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@STMCT

This report covers the scope of Mod, 4~of Cont;act NAS8-28358, covering
a pefiod of less than one year which is interior to-the_total time span of
the contract. Thus what follows is a "final report” only in the sense of
providing final documentation of those tasks which have been completed during
this period, Specifically, this report includes the follbwing subjects:
"The Influence of Spacecraft Flexibility on System Controllability and
Observability;" "Commutativity of Coordinate Truncation and Transformation
Matrix Inversion for Flekiﬁle Spacecraft Dynamic Analyeis;" and "Matched

Asymptotic Expansion Modal Analysis of Rotating Beams,"
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OVERVIEW

Contract NASB—26358 began on 15 February, 1972, and is currently
scheduled through 14 December, 1974. The present report covers only "Mod.
4" of the contract, which was awarded in late Spring of 1973 and covers
the period from 15 February 1973 to 15 February 1974, 1In this report there
appears a final documentation of those tasks presently deemed completed;
other work still in progress will be documented at the conclusion of '"Mod.
5" of this contract, in December of 1974.

The three toplcs treated here are as follows:

Chapter 1, "The Influence of Spacecraft Flexibility on System Con-
trollability and Obsérvability;"

Chapter 2. "Commutativity of Coordinate Truncation and Transformation
Matrix Inversion for’Flexible Spacecraft Dynamic Analysis;"

Chapter 3. "Matched Asymptotic Expansion Modal Analysis of Rotating
Beams,"

These chapters have been written by the Principal Investigator in such
a way that each can be submitted (perhéps in abridged form) for conference
presentation and/or journal publication.-

Other topics under study during the Mod. 4 period of the contract
include:

(1) Development of general-purpose simulation equations for arbitrary

spacecraft;
(2) Evaluation of the influence of sensor and actuator loéation-on
flexible spacecrafﬁ performance;.and
(3) Pre;iminary evaluation of the concept of the disturbance-insensitive

control -system,

i
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During the contract period, support funds were extended to Dr. Yoshiaki
Ohkami and (to a minimal deg;ee) Mr. Oluyemisi Olusola, a student who ig no
longer with the project; substantial contributions to total progress have
also been made by Mr. Robert Skelton and Mr. Stewart Hopkins (both current

students) and by Dr. André Colin (a former student).
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CHAPTER 1
The Influence of Spacecraft Flexibility
*
on System Controllability and Observability
Y._Ohkami++
and

P. Likins*

ABSTRACT. Literal criteria are developed for the controllability and observa-
bility of general models oflflexible spacecraft. Results are interpreted in
special cases and in physical terms, permitting in some cases the identifica-
tion of uncontrollable and unobservable states simply by examination of scalars
composed of modal parameters and location matrices for sensors and actuagors.

A procedure is established for isolation of uncontrollable states, whereby
sensor and actuator configurations assure that uncontrollable flexible mode
states are also unobservable; in many applications such states can then be re-

moved by coordinate truncatiom.

*
Based on research supported by NASA Marshall Space Flight Center under Conttract
NAS8-28358.

Professor, School of Engineering and Applied Science, University of California,
Los Angeles, California, USA.
T+

NASA International Fellow on leave at the University of California, Los

Angeles, from the National Aerospace Laboratory, Tokyo, Japan.



INTRODUCTION

Scientific spacecraft now in the planning stages (as typified by the NASA
-Large Space Telescope) are vehiclés of'dynamically sigﬁificant flexibility
which must be capable of maintaining inertial orientations to within thousandths
of an arcsecond over periods of hours. Sensors and actuators are typically
‘distributed over the spacecraft, and influenced in their performance by vehiclae
flexibility. The attitude control problems posed by these spacecraft are of
unprecedented difficulty, and their solution will require unparalleled preflight
investigation and perhaps conceptual innovation, such as system optimization or
adaptive control. Although problems of spacecraft attitude control have in the
past been resolved primarily by a combination of digical comﬁutér siﬁuiétion
énd ;he tréditiﬁnai design ﬁrocedures of-linear control tﬂeéry, in éherfuﬁure
- the techniques of-moderﬁ control theory must increasingly be employed. Thé
purﬁdse of this paper is to examine the fundamental conceﬁts of controllability-
and observability as they apply to flexible spacecraft, in order to establish a
foundation on which.to build future applications of modern contfol theory. As
our reSulté emerge, it will become apparent that they are useful not only in
projected control system synthesis but also in the modal coordinate truncation

process which is essential to system simulation.
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EQUATIONS OF STATE

Although a variety of mathematical models have been adopted for flexible

spacecraft, the most common idealization consists of a rigid primary body with

attached elastic appendages, which are themselves modeled sometimes as continua

[1] but most often as discretized assemblages of particles or rigid nodal bodies

interconnected by massless elastic elements called finite elements. [2) In

some cases, the appendage mass 1s distributed throughout the finite elements. [3]
Whether the original appendage model is continuous or discretized, its displace-
ments relative to the primary bo&y are finally characterized by distributed or

modal coordinates, whereas the inertial orientation of the primary body is char-

acterized by discrete coordinates, such as a set of three attitude angles. In

many applications additional discrete coordinates are employed to describe the
motion of system components, such as rotors and scientifie instruments., A rep-
resentation of vehicle kinematics in terms of a combination of discrete and dis-—

tributed coordinates is called a hybrid coordinate formulation.

In what follows, it is assumed at the outset that the vehicle model consists
of a rigid primary body with discretized elastic appendages having n rigid nodal
bodies. After coordinate transformation, the resulting dynamic equations have a
structure that permits thelr interpretation as representative also of appendage
models consisting of elastic continua or distributed-mass finite element sys-
tems. An example in Appendix A illustrates the applicability of our results to
continuous appendages.

It is further assumed in this paper that the vehicle experiences only small
deviations from a nominal state in which the central body is of inertially fixed
orientation and the appendages have no deformations. Moreover, the vehicle has
no inherently nonlinear elements, so that all analysis can be based on linearized
variational equations. Implications for nonlinear systems can sometimes be

drawn from the physical interpretations of the conclusions presented here.



From Eq. (278) of t2], the vehicle }otational equations take the form

15+ T4 = 1 | I W
where T is the 3xl matrix representing the external torque vector about the 7
vehicle mass cenfér c, for.an orthogonal vector basis iﬁ the primafy body b,
I* is the 3x3 inertia matrix of the total vehicle for c, 6 1is the Qxl matrix
of 1-2-3 inertial attitude angles 6f b, q is a 6nxl matrix consisting of a se-
quential ordering of 6xl matrices typified for nodal body j by [ui ug ug Bi B% Bg]T,
where for o = 1,2,3, ui is the translation of the nodal body mass center relative
to b in the direction defined by axis o fixed in b, and Bi is the small rota-
tion of nodal body j about axis o. The 6nx3 matrix Aais eétahlished Efkthe
geometry and mass distribution characteristics of the apperidages, as in Eq.'(2?8)
of [2].

The appendage dEformétion equations in Eq. (277) of [2] may be written

M'q + Kq + AB = A | ' (2)
under the assumption that the resultant externalrforce applied to the vehidle is
zero. Here K is the appendage stiffness matrix and M' is the inertia matrix
appropriate for the appendage attached to a translationally free but rotation-
ally constrained rigid body. Both M' and K are symmetric and positive'definite,
and all quantities in Eqs. (1) aﬁd-(2) are real. The 6nxl matrix X consists
of n 6x1 partitions for the n nodal bodies, as typified for the jth body by
[fi fg fg Qg Rg Eg}, where for a = 1,2,3, fi and Ei.are the scalar components in
direction o of the external forcé and torque applied to nodal body j. 1In the
present application, A contains only forces and/or torques associated with atti-
tude control actuators. Although in practice these actuators might themselves

be defined by their own dynamical eduations, it serves our present -objectives to

treat them as pure thrusters or torquers.



The relationship between A and T can be expressed in general terms inmvolv-
ing the torgue T0 applied directly to b and the forces and torques in X as

= 3
T =KkA+T , (3)

for some 3x6n matrix K which sums the torques on the nodal bodies and cross-

multipiies the forces by the vector _; locating nodal.body j relative to c: thus

Ry, oo tE Ny

3 @)

K = [El: U3} 3]

where U3 is the 3x%3 unit matrix and in terms of the scalar components RJ9 R%s R3

of 59 in the vector basis fixed in b,

-
o & =
3 J i
®rafd o & (5)
=] &} 0

In Eq. (3) there are potentially 6n+3 independent controls embodied in T0 and A,
In the simplest case the 3 elements of T are each identified as independent

controllers (each perhaps associated with a single actuator, such as an idealized

control moment gyrdk then it is most convenient to replace A in Eq. (2) by

A= QE"ZT (6)

in which the 6nx3 matrix g% establishes the location and type of the attitude
control actuators. For example, 1f the actuator is conceived as = pure torquer

located on the kth nodal body, then

#T =[olol---:oiu i~==1010 (7)
c 1oy o 3 b
where U3 is a 3x3 unit matrix appearing in the 2kth position ofé?c. If instead
the actuation system consists of a system of synchronized attitude control jets
responding to only three independent commands, then Eq. (6) still provides an

appropriate actuation model, although & becomes more complex than the simple
C

case illustrated by Eq. (7). (See the first example, case (c¢), in Appendix A.)
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Since the nature of the three~axis control problem clearly demands at least
three independent ;;ntrollers, Eq. (6) represents a minimal actuator model.

In the next sectlon we address the question: ‘Is the system controllable
with the minimal actuator model? An affirmative answer implies conﬁrollability'
with the mofe general actuator model of Eq. (3), but the system could theoret-
ically be uncontrollable with the minimal model of Eq..(ﬁ) and yet controllable
with the model of Eq. (3). |

The dynamical equations (l)'and_(Z) must be augmented by an observation
equation. Again we are concerned only with the minimal sensor model, which

provides only three attitude readings. Thus we adopt the observation equation
Y==e+9?§q ' (8)

where the 6nx3 matrix Q% locates the sensors. For example, if a sensor .on the
kth nodal body provides the three inertial attitude angles of that body, then

g% 1s identical to thecgi matrix i1llustrated in Eq (7), and the sensor output is

y=0+8" - | ®
- Physical arguments suggest that observability isfunchangad by the acquisi-
tion of attitude rate information at ;he samé_loqations for which attitude-infbr-
mation is established by Eq. (8). Generalization of this minimal sensor model
to permit more_than three independent attitude measuremeﬁts’may, however, ex-
tend observability to additional statés.
In the'hybrid coordinate formulation, Eqs. (2) provide the basis for the
transformation
‘q=¢n - | : | (10)
in which ¢ is é 6n36n matrix ﬁhése colﬁmns are the eigenvectors of that portion
of Eq. (2) inﬁolving unly g. The notéd properties of M' and K assure that these
eigenvectors are independgnt, and that‘¢-is'nonsingular and has orthogonality

properties such'that ¢TM'¢ and ¢TK¢ are diagonal. (See [2], pp. 43 and 53.)



Egs. (1), (2), (7), (8), and (10) become, after pre-multiplication of Eq.

T *-1
(2) by ¢~ and of Eq. (1) by I —,

53 =u (11)

n+ o’ - 88 = ey Lo 1" (12)

y =0 +% on (13)
where

u A I

8 A ~(o" M) ToTA

34 -1 18T = L6 oM 0y

o = ™M'0) oTko

Eqs. (11) ~ (13), although obtained here for an appendage model [2] in
which all mass is concentrated in nodal bodies, apply also to vehicles with con-
tinuous appendages [1] or with distributed-mass finite element appendage models
[3]1. In any case the dimension of N represents the number of appendage modes,
which henceforth is called N (rather than the symbol 6n which is appropriate
only for the fully discretized model without coordinate truncation.)

In what follows the eigenvectors in ¢ are normalized so that ¢TM'¢ = UN;
then the diagonal elements Ui of the NxN matrix 02 represent squares of non-
zero natural frequencies of vibrations which could occur independently of each
other if the primary body were tramslationally free but constrained against

rotation, as noted in [2], page 55.

In terms of the (2N + 6)xl state variable

S
Lo |
_%_
Eqs. (11) - (13) may be written as
X = Ax + Bu (14)
y = Cx (15)



where .

e -n—l;— —
| ¥ | § ] |
usfofojo 0o fujojo
- 0: U3io :"‘J 0=0f0=0
A= |~ ‘ ———
0} 0 ]ufo 0100y
- 2
ol-6§lo!u 00010
| Y i s 0 I i 1o
— -
o {u,jo I 0
0 jo ! —JM10'2} 0
T P TN (16)
0 lo!lo | Uy
[0 Jo | we® | o]
-1
u,j0 1010 o 1 [ 0
P Y Al I Ittty T -
0 Ul 0 -7 U = | M+ ¢ Z 1
Bom femeee 3 ___ T {3 21 e (17)
0_ g UN' o] 0 0
(I i T * T *
181 {
._0 1-6; 0 ! U.... _¢ gfc!"—— _6M2+M1rb ‘QCI—-
and
T,,. .
C = [U3{ 0}$E0¢} 0] (18)
with the NxN matrix Ml defined by
o Mliﬁ__(Un“SJ)-l‘ : (19)
and the 3x3 matrix M2 defined by
-1 ' ,
MZ = | (U3_J5) , . _ . | . {20)

Note that for ¢TM'¢ = UN the matrices 8J and Ml are symmetric, although J§ and M2

are not. The inversion in Eqs. (16) and (17) has been accomplished by means of

the partitioning foérmula in Eq. (191) of [2].



As proven in Appendix B, one can interpret J and"d in terms of primitive

definitions and obtain the physical interpretation
-1
*
M, =1° 1 (21)

where I° is the inertia matrix of the primary body referred to its own mass cen-

ter. This interpretation guarantees that M, 1s nonsingular, which as shown in

2
Appendix B implies that Ml is nonsingular.

CONTROLLABILITY

The system characterized by Eq. (14) is said to be completely controllable

[6] if any initial state x(té) can be brought to any finite state x(T) in a
finite time dinterwval T—t0 by some control function u(t).
A basic controllability theorem {6] indicates that the system of Eq. (14)

is completely controllable if and only if the controllability matrix, Qc’ as

defined by

21~1+5B }

Qc=[BiABEABI...iA (22)

has full rank, which means rank equal to the dimension of x, namely 2N+6. (Note

that Qc has dimensions (2N+6) x (2N+6)3). With the notation

T *
B, 4 M2+J'Ml¢ .
. T *
B, A OMy M ¢ i
we have
B I | I 2 I ! 2. N+2 j
-?_}_§2; 0 ) J(—Mlc )B4= . ;J(—Mlo )] B4
o T, T A T
BZ{ ¢} ! J(*Mlc )B4= 0 : : 0
R R e N R I iy > (23)
o :__&: i ( Mlc )B[{»E * | (-—M]_O' ) 4
I P N T -
| B4} 0 P (MoT)B, 10 ; | 0 _

10
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The rank of Qc is twice the rank of the (N+3)x3(N+3) matrix Qé, as given by

_f V(Mo )34; J(-Mld ) B l

| B'i (-M,0° )B f (-Mlo ) 34 .

(24)

In evaluating the rank of Qé it is convenient to premultiply by a matrix V
which has !VI =1 and which results in a block triangular form for Qév. By

proceeding in three stages one can determine that the desired matrix is

1 1 1 _ |
Uy l 0 U3= M, U3= 0
LT A O — — ——— ——— — ——— 25
T L% : : -
AT o o [

Since the determinant of a product is the prbduct of determinants, the require-
ment |V| = 1 is satisfied, and premultiplication by V won't change the rank .of

Qé; Moreover, the product VQé becomes (with the definitions of ﬁz, B4, and Ml)

1 o | - 2 ) 2 N+2
Uy, i 0 U3I M, B, ; J(-M;0)B, oo 1T (= -M,0
V " = - : . : et ———— e e it ey e v
e o v ullo ! u T %yl 200 | | L 2,N+2,
¢ Myt Uy i Uy ¢7 T My OB, L M) (M0 B,
i | I I ‘
S N N B T T et A
B N, SRS T, %} ~1 2. | -1 2, N+2
4
My [ 0 :
b . .
={ e H-f— ) : : (26)
T *_ ~1_% i 2 ' l
¢ @ (1M1 Mz)il--ﬁ Un
whe;e
R 2 ! ! 2y M1y '
QCNQ{BAE (-M,0%)8, (-MU)B g (e, (27)

Eq. (21) guarantees thath2 is‘nopsingular, 80 that the first three columns of
VQé in Eq. (26) are independent, aﬁ&_by virtue of the null partition these three

columns are independent of all others in VQé. Moreover, the possibility of

11



normalizing ¢TM‘¢ so as to make 02 the diagonal matrix'dﬁ-squares of nonzero
natural frequencies of the appendage indicates that 02 is nensingular. Thus
the controllability condition becomes
' =
Rank(QCN) N (28)

In the interpretation of this result, it becomes convenient to rewrite
QéN from Eq. {27) in terms of

§ ASv T (29)

c = e ‘

The identities [4]

-1 -l ‘
M, = (U,-38)7 = UbI(U-61)7"6 = U+, 6 (30)

and

_ S -1,
Ml = (UNﬁbJ) = UN+6(U3—J5) J = UN+6MZJ (31)

permit recognition of the further identities

= — - _l =

ml = J(UN+6M2J) (U3+J6M2)J = (M2 +J6)M2J = M,J (32)
and

6M2 ='0+6JM16 = 6+6M2J6 = Mld (33)
and

M, = UM, T = UN+M16J (34a)
and

Ml = UN+<5M2J = UN+5.TM1 (34b)

and these permit B4 to be written as

134 = MléHMld) g’cI = Ml 6c : (35)

and thus permit QéN to be written in terms of Sc' A further simplification is

afforded by multiplying QéN by the block diagonal matrix with blocks

12



2 . N+l
UN: ("UN)s ("‘UN) S saa (—UN)

y Which removes the explicit minus signs from Eq.
(27) without changing its rank. If this product is called Quys then the neces-

sary and sufficient condition for complete controllability becomes

Rank(Qp,) = N _ . | (36)

where

%n ~ [ﬁlac! SR NI E(Mlgz)NﬂMl‘Sc] - oD

Before attempting to interpret this criterion in useful physical terms, we
-estabiish a parallel criterion for observability.
| OBSERVABILITY
<A state xj(t) characterized by Egs. (145 and (JS):is said torbé observable
{10} if knowledge of u(t) and y(t) over a finite Fiﬁe segment t0<TSt completely
determines xi(t); if all states in a system are observable the system is said

to be completely observable.

A basic observability theorem [8] indicates that the system of Egs. (14).

‘and {15) is completely observable if and only if the observability matrix Qo,

as defined by

T T.T 2N+5 T

Q = cg'-ACi(A)w--—'(A) (38)
has full rank, which means rank equal to the dimension of x, namely 2N+6.
Substitution from Egs. (16) and (18), with the notation
5, 4 0T M' 9+ T = 6+¢T£’OI B (39)

(to be compared with Eq. (30), noting the eigenvector normalization ¢ M ¢ = U ),

so that, with the definitlon of J

13



#-1.T T T T, . k-1 %1
i)’ = e Tea hiTe = (ohesre'e 1O = 6 1
T
produces for the observability matrix (in which Ml = Ml)
T w1 o ] D i D b 0 ; 0 ]
_,,.“é,_ I 5__ Y e e I___ H —— L] .
SRR NCS LTS S RSSO ISY 1% L N B
o leTe b0 dedfupes 1th 0 R R R 0 (40)
oty ! o Hechyy s T 0 {otM 2 (g 1Y)
- 1 ! 1 I ] t
The rank of Qo is twice the rank of Q;, where
U, 0 , 0 e 0
Q= _T—-"{ T - 2T | PN N =l Rl NSy ol RS
1 "y oga - [ Y -
® &Po (~o Ml)(aol ) (-0 Ml) (501 ) L (~o Ml) (GOI )

and since the first three columns of Qé are independent of each other and of
all other columns the rank of Q; is three plus the rank of the residual matrix
obtained by deleting these three columns and the three top empty rows from

. *.] 2 :
Q). Because 1777 # 0, and [0°| # 0, this residual matrix has the same rank

as the matrix
Qo & 18 1 anodns to 1 oM s ] (42)

(Note that, as in the controllability case, minus signs have been removed,

without influencing rank.)

Thus the necesgary and sufficient condition for complete observability

becomes

Rank(QON) =N (43)

The observability conditions in Eqs. (42) and (43) are now very similar
to the controllability conditions in Eqs. (36) and (37), differing only in the

exchange of § for § .
o c

14



INTERPRETATION OF FESULTS

The reducticn of the contrellability matrix to QCN {Eq. (37)) and the obser-
vability matrix to Qoﬁ (Eq. (42)) implieélthat controllébili;y and observability

of the system of dimension 2N+6‘in Eqs. (14) and (15) can be inferred from that

of the system of dimension N given by

v = M oPvH 6 u | | | S )
w o= Sy | ‘- (45)
ol .

With this interpretation comes the realization that simpler necessary and suf -
ficient conditions for controllability and observability are given respectively
by the requirements for full rank (N) of the matrices

_ e 2 2 N- S |

Qe & U881 aryo*nus Mlo ) ]'M 5] (46)
“and

= . 2 . 2 .N- | :
Qo & (43, | o™ e a1, 0%) ]'Ml(’: b (47)

These conditions and the relationships betweenrthém are most interpretable in
physical terms when special cases are considered, | |
When all of the sensors and actuators are attached to a'single rigid body
in the model, we can call that body the primary body, so that the location
matrices ﬁ?ﬁ and ;Zb are both ie?o, dé = do = 6, and the controllability and
observability conditions become identical, and simplify gréatly.-‘ln this case

QCN in Eq. (46) and QON in Eq. (47) can be written with Eq. (33) in the form

2 | -
= (oM, ) ayoyemyy ...y 0ot N e (48)

91

Since by Eq., .(21) the common factor M2 is nonsingﬁlar, the rank of the matrix
in Eq. (48) is unchanged by remdving M2 throughoﬁt;‘thus the controllability and

observability eriterion bgcbmes

15



Rank[6 { (M08 1 ... 1 (r;0H) 18] = w (49)

Eq. (49) simplifies dramatically when subjected to the following corollary
of Kalman's canonical structure theorem [7]: "If a system characterized ﬁy the
pair (A,B) is completely controllable and F is any matrix of appropriate dimen-
sion, then the system characterized by (A+BF, B) is completely controllable.™
(This corollary is not proven in reference [7], g0 a proof is included here as

Appendix C.)

Eq. (34b) permits Eq. (49) to be written as

2 2 2 2. N-1
Rank[$ | (o +6JM10 6 ... (o +6JM10 ) 81 = N
or, with the noted corollary,

Rank[§ 1026 Lwva ) (6B L5 = (50)

A typical Nx3 partition in the preceding matrix is

_ 1 A _ . | -
24 1 21, 1) 24,1 121
01 ) 01 Gli Gl 62 Ecl 63
21 2 212y _24.2 4y 2i.2
02 8 02 Gli 02 52 ED'z 53
o?ls - = B T
. . . 1 . 1 -
24, N 21 N 2i N | 21.W
GN 8 GN ali UN 62 i UN 63

The Nx1 columns in Eq. (50) can be interchanged without changing the rank, so

that Eq. (50) becomes

= | | ™
1 2.1 e. 2(N-1).1 |.1 ee 2(8-1) .10 1 .... 2(N-1).1
8§ 018 %1 8 16, 9% §y1 83 %9 53
2 2.2 ... 2(N-1).2 |.2 Co2(N-1) .21 2 ..., 2Q8-1).2
] 8y 98 % 8y 19, 9 §1 83 9y S5
Rank : : : : ! =N (51)
. . . . . [ .
N 2N . 2(N-1) N IN ... 2(N-1) NI (N .... 2(N~1) N
6 4w
1 91 N §; 13, 5 Syt 83 o 9

16
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or

Rank[Alc"Azcg A3U] = Rank[Al{ A2} A3;

where

and

Since the determinant of the Vandermonde matrix & is given by [8]
~ 2_2
el H(Gi‘cj)

then G 1s nonsingular if for all i # 3, Gi‘#

(50) is equivalent tor

or

.Rank[Alg A2= A3] =N

Rank[A 1A 1A ]

= Rank

G2
2 0-1)

2(8-1)
%

)

(= R
o ao

Q0 O

lgi<j<n

3

Glﬁl

6%

—

thus for a4 # 0, for all i # 3 the condition

3

T

i.1%

§78

is necessary and suffiqignt for both controllability and observability.

i=1,

» N

17

ag,.

2.2

T4

NN

o

(52)

Under this supposition Eq.

(53)



In the case of repeated roots, we may assume that the first P roots are
repeated and the remainder all distinct, and then re-examine Eq. (51). Now
the first p rows are independent if and only if 61, eee 5 6P are independent.
(Note that this is impossible for p>3, or in general for p exceeding the dimen-
sion of 6, which establishes the number of control axes in the problem.) If
the top p rows are deleted from Eq. (51), then what remains has a rank at least
as large as that portion of it given by a new version of Eq. (52) with N re-
placed by N-p and A1 and & beginning with UP+1 and 6?+l rather than o, and Gi.
Thus in the case of p repeated roots Gl, cen s Up it is sufficient f;r control-
lability and observability that 61, ee. 5 6P be independent and stet # 0 for
i=p+, ..., N. (The authors suspect‘that this is also a necessary condition,
but the proof has eluded them.)

Eq. (53) admits an appealing physical interpretation whenm wriften as

. |
tr (8" &1y £ 0 (54)

LT
since STS = &t Gi has for the normalization ¢TM'¢ = UN previously been in-

terpreted ([2], pp. 69-70) as the inertia matrix of the appendage referred to
the system mass center ¢ plus the difference in the ipertia matrices of the
brimary body referred to ¢ and to its own mass center. The quantity 6iT61 has
been called the "effective inertia matrix" of the itP mode, and has been recog-
nized ([2], pp. 69-70) as a measure of the coupling between ith mode vibration
and primary body rotation. If GiGiT = 0, the ith mode would for ocutput 8 be de-
leted from the model by coordinate truncation; thus the truncated system is
completely controllable and observable.

This success in dealing with the specilal case in which sensors and actuators

are all attached to one rigid body (here called the primary body) has mot been
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matched for the general case of arbitrarily distributed sensors and actuators.
Since the observability condition (Eq. (38)) depends onlf upon C and A while
the‘con;rollability condition (Eq. (22)) depends enly upon‘B and A, one could
cope with the special case in whiéh ell-senSOrs are on one rigid body and all
actuators on another by applying Eq. (53) twice, with two different selections
for the primafy body and twe'different'interpretations of all of the symbols,
but this case is less interesting than the common primary body case eolved here
or the general case in which sensors‘and actuators are both distributed over
the bedy (as in the case of the telescopic sensors on the NASA Large Space
Telescope). For this general case the controllabillty and observabillty con~
ditions are full rank requirements for the matrices 4in Egs. (46) and (47) reg-
pectlyely. These requirements can be placed in slightly simpler form by observ-

1
ficient conditions for cbntroliability and observability then become respectively

ing that‘[Ml[ # 0 (Appendix B) and factoring M. to the left; necessary and suf-

c1

Rank (5 | (0%M6_1... iconl)N‘léc] =N | D)

and

Rank |8 | (0%1)6 | ... E(U%il)““lao] N - (56)

o] [+ 3}

These criteria correspond to the state and observation equations

v = ) - : :
v Ulev+ cU . _ o o . (57)
w=dly o | PR | (58)

For purposes of preliminary analysis, it may be useful to consider a flex-
ible appendage model characterized by a single mode. Eqs. (55) and (56) then
require eimply that the 1x3 matrices Gc and Go'be of rank one, or the scalar

equivelents
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§ 6 40 (59)
C C
and

T :
8,8, #0 (60)

Experience with specific examples (see Appendix A) and with the special
case repre;ented by Eq. (53) suggests that when many appendage modes are in-
cluded the satisfaction of Egs. (59) and (60) for each mode is necessary but
not sufficient for complete controllability and observability respectively,
with an additional frequency criterion stipulating further criteria in the
event that eigenvalues of Ole are repeated., This proposition has however
not been proven; the corollary which produced Eq. (50) from Eq. (49) and sim~—
plified the special case governed by these equations is not helpful in the
general case.

CONCLUSIONS

Necessary and sufficient conditions for controllability and observability
have been established in the form of full rank requirements for Nx3N matrices
for systems characterized by state equations of dimension 2N+6. For the
special case in which all sensors and aétuators are attached to the same "pri-
mary" rigid body, the controllability and observability conditions are identical
and reduce to the requirements that N scalars ﬁiGiT(i=l, .++ s N} be nonzero and

s T, be distinct or effective inertia

elther appendage frequencies Tys veo N

matrices 61 & be independent.

With these conclusions come a new reason for fhe study of controllability
and observability. This investigation was initially stimulated by the realiza-
tion that much of the progress in optimalycontrol theory depends upon the assump-
tions of complete controllability and observability [9]; if we are to address

the problem of flexible spacecraft control with the techniques of modern control
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theory we must first determine whether or not our system is completely control-
lable and observable. It has been apparent from the cutset that this issue is
¢louded by the realization that in the flenible spacecraft modeling process
there.is an embiguity stemmingrfrom the foreknowledgerthat not all possible
modes of vibration are dynamicaily significant or even\computationally available,
and many must be truncated from the system description prior to simulation. The
~ selection of which modes to truncate and nhich to preserve is a major decision
in.flexible spacecraft simulation. Now we can see that the preceding conditions
for controllability and observability not only provide answers required for the
application of the techniques of optimal control, they also provide a new ration-
ale for modal coordinate truncation, as required for any system simulation.

It has been recognized previously ([2}, pp. 69= 70) that the "effective -
inertia matrix" of each mode affords a rationale for truncation, since this
matrix provides a quantitative measure of the dynamic coupling between vibra-
tion in that mode and primary body rotation. Now we see from Eq (53) that
the trace of this matrix {is a formal measure of controllabllity and cbservabil-
ity when all sensors end actuators are on the primary body. Moreover, we find
that in the more general case in which controllers end‘onserverslare distribnted
over the body, we have a new truncation criterion in the controliaoiiity and
observability conditions available from Eqs. (55) and (56);piAs we entertein
various trnncations, our ijective is to obtain a system of minimal dimension
consistent with the preservation of the fidelity of the output matrix

z - Dx o (61)
which describes the salient aspects of the spacecreft mission performance,
Since the control law for u in Eq. (11) depends upon the sensor observations
y in Eq. (13), it is necessary that all significantly observable states be re-

tained in the coordinate truncation process.  Although in general it is possible
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for an uncontrollable state to influence z and hence be among the states which
must be retained in truncation, in the special case of states describing flexible
body modes experience suggests that only controllable states will influence z.
Under this assumption, it becomes desirable to truncate all those uncontrollable
states which are also unobservable, This leads to the adoption of the design
objective of configuring sensors so that any uncontrollable states which do noﬁ

influence z are also unobservable; this strategy of uncontrollable mode isolation

permits in many flexible spacecraft control applications the truncation of all
uncontrollable states, which are by desipgn also unobservable. The result is
often a completely controllable and observable system model, which is more amena-

ble to formal optimal control, simulation, and conventional control system design.
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APPENDIX A. EXAMPLES OF CONTROLLABILITY AND OBSERVABILITY CALCULATIONS

Example 1. Consider single axislrotation of a spacecraft with symmetric append-

ages of continuous thin beams as shown in Fig. Al.

2
. ~ (b) 2”
(a} v
4.7
7
>
P 1d £
.ﬂ”"" s .
: £
2%”
A
LA —
[ i) e =N L
Figura A1.  Model of Example 1.

The rotational motion of the model is characterized bﬁ Eqs. (11) and (12) with
the observation equation (13). However, the assumptions that the rotational
motion is limited to the single_gxis and that the mass diétribﬁtion £s contiﬁ—
uous (so that each mass éIement has infinitesimally small moﬁent of inertia)
necésSitate.a‘slight modificarioh of definitions of §, J, ¢, S?C‘and 520. Fur-~
thermore, mode shapes are assumed_to'be given by a function of E, 1.e., ¢jt£)
which is at least once differentia_ble with respect .‘to € over the intervals
d<|£|<L+d, or more specifically,
. . ,‘q<|g|<d N
Ao = {ode a0 . (a-1)
e carsgie | o

~ Preceding pége blank
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Under these assumptions, we may express s (scalar) in terms of mode shape and

inertial parameters as follows.

L+d I+d
o --2 / Wleae = -2 / 143 (€)-¢ (=€) bedg (a-2)
Z(L+d) d

For the purpose of illustration, we further assume that only two modes are
retained (N=2). The first modal coordinate, nl, is associated with an asymmetric

mode which satisfies

¢-5) = L)
and the second is with a symmetric mode which satisfies
2
$2-8) = 62

The modal deformation coordinates thus defined are illustrated in Fig. A.2.

P /.

(ﬂmeiiglﬁﬁf£o (2) 8=ny=0;ny#0

FrgureAz -Asvimmetric and Syiﬁmetric]\ﬂodes.

¥
Corresponding to these modes, §3's (3=1,2) are given by

L+d
st-- 2 / Sr(E)Ede (4~3a)
d .

8" =0 (A~3b)

We examine the following three cases.
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a) If both sensor and actuator are located on the primary body, the rotational

equation is characterized by

B-2n =u : _ o _ (A-4)

) . 2
-nto

“n, = ~516 i - (A-5)

. 2 B ) .

= A—

n,toon, = 0 | - , {A-6)
with observation equation

y =8 ' o (A-7)

Since Eq. (A-6) is independent of u, 6 and 1. and does not affect Eq.

1

(A-7), we can readily identify n, as uncontrollable and unohservable.
Thus, we may limit our analysis to the truncated system of equations in which
Eq. (A-6) 1s deleted.

Direct approach: For comparison, we examine the controllability and

observability matrices directly. 1In terms of the state variable

x é:[ﬁ;e,nl,ﬁllT the state equation is x = Ax+Bu with

0 1 0 0 )
-6102 .
0 0 5350 - e
A = I-(67) ‘and B = I-(87)
| 0 0 0 1 0
.
1702 1
0 0 I _ o §
F3 %
i 1-(sh? 12(6H? ]

and with the observation eqﬁation'y = Cx with

c=[1 0o o 0]

Now, the controllability matrix is

q, = 8] aB | a%B | a3p]
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and the observability matrix is

o = ¥} ATa" 1 @hT 1 hH .

*
Matrix algebra produces, with a é;(I~(61)2) >0),

"0 o 0 -(51)2ci
) o 0 ncsl)zoi 0
0Q = .
c o ol 0 -1 Glci
Gla 0 -I Glci 0
and B i
[ a 0 0 0
O o 0 0
aQ. =
@ 0 0 nGloi 0
2
0 0 0 -t Ul
Consequently,
136, 2
|Qc| = (-§7) Olfa
_ 1.2 4, 2
IQOI = (§7) olfa

Since ay # 0, o>0, the ful; rank conditions reduce to

st 40
for controllability and observability.

The result (Eg. (53)) on the controllability and the observability
produces the same conclusion as follows.

The fact that 62 = (0 implies that the state including N, is not com-
pletely controllable, and is not completely observable either because the
sensor is attached to the game body as the actuator.

If N, is deleted from the state, then Eq. (53) simply requires

61 # 0, noting that N = 1,
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If the actuator is attached to the primary body and the sensor is attached

at £ = Es as shown in Fig. Al, then it reads

where for simplicity of notation we write

e, ysn, 2
E=¢

8

3 4l
RACY

(A-8)

In this case, Eqs.(A-4)-(A-6) remain unchanged so that the.control-

lability condition is the same as the previous result.

The observability 1s to be discussed with respect to the state in-

cluding M, in view of Ehe difference between Eqs. (A-7) and (A-8). By

definitions of Egs. (lé) énd'(39),

st st
_ 1
Mp= iV - ('I‘*)
0 o
1 1 1t
§o 8 ¢s
60 = = +
2| ' 2!
'Go 0 q>‘s
and consequently,
Efsl Ef
a o - o
M,8 = Mol = |
1o '
%.2
1 Go: 9]
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Thus, we can construct abN defined by Eq. (47)

1 1224
_ &‘60 (a‘) 016
Qy = % *
oN I 62 I 0252
o 2o
Since —6N is a square matrix, the full rank property is simply examined
by its determinant, i.e.,
%2 *
- _ I ";1.2, 2 L 2
o} = a0 5?01),

Thus, observability requires three conditions:

. 1 .1,.% 1!
(i) 60 = §+I ¢S #0
oy a2 k2T
{ii) 60 = I ¢s £ 0
2 1 2
(iii)Uz—a——O’l%o

We see that the conditions (i) and (ii) are exactly what Eq. (60) requires.
Especially, the second requirement which reduces to ¢§' # 0 is physically
clear because if ¢§l = O then Eq. {(A-8) is not affected by n2 as in the
previous case.

The condition (iii) deserves particular attention. This prohibits the
diagonal elements of M102 to be equal or the eigenvalues of M102 to be
repeated. Eq. (44) should be referred to with comsideration that in case
of diagonal Mloz, repeated elgenvalues are not accepted for the single input

system to be either completely controllable or observable. (For similar

discussion, msee Ref. [9]).
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¢) Assume that the sensor is attached to the primary body and a pair of gas
jets are attached on the beams at £ = £ and £ = - 2. Further, assume that
two actuators synchronize but their forces are not necessarily of equal

magnitude, i.e., the one at § = - & produces a force f, which 1s given by

2

f2 = c'fl with -1<c'<l where f, is a force produced by the jet at £ = L.

1

Such dependency comes from the minimal actuator model. Then Eqs. {(A-4}) -

(A-6) are rewritten as

- |
.é —‘t‘s"—‘z =&;(1-_~c')f =u
11 .
sy e et
 n+d2n-69 = | . £, = | u
- 2 : 2,0
¢, (2) (1+c U ¢ (AT /8
I+c'

| -where ¢ A o

By the definition of Eq. (29),

1 1.1 ko |
| s | §Hp (DT*e
N 6c= = -
2 2 %
8 ¢+ 21 /%

Similarly as previously, we can cqnstructVQ‘ defined‘ﬁy'Eq. (47)

1 /1t 2]
- '.E 66 (-Ot_)f g sc' '
Q.. =
CN .
* : %
1 62 I 0202
c 1 ¢
and
%2 ' : %

‘122 1 2.
|QCN| o Ggéc(sz_ o )
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Thus,complete controllability requires three conditions:

(1) Gi - almi(z)x*/z 40
(i) 82 = ¢2MT e/ # 0
(111) o‘; - éf"i £0

The condition (iii) is identical to that of (b). (i) and (ii) are what
Eq. (59) requires. The condition (i) together with (A3-a) implies that

if the mode ¢i(€) satisfles the integral egquatiom

L+d .
2m 1 I .1 _
D) @ 0w - o0
then nl is uncontrollable. (Equivalently, if the actuator location
parameter, %, satisfies this, then Ny is uncontrollable.)

The condition {ii) requires
2
¢+(£) #0 and c# 0

¢ = 0 implies ¢' = =1 and f2 = ~f1, which is realized by a pair of equal
magnitude jets. From the practical point of view, it is rather desirable
to locate the jets at £ ;atisfying ¢i(2) = 0, because it can eliminate
the effect of n, which causes an unnecessary vibration due to some im-
perfection of the jets {c # -1 or f2 # —fl). If this is possible, then
we can truncate n2 for this particular location, although otherwise we

must retain it.

32



APPENDIX B. INTERPRETATION OF U3—J5

By the definitions following Eq. (13),

-1 -1

0338 = Uyt 6T TS = 1T 16T 6T es) (8-1)

Moreover, in view of the symmetry of M' and the definition of §,

so"m96 = 4T ) (¢Me) ol oTa

B | (8-2)
From f2], Eq. (277), with minor notational revision,
T, ' : '
t - . . . -
M' A M(Ufm ZUOZUOM/ ) ) , (E'u 3)
and . ‘
A A M(E-RE ) (B-4)

where M is the block diagonal 6énxén matrix.containing in alternating sequence

along the main diagonal the mass and inertia matrices of the nodal bodies, as

1 2 2 n n

designated by the 3x3 matrices ml, I',m, 1, =—— ,m, I. The symbol .#

denotes the total vehicle mass, and the 6nx3 matrix binary operators Lyo and
ZOU are defined in terms of 3x3 zeros and unit matrices by
b =[u,! o! U, 10O rug. i 0]T . S (B-5)
U0 bR B B B AR L
and _
=[c! Uy, 'o! Ul }'0 g1t L ' ' (B=6
" oU S Y3 Y Mg 1 Y3 S : =6)

b2
Finally, the K in Eq. (B-4) is dgfined in terms of 3x3 zeros and the matrices

in ﬁq. (5) by
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_ -
& o o
0O o0 0
0 o &
R A (B-7)
R* o
0 o0
L__’ —

‘Thus Eq. (B-2) becomes, in view of the symmetry of M,

T

1, T ) -1
A = (ZoyRIyg) MU =Ly Zygtetl) ~(2o-REy0)

T~
with the identity [4]

(U, -

T -1 T -1.T
6n~lotyo MAH) T = Ugt LyglUg =Lio MLAO Zyg 1 T Iy M/ A

and the recognition that

T
I ML =
R s |

where m, is the mass of nodal body i, we can identify the scalar

o -1
1 - Zn /) =/

i=1
where my is the mass of the primary body, and write (noting the skew-symmetry

of ﬁ)

T.,-1, ,.T T T
AM' A = (EOU+ ZUOﬁ)M(U6n+ I

voluot/mg) (Zoy~RE

o) (B-8)

With the identities

T
zOUMEUO =0
T _
LyoEoy = O
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T R _ ]
ZyoftEye = IygRiye = jflmjﬂ

. Egq. (B-8) becomes

n - n ., n
YU N I S -2 B 5
j=1 j=1 3 i=1 i

Kjlzlmo (B-9)
The first two summations can be identified by the inertia matrix reference point
transfer theorem [5] as the inertia matrix of the set of n appendage nodal bodies
referred to the system mass center c. Thus, if I' is the inertia matrix of the
primary body referred to c,'then, with Eqs. (B-9) and B-2), Eq. (B-1) becomes

_1 - .._ .

* ' 342 :

U,~J8§ =1 [I'"+ (2 m.B')/m ] (B-10)
3 o1 3 ©
j=1

The sum ijRJ is by system mass center definition equal to m times the vector
from ¢ to the mass center of the primary body; thus by the noted reference
~ point transfer theorem the expression in square brackets in Eq. (10) is the

inertia matrix I° for the primary body referred to its own mass center. This

matrix is symmetric and positive definite, which gﬁarantees that the matrix
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*'1 o
U3—J6 =1 I (B-11)

is nonsingular, and the matrix

-1
M, = @397 =10 T (B-12)

exists, so that

| U,-18 | #0 (B-13)

From the relationship [4]

P, | P
I P | = det .......]..'..].-.: _...:!.'.2_. =
Por | P
-1 -1
ESPLI L2¥ PP IRLIPY 1Byl 1P 3P 9P9Ps; (B-14)
with Py = Uy, Pop = Uy Byy =J and P,, = 6§, we see that
lug-38] = lu -8t (B-15)

so that the nongingularity of Ml is assured by the nonsingularity of MZ'
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APPENDIX C., PROOF OF CONTROLLABILITY COROLLARY

Corollary: If a system characterized by the pair (A,B) is completely state
controllable and F is any matrix of appropriate dimension, then the system
characterized by (A+BF,B) is completely state controllable.

Note: This corollary is applicable whenever there exists a constant linear
feedback law, such that the control variable u{t) can be written in the form

u{t) = uc(t)+Fx(t)

where F is a constant matrix. Then the corollary states that the system con-~
trollability is unaffected by the linear feedback term Fx(t).
Proof

Define a tridiagonal matrix V'by

v -FB -FaB  -Fa%B ... -FA"2B]
0 U -FB  -FAB ... -FA"la
0 o0 U -FB ...
o o 0 i . .
VA )
0 o 0 0 -FA“B
0 o 0 0 ~FAB
0 0 0 0 ~FB
o o 0 0 . v
Let
Q, 4 [B| (a+BF)B | (A+BF) 2B |- E(A+BF)n-1B]
so_that

vo_ = [B j AB E AZBE‘-—+E A% 1g)

Since |V| = 1, the rank of Q. is the rank of VQ , and the corollary is proven.
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CHAPTER II
Commutativity of Coordinate Truncation and Transformation

Matrix Inversion for Flexible Spacecraft Dynamic Analysis+

*
P. Likins
and

%
Y. Ohkami

ABSTRACT, Necessary and sufficient conditions are established for the com-

mutativity of matrix inversion involved in certain coordinate transformations

and the coordinate truncatioms that are essential to practical structural
dynamice. Computational constraints demand that truncations precede the

generation of explicit transformed equations, while mathematical arguments
imply the opposite sequence. Results jeopardize the utility of two of the

three transformation procedures considered here for rotating flexible bodies.,

+Investigation supported by NASA Contract NAS8-28358

Professor
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Postgraduate Research Engineer; on leave from National Aerospace
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INTRODUCTION
It is now commonplace to characterize spacecraft with flexible appenda-

ges in terms of hybrid coordinates, consisting of discrete coordinates for

7 rigid bodies in the system and distributed or modal coordinates for the
flexible appendages. The selection of mode shapes and frequencies associ-
cated with the modal coordinates is usually accomplished by adopting a finite
element model of the appendage and writing equations of motion for the small
vibrations of the appendage with respect to a base which has a nominally
constant (perhaps zero) inertial angular velocity; the eigenvectors of
thege equations then provide the mode shapes and the eigenvalues provide
the natural frequencies of appendage vibration. This information 1s used
in various ways to construct a transformation matrix .which transforms the
;'discrete nodal coordinatES of the finite element modél into distributed
coordinates; these then are reduced in number by a process of coordinate
truncatiqn, which sacrifices mathematical rigor for computational feasibility
(hopefully without doing'vioience to the salient features of the mathematical
model)., This paper addresses an aspect of the truncation problem which
.arises in the case of modal.analysis'of an elastice appen&ege on a rotating
base, Several alternativeItransformations have-been proposed for this case,
but comparison among them is difficult without detailed numerical studies.
In this paper we consider three alternative trsnsformatlons two of which
involve the inversion of the transformatiOn matrix. Whereas mathematical
arguments demand that this matrix be inverted prior to truncation, practical
considerations demand tnat_truncation_precede inversion {which then requires
a pseudo-inverse). In this paper we establish necessary and sufficient |

conditions for the cammutativity'of truncation and inversion, in'order to

| Precédmg page hlank




define the formal limits of these two procedures. We conclude with recom-
mendations for the selection of coordinate transformations for elastic

appendages on rotating bodies,
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EQUATIONS OF APPENDAGE VIBRATION
As shown in Eq. (64) of [1], the equations of vibration of a finite

element model of a flexible appendage on a rotating base have the structure

L 1. ', 1 r t ‘
Mg+Dg+Gq+Kg+iadg=1L (1)
where for an appendage with n nodes q is the 6nxl matrix of small deforma-

. 1 ) L]
tions relative to a nominal (deformed) state, the matrices M , D , and K

are symmetric, and the matrices G' and AY are skew-symmetric, with M' positive.
definite and hence nonsingular. These equations are applicable whether the
appendage mass 1s concentrated into rigid nodal bodies (as in [2], Eq. (140)),
or also distributed over the finite elements of the model {as in [11). Tﬁe '
matrix L' in Eq. (1) holds the vibration forcing functions, which include
base mofioné, but ?hé coefficiént.ﬁatrices in Eq. (1) alsb Aepend én the_‘
inertial angular velocity of the base, If gnd only if this velocity
experiences only small déviations from a nominal constant can these coef-
ficient matrices be treated {(after lineariz;tion) as éonstaﬁts;:
COORDINATE TRANSFORMATIONS AﬁD'TRUNCATION
FOR NONROTATING ELASTIC APPENDAGES
It is well known [3] that when the base is nonrotating and the appendage
is undaﬁped the homogeneous counterpart to Eq. (1) becomes
T T - : | ‘

Mqg+Kqgq=20 _ - (2)
and that the transformation to modal éoordiﬂateﬁ' : | - )

a= on - D o &)
followed by bremultiplicatién by ¢? pfoducesfan ﬁncoupled éystem of scaiar
equ#tions
ﬁi+.cizni _=_0 i = 1,_.,.?'6_ﬁ_ K S (&)

where the columns of ¢ are the eigenvectors of Eq. (2):and o 2

; Tepres ents the
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ith eigenvalue. The inhomogeneous counterpart to Eq. (4) may be written as the
scalar equation

R, + 00, = @TL), i=1,...,6n (5)
where (¢TL')i is the ith element of the 6nxl matrix in parentheses. The
vibration equations in Eq. (5) could theoretically be used in conjunction with
the vehicle rotation equations to fully characterize the spacecraft attitude
dynamics, but in practice this is not done because most of the modal coordi-
nates n, (i =1,...,6n) have no significant influence on the motion of the
primary rigid body to which the flexible appendage is attached. Thus the
modal vibration equations are ignored except for a small number N < b6n

(typically N ranges from one to twenty and 6n is measured in hundreds or

thousands) and Eqs. (3) and (5) are replaced by

q = 9 ' (6)
and
Ao+ 020, = @) 121,000, (72)
iton i seves
or
_'_‘_ I = 1]
45 = T ‘ (7b)

where N is the Nxl matrix of truncated modal coordinates, 32 is the NXN
diagonal matrix of corresponding squared natural frequencies, and § is a
Nx6n matrix whose columns are the e?genvectors corresponding to those modal
coordinates which are retained. In practice oﬁe computes only the N eigen-
vectors in ¢ and the corresponding eigenvalues, which normally include the
lower eigenvalues; calculation of all 6n eigenvalues and eigenvectors would
be not only prohibitively expensive but also computafionally infeasible for
typical values of n,
Thus in the special case of Eq. (1) represented By Eq. (2) the trans-

formation matrix ¢ (in Eq. (3)) need not be inverted; since the required
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transposition of ¢ is commutatiﬁe with truncation, there is no mathematical
obstacle to the pragmaticaily motivated practice of truncating ¢ (as in Eg.
(6)) before transposing it (as in Eq. (7)).
GENERAL PROELEM OF TRANSFORMATION
AND TRUNCATION, OF COORDINATES
~ Although other special cases of Eq, (1) permit the use of special trans-r
formation matrices which circumvent all matrix inversion (see [1], pp. 726-729
and [2], pp. 46-56), wa.are here concerned with the more general case, for
which there exists no transformation of the structure of Eq. (3) which
transforms the homogéneous‘counte:part to Eq, (lj'into uncoupled scalar
second order equations-auéﬁ as those in Eq. (4). In the geheral case one
must rewrite Eq. (1) as a first order matrix (state) equation beforé aﬁtempt—
ing a transformation to uncoupled scalar equations,
In terms of the state variables in the 12nxi matrik

Q 4 {-—?‘-] ‘ | | (8)
q - |

.Eq. (i) can be written as 7 ,
AQ +BQ =L . @

or alternatively as

Q=BQ+L _ o (10)
where '
PK'+A' I'0 1 | "0 | K’ A'
| . - S

"P{g -_--_—-H-_'?_:l 5 B é ) 7_} T

~ L. 0 ! M o K +A { D 4G
LT o = '
B A o | U .

T Lol |-yl
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R ; vy (-2
= (M')"]'L' = L‘
12

The eigenvalues Ai,..., AlZn and theleigenvectors @1,...,® " associated
with the differential-operators on Q in Eqs. (9) and (10) are the same, and
since all quantities in these equations are real we are assured that any
complex eigenvalues or eigenvectors appear in conjugate pairs. In what follows
we assume that the eigenvectors are linearly independent, so that the matrix
¢ whose columns are these eigenvectors is nonsingular. The validity of this
assumption is assured if the eigenvalues are distinct [4], and assured even
in the presence of repeated eigenvalues if A'=D'=O and the null solution of
the homogeneous counterpart to Eq. (9) is Liapunov stable ([2], page 43).

The coordinate transformation

Q= oY oan
can then be used to good purpose in either Eq. (9) or Eq. (10). The first
of these alternatives £s developed in [1], with results only summarized
here, If Q' is the matrix whose columns are the eigenvectors of the equation

adjoint to the homogeneous part of Eq. (9), namely,

T é' + BT Q=0
then bf substituting Eq. (11) into Eq. (9) and premultiplying by @t one can
obtain

Y=y + @ Loy le' e 12)
where (¢'2A5¢) is diagonal and

A= @ L)t Tae)

is the diagonal matrix of eigenvalues kl,...,klzn.
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As noted in the context of Eqs. (5) - (7), practical considerations
mandate the truncation of the transformed coordinates, so that the 12nxl
matrix Y must be repiaced by the 2Nx1 matrix Y. It is irrelevant whether the
truncation is impdsed on Eq. (12) or on ¢ in Eq. (11) and its counterpart ¢‘,

as may be established formally by partitioning

q»__,g-[ﬂ

- |

] | f ‘ - (13

and
1

ey |
o 7|

into the 12nx2N partitions with one overbar to be preserved in truncation and

%

fle=

the remaining 12nx(12n-2N) matrices of elgenvectors to be removed in trun-

cation, and writing

——— s g,
Trm————
1
eﬂled
r—]; o |
| S |
frn———ay
Yy
—
=
| I———
N gy bt

1
-
1}
f————
=l
° g
L]
of
g o
1
eH;
|
1
|-.l

[ @t o 1 |
[ 0 @ Ta -1 } (14)
The indicated commutativity of truncation of ;He transforﬁation matrix and
inversion of Q.%xli is here established as a consequence of the diagonal.
structure of the latter. lObviously it 1s advantagéops to truncate before
ipversion, because then there is no need even to calculate ® and EJ, which
are generally of much larger dimension than ¢ ang EJ. Thus Eq. (12) can for
practical purposes be repléced by its.trﬁncafed counterpart
?=K€+’(€'Td?6)‘1$'% | . 1)
CIf the transformation in Eq. (11) is introduced into Eq. {(10) rather
than into Eg. (S8), then the calculation of the adgoint e1genvectors is not

necessary, since premultiplication of'therresult by @ © produces

¥ = Ay + 07l SR L ae
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If truncation is imposed on Eq. (16), the result is

=TT+ @ h an

<o

where (Q-l) consists of the first 2N rows of the matrix ®—1. As a practieal
matter, however, Q—l i1s not generally available, since for typical values of
n it is not feasible even to calculate all of the eigenvectors comprising
the columns of ¢, In order to circumvent the problem, it was proposed in

[2] that Eq. (17) be replaced by

Y=+ ®'1L (18)
where
7 A %) T (19)

is a pseudoinverse of the 12nx2N matrix &. This substitution amounts to the
assumption that inversion and truncation of ¢ are commutative operations.
COUNTER-EXAMPLE
Dr., William Hooker of the Lockheed Palo Alto Research Laboratories has
noted (in personal correspondence) that the above agsumption is not always

valid, as demonstrated by a counter—example such as the following:

1f
1 3
b =
2 4
then
11 [-4 3}
¢ =3
2 =1
and
(<I>_l)=%[-4 3]
whereas

3 = (3513 =%[1 214 @1
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Dr. Hooker. pointed out that Eq. (18) is the formal consequence of the substi-
tution of |
Q=9 _ _ \ (20)
 instead of Eq. (11) into Eq. (10), noting that wvhile this substitution may
appear to be plausible its consequences are not equivalent to Eq. (17).
PURPOSE |
Since in practical terms Eq. (17) is not directly available and Eq. (18)
is available upon inversion of the 2Nx2N (generally complex) matrix ® 3, it
is important that we discover thosge conditions under which these equations
are equivalent. This is the primary purpose of" this paper. |
CONDITIONS FdR COMMUTATIVITY OF INVERSION ANﬁ TRUNCATION

Proposition: For any nonéingular square matrix M partitioned as

a1 b
M= [';;' 'a-]

- and its truncated counterpart

the condition

cfd +a'b =0 : | (21)

is necessary and sufficient for the equivalence

B = ot | S (22)

where .
t = (ﬁrﬁ)_li'r . B ‘ - ' ‘ ' (23)

and (Mfl) is the uppermost row-partition of M”l having the dimensions of ﬁT.
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Proof: Since [5]

L) ' — — —
M—l N {a~-bd 10) 1 . I -a 1b(d—ca 1b) 1
- =1 -1 .-1 !} -1 -1
-d “c{a-bd ") { {(d~ca "b) (24)
then
-7 I - -1 -
oy = | @valer ] a b (amealn) ]
while
_ ! -1 I -1 )
M+ = ([aT }cTI[—E—]) [aT }CTJ = [a a+c c] laT :CTJ
i ¢ ! I
i
= {(aTa+cTc)_laT i (atatc'c) ICT]
As necessary and sufficilent conditions for (M—l) = ﬁ+ we have
(aTa+cTc)_laT = (a-bdmlc)-l (25)
and
(aTa+cTc)-1cT = —ahlb(d—ca_lb)_l {2a6)

The identities

T -1

(aTa+cTc)_la (aTa+cTc)_1[(aT)‘1] = [(aT)_l(aTa+cTc)]_1

and similarly

-1T

(aTa+cTc) c [(cr‘l:)"l(.51Ta+t:Tc:)]_l

and

—a-lb(dmca-lb)'l = —[(d—cadlb)(a_lb)_l]—l

permit the inverses of Eqs. (25) and (26) to be written respectively as

]

(aT)_l(aTa+cTc) a-bd Te

and

T

H 7 aTareTe) = ~(dmca by (a7 tb)
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or as

a + (aT)"lcTc = a—bd“;c
and |
(aTa+cTc}(a—1b) = —cT(d;caflb)
or as |
[(aT)”lcT+bd~l]c =0
and
alb + clca™lb + cTd - clcath = 0
or as
(cTaraTb)a™le = 0 (27)
‘ an& |
(Ta+aTh) = 0 | @

Satisfaction of Eq. (21) is sufficient for Eq. (27) and both necessary
‘ and#sufficient for Eq. (28), so the Prdposition is proven, |
INTERPEETATIONS FOR STRUCTURAL DYNAMICS

Eq. (22) is obvibusly valid when M is block diagonal, gince then b=c=0_
and Eq. (21) is trivially satisfied, This result is consistent'witﬁrEq. (14).

Eq. (22) is also valid when | | |

c=-a and d=b R (29)

and this‘reaqlt has an important physical.interﬁrétation for structural
dynamics, | | |

In assessing conditions for the equivaléncg of Eqs. (17} and (18), we
.ﬁust recall that'thé columns of @ aré‘the eigenveétoré‘of Eqs. (9) and (10),
and hence the "mode shapes" of indepeﬁdent structural vibratione for certain
boundary conditions. - The columns of the,ﬁartitions % and ?,(see‘Eq. (14)) of
$ represent respectively-those modes whiéh afe preserved and those-which are

abandoned in truncation. Although several truncation critefia are useful,
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when the elastic structure is an appendage on a rigid body over which one
must maintain precise attitude control but not precise position comtrol (as

in the spacecraft problem) the essential criterion is the truncation of modes
which have no influence on the attitude of the primary rigid body to which
the appendage is attached. If the mode shape 1s symmetric with respect to

the primary body, as in Fig. 1, then clearly it must be removed in truncation,
while antisymmetric modes, as in Fig. 2, must be preserved. In the special
case in which all modes are eitrher symmetric or antisymmetric, it becomes
possible to formally justify removal of the former by the proposition of the
previous section, as will be shown.

Eq. (8) indicates that Eq. (13) must in greater detail be representable as
T 17
WERES -
i

where X and A are diagonal matrices of eigenvalues in the preserved and
deleted categories, respectively, while 9 and E:establish corresponding mode
shapes for the position variables in q. Application of the criterion in

Eq. (21} to Eq. (30) produces the requirement

TR + G = 0 (31)
for the equivalence of Egqs. (17) and (18), and this is for all practical
purposes never gatisfied, since it reduces to the requirement

g =1 (@ =1,...,8; B=1,...,6a-N) (32)

However, if the problem is restructured so that Eq. (8) is replaced by

- . . L] T

Q4 [47979,9, ~+» 9g96,] (33)
in which ql""’an,and Ay 4100t " 2, 27 coordinates defining parallel
motions of appendage nodes located symmetrically with respect to a central
rigid body (as would be possible for the system in Figs. 1 and 2, but not

generally so), then instead of Eq. (30) we can write
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: . : : B ‘

3 - [—;ﬁ- i——g-] S (34)
where the left partitions (comprising 5) contain the antisymmetric modes and
the right partitiohs contain the symmetric modes. Now Eq. (29) is satisfied,
andACwiﬁh equations restructured as required by Eq..(33)) Egs. (17} and (18)
are identical, since inversion and trunéation are commutative, |

SPECIAI. CASE WITH.D' = A! =0
When energy dissipatién is ignored, and any rigid ﬁodal bodies in the
appendage model Are in the nominal state spinning about principal aies of
inertia, then D' = Al = 0 [1] in Eq. (1), which becomes.
1 ', ’ ' ‘ : !

Mq+Gq+Kq=1L o (35)

In the undaﬁﬁed'stableréase of interest here all eigeﬁvalﬁes from‘Eqs.
(9) aﬁd (le are iﬁaginary, aﬁd may be designated 1n conjugate pairs as
.tica'for o = i,...,ﬁn. The cqrresponding eigenvectors are however cbmpléx;‘
suggesting the designation’

& = ¥ 4 1r® | : : D (36)-
ﬁhefe%fhe form of Eq. fS) requires | |

: (] o '
¥ '[%:;g;;‘] and %= ["g'“‘] - (37

- If in Eq. (35) we have L =0, we cap without contradiction substitute

a=vz+vo e | - (382)
q.= -Yoz + Yz ' S o (38b)
4= —yoz + U3 ' o o (380)

into the homogeneous part of Eq. (35) to obtain
. t . | . | ‘ ’ -o ' - -1
M (-yoz + Y2) + G (-Yoz + ¥z) + K (Yz + yo ~z) = 0

or
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' ' r To_1 e '
M Y5+ (M Yo+ G Y+ KYya Dz + (6o +K Pz = 0 (39)
A homogeneous solution of Eq. {35) is

ic t
qp, = W+ 1yDe © (40)

which when substituted yields
L] L L
Mm%+ 1y (o)) e @+ 1oy + K 0%+ i) =0
or

L} 1 L}
H % % -6y, + kY% =0 (41a)

and

1 L} T
-M yo‘ouz +G wo‘ou +EY* =0 (41b)

and Eqs., (4la) and (41b) considered for o = 1,...,6n imply

] 2 ] t )
MYyoc" -G yYyo+ KPP =0 (42a)

1 ' v
-Mya + G Y+ Ko .o . (42b)

Thus with Eq. (42b) Eq. (39) reduces to
l" 1
M % + (-GYo + K ¥)z = 0
which after premultiplication by wT becomes
¥ t
v 95 + TRY - vTevodz = 0
and with wT times Egq. (42a) this is
T
UM Y(E + 0%2) = 0
TI
or with nonsingular M ¥,

5+ 0%z =0 | (43)

This same result arises if Eq. (38b) is equated to the derivative of Eq.
(38a), so that contradiction is avoided, The transformations in Eq, (38)
are not acceptable in the inhomogeneous case of Eq. (35) of primary interest

here, however, because these transformations directly imply Eq. (43). Instead
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Eq. (35) must in the inhomogeneous case be written in first order form, as
in Eqs. (9) and (10). 1In the latter case, ome can accomplish the desired

transformation to uncoupled (pairs of) scalar equations with the real

transformation
Q = P2 | - | )
where | |
| . - .
P2 [-:%Ef' Hg"’} - (43)

" and P_l exists if the eigenvectors of the system are independent, as required
for stability in this undamped case, Substituting Eq. (45) into Eq. (10)

1

. 1] -—
with D = A = 0 and premultiplying by P 1 produces
| &o I o 1 I
'z [ wad I ] Z+P L . . (46)

as may be confirmed by considering the homogeneous case and defining

.
z = ————

Eq. (46) offers a substantial advantage over Eqs. (12) and (16), whicﬁ ‘

1 involve compléx numbers in Y, A, &, aﬁd ¢!, although EQ..(12) possesses an
.advantage in requiring the inversiqn of only a diagonal matrix. The

inversiﬁn of P in Eq. (46) becﬁmes particularly critical when (as fequired

for practical strﬁcturai‘dynamics) this inversion 1s to be followed by, or
precede, coordinate truncation. .We must once again face the critical queétion
raised in this paper, "Are truncation and inQérsion commutafive?" More

explicitly, we must determine whether or not the truncation of Eq. (46) to

e

& i o—_ — _" . ’
Z= [--9- :--9-} Z + (¢~ LL ' : (47)
-g | 0 o o '

provides the same result as would be obtaiﬁed by substituting
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R
— I —
Q = PZ A [w‘i’-- :-—-—1’-] Z (48)
I
¥
into Eq. (10) with D = A = 0 and premultiplying by

A @) Tt - (49)
This issue was not confronted in [2], where an affirmative answer was pre-

sumed, This presumption requires for ite validity that
+ 0l T
P 'BP = [--—--{ -9—] (50)
i
.

and

) (51)
Eq. (50) is proven in an appendix of the referenced report which underlies
[1], but the validity of Eq. (51) has not been examined previously. With
the proposition presented as the central result of this paper (see Egs. (21)
and (22)), it becomes evident that Eq. (51) is correct if any only if
—GTYTwo + wTY = 0 (52)
and this is an untenable hypothesis. Eq. (51) must be rejected, and the
very appealing real transformation represented by Eq. (48) cannot be accepted
as the formal equivalent of the truncation of the rigorously valid Eq. (46),
CONCLUSIONS

The necessary and sufficient conditions presented in Eq. (21) for the
commutativity of coordinate truncation and transformation matrix inversion
(see Eq. (22)) are quite severe. Two of the three transformation procedures
considered here for flexible appendages on constantly rotating rigid bodies
are essentially destroyed by the noncommutativity of these operations, since
for systems of realistic dimension it 1s not feasible to perform the necessary

matrix inversions prior to truncation, as an honest interpretation of the
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mathematics of the problem seems to require. fhis diécouraging result is not
yet a definitive conclusion, because truncation.is at bgst a procesé of ;p—
proiimation. It may yet be true that transformations such as Eqs. (20) and
(43) give satisfactory resulfs in many cases; at this point however there
appears to be no acceptable evidence sﬁpporting this posgsibility.

The only one of the three tfansformation procedures copsidered here
whiéh'survives tﬁe commﬁtativity test istthat culminating in Eq. (15). This
procedure involves no inversion except for a diagomal matrix, but it is a

transformation to complex cﬁordinates, and iﬁ generally requires not only
the selected system eigenvectors in ¥ but also the correspoﬁding‘adjoint
eigenvectors in'a‘; -In the important sPecial case for which D' = A' =0
this ﬁrocédure is mu¢£ simplified by the relétidhship [11
3 =7 - | | E (53) .
but uniess the appendage is nonrotating (softhét G' = ) the transformations

involve complex numbers.
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Figure 1. Symmetric Mode.

Figure 2. Antisymmetric Mode.
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CHAPTER III
MATCHED ASYMPTOTIC EXPANSION
MODAL ANALYS5IS OF ROTATING BEAMS*
André D. Colint
and
Peter W. Likinstt

University of California, Los Angeles

ABSTRACT

Modal analyses are presented. for the transverse vibrations of a uniform
Euler-Bernoulli beam, rotating about an axis.orthogonal to the beam. Results
are obtained for a cantilever beam emanating radially from a base-which is
rotating but not translating in inertial space, and for a beam with built-in
ends spanning the diameter of a ring which is rotating about its inertially
fixed symmetry axis. The aquations are formulated in terms of a small
parameter £ which is proportional to beam stiffness and inversely related to
mass density, length, roﬁation rate, and the pretension of the diametral
beam. The resulting singular perturbation problem is analyzed by the method
of matched asymptotic expansions, employing asymptotic expansions for the
central region and for boundary layers at either end. Results are expressed

literally, with sample numerical examples.

* .
Based on research supported by NASA Marshall Space Flight Center, Contract
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MATCHED ASYMPTOTIC EXPANSION

MODAI, ANALYSIS OF ROTATING BEAMS

Introduction
The rotating elastic beam has technological significance in the develop-

ment of helicopters and spinmstabiliied space vehicles, and it has been analyzed
extensively. Because the linearized partial differential equations of
vibration have coefficients depending on tﬁe independent spatial variable,
closed form exact solutions are not available, and recourse to approximate
methods is necessary. Most investigators have adopted numerical analysis
procedures, oﬁtaining results that are limited to the particular parameter
valﬁes considered. Yntemal provides a good illustration of the extensive
.application of Galerkin's_method to many specific daseS, expanding the

modes sought in térmslof the nonrotating beam modes; Renard and Rakowskiz

and Hughes and Fung3 use similar numerical methods to address specific
‘problems of interest in their work

In this paper we seek literal expressions for approximate representations

of natural frequencies and mode shapes, using the method of matched asymptotic
expansions.4 VModal analyses of rotating structurés have been developed
pfeviously by Boyce and Handelman5 and by Abel and'i{e.rr.6 In the former
paper the authors generate zeroth order solutions for a ro:éting‘beam with a
tip mass, applying a method developed by Moser7 in which the linearly
independent solutions are taken in the form of B(x,n) exp[n—lhfx)], where n
-is of the order of magnitude of the small‘perturbation pérgmeter of the problem
and B(x,n) ‘and h(x) are functions to be de;ermined. In the paper by Abel and
Kerr6 the method of asymptotic‘éxpansions is applied to a rotating cable-
‘counterweighted space station for cables Wlth small flexural rlgldity. Mateh-
ing of central and boundary layer expansions 1s employed to establish those

constants of integration not established by boundary conditlons.
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In what follows the rotating Euler-Bernoulli beam vibration equations are
presented and a central solution expansion developed, and then boundary laver
expansions are developed and matched for the boundary conditions appropriate
for rotating beams of both "radial" and "diametral' configuratiom.

Botating Besm Equations

The small transverse vibration W(£,t) of an Euler-Bernoulli beam with
constant flexural stiffness EI and constant mass per unit length J, under
the external axfial load per unit length P(£), is characterized by8

4 T2
dW 3 oW a W
Bl — - 55 |B(&) g [+ p—= =0 (1)

In what follows we address two distinct problems of beam vibration: the
radial rotating beam (Fig. 1), and the diametral rotating beam (Fig. 2). In
each case the beam is attached to a body B which has a prescribed constant
inertial angular velocity Qﬁg with the £,n,C cartesian coordinate system axes
fixed in B and its origin.0 fixed both in B and iIn inertial space. In each
case the beam supports are built into B, constrained apainst translation and

rotation relative to B. Thus the boundary conditions are as follows:

2 3

Radial Beam: W(0,t) = %{-:"- (0,t) = §—§ (L,t) = ?-—g L,t) = b (2)
3& 3g
Diametral Beam: W(L,t) = W(-L,t) = g—g (L,t) = %g- (-L,t) = 0 (3)

In each case the rotation induces axial strains in the beam, with
accompanying change in transverse stiffness characteristics. As has been
formally established by the use of nonlinear strain—displacement equatidns,
one can for the small strain cage continue to represent small transverse
vibrations by Equation (1), incorporating into P(f) the "centrifugal force."

Thus for the radial beam

-
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P(E) = [ w’EE = wlalehe %)

For the diametral beam, a pretensile load T is required to avoild instability

of the solution W{({,t) = 0; thus the effective axial "force" is
_ )
P(E) =T - fuﬂzadE =1 - w2 (5)

with .
T > paL?/2 _‘ (6)
By defining kzrsuch.that

T a K22

one can write Equations (4) and (5) together as

P(E) = wo* (k’r2-g2)/2 - )
where for the radial beam k2 = 1, and for the diametral beam kz > 1.
Equation (1) can now be written in a form applicable to both radial and

diametral beams as

: ' 2 S
El L [(ksz—E;z) _E}E] + i AW 0 : (9)
t

Representation in terms of dimensionless quahtities is accomplished by
introducing

w A WL

x 4 &/ (LK)

T ARt

and dividing Equation (1) by uﬂzLIZ, to obtain

4 ' 2 S
3w 3 2. 3w
R ™ [(1-;{)%;]32:;;%:0 - | (10)

where
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2EI

A LanAd | o

Equation (10) admits the separable product solution

wix,T) = ¢(x) (1) (12)
with

oV - 1a-x26'1 - 2% = 0 13)
and

Ei+-]-2'—A20=0 - (14)

for some constant 12, with prime dencting d/dx and dot denoting d4/dT. Those
discrete constant values of_l2 for which Equation (13) has nonzero solutions
are the system eigenvalues.

In terms of the separated dimensionless qﬁantities in Equation (13},
the boundary conditions become for the radial beam (for which k = 1) ‘

$(0) = $7(0) = ¢"(1) = ¢"' (1) = O | | (15)
from Equation.(Z), and for the diametral beam

p0h = ah = ot = otk =0 (16)
from Equation (3).

The objective of this paper 1is to obtain explicit solutions for the
modal functions ¢(x) in Equation (13) as asymptotic expansions in €, for
boundary conditions as in Equations (15) and (16). This process must also
vield asymptotic expansions for the system eigenvalues, which produce natural
frequencies of vibration from Equation (14) and the time normalization
T = {it as

w = AR/VZ ' (17)
The solution technique employed is the method of matched asymptotic expansions,
as presented by Cole.4 Because in the limit as € + 0 Equation (13) becomes

only a second order differential equation, the solution of which cannot
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satisfy the four boundary conditions in Equation (15) or Equation (16), this
problem is clagsified as singﬁlar. The solutibn will be obtained as the
combihation of an asymptotic expansion valid in the central region of the
beam, obtained from the reduced order differential equation arising in the
limit € »+ 0, and asymptotic expansions valid near the boundaries of the
beam. |

Central Solution Expansion

For the central region of the beam, we represent the dependence of the
solution of BEquation (13) upon the small parameter £ by the asymptotic
expahsion

d(x,e) = ho(x) + v, (€)h, (x) + Vv, (€)h, (x) + - ' (18)‘

where vi(e) is for 1 = 1,2,... an asymptotic seqﬁence to be established.
Similarly the eigenvalues represented by 12 in Equation (13) are expanded as

2 2 2 2 '
A ‘= A0+Kl(E)A1+K2(E)A2+ _ . o (19)
. for some asymptotic sequenée Ki(e), is= 1,2,...
Substitution of Equations (18) and (19) into Equation (135 and considera-

tion of the limit € + 0 requires

. ) [} 2

[(1-x )hOJ + tho = 0 (20)
'Equation (20} is a Legendre equation of order n, where n{n+l) = Ag. The

general solution of Equation (20) is given bylo

hy = AU_(x) + BV_(x) . : | C(21)
where _
‘ Mo 5 BgUg®) -
Un(x} A1~ T + Ty X T e ‘ : (22)
and E , : 9 ' 9 .
.Vn(x) Ax-- T 5] X o~ e - (23)
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The Legendre functions Un(x) and Vn(x) converge for arbitrary Ag over the
range -1 < x < 1, and either Un(x) or Vn(x) terminates for those discrete

values of Ag for which

AO = n(n+l) n=0,1,2,... (24)
with Un(x) terminating for n even and Vn(x) terminating for n odd. The

terminated series can then be expressed in terms of a Legendre polynomial

Pn(x) by.

L}

0,2,4,... (25a)

!

Un(x) Pn(x)Un(l) n

or

it
1

Vn(x) Pn(x)Vn(l) n=1,3,5,... (25b)

and the nonterminating series can be written in terms of Legendre functions
of the second kind, Qn(x), which are unbounded in the limit x = 1, These
observations are particularly significant for the radial beam, as indicated
by the boundary conditions in Equations (15) and (16).

In addition to the zeroth order approximation given by Equation (20),
one obtains higher order term equations from the substitution of Equations
(18) and (19) into Equation (13). If no restrictions on Ul(e) or Kl(E)
were stipulated, the first equation involving terms above the zeroth order

would be

ehpt - vy O LA-xDy] - v ©)ghy (©) = Ky (©)AThg e

Further progress requires knowledge of the order relationship among Kl(E),

ul(s) and €. The possibility that* Kl(E) = o(vl(e)) and Kl(E) = o(g) is

rejected, because Equation (26) then indicates that A% = 0. Similarly the

possibility that ¢ = o(vl(e)) and € = o(Kl(E)) is rejected because of the

implication that hoIV

0. Subject to later confirmation, we assume that

]

vl(e) = g{g) and Kl(E) o{e). Thus Equation (26) becomes either

Lim

*
By notational convention a( ) = o(b({ )) implies o2

a
(EQ = 0.
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(-] + a2n, = -a2h () = &1 (27a)

or

2.7 7 . _
[Q-x )hy1 + Aghy 0. vy o) = o(Kl(E))l (27b)
In order to proceed further with this calculation we require ul(s), which
must be established by the requirements of matching the expansions which are
valid at the boundaries. These expansions are different for the radial beam

and the diametral beam, and these cases must be treated separately.

Radial Beam Inner Expansion
In the neighborhood of the boundary x = 0, the term E¢IV in Equation (13)
becomes important, and phe ﬁrevious solution is invalid. 1In order to develop
a solution which is valid in the "boundary layer' near x = 0, we introduce a
stretched coordinate
%Ax0te) o (28)
'lassﬁming o{(e) + 0 when € = 0. Into the original Equation (13) we now substi-
tute the asymptotic expansion |
$(x,8) = pyle)gy () + p ()8 (X) + p,(e)g,y(X) + ... (29)
where pi(e) constitute an asymptotic sequence for i = 0,1,2,..., to obtain

[poce> dgp® o dy® ]

™

7 +

04(8) dx 04(6) di':A

2~ 2 .
pn(E) d7g.(x) p,(e) d7g, (%) |
(I-qz(t)iz) [ g 02 + é' ; + ...
_ o°(e) ax 0" (e) dx

+

o [epte) dry e (e) dg )
ZU(E)X[_U(é) = + FIORE — + ...

Ag [pgle) ga() + o (e) gy (%) + ]

< ()FT0p(e) 8y G + 0y (€) gy (D) + ...1 = 0
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The coordinate scaling factor o(c) is chosen so0 as to maintain the
highest order derivative and an additional term or terms in the lowest order
approximation of this expansion. The choice

6 = t/? : (30)

then produces the dominant boundary layer equation

4 ~ 2 -~
d gO(X) d go(x}

(31)
s
dx dx
which after two integrations provides
2 ~
d g (x) = -~
———-—02 = ce Tt + c e (32)
dx

The inner expansion in Equation (29) in the limit as X + « must match the
central expansion in Equation (18) in the limit as x + 0, so that Cl in
Equation (32) must be zero. Two more integrations then provide go(i), which

with the boundary conditions

dgo

[
(=]

(33)

dx t.

go(x)1
x=0 %=0

must be

gy (%) = Co(X - 1 + %) (34)

In order to match the approximation of the inner expansion (Equation (29))
provided by Equation (34) with the approximation of the central expansion
{(Equation (18)) provided by Equation (21) we can intreduce an intermediate
limit defined by the coordinate measure

x, A xn "t (e)

with n(€) > 0 as € + 0 and 51/2 = o(n{e)), so that in the limit as € > 0 with

-1[2x

x, fixed, x = n(E)xn + 0 and % = n(e)e s Matching then requires
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Lim . -1
£+0 b (nx ) + v (E)h, (Mx ) + ... —p,(E)g. (e
x, £ixed 0" L om0

/2.y 4 .1 =0

n (35)

Expanding ho(x) and hl(x) as Taylor series about the origin x = 0 and substi-

tuting Equation (34) for go(ﬁ), we find

Lim '
g+0 {h.(0) + nx W' (0) + ... + v, {e)h, (0) + V. (EInx_h. (0) + ...
xn fixed 0 no ‘{1/21 1 nl
@ e c1 e M. 10 (36)
Py (e o (e xn-l e )+ ...
Equation (36) is satisfied by
Pole) = 51/2 | , (37)
vl(e) = 51/2 (38)
ho(o) = D. (39)
' hO(O) = C0 (éO)V
hl(o) = —C0 (41)

which conforms to the assumption vl(e) = p(e) preceding Equation (272).
With Equations (39) and (40) we can return to Equations (21) - (23) to
conclude that |
A=20 and B = CO‘ (42)
Thus first approximations are fully established for both inper expansion
(Equation (29)) And central expansion {(Equation (18)), in terms of the constant
CO' Moreover, we can now recogni;e that the first approximation of tHe
eigenvalue expansion in Equatién (19) must_beléng to the sét of discrete
: ‘ .
values for which the Legendre fuﬁqtiqn Vﬁ(x) in Equation (23) is a finite
series; otherwise Vn(l) and ¢(1).become infiniﬁe. Thus Equation (24) must
be satisfied for n odd, so fhat o o
, .

Ny =2, 12, 30, ... n(a+l) for n = 1, 3, ... | 43)
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and the naturzl frequencies identified in Equation (17) are approximately

/2

o = % OF, W5, ..., Qn+1)/21/2 forn =1, 3, ... )

“1
The next step is the determination of hl(x) in Equation (18). We make

use here of the orthonormality of the two different solutions ¢G(x,s) and

¢8(x,€) corresponding to the distinct eigenvalues Au and AB, which requires

1
1!. ¢m¢6dx = 5&6 (45)

where 6&8 is the Kronecker delta. FEquation (45) can be proven for o # 3 by
substituting ¢a for ¢ in Equation (13), multiplying the equation by ¢B and

integrating twice by parts, using Equation (15) to obtain

noufl d/‘l "on 1 9. 11 2 ./”l
—€¢cx¢8 + € ¢cx¢8dx + f {1-x% )¢a¢de - )‘oc c{;ach =0
0 0 0 0
and then repeating the process with a and f exchanged, finally subtracting
these results from one another and noting that Ai - ké # 0. The validity
of Equation (45) for B = o is freely prescribed, since there is a free
constant factor to be prescribed in any solution to Equation (13).

If ¢u and ¢B are asymptotic expansions in e, then Equation (45) equates
an asymptotic expansion to GGB' For this equation to be valid for any €,
the zeroth order term must be 6&8’ and all other terms must be zero. We
have established that in the inner boundary layer the first term is of order

1/

€ 2 {see Equations (29) and {37)), and moreover the boundary layer "thickness"

1/2 {see Equation (30)). Thus the contribution of the inner

is of order ¢
expansion to Equation (45) is limited to terms of order £ and above. If we

now assume (subject to later confirmation) that the outer expansion contri-
bution to Equation (45) is also of lower order (higher power) than €l/2, then
we can substitute the central expansion (Equation (18)) alone into Egquation (45)

to obtain, for a single mode (B = a)
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1 2 |
‘[ he ()dx = 1 - (46)

. .
[ ho(x)hl(x)dx =0 - o (47)

The combination of Equations (21), (42), and (46) yields

' 1 1-1
cg = [_{ Vi(x)dx] _ (48)

Equation (47) is useful in fesolving the cholce between Equations (27z)
and (27b); in the latter case hl(x) is simply a multiple of ho(x), and
Equation (47) is impossible. Thus we now conclude (noting Equation (38)) that

1/2 (49)

Kl(E)_ = v1(e) = £
and hl(x) must satisfy Equation (27a) and Equation (41).
Equation (27a) involves Ai, which can be determined by muitiplying

Equation (27a) by hOCx) and integrating by parts from O to 1, to obtain

- “x2)h. 1 dx
0 (1-x") 1Pod% | .

1 : 1
2]' ~_2-/‘2
+ AO / hlhodx = Al ! hodx

'. 2.1
(1-x )hlh0

or, with Equations (39), (46), and (47) and another integration by parts,

o,
-‘(1-x )hohl

l ) 1 2 | . § 2
+ f [(1-x")hy] hidx = - A7
0 0

Substituting - Agho from Equation (20) into the final integrand and utilizing

Equation (47) again, we find

2

B!

= - hO(O)hl(O)'

With Equations (40), (41), and (48), this becomes
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2
in1

1, -1
= [f Vn(x)dx] (50)

0
More specifically, corresponding to the first two modes defined by Equation (43),

[ 1 -1 r1 -1
Ail= _[ Vlz_(x)dx:l =[f xzdx] -3 - (51a)

0

=

and

[ 1

-1
2 2
Alz = ] V2 (x)dx]

1 -1
= [f (x - }-g x3)2dx ] = -‘-5% = 15,75 (51b)
0

(It may be noted that Equations (43) and (49) for Ag and Ai could alterna-

tively have been obtained from Equatiom (45).)

Finally we can return to Equation {27a) with Ai from Equation (49) énd
seek 'n1 {(x) from that combination. The homogeneous solution is of course
merely some factor kl tines ho, and since hO(O) = ( this leaves the particu-
lar solution El (x) to satisfy the boundary condition on hl(O) in Equation (41).
Thus

by (x) = hy(x) + k;h (52)

17°0
where from Equation (47)

1 1 1
— 2
0= '0/. hl(x)ho (x)dx = _‘[ hl(x)ho(x)dx + kl .0/. hodx

so that

1
- _ T (53)
kl = -0/‘ hl (x)ho(x) dx
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We can proceed without a more explicit expression for Ei(x) to accomplish
the necessary matching with an outer asymptotic expansion to be obtained for
a boundary layer near the free end of the beam.

Radial Beam Outer Expansion

At the free end of the radial beam in Figure 1 we must again satisfy
boundary conditions which cannot be reconciled with the central expansion.
We tﬁerefore introduce another boundary layer coordinate
x A (-x)a"L(e) (54)
with ale) » 0 when € > 0.
Into the original Equation (13) we now substitute t_hé asymptotic expansion |

$(x,€) ='5d(e)f0(x*) + sl(e)fl(x*) ¥ ... (55)

where Gi(e) constitute an asymptotic sequence for 1 = 0, 1, 2, ..., to obtain

* A

[ao(e)_d4f0(x*) 5, d'e }
€ Z ot ...
¢ (e) dx

ul‘(e) dx

2 2

2 % 2 *
‘2][60(5)@ fo(x )} 61(9) d fl(x ) .
wl(e) dx

%*
1~ (1-a(e)x ) +
[ oaz (c) dx* 2

8o(8) dEg(x) 8y (e) df (x) . .]

*
2 (1-a(e)= ).[a(e) dx* + ) dx*

Ag [soce)focx*) + Gl(e)fl(x*) + .00

- k) (&) AT [8,@)Ey () + 6, (e)E; ) + .1 = 0 (56)
‘i‘he cholce _
ate) = /3 (57)

produces from Equation (56) the dominant boundary layer equation

* - . ' - .
degay e ag ) | o
T gy 2—5—=0 e

dx , dx _ dx
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Boundary conditions at x = 1 must be satisfied; from Equations (15) and (54)

%
d3f0(x )
—-——--——*-3—"- * = (59)
dx x =0
and
*
NS
— =« =0 (60)
dx x =0
Integrating Equation (58) and enforcing Equation (59) produces
3 * *
TRl | wdHp®) |
*3 * (61)

dx dx
which can be recognized as an Airy equation in the variable dfo(x*)/dx*, with
a boundary condition established by Equation_(GO), and solutions availablell
as a linear combination of the Airy integrals Ai(x*) and Bi(x*). However,
Bi(x*) cannot appear in the solution for dfo(x*)/dx* because it grows expo-
nentially with some power of x*, and matching with the central solution
expansion in the limit as x* + @ would be impossible. Moreover, Ai(x*)
cannot appear in the solution because it cannot meet the boundary condition

at x* = 0 imposed by Equation (60). Thus the required solution to Equation
(61) must be zero, implying
%*
fo(x ) = D0 (62)
a constant.
In order to match the outer expansion in Equation (55) with the central
expansion in Equation (18), we again introduée an intermediate 1limit defined by

the coordinate measure

x, = (- onE™
1/3

with n{e) > 0 as ¢ + 0 and ¢ = o{nf{e)), so that in the limit as £ + 0 with

/3 /3

* - -
X, fixed, (1-x) = xnn(E) > 0 and x = (1-x)c /3 . xnn(E)E /3, o, Matching
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in this limit then requires (in view of Equation (38))

Lim _ 1/
e+0 {h (1-nxn) + ¢

Xﬂ fixgd 0

) .
hl(l—nxn) + .

- 8y (50T Py + 6, @28 o0k 4 L1 = 0

Expanding hO’ 'n1 and h2 as Taylor series about x, = 0 yields, with Equation (62),

Lim

1 1 11 2 2 1 " 3 3
£>0 {ho(l) - ho(l)nxn + S (Im x© + STho,(l)n X7k .
L fixed
1/2 1/2.!

- 85D, - Gl(s)fl(e"1/3nxn) - az(e)fz(s“l’3nxn) + k=0 (63)

Matching requirements suggest the tentative adoption of the following equations:

vyle) = ¢ ' ' (64)
By(1) = D, ' (65)
8q(e) = a1 - _ (66)
5, () = €23 | 67)
6,y(e) = et/ (68)
§4(e) = g2/3 (69)
54(8) = 5:5/6 - o)
§5(e) = € ; : ‘ (71)

and so forth. These values are compatible with the assumption made prior to
Equation (46), and provide the means to return to Equation (56) to establish
differential equations to be solved for fl(x ), fz(x ), ... . With Equations

(49), (57), and (66) - (71), Equation (56) can be rewritten as follows:
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E—lla[d fg r ey ) dfo]
* * *
dx 4 dx 2 x
4 2 2
a‘r d°f a‘s af df
o[ 1 * 41 xp di 1 0,2
+ £ 2x + x o 2 — 4+ 2% - = ACE
dx 2 dx 2 dx 2 x dx 00
4 2
- Qs a%s df
1/6 2 % ¢ Iy 2
+ £ vl 2x Fo 2 *]
- dx dx dx
4 2 2
~de a‘s a°s af . df
+ 51/3 *2 2x* *g + x*z *é 2 ——%-+ 2x ~—%-- hgfl]
- dx dx d=x X dx
L4 2 2
RETEY P TR Btk Pl S s TR PR ]
-dx*A dx*2 dx*z x* dx* 072 1o
4 2 2
- d*s a‘s a°s as af
i e R T B T A
L dx dx dx dx dx
+ ... =0 _ (72)
2/3

assuming that KZ(E) = o(e”"7) in Equation (19).

Tha validity of Equation (72) for any £ requires that each of the ex-
pressions in square brackets be zero. The first such equation has already
been recorded as Equation (58), and its solution for the required boundary
conditions has been given #s Equation (62). The second bracketed expression

in Equation (72) then simplifies to

4 2
't adn an 2
dx 'l gt 00 (73)

*
For fl(x ) and terms of higher index the boundary conditions on the free end are

2 s =0 , j=1,2,3, ... (74)

' * =0 j = l) 2! 39 . (75}
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Equation (73) has the same homogeneous solution as Equation (58), and in

addition the particular solution

- % 1 :
fl(x ) = - E-AODOx . (76)

Satisfaction of the boundary conditions again eliminates the Airy integrals
in the general solution, so that Equation (76) with EQuation (65) provides the
total solution.
Now we can evaluate the validity of Equation (67) by returning to
.'Equation (63) to examine the matching of the fl t;rm and the hé(l) term,
which together become
-h;(l)nx - 8, (€)Y (€“1/3nx ) =

1 1/3 1/3

[-hy (1) + 3 ho (e ™ Ime = [-hp@) + 3 830, (1 Inx,

The expression in brackets is indeed zero, as requi#ed by Equation (20)
evaluated at x = 1, and these terms are properly matched.

The third bracketed expression in Equation (72) has the same structure aé
the first, and admits a solution reduced by boundary conditions to a comstant,
which for matching in Equation (63) must be h (1), thus

£ (x ) = h, (1) (78}

The bracketed term multiplied by 51/3 in Equation (72) combines with

_Eqﬁations (76) and (65) to provide

4 2
i{ﬁhzx*df3_2df3=
[
dx dx 2 dx
2 - 43y A%h (Dx /2 | (79)
o’ “oPo -
with the particular solution
k3 2 %2, . |
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and the general solution involving Airy integrals Ai and Bi as previously.
Again Bi must be rejected for its exponential growth, which precludes

%
matching for x - «, but here AL cannot be rejected, and the general solution

to Equation (79) becomes

H]

X
f3(x*) = Ag(ﬂg - 2)h0(1)x*2/15 + D ‘ép AL(E)AE + D, (81)

Equation (74) imposes on solution (81) a boundary condition providing

2,,2
AO(AO— Z)ho(l)

Dl = [] .
8A1 (0) : (82)

' 11
with Ai (0) from tables.

n
Matching in Equation (63) requires that the term involving ho(l) sum to

/3

zero In the limit with the unwritten term - 63(€)f3(s-1 nxn). That portion

ES
of f3(x } involving D. and D2 decays exponentially, so that matching requires

1
only
1" 2 2 2/3,2,,2 -2/3.2 2
Eho(l)n X, € AO(AO - Z)ho(l)e n X /16
_ " 2 2 2 2 -
= [8h0(1) - (AD - Z)tho(l)]n X /16 = 0

This equality holds since the expression in brackets is zero by virtue of

Equation (20), which may be written in terms of Taylor series about x = 1 as
T Az " 1) 2 T
[—2h0(1) + 0ho(l)] + [4h0(1) + 2h0(1) - tho(l}](l - x)

+[-3hy ) = 3o ) + 2 a2 1A - 0F 4 =0 (83)

so that each of the bracketed expressions is zero.
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Solving the three equations implied by Equation (83) simultaneously

produces
h (1) = = A%h_(1) | (84)
oY~ 2 “oTo™ . g
" 1 ,,2 2 '
ho(l) = 7 (A5-2)Agh (1) (85)
mo. 1 2 2 2
ho(l) = 7= (A-6) (A~2)A (1) | (86)

The next step is the solution of the equation involving the coefficient

of e¥/2 in Equation (72). With Equations (78), (62) and (65), this equation
becomes |
4 2
d f d°f daf :
y owx 91, 4 _ 2 2
p v 2x % 2 x = thl(l) + tho(l) (87)
4 - dx dx

The boundary conditions in Equations (74) and (75) limit the sclution of
Equation (87) to
# 1 2 2 * .
fa(x ) = - E—(thl(l) + Alho(l))x - (88)

. % '
Matching of the fA(x )} term with the hl(l) term in Equation (63) requires

1/2. ' 1 5/6,,2 2 -1/3
- g h,l(l)nxn + 5 € (thl(l) + Alho(l))s nxn_

= [-hi(l) +%— (Aghl(l) + Alz_ho(l))]sllznxn =0
which is assured by Equation (27a) with x = 1.

To coﬁpletelthe projected treatment of the outer boundary layer, we set the
lasf bracketéd'expression in Equation (72) to'zero, noting Equation (81).
Since our concern here is not with an exact‘expression for fs(x*) but only with
enough information about fs(x#) as 3* . to establish the matching and verify

%
Equation (71), we write the equation for fs(x ) as

b, 2 | 2
e fi el ii’ - zf—i— = (-6 122y A—g ho(L)x 2 + 18T (89)
dx dx dx , 1670
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where TST represents transcendentally small terms which have no influence on
the matching process. FEquation (89) is easily integrated, to obtain a result

presented here as

as, -(Ag—G)(AéﬂZ)Agho(l)x*z . d3f5 D,
= T3 ‘5 =5 - —g t IsT (90)
dx 2x dx

3 2x

*
Two differentiations yield the approximation

3 2 2 2

d fS _ (ﬁO-G)(A0—2)A0hO(l)
%3 48

dx

-3

+ 0(x )

which in turn permits Equation (90) to be written as

2 2 2 *2
dfg  (hg-6) (45-2)hy (x
o 56
[ (Ag—G)(Ag-Z)Agho(l)] .
- o, +
3 48 *
2x

+ 0(x*—4) + TST

Integration now yields the approximation

2 2 2 *3
(AO—G)(AO—Z)AOhO(l)x
288

fs(x*) s -

2 2 2
_ [? . (Ao's)(ﬁo'z)ﬁoho(l)] g D
3 43 7 4

+ 0¢x 3y + TST (91)

The constants D3 and D4 must for matching be given by

2 2 2
> - (AO-G)(AO-2)AOh0(1)
3 48

* % &
The notation X = 0(x 3) implies that Lim Xx 3 is bounded

*
x -
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and in view of Equation {(64),
D4 = hz(l)
Now matching in Equation (63) is assured by the identity

i ,"..33 ~1/3. '\ _
31 ho(l)n X, - €f5(€ nxn)

1t 2 2 2
[ho(l) . (Ag-6) (Ag-2)Ah, (1) ]n3x3 L
31 788 n

which follows from Equation (86).

Thus the outer expansion in Equation (55) has been completed to order €.

Radial Beam Solution Summary

In brief summary, the rotating radial beam in Figure 1, as characterized
by transverse vibration equations (Equation (10)) with cantilever boundary
conditions (Equatioﬁ (15)) has natural frequencies given by Equation (17),
with AZ from Equation (19) and'(49) available as

2 _,2 . 1/2,2
A=Ay e L

where Ag is given for the sequence of modes by Equation (43) and Ai iz given
for all modes by Equation (50) and for the first two modes explicitly by
Equation (51). Although these results could be compared for specific spin
rates to the computer-generated frequencies presented by Yntema and others,
it is more revealing to compare to the formula for the first mode used by
Vigneron:

2 2 2

1

= wNR + 1.,1938

w
where wéR is the lowest nﬁtural frequency of the nonrotating beam, which is,
in view of Equation (11), given by

we = 3.515)2 B/ LY = (3.515)%% /2
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Thus, in terms of our £, Vigneron uses
o2 = 021193 + 3.515%/2) (52)
For comparison, our approximation is
2 2 Je7T
wy = Q°(L + 2.12ve/2) (93)

These two approximations are protrayed graphically in Figure 3. More precise
estimates indicate that Equation (93) gives better results for sufficiently
small = {and yields the correct limiting case of the cable frequency when
€ + 0), but Equation (92) is more accurate for sufficiently large €.

The mode shapes have been developed in this paper in terms of asymptotic
expansions as follows:

Inner boundary layer expansion

=12

l/2(6«-12}: TXE oy 4 L.

d(x,e) = Coe -l+4+e

Central expansion

1/2hl(x) + eh,(x) + ...

¢(x,€) = hylx) + ¢
Quter boundary layer expansion

¢(x,€) = hy(1) - %-Agho(l)(1~x) + 51/2h1(1>
2,2 2

+ 222-2)n (1) (1-x)% /16

- %—ellz(hghl(l) + A2y (1)) (-x)

2 2_ o552 3
- (8-6) (A3-2)Agh, (1) (1-x)~/288

+h2(1) + ...
In these expressions CO’ ho(x), hl(x), AS and Ai come respectively from
Equations (48), (21) and (42), (52}, (43), and (50). Note that despite the
large number of terms evaluated in the outer boundary layer the final expansion

contains no terms involving powers of € above 1/2.
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Diametral Beam Outer Expansions

The differential equation and central solution expansion are the same
for radiail and diametral beams, 80 Fhat wi;h the exception of the boundary
conditions in Equatioms (2) - (3) and (15) - (16) the development is the
same for both beams through Equation (27), with k = 1 for the radial beam
and k > 1 for the diametral beam. Different boundary conditions imply differ-

ent boundary layer solutions, and in the case of the diametral beam symmetry

indicates that the same boundary layer expansions apply at x = k_l'and X =‘-k-1.
In what follows we develop the solution near x = k-l.
As previously, we define a stretched.coordinate

x= @ -0 e
where B(g) + 0 as € ~ 0, and introduce the expansion

$(x,€) = V(eI (x) + Y, ()F; (R) + ... ' (94)
where Yi(s) canstitute an ésymptotic sequence, 1 = 0, 1, 2, .... Equation
(13) then becomas

Yo a*5y v, (0 a'r ]
£ + - S
[B"(e) a=t 8% ac
-1 | — 27 YO(E) szO 'Y1(€) szl
- [l - {k 7 - B(e)x) [ T Tyt 5 ==+ ...]
B {g) dx R {e) dx
: Yo(e) dF, v () dF
: -1 - 0 0 1 1
2k Ble)x) [B(s) & TEe ax t
<02 [y (©)Fy + ¥, EF, + .1
0o 0 1 i
2

- K AT [v(e)Fy + v, (£)F; + ...] = 0 (95)
Under the assumption that preteﬁsion T is sufficient to maintain 1 - k_2 = 0(1),
we can choose 7 ‘

Ble) = el/? | | | - (96)
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and obtain from Equation (95) the dominant boundary layer equation

a4 @ 4%F (%)
0 x2 4 Fp
——— -k ——=—=0 (97)
dx dx

* -
where k 2 A@-k 2). Equation (97) can be solved as was Equation (31), since
F, and &g have the same boundary conditions (see Equation (33)) with the result

Fo(®) = Ao(k*E -1+ e EFEy (98)

where AO is to be determined by matching with the central solutiom expanzion.

Matching requires the introduction of the intermediate 1imit defined by

x = & - onThe) ‘ (99)
with n(e) ~ 0 as € - 0 and 81/2 = o(n(e)), so that in the limit as € -+ 0 with
X fixed, (kﬂl - x) ==xnn-+0 and x = (k_1 - x)s:-']‘/2 = xnn8“1/2 + ©, Matching

in this limit requires, from Equations (18) and (95)

Lim — —
e+0 [hofx) + vl(s)hl(x) + ... - Yo(e)Fo(x) - Yl(s)Fl(x) - ..
Xﬁ fized

]
o

Expanding in Taylor series about x = k-l and substituting Equation (98)

produces
Lim _ v noo_ _
ex0 {h (K5 - h (K Dnx. + 3h (K I)n2xZ + ... + v, (e)h, D)
. 4] o ] 270 T 1 1
x  fixed ~1/2
" v % ~1/2 ke T e
- vl(s)hl(k )nxn + ... - Yo(e)Ao(k € nx, - 1+e )
- yl(s)rlce’l"znxn) - } =0 (100)
Matching requirements suggest the following:
hy (1) = 0 (101)
Yo = /7 (102)
* '
Bk = -hy(k ™) | (103)
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v (e) = /2 (104)

- -1 ‘
Ay=-h k™) : (105)

With this identification, we canm proceed to‘establish hl(x) and FI(;), and
then return to Equation (100) to confirm the matching. We can also use
Equa£ion {101} in conjunction with the Legendre function solution for ho
in Equation (215 to obtain values for ﬁg.

The singularity of the Legendre functions for unity argument does not
present a problem for the diametral beam, since k"l < 1. Thus both Un(x) and
Vn(x) are permissible solutions, subject to EquatiOn (101). The symmetric
or "even" modes are represented by Un(x), and the antisymmetric or "qdd" modes
are represented by Vn(x), as indicated by Equations (22) and (23), which
together ﬁith Equation (10l1) provide solutions for Ag.' These results are
illﬁstrated numerically in‘the section which follows the present section on
the boundary layer expansion.

Orthogonality of the modal functions ¢(x) corresponding to different
discrete values of ki, say Ai and Aé, can be egtablished as for the radial
beam, to obtain the orthogouali;y relationship (as in Equation {(45))

L »
_}:_1 0, 0ad% = 80 (106)

For the terms in the asymptotic expansion of a2 single modal function, we
now have (in parallel with Equatioms (46) and (47))

-1

k 2
‘!1:_1 ho(x)dx = 1 | (107)
1 | -
fk—l ho(x)h-l(x)dx =0 : ' " ' (108)

under the same conditions affecting the boundary laver solutiom.
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Thus we have for the even modes, from Equations (107) and (21), with B = 0,
k—l 2.2

flAU(x)dx=1

AT n

so that
-1

. -1
A% - [f_l Ui(_x)dx] | (109)

and similarly for the odd modes A = 0 and
\ k—l , -1
B° = f 1 v (x)dx] (110)
AT
Equations (107) and (108) indicate that Equations (49) and (27a) apply

to the diametral beam alsc. We can now obtain a new expression for Ai by
multiplying Equation (27a) by h0 and then integrating from -k_l to k_l, to
obtain, after noting Equations (107) and (108),

-1

k 2. 1" 2
'/1;'1 [Q-x")n, ] hydx = -7y

Two integrations by parts, utilizing boundary conditions established by
Equation (101) and its counterpart at x = —k-l, and involving Equation (20)
and Equation (108), produce

2 2. "
Al = (1 -x )hoh1

-k
For the odd modes the slope is the same at both ends but the displacement is

opposite in sign; for the even modes this relatiomship is reversed. Thus in

any case

2 LIS R
R N R L (111)
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By using Equation (105) and then Equation (103), we can rewrite Equation

(111) as

22 = a7ta? - Y2 moach )’ (112)

1=
To oBtain numerical answers from Equation (112) one must use the derivative

of ho(x) as found in Equation (21) together with Equation (109) for even modes
and Equation (110) for odd modes.

Now we could return with Ai to Equation (27&) to solve for h (x), using

the boundary conditions established by matching in Equation (100). sSatisfied
that hl(x) is fully determined, we now seek to establish the second term in
the asymptqtic expansion in Equation (95). The matching requirement in
Equation (100) suggests that

v (E) =€ | o 113)
Under this assumption, and with Equations (102) and (96), we can obtain from

Equation (95) the following equation to be solved for Fl(x):

4 2 2
a*F a’r ar, - . d°F
- e A et 2 ale O
dx dx x dx

or, in view of Equations (98) and the definition of k ,

- * “kkx  — * ke
= 2k lek [1 - e %% 4 ke K o (114)

*
Recall that Aok is fully determined by Equation (103).
Equation (114) has the same homogeneousfsolution as Equation (975, and in

addition the particular solutionJFi(E) such that

) . . = _ ‘
— = 2k Aok [ - ;;§-+ — xe ~z¥e 1 (1;5)

Proceeding again in parallel with the solution of Equation (31), we observe

that for the total solution
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After two integrations, with integration constants A2 and A3 introduced, and
with Al and A2 removed by imposition of boundary conditions on Fl(;) and

dFI/d;; the Final solution becomes

-1
— 3k TA - —
— - %929 ek — =% R
Fl(x) = -k lAOk 2x2e k¥x ———;Eg-xe k¥x _ ABE k¥*x
2k
klAO 5 Zk'le
- k* x° + k*z -k A3 x + A3 (116)

Since AO in Equation (116) is known from Equation (103), the only free
constant in this expression is A3; this unknown will be established by the
matching process. Examination of Equation (116) reveals that matching in

Equation (100) requires that

Lim ] - ' - -
>0 {In ahn®? - v (@h K Hnx - v, ©F €Mz y | =0 (117)
N 20 n 1 1 n 1 1 n
xn fixed _

If the first three terms in Fl(E) in Equation (116) are ignored as trans-
cendentally small, and Equations (104) and (113) are substituted, Equation

(117) 1is satisfied up to terms below & if

i—AQ—k*A -n & (118)
%2 30

K

and

-1

k1A
0 1", -1

x AN 119

Equation (118) provides the required value for A3, but Equation (119)
must be an identity if the proposed solution is to be verified. This equation
can be confirmed by using Equation (103) to rewrite Equation (119), noting the

*
definition of k , as
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a- k'z)h;(k“l) e hé(k—l) -0 (120)

The validity of Equation (120) follows from Equation (20) with x = k*l, since
ho(k*l) = 0 by Equation (101). Thus the proposed solution is estéblished.

Diametral Beam Solution Summary

The rotating pretensioned diametral beam in Figure 2, as characterized
by transverse vibration equations (Equation (10)) with fixed end boundary
conditions (Equation (16)) has natural frequencies glven by Equation (17},
with Az from Equation (19) and (49) available as

2 .2, 1/2,2
DR e R W O

where Ai is given by Equation (112) in terms of h0 from Equation (21), and
where Ag is given for even modes by the combination of Equations (22) and (301)

in the form

S 1 2,1 2,2 -2
Talk ) = L =gy g b gy Hplip — 6k )
12,2 -2, 2 -2 o '
- gruo(uo - 6k )(]JO -20k )+ ... =0 : (121)

where Hy A Ag/kz, and for the odd modes from Equations (23) and (101) by

-1
31

2 -2 1 2
(uo -2k ) + T (uo

e -2, .2 . =2
VT =1 5 = 2K ) (ug - 12K7°) - ... = 0

(122)
These equations have vaious'solutions for particular values of kz; for

example with ug = 6k~2 Equation (121) yields ug = 2 and hence k% = 3 and

2
0

ug = 14,8 and hence k2 = 1.35 and Ag = 20 or the "third" mode with “S = 2,32

AL =6, and with ug = ?.014:"2 Equation (121) yields either the "first mode" with

and hence k? = 8.6 and A§f= 20. More generally however ome finds for any

value of parameter k a spectrum of discrete solutions for ug. In the limiting

cage k? + o the Legendre function Un(k_l) for the even modes becomes the
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cosine function, implying pg = n2/4, and corresponding to the vibrating taut
string, and in the neighborhood of the singularity at kz =1 we find ug = 0.
Similariy for the odd modes Vn(k_l) becomes the sine for kz + @, implying
ug = ﬂz, and at k2 =1, ug = 2., Figures 4 and 5 portray the variations of ug
(and hence natural frequencies) with k2 for the first and second modes
respectively.

In addition to the natural frequency equations, we have developed
expressions for mode shapes in the form of asymptotic expansions as follows:

Central expansion

p(x,e) = ho(x) + Ellzhl(x) + ..

Boundary layer expansion near x = k

51/2h'(k~1)

v - -1/2
dlx,e) = -k T - x)h, (k 1) + -—-'-—2——-—- 1 -
k

e—k(kml—x)s ]
Ze-k*(kml—x)s_ljz

— ' — —
+ X lho(k Iy a™ - 5

'o-1
h kh
E1/2k 170

cesqeLoonm1/2
4+ 3 (k-l - xX)e k*(k “-x)e
2 %3
K
17, -l
KR () 0 ) sl m1/2
K
-1
el N
+—— & oo M ahet - w

k

— ' —
awoah
- € T+hl(k bl I

- * —_
and a similar boundary layer near x = -k l. In these expressions k 2 . (1 -k 2),

hl(x) is the solution of Equation (27a) with Ai from Equation (112), and ho(x)
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is given by Equation (21), with the constants A and B in Equation (21)
established by Equations (109) and (110). Figures 6 aﬁd 7 are plots of
hoﬁs) for modes one and two respectively, with s é E(L.
Conclusions
The method of matched asymptotic expansions has a unique advantage in the

modal analysis of rapidly rotating beams, in that the results are literal
rather than numerical, and thus are applicable at once to a range of valuyes
of the system parameters, which include beam density, stiffness, pretension,
and spin rate. The primary disadvantage is the approximate nature of the
results, although the order of the approximation is well established.

. Application of this method to modal analysis of rotating plates is also

feasible in some cases,l2 as will be reported in a separate paper.
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Figure 3. First Mode Frequency Estimates.
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h A LIMIT CASE k2=1

Figure 6. Mode Shape Approximation for First Mode.

_ Figure 7. Mode Shape Approximation for Second Mode.
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