6.59174 x 107> 0 0
kg, 1 0 0 3.49897 x 1078 3.60230 x 1078 0
0 0 0 0 0
1.53640 x 10> 1.35817 x 10°%  6.66134 x 107° 0 0
y 0 0 3.60230 x 1078 4.02153 x 1078 0
0 0 0 0 0
_5.43384 x 1076 1.72628 x 107° 6.50447 x 1072 0 0

Kyg 3 0 0 0 0 3.49900 x 10'5
-3.60230 x 1078 0 0 0 0




1.53634 x 107° -1.35856 x 107% -6.66325 x 107° 0 0

98

K1 j' 0 0 0 | 0 -3.60230 x 1078

4.02153 x 1078 0 . 0 0 0

-1 -5 -5

-1.59271 x 10 ~4.74228 x 10 1.64685 x 10 0 0

K124 0 0 0 o 0

0 3.71129 x 107> . 8.10039 x 10713 0 0

-4.36481 x 1078 -2.79445 x 1077 -3.34538 x 1077 g 0

K13, 0 0 0 0 0

0 8.10039 x 10713 3.88946 x 107 0 0

1.59271 x 10711 4.74229 x 107°  -1.64684 x 1070 0 0

1.5 o 0 0 0 | 0
0 0 0 3.71129 x 10™°  -8.10040 x 10" '3

S -7 -7 '
-4.36488 x 10 2.79513 x 10 3.34444 x 10 0 0
2y 0 0 0 0 0

0 0 0 -8.10040 x 10°'3  3.88945 x 1076




Note that the elastic displacements were represented by one mode each.

Using the formulation of Section 7, we obtain the following natural

frequencies
Table VII
1.514583 x 1072 -1.514583 x 10-2 9.554415 x 1073
_9.554415 x 10°3  9.900792 x 16~  -9.900792 x 1073
6.103208 x 1072 -6.143208 x 10°3  4.319115 x 1073
4.319115 x 10~°  2.020401 x 103 -2.020401 x 1073
2.020401 x 10-3  -2.0204071 x 1073 1.975175 x 1073
wj=

rad sec”!  -1.975175 x 10°3  1.955743 x 103 -1.956743 x 1073
1.871461 x 1073 -1.871461 x 10-3 - 1.856504 x 1073

-1.856504 x 10°3  1.856504 x 1073 -1.856504 x 1073

8.708815 x 10°%  -8.708815 x 10°%  6.155318 x 1072

6.155318 x 107 3.439481 x 107 -3.439481 x 10

d. Parametric study

The stability analysis was carried one step farther by varying the
angle «. It was found that the system was asymptotically stable fdr
a = 50°, but becaﬁe unstable for a = 51°. The results can be easily
explained by the fact that in,thé absence of damper booms and for com-
pletely rigid radial booms the system becomes unﬁtab]e around o = 45°,
The gravitational and centrifugal effects tend to deform the flexible

booms in a manner that the moments of inertia about the local vertical and
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about an axis tangent to the orbit are the same for an angle o such that
50° < o < 51°. It should be mentioned that instability in both cases can
be traced to angle 63, which tends to become large when the moment of
inertia about the local vértica] becomes larger than that about the axis
tangent to the orbit, as at this point the "Teast moment of inertia"
criterion is violated.

The same parametric study was undertaken with respect to the
natural frequencies. In terms of natural frequencies, instability occurs
when at‘least one natural frequency (we recall that in our case the natural
frequencies occur in pairs) reduces to zero. Here again the system be-
comes unstable for 50° < a < 51°, thus corroborating the results obtained

by the Liapunov stability analysis.

13. Summary and Conclusions

Two new thearies for studying the motion characteristics of a
rotating system with flexible parts about undeformed equilibrium have been
developed. The first is qualitative and the second quantitative.
Specifically, the first represents a stability theory and the second a
method for obtaining the system natural frequencies.

The stability theory is based on the Liapunov direct method and
makes use of modal analysis to represent elastic displacements. The
novelty of the formulation 1ies in the fact that for the first time a
nontrivial equilibrium is considered in conjunction with the Liapunov
direct method for a stability analysis of spinning flexible bodies capable
of large deformations.

The stability analysis can be divided into two major parts: the

‘evaluation of the nontrivial equilibrium and the stability analysis'itse1f.
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When the body is capable of 1argé deformations, nonlinear algebraic

and differential equations must be solved for the rotational énd elastic
displacements, reSpectively, where these displacements define the
equi]ibrium configurations of the system. Because the problem is one of
stability about nontrivial equilibrium, it is necessary to expand the

" Liapunov function about that equilibrium. Assuming smal]l displacements
from equilibrium, the problem reduces to the evaluation of a Hessian
matrix at the nontrivial equilibrium and testing the matrix for sign
definiteness by means of Sylvester's criterion. It should be pointed out
that the size of the Hessian matrix depends on the number of eigenfunctions
used to represent the elastic displacements.

The method for obtaining the natural frequencies of the system
makes use of the variational equations about the nontrivial equilibrium.
Then fherset of second-order differential equations is converted into a
set of twice the'number.of first-order diffefentia] equations. The
associated eigenvalue problem yields the system natural frequencies.

The two methods aré quite general in scope, and can be used for
testing stability and calculating the natural frequencies of a large
variety of hybrid systems. As an application, the theory has been used to
test the'stability of the RAE/B satellite. First, the nonlinear equations
have been solved for the nontrivial equilibrium configuration, and then
this configuration has been used to evaluate the associated Hessian
matrix. The satellite was found to be stable. Then one of the systems
parameters has been varied to predict at which point the equilibrium be-
comes unstable. The results are in line with the expectations. In

additidn, the system natural frequencies for oscillation about the
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deformed equilibrium were ca]cu1éted. The parametric study used in con-
junction with the Liapunov stability analysis was used to examine how the
frequencies are affected. The study resulted in the same instability

statement.
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FIGURE | - GENERAL MATHEMATICAL MODEL
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FIGURE 3- ORBITAL AXES AND . BODY AXES
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FIGURE 4 - FORCES ON ELASTIC BOOM

FIGURE 5 - DEFORMATION OF E.L'ASTIC BOOM
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FIGURE 6-RADIO ASTRONOMY EXPLORER - LUNAR (RAE/B) SATELLITE
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FIGURE 7 - NOTRIVIAL EQUILIBRIUM CONFIGURATION
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