
MASSACIELIA
r--

11111.111.0PrOM

„IIUTE OF TECHNOLOGY

AIRCRAFT RANGE OPTIMIZATION USING
SINGULAR PERTURBATIONS

by
Joseph Taffe O'Connor

June 1973

molimmowimplilq$$oila?%.;4..41h140111ri!!!ii:1411!: i!:411 P:
lo. L., 11111

'  ill id
'  ride.;

(NASA -ca -14D519) AIRCRAFT RANGE
OPTIMIZATION USING SINGULAR PERTURBATIONS
Ph.D. Th.9sis (Diaper (C'haries Stark)
Lap., ir.c.) 180 p HC $12.C 17.: CSCL C1B

kSS

,c)v'<J1

N74-344o5

TJac1as
G3/32 1/3o6

T-597

PREPARED AT

The Charles Stark Draper Laboratory, Inc.
CAMOR1001E. kimisAcmuserre. 02130



AIRCRAFT RANGE OPTIMIZATION USING

SINGULAR PERTURBATIONS

by

JOSEPH TAFFE O'CONNOR

A. B. , Bowdoin College, 1955

S. B. , Massachusetts Institute of Technology, 1955

S. M., Massachusetts Institute of Technology, 1959

SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 1973

Signature of Author

Certified by

Accepted by

(17\Advs‘A./
1, 0

D rt nt of Aet, onautics and Astronautics
Ju 8, 1973

Thesis Superv'

Thesis Supervisor

' 9\-- • Z-e.ec;
Thesis Supervisor

T-Lt,L.„_ci
Thesiu Supervisor

7 
•"...‘- -cc;

Chairman, De artmenta Committee on
Graduate Students



t ,- •

♦

This thesis was prepared under DSR Project 55-23890, sponsored

by the Johnson Space Center of the National Aeronautics and Space

Administration through Contract NAS 9-4065 with the Charles Stark

Draper Laboratory of Massachusetts Institute of Technology in

Cambridge, Massachusetts.

The publication of this thesis does not constitute approval by

the Charles Stark Draper Laboratory or the National Aeronautics and

Space Administration of the findings or the conclusions contained

herein. It is published only for the exchange and stimulation of ideas.

ii



i

AIRCRAFT RANGE OPTIMIZATION USING

SINGULAR PERTURBATIONS

by

JOSEPH TAFFE O'CONNOR

Submitted to the Department of Aeronautics and Astronautics

on June 8, 1973, in partial fulfillment of the requirements for the

Degree of Doctor of Philosophy.

ABS TRAC T

An approximate analytic solution is developed for the problem
of maximizing the range of an aircraft for a fixed end state. In
general, this problem can not be solved analytically and is even
very difficult to solve computationally. In this dissertation the
problem is formulated as a singular perturbation problem and solved
by means of matched inner and outer asymptotic expansions and the
minimum principle of Pontryagin.

Attention is focused on cruise at constant Mach number in
the stratosphere, and on transition to and from cruise at constant
Mach number. The state vector includes altitude, flight path angle,
and mass. Normal acceleration and maneuvering drag effects are
included. Lift is the control variable. Since Mach number is constant,
thrust is constrained to be a function of state and control variables
and is not itself a control variable. Specific fuel consumption becomes
a linear function of power setting in the vicinity of cruise values.

Cruise represents the outer solution. In cruise, altitude and
flight path angle are essentially constant and only mass changes. In
the inner solutions, corresponding to transitions between cruise and
the specified initial and final conditions, mass is essentially constant
and altitude and velocity vary.

A solution is developed which is valid for cruise but which fails
to satisfy the initial and final conditions. The cruise solution is
shown to yield the Breguet range equation. By transforming the in-
dependent variable near the initial and final conditions, we can seek
solutions which are valid for the two inner solutions but not for cruise.

The inner solutions can not be obtained without simplifying the
state equations. However, to linearize them would completely elim-
inate their dependence on altitude, as well as the dependence on alti-
tude of any potential optimal control. The singular perturbation ap-
proach overcomes this difficulty by allowing us to make a quadratic
approximation to some of the state equations under certain circum-
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stances. The resulting problem is solved analytically, and the two
inner solutions are matched to the outer solution. A modified Breguet
range equation is developed whichaccounts for the changes in range
due to starting from initial conditions itot on a Breguet cruise and
ending at final conditions not on a kiregeut cruise.

The optimal control policy for transition is compared to several
alternate control policies for supersonic cruise using the Boeing SST
and for transonic cruise using the Boeing 707 and the McDonnell
Douglas F- 4.
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GLOSSARY

a defined in equation (3. 37)

c0 1 coefficients in approximation to SFC (3.15), 

C
D total drag coefficient

CD profile drag coefficient
o

CF thrust coefficient

CL lift coefficient

D aerodynamic drag force

f subscript for final value

f
1 2 3 forcing functions (5. 57, 5, 59, 5. 61), , 

g gravitational acceleration, 32.17 ft/ sec2

h altitude

AH scaled altitude increment (3.18)
A

Ali (5.10)

ail (5. 66)

ae9 variational Hamiltonian

i subscript for initial value

K induced drag constant

L aerodynamic lift force

m mass

M normalized mass (3. 20)

Mlb (4.53, 4.54)

fa (5. 64)

.11 Mach number

p time-derivative operator

q dynamic pressure
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Q scaled dynamic pressure (3.19)

e) (5.8, 5.9)

(5.66)

✓ range

R scaled range, the independent variable

RL 
transformed range in the left boundary layer (5.1)

RR transformed range in the right boundary layer (5. 2)

S wing area

SFC specific fuel consumption

T thrust

u control variable (3.12)

✓ true airspeed

W weight

x defined in equations (4. 21, 4. 32, 4. 35)

y defined in equation (3.16)

Z (5. 49)

A atmosp.leric scale height (20, 800 ft)
-1

y flight path angle

Ylb (5.15)

E perturbation parameter (3. 35)

C damping ratio

,7 throttle setting, or T/Tmax

X y costate for flight path angle

X H 
costate for altitude

X M 
costate for mass

X'"M 
costate for mass (5.67)

x4i
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p atmospheric density

w frequency of oscillation

wn 
natural frequency

.
( ) d( )/dt

( )1 d( )/ dR



CHAPTER I

INTRODUCTION

1. 1 Problem Statement 

This thesis is an attempt to develop an analytic solution to an

airplane performance optimization problem that has proven very dif-

ficult to solve by computational methods. It is the problem of maxi-

mizing the cruise range of a gas-turbine powered aircrart. The

problem is stated as a fixed end-state optimal control problem with

a three dimensional state vector (altitude, flight path angle, and mabs)

in which the independent variable (range) is to be maximized. Atten-

tion is focused on cruise at constant Mach number in the stratospheee,

and ontransition to and from cruise at constant Mach number. Simpli-

fied computational solutions have indicated the existence of transonic

and supersonic Mach number limiting, or constant Mach number cruise,

for range optimal trajectories [1 . By use of singular perturbation

techniques and the minimum principle of Pontryagin, approximate

analytic solutions are obtained as asymptotic expansions in three sep-

arate segments of the problem: cruise, and transitions to and from

cruise, and these segments are matched to form a single solution,

valid from initial through final conditions.

1.2 Maximum Range in Cruise 

The problem of evaluating maximum range in cruise is of funda-

mental importance to the design of any aircraft. It can not be separated

1



from the basic choice of mating a power-plant, with its thrust-producing

and fuel-consuming characteristics, to an airframe with its lift and drag

characteristics in cruise and its fuel-carrying capability. An airframe-

power-plant combination will have one best altitude for cruise and one

best velocity for cruise. At that speed and altitude the rate of consump-

tion of fuel with respect to range is minimized. The aircraft must, of

course, be able to maintain equiliLrium flight at that altitude and velocity.

The choice of the optimum altitude-velocity combination requires an

iterative approach. At a trail point drag can be calculated. Referring

to the engine characteristics (maximum thrust as a function of altitude

and Mach number) one can determine if there is enough thrust available

to balance the drag in equilibrium flight. If there is not, the trial point

is not valid. For a valid trial point the fuel consumption, in pounds per

second, corresponding to the required level of thrust is divided by velocity

to give the parameter, pounds of fuel per mile, which is to be minimized.

The minimum value will correspond to an altitude that is a compromise

between the altitude for the most efficient unpowered flight by the aircraft

(maximum lift-drag ratio) and that for the most efficient operation of the

power-plant at constant velocity.

Cruise velocity should be as large as possible but for gas-turbine

powered aircraft it is limited by two considerations and hence will occur

in one of two velocity regions. traiisonic or s••nersonic. For a transonic

optimum the cruise velocity is limited by the beginning of the transonic

drag rise. The rapid increase in drag associated with the transonic

region translates to increased thrust required to balance the drag in

cruise and to increased fuel consumption. For a supersonic optimum

the cruise velocity is limited not by fuel consumption but by consideration
2
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of the maximum temperature that the airframe can withstand [2 ].

Having determined a cruise condition, one can estimate the result-

ing range capability by means of the Breguet range equation. This classic

relation equates range to the product of a powered flight efficiency factor

and the natural logarithm of the ratio of the initial mass of the aircraft

to the final mass of the aircraft after its fuel budget is used up. The

powered flight efficiency factor is a product of the lift-drag ratio (air-

frame efficiency) and the ratio of cruise speed to specific fuel consump-

tion (power-plant efficiency). This relation, of course, estimates range

only for flight at the previously determined cruise condition and in no way

accounts for flight to or from that condition.

The Breguet range equation can be said to represent a one-

dimensional approach to range capability estimation. To derive it one

need consider only the state differential equation for mass, together with

the equilibrium flight assumptions of lift equals weight and thrust equals

drag. A correction factor can be derived to account for the fact that

altitude does not remain constant in Breguet cruise but must slowly in-

crease as fuel usage causes weight to decrease [ 3 ] . Only initial and

final mass can be specified. Altitude is essentially a control variable,

chosen at a particular value of mass to maximize the derivative of range

with respect to fuel.

Edelbaum has shown [4 ] that in the larger context of a maximum

range cruise including initial transition to cruise and final transition from

cruise, the Breguet cruise describes the optimal cruise portion for those

3



problems in which range is not so short as never to require a cruise

portion. Edelbaum formulates a solution to the problem of range-optimal

climb to cruise and descent from cruise in terms of the energy-state

method, another one-dimensional approach. Use of the energy-state

method, described by various authors [1, 4 through 9j, permits changes in

velocity and thereby a complete solution from sea level to cruise. In the

energy-state method normal acceleration is neglected (lift equals weight).

As a result drag is a non-linear function of altitude, velocity and mass.

A recent study by Teren and Daniele [ 10 ] has expanded the state

vector of the range-optimal cruise problem to two dimensions, altitude

and mass, while neglecting normal acceleration and holding velocity con-

stant. Thrust coefficient is taken as the control variable. Again, lift

equals weight and drag is a non- linear function of altitude, mass and con-

stant velocity. The problem is formulated as a non-linear two-point

boundary value problem and an approximate graphical method of solution

is presented.

Kelley, Falco and Ball [11] used a four dimensional state vector

(velocity, altitude, flight path angle and mass) in studying various airplane

performance problems including the maximum range problem. They were

investigating the usefulness of the method of gradients in obtaining compu-

tational solutions to these problems. For short range problems their op-

timal result was a boost-glide or bang-bang solutton. They reported that

attempts at solving long range problems, which would include a constant

velocity cruise segment, were frustrated by convergence difficulties.

4



This thesis considers the range-optimal cruise problem with a

three-dimensional state vector comprised of mass, altitude, and flight

path angle, with lift becoming the control variable. Velocity remains

constant, and so the problem is restricted to cruise and transitions to

and from cruise at cruise velocity. Inclusion of normal acceleration

(equation for flight path angle) means that the effect of lift, as well as

altitude and velocity, on drag is included. Approximate analytic solu-

tions are developed through the use of singular perturbation methods

which, as will be shown in Chapter V, allow the drag force to be ex-

pressed as a quadratic function of altitude, mass, and maneuvering

lift. The equation for mass then becomes a quadratic function of altitude,

flight path angle, mass and lift. The other two state equations are lin-

earized and the resulting optimal control problem is solvable.

1.3 Singular Perturbation Problems 

A singular perturbation problem [ 12, 13, 14 ] can be described

as a set of differential equations involving a small dimensionless parameter,

say e. The nature of the (-dependence is such that if ( were to approach

zero the order of the set of differential equations would be reduced. As a

result the boundary conditions associated with the equations could not all

be .1et simultaneously for a zero value of E. Viewed in another way one

could say that the method of ordinary perturbations, involving the expansion

of the dependent variables in power series in e, would fail to prAuce a

solution that would be valid in the neighborhood of the boundary conditions.

5



Such problems are often solved by the method of matched asymptotic

expansions, in which a stretching transformation applied to the independent

variable in the neighborhood of the singularity transforms the problem to

one that can be solved by ordinary perturbation methods in that vicinity.

Then these solutions which are valid only in the neighborhood of the singu-

larity can, by a choice of constants, be matched with those solutions that

apply everywhere except in the neighborhood of the singularity to produce

a single solution that will be valid throughout the region of interest of the

problem.

The range- optimal cruise problem seems well suited to formulation

as a singular perturbation problem. It is convenient to think of the prob-

lem as separable into a climb, a cruise and a descent. Certain variables,

such ac altitude and flight path angle,undergo their greatest variations

during climb and descent, but remain nearly constant during cruise. For

mass the reverse is true, it being nearly constant in climb and descent,

but varying most during cruise. Thus the problem is largely describable

in terms of mass variation at nearly constant altitude and flight path angle

except in "boundary layers" near initial and final time. We may think of

mass as having its own characteristic time which is different from that

of altitude and flight path angle. This characteristic of the problem makes

it likely to be describable as a singular perturbation problem and offers

the hope of yielding an approximate analytic solution that is uniformly valid

over the entire time interval of the problem.

6



Interest in singular perturbation methods as applied to problems in

aircraft dynamics begins with Ashley [15]. Drawing on an earlier work

by Kevorkian [16 ] on reduced-order modelling, Ashley was able to dem-

onstrate the separation of aircraft longitudinal dynamics into the short

period and phugoid modes on the basis of the wide separation of their

characteristics times. Kelley and Edelbaum [ 6] explored the idea of

using singular perturbation methods to obtain a first order improvement

to the energy-state solution to some optimal performance problems for

airplanes. They thereby avoid the unrealistic instantaneous changes in

altitude and velocity that occur in energy state solutions. Kelley also

has suggested the use of singular perturbations in two-point boundary

value problems and in reduced order modelling of aircraft performance

problems [17, 18, 19 ].

Kelley's objectives were to find reduced order approximations to

certain airplane performance optimization problemv that could still be

related to the higher order computational solutions. These reduced order

solutions could serve either to provide insights to improve the computa-

tional solution or as good approximations in themselves to the higher

order computattonal solutions.

This thesis carries forward the ideas of Kelley and Edelbaum by

setting up and solving the range optimal cruise problem as a singular

perturbation problem. The perturbation parameter is developed naturally

out of the parameters of the problem. The resulting solution is easily

7



related to lower order solutions and the nature of the solution gives in-

dications of why the computational solutions are difficult to obtain.

1. 4 Chapter Summary

Chapter II presents and solves a problem similar in form to the

state equations of the range optimal cruise problem. The solution of

this problem demonstrates the techniques of solving a singular perturba-

tion problem by means of stretching transformations applied to the in-

dependent variable in the vicinity of singularities (boundary layers) and

matched asymptotic expansions.

Chapter III shows that the range optimal cruise problem can be

expressed as a singular perturbation problem with singularities occurring

at the initial and final state.

In Chapter IV a solution is obtained to the problem of cruising

flight which is valid everywhere except in the vicinity of the singularities.

It is shown to be the Breguet solution.

In Chapter V a solution is developed that is valid in the vicinity of

general initial and final conditions but fails to be valid elsewhere. The

solution is obtained by applying the minimum principle after expressing

the problem as a linear optimal control problem with a quadratic cost.

An optimal control is obtained and the optimal state trajectories are

matched asymptotically to the cruise solution. A corrected Breguet

equation is developed, accounting for fuel penalties (or bonuses)

8
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associated with achieving initial and final conditions.

Chapter VI presents a cost comparison of the optimal trajectory

with trajectories using various non-optimal controls in the near vicinity

of cruise. It also studies the control as a sub-optimal control over large

changes in altitude. Applications to several different aircraft are

discussed.

Chapter VII presents the conclusions and contributions of this thesis

and suggests possible future work related to the thesis.

9
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CHAPTER II

SINGULAR PERTURBATION PROBLEMS

Singular perturbation problems and the techniques of solving them

are most easily presented by formulating and solving a demonstration

problem. The demonstration problem used here is chosen for similarity

to the state equations of the range optimization problem. It is adapted

from O'Malley [13 I.

Consider the following set of differential equations in x, y, t and c

x = y (2. I)

cy it -x - y (2.2)

where c is a small parameter. Initial values of x and y are specified

x(t a 0) 2 a (2.3)

y(t a 0) it b (2.4)

It happens that this set of equations could be solved directly in terms

of c to give the result

where

+ r
1
t +r2t

x(t) 2 c
l
e + c2e

+rt +r2t
y(t) = r

1
c
l
e ' + r2c2e 

r
l • - 1- [ 1 + 11774;]2t.

10
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(2. 6)

(2. 7)



r2 al [ 1 - /177;

c
l

r2a -

r2 - r1

(2. 8)

(2. 9)

-r
l
a + b

c2 • "^ a c
1 

(2. 10)
r2 - rl

In cases where the equations can not be solved directly a useful

technique is to assume that the dependent variables can be expanded in

power series in E

x(t, c) = x0 (t) + Ex1 (0

y(t, E) = y0(t) + Ey1(t)

+ E
2
x2(t) (2. 11)

+ E2y2(t) (2. 12)

where the xi and yi are functions of t only and are independent of E.

At this point some terms will be defined as they relate to this thesis.

More rigorous definitions of thes(1 terms can be found in [ 14 . Consider

the sequence

2 3
• (2. 13)

As — 0 each term is small relative to the one preceding it. Such a

sequence is called an asymptotic sequence. Our expansion for x(t, c)

(and y(t, E)) is a series of functions of ttme weighted by successive terms

of the asymptotic sequence in powers of E. If, as E -4 0, each term of the

expansion is small relative to the one preceding it, the series can be called

an asymptotic expansion. If in some domain of interest, D, the series is

an asymptotic expansion for all values of t within D, then the asymptotic

expansion is said to be uniformly valid within D.

1:



Now our solution technique calls for the asymptotic expansions for x

and y to be substituted into the original equations. The resulting series

expansion of the left hand side of each equation must equal the series ex-

pansion of the right hand side of the equation. Since the xi and yi are in-

dependent of c and since the expanded equations are valid for all small c,

the coefficients of a given power of c on both sides of an equation must be

equal. The zero order problem (coefficients of (0) is solved first. The

first order problem is then solved in terms of the zero order problem,

etc. This is the approach of ordinary perturbations. For it to be suc-

cessful the resulting solution must be uniformly valid in the time domain

of interest.

Proceeding with our example, the expanded equations, to first

order in c, are

X
0 
+ EX

1 
= y

0 
+ Ey1

eio 3 -(x0 + y0) - ex1 + y1)

The zero order problem is

xo = y0

x
0 
+ y

0 
= 0

xo(t = 
0) = a

yo(t = o) = b

12

(2. 14)

(2. 15)

(2. 16)

(2. 17)

(2. 18)

(2. 19)



Its solution is

x
0 

* c
3 
e-t

yo * --...3e
-t

The first order problem is

it
a y 1

3r0 
= - y. .1°

1 4 1

x
1
(t= 0) = 0

y
l(t 

= 0) a 0

(2. 20)

(2. 21)

(2. 22)

(2. 23)

(2. 24)

(2.25)

The result for yo is now used in solving the first order problem

x
1 
+ y

1 
= -c

3
e-t (2.26)

Differentiating and substituting for Xi

il 4- Y1 z c3e
-t (2.27)

y1 = c4e-t + c3te-t (2.28)

x
1 

= -c4e
-t - c3e

-t
(1+0 (2.29)

Summarizing for x and y we have a solution to first-order in c or

to two terms of the expansions

x * c3e
-t 

- c[c4e
-t 
+ c3e_t(1+0)

r - ty = -c3e
-t + etc4e + c3te-tl

13
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Now it is obvious that for t • 0 this solution cannot satisfy general

initial conditions on L,oth x and y. It can only satisfy one of them, and re-

quires that the other be equal to it.

a = -b (2.32)

For any other initial conditions, one of the variables, say y, muse

make an instantaneous jump at t = 0+ from its true initial condition to

the value -x(0) and that jump is not necessarily of order E. That is, at

x = 0 we must have S? — • so that we cannot say (Sr -40 as t -40. Borrow-

ing a term from similar problems in fluid mechanics r•-• refer to this

singular region as a boundary layer. Tbe width of this bounci:riry layer is

of order E. Outside of this boundary layer, that is, for

t>Ek 0

the solutton is valid.

(2. 33)

Such problems, for which ordinary perturbations fail, comprise a

large class of singular perturbation problems. A direct way of identify-

ing this kind of singular perturbation problem is by the fact that for c = 0

the order of the system i)f first order differential equations is reduced.

Intlead of two differential equations we have one algebraic and one dif-

ferential equation. That means a reduction in the number of constants

available for meeting boundary conditions and hence a failure to be able

simultaneously to satisfy all boundary conditions.

In order to analyze the region in v:hich our solution fails to be valid

it is useful to "stretch" the independent variable by the transformation

14



1

T
t
E

with the differential relattonship

1 d = d •=()
c dr dt

(2. 34)

(2. 35)

We can think of this device as allowing us to view the problem on a faster

time-scale as, for example, one would change the time-base on an nscil-

loi-t-ope to reveal an initial transient in what had appeared as a square

wave. The transformed equations are

— x = Ey
dr

v = -x - y
dr

(2. 36)

(2.37)

Again we expand dependent variables in powers of c and group

corresponG:ng powers of c

x
0 

= 0
dr

15
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(2. 39)

(2.40)

(2. 41)



The initial conditions are

x = 0) = a0 (2. 42)

yo(T = 0) = b (2. 43)

xt(T = 0) = y.
1 (T= 0) = 0 

i = 2, 3, ... (2. 44)

Notice that the transformed equations comprise a regular perturba-

tion problem. In solving this problem it will now be possible to satisfy

the boundary conditions. It is also important to notice that the transformed

equations can be solved. If they cannot be solved, or if the untransformed

equations cannot be solved, then the boundary layer transformation is of

no value, since solutions of both problems are required.

The zeroth order problem is solved directly as

xo = k0 (2. 45)

y0 = kle-r k0 (2. 46)

The first order problem is solved as

dr
xi = k1 e

T 
- ko

_x
1 

-k - k0. + k2

—y
1 

= -y1 + kle T k0T- k2dr 

y
1 

= -(k0 + k2) + k0 + k
1 
re + k3e-T

16
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Now it is possible to satisfy initial conditions to zeroth order in E.

From the zeroth order solution we have

k
0 

= a (2.51)

k
1 

= a + b (2. 52)

The first order solution yields

k2 = a i• b (2.53)

k3 = 2a + b (2.54)

Now we have a solution to first order in c, nr to two terms of the

expansion, that is uniformly valid in the boundary layer.

x = a + c[a(l - T T) b(1 - e-T)1 (2.55)

y -a(1 - e T) + be T + c[a(-2 + T 2e-T + Te-T)

+ b(- 1 + Te- T + e- T) (2.56)

The problem now is to reconcile this solution, valid in the boundary

layer, with the previous solution, valid everywhere in the region except

the boundary layer. It is common to call the boundary layer solution the

inner solution. The other solution, which is valid everywhere in the region

of interest except the boundary layer, is called the outer solution. In the

problem of maximizing range in cruise there will be one outer solution

(cruise) and two inner solutions. The first inner solution will describe

the problem in the neighborhood of the initial conditions. The second

inner solution will describe the problem in the neighborhood of the final

conditions.

17



In our demonstration problem the inner and outer soluti Ins are com-

bined t give a single uniformly valid solution by the technique of matched

asymptotic expansions. The solutions are not matched at a point as one

would match boundary conditions. Matching is based on the notion that the

inner solution, valid in the boundary layer, and the outer solution, valid

outside of the boundary layer, must both be valid in some overlap region.

The inner solution is now extended to a form that it approaches

beyond the boundary layer. First the independent variable is transformed

to that of the outer solution

t
r (2. 57)

The solution is then expanded in powers of E. The resulting expansion is

called the outer expansion of the inner solution.

The outer solution is now extended to a form that is approaches as

it approaches the boundary layer from some large value of t. First the

independent variable is transformed to that of the inner solution

t = ET (2. 58)

The solution is then expanded in powers of E. The resulting expansion is

called the inner expansion of the outer solution. By suitable choice of the

undetermined constants of the inner solution it will be possible to make

the inner expansion of the outer solution identical, up to a certain order of

f, to the outer expansion of the inner solution.

First we evaluate the outer expansion of the inner solution. Using

the transformation (2. 57) we have

18



xi2 a(1 - t) + c[a + b ](1 - e
-t/c

)

y
i2 -t/c= -a(1 - t) + [a + b le (1 + t)

-E[2a +1)] (1 -

(2.59)

(2. 60)

These equations are expanded in powers of E. and in the limit of small c

the exponential terms are vanishingly small. Using notation similar to

that of O'Malley we write the outer expansion to two terms (order zero

and one in E) of the inner solution to two terms as a function of t and c as

[x(t, di2) o2
a(1 - t) + E(a + b)

[y(t, oi21 o2 _
a(1 - t) - c(2a + bl

(2. 61)

(2. 62)

Now we evaluate the inner expansion of the outer solution. Using

the transformation (2. 58) we have

o2
x = c3e - cc

4
e-r - cc3(1 + cr)e (2.63)

yo2
= -c

3 
e-E'r + 

4 
e-ET + (2c

3 
Er (2.64)

Expanding in powers ot C we can write the inner expansion to first order

in c of the outer solution to first order in c as a function of r and c

[x(T, 0o2] i2
c3 - c(c3T c4e + c3)

y(T, E)021 12
I = -c3 + c(c

3
T c4)

Transforming back to functions of t we have

19
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[xot, 0°2] 12 2 c3(1 - - c(c3 + c4) (2. 67)

[y(t. 002] 
12

-c3(1 - 
4. (C4

Now, the condition for matching is that

[0, oo21 12
[ x(to e)i21 

o2

[ dal 12 [y(t. 0121 o2

(2. 68)

(2. 69)

(2. 70)

This is accomplished if we select the constants c3 and c4 as

c
3 

= a (2. 71)

c4 = -2a - b 
(2. 72)

Now we can proceed to write a composite solution for x and y in

terms of t valid to first order in c throughout the region of interest. To

begin with, this solution will be the sum of the inner and outer solutions.

However, that tmplies doubly describing the variables in the overlap region

where matching takes place. To remove this effect we subtract out the

inner (or outer) expansion of the outer (or inner) solution. Finally, for

our composite soultion we have

x(t, c)c2 
c)o2

x(1, c)12 + x(t, - [x(t, 0
121 o2

(2. 73)

x(0c2 = a(1 - + c[a + b l(1 - e
-t/ 

c) + ae
-t

- ta(1 + t)e
-t + c[ 2a + b) e

-tfc 
a(1 -

- e(a + b) (2. 74)

20



y(t)C2

= 1 - t/c-a(1 - t) + [a + b ] e (1 + t)

t- ([ 2a + b ](1 - e`t lc) - ae-t - €[ 2a + ble-

+ fate
-t 

+ a(1 - t) + c(2a + b) (2.75)

These solutions sirnplify to

x(t)C2 = ae-t + E[ae-tit - al,1 + t)e-t) (2. 76)

y(t)c2
= (a + b)(1 + Oe

-tic 
- ae

-t
(1 - ct)

-t -tit- e[ 2a + 13)(e - e ) (2. 77)

It is evident that these composite solutions satisfy the initial con-

ditions exactly. For other values of t the error between these solutions

and the exact solutions given by (2. 5) and (2. 6) will be 0(c2).
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CHAPTER III

THE MAXIMUM RANGE PROBLEM AS A SINGULAR

PERTURBATION PROBLEM

In this Chapter it will be demonstrated that the state differential

equations of the maximum range problem can be formulated in terms of

a small dimensionless parameter, E, and that in the limit as E approaches

zero, the order of the problem is reduced. Some assumptions that are

used to simplify the equations are discussed and symbols are defined.

The state differential equations for altitude (h), range (r), mass (m)

and flight path angle (y) are, respectively

= v siny

;•• = v cosy

•
m = --(SFC)

g

cosy)
v mg

(3. 1)

(3. 2)

(3. 3)

(3. 4)

Equation (3. 4) incorporates the conventional assumption that the cornponent

of thrust (T) in the direction of lift (L) is degligible [1 1.

True air speed (v) is assumed to be a constant. The constant speed

cruise condition is predicted by range- optimal energy state solutions [1 1.

It will occur either at the transonic drag rise or at the maximum supersonic

Mach number. This assumption means that the problem is restricted to

cruise and to constant speed transitions to and from cruise. It also means

22



that thrust is no longer a control variable. Instead its value is constrained

to be such that v remains constant

T = W siny + D

Aerodynamic drag, D. is described as follows

D = CDSq

(3. 5)

(3. 6',

The wing area is S. The drag coefficient, CD, is assumed to be the sum of

a profile drag coefficient, or drag coefficient for zero lift, CD , and 1 term
o

proportional to the square of the lift coefficient. The proportionality factor,

K, is the coefficient of induced drag. Both C
D 

and K are functions of Mach
()

number.

2
CD = CDo + KC L

D = C
Do

Sq + KL
2

Sq

KW2(1 + u)2D = C
Do

Sq +  
Sq

The dynamic pressure, q, is

q 1 21/ w pv
1.•

(3. 10)

and if we restrict our problem to the stratosphere we have an iaothermal

atmosphere and two simplifications result: atmospheric density, p, becomes

an exponential function of altitude

- El(h - hi)
p = p ie (3.11)

and the speed of sound becnmes a constant. Mach number is therefore a

constant in view of our assumption of constant v, and CDT., and K are also
o

constants.

23



The control variable, u, is defined as

L 
- 

1u =
W

(3. 12)

Specific Fuel Consumption, SFC, is assumed to be describable as a

function of thrust coefficient, CF, where

C
F 
•

Sq

T (3. 13)

It has been shown in [ 41 that SFC is a function of Mach number, power

setting, and atmospheric temperature. Since our problem is restricted to

constant Mach number flight in an isothermal atmosphere, SFC depends

only on power setting, or CF. The nature of this dependence is shown for

typical transonic and supersonic cruising aircraft in Appendix A. In this

problem we assume that in the vicinity of the cruise value of CF we can

express SFC as a linear function of CF

dSF C
SFC = SFC +( )(CF - CFc)

(3.14)
c dC F

We can also write SFC as

SFC = co + 
c
1
C
F

arid, defining a constant, y, as

. 
c
1 c

(3.

(3.

15)

16)y Dco 0

we have

CF
SFC • c

0 
[1 + y--.--1

C
D0

24
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The constant, y, is a measure of the slope of the curve of SFC as a function

of C
F' It recurs throughout the rest of this thesis in connection with the

description and derivation of the optimal solution.

We now define the following dimensionless variables

å 1-1 = 13(h - h*)

j-17

S CD

(3. 18)

(3. 19)

M = 
m* - m 

(3.20)

R = — (3.21)
r*

where 13 is che scale height of the atmosphere and the asterisks denote

reference values. For mass the reference value will be the initial value,

m i. It is now possible to express weight as

and drag as

W = Wi(1 - M)

D (1 - M)
2
(1 +1C7 Q 1 + u)

Wi Do 2

(3. 22)

(3. 23)

The reference value of q is the value that minimizes the expression

for drag in equilibrium flight, that is, when T D and L = W (u = 0).

Differentiating (3. 8) wtth respect to q and solving for r! we have

s W K

S C
Do

25
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Since a W and v is constant in equilibrium flight, this equation defines

the altitude for maximum lift-drag ratio. Also, since W is a ratio of two

dynamic pressures, we can express it as

Q
02 
e v

1 -Oh 2
— p

1 - oh* 2-- e v
2

• e- O(h - h*)

Q ▪ e
- AH

(3. 25)

(3. 26)

(3.27)

Thus, from (3. 19) and (3. 26) we have tied the reference altitude to the

reference weight. The reference value of altitude is the altitude for the

maximum lift-drag ratio attainable at the initial value of mass. At that

altitude we have

PH = 0 (3.28)

Q = 1 (3.29)

Now if we express the state equations in terms of the dimensionless

variables p H, R, M and y, and convert from time to R as the independent

variable by dividing by the equation

we have

dR = u—T cosy
dt

dA H • Or*tany
dR

26
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/sr!" g y 1+u _
a

dR ‘0v2 j\cosy

dM (WsinY + D 4 el 1)sec),

W• co sq
t

(3. 32)

(3. 33)

Since c
0 
has ..he dimensions of SFC, namely inverse seconds, the

quantity (v/c0) is a distance. We can therefore define r as

r* = v
0

(3. 34)

Velocity will be on the order of 1,000 ft/sec, and typical values of c0 are

about 0.0005/sec [1, 10, 20 j, so r* will be on the order of 2 x 106 ft.

In the stratosphere, 0
-1 can be taken as 20,800 ft [21 1. Therefore,

Ov
Or or — , is dimensionless and its value ts on the order of 100. Weco

therefore choose its inverse as our perturbation parameter.

0
Ov

(3. 35)

It will be shown in Chapter IV that this parameter can be related to the

cruise flight path angle. In fact, for y= 0 we have

[Y(E4d

cruise

(3. 36)

Finally, in the equation for flight path angle we shall use the follow-

ing definition

a a -2
Ov

27
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This parameter is much larger than c. In fact it can be related to Mach

number, ..11 , and hence is on the order of one.

2 1 /2
vat a 

(k 
/g)

air (3. 38)

where k
air 

is the ratio of the specific heat of air at constant pressure to

that at constant volume and has a value of approximately 1.4.

The state equations can now be written as follows

daH 1 tany
dR

a (l+u
dR E COSy 

1)

dM (Wsiny + D 
1 + cl T secy

dR Wi c
0

(3. 3e)

(3. 40)

(3. 41)

It is seen that in the limit as E approaches zero the differential

equations for y and A H become algebraic equations defining y and u as

zero, and arbitrary initial conditions on y and PH could not be met. That

is, for some non-zero initial value, y would have to go to zero in a zero

interval of range. It will be shown later that optimality considerations fix

the constant value of A H which would also have to be achieved in a zero

interval of range. Thus by demonstrating a dependence on c, a reduction

in order in the limit as c approaches zero, and an inability to match given

initial conditions in the limit as c approaches zero, we have demonstrated

tha the state differential equations of the maximum range problem can be

formulated as a singular perturbation problem.
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CHAPTER IV

MAXIMUM RANGE CRUISE AND THE BREGUET RANGE EQUATION

We now develop the outer, or cruise, solution. If in the state

differential equations we assume that v.e can use a seriel approximation

to two terms for trigonometric functions of y, we have

tan y = y (4.1)

2
cos y = 1 - 221- (4.2)

Using these approximations and substituting fcr T, W and D from (3.5),

(3.22) and (3. 23), the state differential equations become

dAH _ 1

a (u

(4.3)

(4. 4)

dM
= K Q Cl + (1 M)

2 
(1 + u)

2 
11[1+—Y--- (1- M) y

o Q
2

/"J ,1C
Do

2 2
y (i 1-4- (1 1- U)2)] + (4.5)

The optimal control problem is to find the control, u, that

transfers the state (AH, y, M), which is defined by the above three

equations, from a given initial value, (AHi, yi, Mi) to a fixed final value

(AHf. yf' Mf) while maximizing the final value of the independent variable,

f*
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„

Jr=

We can write the variational Hamiltonian as

2
-1+X (u+li-)+xHY 

+
c V c XpA E(1 - M)7 +.4/cDK 

(Q
o

+ (1M) (14) 1+ Y.— (1-M)Y 4. ( (1-M)
2

  --cr y 1+ --c-ir-(1+u)2)](1+ IY2- )12 2 vir- 

o (4. 6)•ICD Ic

Expanding the state and control variables in powers of c we have

UR(y0+ "1) = 1Ku0+4 Y02) 4-c (u1+ mil) + (2 (12+4)12 + VY2).1 
(4. 7)

dn (exo + ax1) = 7 (y0 + (y1 + c2y2) (4. 8)

It is already apparent that

vo = ° and

1 ,
u0 = yr V0

2 
u =

Z  
and

d
UR y0 = Cs

which implies that

ui = 0

also. Therefore
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(4.10)
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1

(mo+ cm1)
(1-M )2 (1-Mn)

2

= tiCD K LQ0+ ---Fr=--H [1+y (1 +
WO Q0

(1-M )
2

+ E iy1(1-M0)1.1 +2y (1 +--2--)] +AH1Q0 v'CD K ILO
0

Q0 o

(1-M )2 - , (1-M )2 (1-M )2 (1-M )2
4. ____(7)._)Li+y(14.____4_)] +2y _____F___ 04.___4_ 11

Qo Qn Qo Qo

Q03,T7< (1-m0)2 (1-M )2 (1-M0)2i i.,(1-DA0)2 ,
r a) 0+ M1 ----2-

1,
(... . -2--1c. •—•.r....-1.....43K. . —.—.-2..--.—.)]-•"y1 _ mo 1.

QoQo Qo Qo
(4.13)

fhe costate differential equations are

2

7TTÀ = 4-1 Y+Xlf +XM (1-M) 
(1+ 112—)L1 + (1--Wy

ey e 
io
o

2
+ y (1+(1 (1+u)2)-PA) ] XMY L(1-M)y +N/CD

(1-M)
2
(1+u)21+--Y—t_ir (1-1v—cr---)y + y (1+114-2 (l+u)2)]ni

Do

+ XM ri-!1-M)y+Itg(Q4- 1 11.4412(1+u)2I_L__)(_crl-M)(1+ )1.
Do ,ic_

v 
K
o (4.14)

(1-M)2xH = + iXM,/CD K / —2— (l+u)2)[1+  ILVi

Jcp k

+ y (1+ --2--(1-M)
2 
(l+u)2)] + XM L(1-M)y +,JCD K (Q

22 (1-M) (1-M)1
+ 
(1-M)
--Q-- (1+u) AL   2y (Q) 0 +Yr ).%/CD K Q

O
31

(4.15)



Xm = tXm[-Y- 2 JCD X 01-M))(1+u)211+   y

0 VCD K
o

+ y ( 1-M
1+ (--41—) (l+u)

2
)] + Xh4{.(1-M)y +1/C oK V;)

.1102(1+u)2)1. 2y (1-M) (1+u)23(1 IA
K
9

We wish to find a control, u, such that

= o

Performing the indicated partial differentiation of (4.6) we have

a), /1 air12
- --X + x {2 ,JC 

D
 (1+u) +u c M o

(1-M)2
+ y (1+ -2 (1+u)

2 
)] +2y [(1-M)y + ,JCD K

2
(1-M)2(1+u)2)] (l+u) + Zr-) 2:49-2

y(1-M)y 

Q \X
Do
K

CQ

Now expand the state, costate and control variables in these

(4.16)

(4.17)

(4.18)

equations in powers of c. In doing so the following relations are used

y0 
u0 ul

Q Q0 + (Q1 e-AH = e-"0-("1 = Q0 (1 - (AH1)

(4.19)

(4. 20)

and, as a notational convmience •

1-M0

74-0— = x 32

(4. 21)



The following expanded equations result

+ 2y (1 + x2)[} +E - a(X,y1y1 +Xy0y2 ) Xml (1-M0)[1

+ 2y (1 + x211 Xmoyl tCI) hQo (1+ x2)C. +y (1+ x2))]
o

2
+ 2-2L X.--Q

0 
+X
MO 
M
1 
[1+2y(1+3x

2
)]- XmoAH1(1-M0)14yx21}

,'Cl) K
(4.22)

an-(AHO+EX111) 
Xmo ICI) h Q0 IL(1-x2)(1+y(1+x2))

o

1 I
- 2yx

2 
(1+x

2 
)j +E 1Xml ‘/CD Q0 L(1-x

2 
)(1+Y(l+x2))

o

;1- 2yx
2 
(1+x

2 
u -XmoylQ04yx

3 
+ Xmo XI) K Qo

41111 L0

- (1+x
2
)(1+y(l+x

2
))-8yx

4
]-1-X

MO ̀ICI) K M1(2x)[1+y(2+6x
2 
)]f

o (4.23)

d
 ̀
„WIT^mo+EXivn) = XMO 

2x /C
D
k [1+2y (1+x2)]
o

E
M1

2x 
\
/C
D 
K I
[1+2y(l+x

2
)] + ) y [1+2

Y 
+6

WO 1 
x2
y

+
MO 

iC
Dl\ 

AH
1 
(2x) [1+2y+6x

2
y]

o

M
1

- XMO CP—T•D rrir-) (2x) [1+2y+6x2A}
0

E Wu 1(.' )-1 +
(.W'u)0 r-- E 

y0 + 
0 
laXyl

+ X
MO

 [2x \/C
D
h (1-M

0 
) (1+2y[l+x

2
])1

o
33
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Similarly we can express the expanded Hamiltonian to first order in E as

 (1-Mo) 2= 0 + Eat = + XHOy1+ XI= ,4/CD K (1+x2) [1+y(l+x )]s
0

1+ {X
HO 2 

+ X
H1 

y
1 
+ aX

y0 2 7 1 + y 2 )+ X
M1 

,./C
Do 

Q
0 
(1+x

2
)(1+y(1+x

2
))

+ XMO y1 (1-M0 )[1+2y(l+x
2
)] + XMO Q0AH1 [(x

2
-1)(1+y)(1+x

2
))

+ 2yx
2
(1+x

2
)] - XMOM1 (2x ‘/CD K) [1+2y (1+x

2
)]}

Now from (4. 25) we must have

X
y0 

= 0

(4. 26)

(4. 27)

Also, in order to satisfy the expanded canonical equation for X y we

must have

XHO = 0 (4.28)

For these costates to remain zero over a non-zero interval of range,

their derivatives must also be zero. Consider first XHO

XI" =
(4.29

dR

2 22)) 2
)]X = X 4./C K QO [(1-x )(1+y(1+x - 2yx (1+x (4.30)DUR HO MO 

o 

0 = 3yx4 + (1+2y) x2 - (1+y) (4.31)

The positive real solution to this equation is

x = +/-1-2y +j1+16y + 16y
2

6y
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It also will be useful later to express y as a function of x

(1 - x
2
) 

(3x
2 
- 1) (x

2
 + 1)

(4. 33)

Figure 4.1 is a plot of x vs y for physically realizeable values of y.

Since y is the product of CD and the slope of SFC vs CF, y can never
o

be negative. Negative CD is impossible in any case and a negative

d(SFC)/dCF would result in a "chattering" solution: the engine could

be cycled oa and off in such a way that its duty cycle would achieve

minimum SFC. Therefore, x remains less than or equal to one, and

other branches of this curve have no rneaning for this problem.

The fact that x remains less than or equal to one means that the

optimal initial cruise altitude is below or at most equal to the optimal

glide altitude, which is the altitude for maximum lift-drag ratio. This

is seen from the definition of x when R is zero

or

x = (1 - 1\110i)/Q0i = 1/Q0i = e
+AHOi

= x
HOi

1
< x s 1

(4. 34)

(4. 35)

and from the definition of Ail as the normalized altitude difference

measured from the altitude for maximum lift-drag ratio. Therefore,

the value of x given by Eq. (4. 32) specifies an altitude at which the

product of 1/(SFC)0 and lift-drag ratio has been maximized (to zero

order in t) and this is lower than (possibly equal to) the altitude that

corresponds to maximizing only the lift-drag ratio.
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1

1 - M0 = 
ce

Using the optimal value of x, a constant, it is possible to solve

the differential equation for Mo

d itA
UR = ^/CD l< 0 x (1-M ) (x +1)illy (1+x

2 
)1

o

2,
o= (1 - Mo)2x.,/CD K

-2x „/CD K(1+x2) R/(3x2-1)
o

(4. 36)

(4. 37)

(4. 38)

and the constant, c, is 1 so that Mo is zero when R is zero. And now,

since

1 - Mo = xQ0 = xe " (4. 39)

we have

2
OHO = 2x ,/c (1 R + t,. x

o (3x - )

which implies that

yl =
(1+x")
- 2—

Do (3x -1)

which is a constant, implying that

_ 1 2
u2 - 7 yi

(4.40)

(4. 41)

(4.42)

Notice that initial values of y0 and Allo are fixed, and cannot be matched

to arbitrary initial conditions. Alternatively it could be said that from

arbitrary initial conditions y0 and AH0 must move to their optimal values

in a zero interval of range, thus demonstrating the singular nature of the

problem in the vicinity of initial conditions.
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Finally, the equation for Mo can be written as

1 - Mo = e
-y1R

Another way of defining yl is as follows

yl 
= „/CD K (x + x 

1—) [1 + y (1 + x2)]
o

-DRAG i SFC01

— LLIFTo °J Lc-0 J

(4.43)

(4. 44)

(4.45)

This will be useful later in developing the Breguet equation. In this

L.`form (-R) and (SFC)0 refer to the zero order problem, in which lift
'Li 10

equals weight and thrust equals drag. Since the cruise flight path angle

is Ey1 to first order in e we see that c can be expressed as

E - (s4 0) [v (n)0.1BREGUET
If y=0, this expression is further simplified by the fact that co= SFC0.

(4. 46)

Concluding now with the zero-order problem we have from the

condition that Jro = 0 
that

' 1- 1 + XMO ,s/CD v K (1—M,.)( x + x—.) [1 + y (1 + x
2
)] = 0

o 

— 1 + XMO y1 (1—M0 ) = 0

x = (L) 41/1Re
MO yi

This result is consistent with the canonical equation for Xmo which

states that

urr Xmo = Xi= 2x 'CD I{* (1+2y (1+x2)] = y X
o 1 MO
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(4. 48)

(4. 49)

(4.50)



Now using the optimal constant value of x and resulting expression

for Mo it is possible to solve the differential equation for Mi.

all• Ml = yl (1-M0) [1+2y (1+x
2
)] +

1 Q0 D K [(x
2
-1) (1+y (1+x

2
))

„/C
Do
K

+ 2yx
2 
(1+x

2 
+ M1 )] x 

[-2x
2 
(1+2y (1+x2))] (4. 51)

From the optimality condition on x the coefficient of 41141 is identically

zero. Using the definitions of yl and 1-M0 the equation becomes

2

2x „/CDOK

-y113
e - y1M1

yiAn integrating factor is e and we have

M
1 

= e-y113  
2

[ s  Y1   dR + c]
2x „/CD K

o

Ml -y1R  yl  +M (0)1je lb2x „/CDol<

(4. 52)

(4. 53)

(4. 54)

The constant of integration is not necessarily zero. It represents a

first order initial value of mass in cruise.

At this point is is possible to develop the Breguet range equation.

However, first we shall investigate the first order necessary conditions

for optimality and determine PH1, y2 and u3. Thc condition that the

derivative of Xy0 
must be zero requires that

- XH1 - XMO 
(1-M0 

) [1+2y (1+x
2
)] = 0

XH1
1 

2x „/CDoK
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(4. 55)
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This is a constant and hence its derivative must be zero

0 = Xi%1'IC
Dl 

Q0 [(1-x
2
) (1+y (1+x

2
)) - 2yx

2 
(1+x

2
)]

o

- x
MO 

y
1 
Q
0 
4yx

3 
+ X

MO 
„/C

D
K Q

0 AH1 
[-(1+x

2
) (1+y (1+x

2
))-8yx

4
1

o

+ X 2x ,,./Cr
D 

lf 
 
M (1+2y (1+3x

2
)1MO 

o 1 (4.57)

Here the coefficient of XM1 
is equal to zero at the optimal value of x.

4yx3
0 = + [-(14.x2•

) y(1+2x2+9x4)]
CD K 1

o

M
1+ 2x2 /7yr- (1+2y (1+3x

2
))

0 
(4. 58)

0 = -4y
1 
x
3 
(1-x

2
) - 2x

2

DK 
PH

1 
(-3x

4 
+ 6x

2 
+ 1)

o

(2x2 „/C 
b (0)+ x y1 2R) (-3x4 + 6x2 + 1)Do

1
2
R 2x y1(1-x2)

AH1 =   + M
lb(0)2x .JCT, ,iCD K (1+6x

2
-3x

4
)

"io

This implies that

y2

2
yl

(4, 59)

(4.60)

(4. 61)

Again this is a constant. From comparir.g second power terms in the

expanded differential equation for y, we must have

rfr y2 u3 y1y2
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1

u3
yl
3

2x ,%/CD Fi
o

It is now possible to determine Xmi from its equation

(4. 63)

BIT XMl = y1Xm1+ Xmo (1+2y+6x
2
y) Ly1+ 2x ,1CD (46111 

1 
(4.64)

0

- 
yl
R

An integrating factor is e , and we have

+ya rt
X
M1 

= e ' J Lc + (1+2y+6x2y)1:1

2x „/CDok n
( 

2x y
1  )  (1-e) 

F j
)11 ,lCD Is`. (1+6x2 - 3x

4
)
] 

d+   
'

o

e
+),0 

1+x
2

XM1 = Lc 
+ 
 RJ

(3x -1)

Now the first order term in the Hamiltonian becomes

= Xiny1 + Xim (1-Mo) „,/CD K (x + 14) [1+y (1+x2)]
o

(4. 65)

(4.66)

" 1 \Xm0y1(1-M0)[1+2y (1+x
2
)] + Xm0(1-M0),/CD

K 
(1

o

+ y (1+x
2
)) + 2xy (1+x

2
)] - X

MOM1 
2x 'C

D
 Ii 
 

[1+2y (1+x
2
1] (4. 67)

The coefficient of AH
1 
is zero at the optimal value of x, and the

remaining coefficients are more conveniently expressed in terms of y1

2

.ie
1 
= X

H1y1 +XM1(1-MO) y1 + XMO(1-MO)  XMOM1y1 (4.68)2x ,/r

yl

D

Substituting for Xill, Xml, 1-M0, Xmo, and M1 from (4,56), (4.66),
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(4.43), (4.49), and (4.54) we have

R 
2 
R

.mr =   
+ 

+  yl  
y
1 

1 
   - M

lb
(0) (4. 69)

2x,/C
D K YI[c + 2x,„/CD K 2x,/CD K 2x,/CD K

Jig yl c Mlb(0) 
(4.70)

and for.Ye1 
= 0 we have

Ylb

This constant originated in (4.66) so we now have for Xisin

Ylb 
XM1 L

2x D K
o

M
lb(0)1 e+ylbR

Ylb

(4. 71)

(4. 72)

Finally, Xyl can be determined from the condition that (Jtou)0 = 0 as

follows

aXyl + XMO 
(1-M

0
) 2x ,1C

D 
[1+2y (1+x

2
)] = 0

and, substituting for Xmo, M0, and y1 we have

1
X yl = a

(4. 73)

(4. 74)

We have now satisfied the necessary conditions for optimality to

first order in E. Figure 4.2 is a diagram of the sequences that led to

the zero order optimal solution. Figure 4.3 is the s-.Yie Ior the first

order optimal solution. An arrowhead from one box another indicates

that the information in the first box leads to the conclusion in the second.

A summation of two arrowheads indicates thai two information sources

are necessary to draw the indicated conclusion. It doe not indicate a

summation of equations.
42



d
--1 -

an o

"Yo = 0
  d

at 70 °

d

= 0

uo = °

u
1 
= 0

,d Ma,
u 
= flx M

clpt 

d x 
-
0

dR HO ,--.. x = f(y) = const.

No ' f(xmo, mo, 7o, uo) x too = f(R)

AH0 = f (M0,

Mo = f(R)

= f(R)

= f(x) = const.

d
°

u 1

Figure 4. 2, Zero Order Optimal Outer Solution Sequence
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d
311" M1 

_ 
- )171, MO, M1)

-4- 70X = 0
dR 

immaimmill.
dag m 1 = - f(M1, R)

C
o

att(am• 71, ?.41. mo,xmo,"41)

.......111. M1 = f(R)

d
all" )4M1 = f(71, AM1•XMO, 61-11, M1, M )

AH1 = f(R)
71
2

2x C

a aRd 4.41 = nil, 411 )

Figure 4. 3. First Order Optimal Outer Solution Sequence

441 = f(R)



We return now to the expression for M and develop the Breguet

range equation.

2 u

M
f 

= (M0 + cM1)1. = I - e
-Y1Rf +ce-Y1Rf i  Y1 "t  1

o 
(4. 75)

L2x „/CD K

2
e-Y1Rf [1 - f  Y1 Rf  1

2x /CD If"'
o 2

= - YlRf + 1" Li - ( 
yl Rf  i

2x ,/CITTZ
2 o

YI Rf
YlRf - ( 2x /CD 

1‘
\ 

o

Rf = - £m (1-Mf) L 1

yl. )/
y
I 

1\1 + c
2x /CD3K

1 v
R = - tm (l-M ) (--) (1 - E

1 
r f YI 2x /C

D 
K /
o

Now using the following relations

and

and

i

; - liar\
- An i 

rn
(1-Mf

) = - m(i -  L L) - + £m (___Im.)
mi nnf

LIFT c
1  0 0 
yi DRAG() SFC0

r
f 

= Rf c(-Y—)
0

we have
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(4. 77)

(4. 78)

(4. 79)

(4. 80)

(4. 81)

(4. 82)
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LH
(r ) LC " 0 ()0)max Of

/ (  f max SFC /5 
71

2x XDoK
(4. 84)

The first brackets contain the usual Breguet range expression.

The optimal value of x maximizes the product of v/(SFC)0 and (L/D)0

and hence maximizes range at constant velocity and fixed initial and

final values of mass.

The second brackets contain a first order correction factor

resulting from the fact that flight path angle is not zero but a small

position quantity and therefore thrust equals not only drag but also a

component of weight in the thrust direction. This extra thrust required

for climbing results in a smaller final range, but the difference is of

order E.

Rutowski [2] derived an expression for this range correction factor

from consideration of the increase in potential enera due to climbing

during Breguet cruise. He considered SFC to be constant in his develop-

ment and did not attempt a mathematical maximization of the resulting

range expression. If the above expression for maximum range were

derived based on a constant value of SFC, then the resulting maximizing

value of x would be unity and y1 would be 2 ,ICD K. As a result, the
o

correction factor appearing above would become (1-€) which agrees
SFC

0
exactly with Rutowski's factor of (1 -

Teren and Daniele [10] have analyzed the maximum cruise range

problem using only mass and altitude as state variables and using thrust

coefficient as the control variable. They derive the following equation to

define the optimum value of CF
46



I
(SFC)(C ,) (SFC)(C )

1 C = C
D + 

F  + F 
d - „ .F 

o 2 ur— i(SDC)(C di 2 f3v
F

•

(4. 85)

lf SFC is taken as varying linearly with CF in the neighborhood of a

constant operating value, this equation is a cubic in (C1;/C1) ) and c:
o

, CF ,- 2yCF , , CF \ , CF \ 
CP'

2 L 11 T.1 .1 +— = Cc
Do

Ai +Y-C---
D 
-)1.1 + e (1 + 2y 7"--)D 

] (4. 86)

o 'D
o o 

'D
o

For E = 0 the order is reduced by one and the positive real root is

easily found as

(CF)0 
= C (1+x

2
) (4. 87)

For E¢ 0 a first improvement to this root is found by assuming it to

be of the form

C
F 

= (C )
0 
(1 + 6) (4. 88)

This is substituted into the cubic and solved for 6, retaining terms of

0(c) and eliminating terms that comprise the second order equation for

(CF )0' 
The result is

2x2  (x
2
+1)

2
C
F 
= (C

I) 
) (1+x2) +
o (3x -1) (1+6x

2
-3x

4
)

(4. 89)

The identical result is achieved if (T/Sq) is expanded using the

optimal values of M0, MI, AT11, and y1 developed in this chapter.

Teren and Daniele do not develop an expression for maximum

range in cruise. However this is easily done using their differential

equations for mass and range together with the assumptions of constant

lift coefficient and lift equals weight. The result is
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where SFC and CL are determined by the optimal value of CF.

Now if SFC is a linear function of CF 
and if the above expanded

form of the optimal value of CF is used, together with the resulting

expanded forms of the optimal CL and SFC, this expression for

maximum range will be identical to the one derived in this chapter.

48
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CHAPTER V

MAXIMUM RANGE TRANSITIONS IN THE BOUNI)ARY L.A. ERS

5. 1 Introduction 

In this Chapter the two inner, or boundary layer, solutions are

derived, and the results are matched with the outer or cruise solution.

The optimal control is examined and shown to produce a damped oscilla-

tory transition to and from cruise. The over-damped, or pure exponen-

tial, case is examined separately. The short-range problem, for which

no cruise segment is required, is also examined. Finally, a modified

Breguet range equation is derived which includes changes :n range due to

transitions between cruise and initial and final conditions that are not on

a Breguet cruise.

5.2 The Problem in the Boundary Layer 

The boundary layer problem is described by stretching the indepen-

dent variable in the state equations by the transformations

R =
L e

in the left side boundary (vicinity of R = 0) and

Rf - 
R

R
R 

=

(5.1)

(5. 2)

in the right side boundary (vicinity of R = Rd. In the left side boundary

layer 37 = c urf— and the equations become
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dv = a (u + Z2-)
L

dpH _
Mr.

2

dM -"„„1 2 
= E i(1-M) y D +  "+ui

2 
]][.1

unL

2 2
+ 11:44-1Z + y + (1-1-u)2]] (1 +
,fer7".<

0

The cost to be minimized becomes

Rf/E

J = - S E dRL
0

and the variational Hamiltonian becomes
2

„Ye = -E +X a(u+2,2-)+XHy+am {.1.(1-M)y+,1CD KLQ
o

2
141:111 (i+u)2]1 (1-M) y

LD
o

___2__(i-M)2 (i+u)2]] 4...)-}

(5.3)

(5. 4)

(5. 5)

(5.6)

(5. 7)

Unlike the situation in cruise, a zero order analytic solution to the

boundary layer problem can not be found unless some further simplifying

assumptions are made about the state and control variables. Typically in

such cases one might consider a linear expansion of the boundary layer

state t..tuations in the vicinity of cruise. There u, y and M will be small.

Let AH be defined relative to the initial optimal cruise altitude so that
A

Alf also remains small.
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Wi K

( q Q/Q0i Qx (5. 8)

Wi K (10i

I) /
o/

= xe-A" = e-4111 "x = e-AA (5. 9)

oH = GH - inx (5.10)

The linear differential equations are

  - au

dAH _
urr 

dM 1
-Etv CD K (x +7) [1 + y (1 + x

2
)] + y + 2y (1 + x2)]

unL

+ nH D 
[2x

2 
y 

1 
+ x) + (x - 7c-)(1 + y (1 + x

2
)))

4 2,rr< x (u-M) [1 + 2y (1 + x
2
)[}

Do

(5.11)

(5.12)

(5.13)

The equation for M is derived by expressing the exponential form

of Q as a Taylor series in API to first order, expanding, and retaining

only linear terms. It is then greatly simplified by making use of two

algebraic identities. First, from the definition of the optimal value of

x (Eq. 4.31, 4.32)

1 1
2x
2
y (x +-cc) + (x - 7) [1 + y (1 + x

2
)1 = 0
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1

Second, the first-order value of the cruise flight path angle is defined by

the two equivalent expressions (Eq. 4. 44, 4.5 0)

Vlb ='/CD K (x + TI)[1 
+y(1 +x2)] = 2 VCD Kx[1+ 2y(1 +x2)] (5.15)

o o

The differential equation for M then reduces to

dM
Tr— = "lb (1 + u - M + --7--- )
L 2x C7, K

Lio

Now the Hamiltonian can be written as

.Ye = - E + aX yu 
+ À HY "À1V171b 0 + u - M + 

 y )
2x it7{

o

(5.16)

(5.17)

A

It can be seen at this point that AH does not appear at all in the

state equations or the Hamiltonian. An optimal control, if one could be
A

found, would be independent of PH. Thus linearization of the state

equations fails to yield a meaningful solution because it fails to yield

a meaningful mass equation. The reason for the failure is that the drag

term, which appears in the mass equation, has no linear dependence on

altitude in the vicinity of cruise altitude.

As a second attempt to simplify the boundary layer state equations,

and thereby to be able to develop an analytic solution, consider a quad-

ratic expansion of the equations in the vicinity of cruise. The differential

equation for API remains linear (5. 4). The equation for ynow includes a

term in y
2 
(5.3). The equation for M becomes
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dM _
- 1 1..(1-M)

—"L

13-c• A- 1 ^2
+.2-1.11-1

A 1 A2
)+x(1+4...ii+741H )(1)1+ N,CF73 K

o

w)2(1+021j 
Cl  (1 +L +.2 4%ii ia-M) y+, C x

A 1 2 1 A

D
o\C'D 

H 
 K
o

+ 4"112)+x(1+"11+46,A2)(1...M)2(1+1)L,]](1+1,)f (5.18)

with e? expressed as a Taylor series in All to second order. Performing

the indicated multiplications and neglecting terms of higher order tilan

second results in the following equation

dM
E{. CfTR(x+-

1
)[1+y(1+x2)]+ y[1+2y(1+ x2)]

1̀4‘L o

+ Af-Lci-7,--R(2x2y(x+4)+(x-4H1+y(1-Ex2H)+(u_m)2x,,cD K[1+2y(1-Fx2)]
o o

2( 
xy vCD

0
K

+ y 
A

• (x +-
1 

+y (1 +x
2 
)1) + y AII4x

2 
y

/̀CD
o

A2   (.4 3 , 1 ,..+ 1_,(1 +x2.,))1 + yu4x
2
y+ AH y -T-rx -r y

+ (M2 +u
2
)x.,/C

D 
K [1+2y(1+x

2
)+ 4yx

2
]-yM[1+4yx

2 
+2y(l+x

2
)]-

o

+ (6Plu- PAM) 2x +2y(1+x2)+4x2y1
o

- Mu4x .jCD K [1 +2y (1 + x2) +2x2y1} (5.19)O 

These equations (5.3, 5.4, 5.19) are sclvable as the state equations

of a linear-quadratic singular perturbation optimal control problem if we
2

can neglect the term 12- in comparison to u in Eq. (5.3). In the cruise

problem this term had no effect on the solution through nest order in E.
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To show qualitatively that this term is negligible in the boundary layer,

consider the effect of the transformation

2
U u + X2-- (5. 20)

on the state equations. The equation for y (5. 3) is linearized and the

A
equation for AB (5. 4) is unchanged. The effect on the equation for M

(5.19) can be shown to be merely the replacement of u by U and the

inclusion of an additive term in the coefficient of y
2
. This additive

term can be shown to be so small in comparison to the principal term

in that coefficient that it is safely neglected. But if that term is neglected,

the transformed equation set can not be distinguished from the set that
2

results from merely neglecting the term Y2— in comparison to u in the

original equation for y.

Of course, the entire solution of this problem could be based on

this transformation and no appreciable difference would occur in the

result. For our present purposes we merely cite the potential of this

transformation and proceed to linearize the equatfrn for yby neglecting
2

-Zz- in comparison to u. The equation for M is simplified by the use of

(5.14) and (5.15). Finally, the state equations of the linear-quadratic

singular perturbation optimal control problem and the variational

Hamiltonian are

= au
atIL

7
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dM
air ({Yib(1+u-N4 ) +Y2 

(
V 
lb

2x 1) ,T1) K
o o

' 2   Ylb u2+ N42 +4112
+ vyx )[-y M+2x, CD (6f-1(u- 1+ 

2
D
o

A
+ (u+411)4x

2 
D l< y - 4x,/C Mu + 2x2y)}
o ‘2 

Ylb

x,re'D K
o

- E +axyu +AHY + (X M u M 4- 2x  • 
D 

Ko

(5. 23)

2 (ylb 
+

 
 + y (u -f-di)4x2y - 4xv/C

D 
-1-‘' Mu (2x

2
y + 

viCD K 
2x . r K

• 
Do o

4 (4yx2+  711b

2x \./CD K
o

u
M +2x 

•'C1)
 K (An lu-M1 2+M ^2 \-1)

o
(5. 24)

The factor of € in the equation for M makes this a solvable problem.

The E means that the equation for M is not in the Hamiltonian to zero

order in c and, as a result, the zero order value of the costate for mass,

X MO' is 
constant. Thus the zero order problem, for which mass is

constant, has linear differential equations for y and QH and a quadratic

cost functional which represents an "out of the loop" equation for M

weighted by a constant, X MO. The first order problem is of course

linear with coefficients depending on the zero order problem.

We now proceed to develop the costate diffel ential equation
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dX Ylb 
Url = -Xli - "Ml 

r  
+ V ( t--Ylb + 

2xy 
f7‹

)+ (u + AH) 4x
2 
y

L '2x ,/CI) K
Do

o

2 
+ 

lbY )1- M (5.25)Ox y
2x ,/CD K

o

dX 
H 3y (5.41-0} 26)_- - 

M 
{y4x2y + (ylb +8x IC1) K) (u- M

dX
M _-

`'M C Ylb u \2 Vlb 8 \ir-i.7 x3y)07 

Vlb
+ (4x2y + 1 + 2x K (M - (5.AN')1} 27)L- y ,/CD

2x .1C/
o

The condition that the optimal control, u, minimizes the

Hamiltonian is exp,-essed as follows

.w = a X y + EXM L. 
y
lb 

+ 4x
2
y yo - (2y1b -! 8x

3 
y CD Mo

VYlb + 8x
3
3',/CD N)(API + u)] = 0

o
(5. 28)

Now if we expand the state, costate and control variables in pcwer

series in (, the differential equations of the state and costate variables

become

u
+ y1) = a (u0 + u1)

d A
(AB ) = y + cair" e 1 o yl
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d Ylb +._
Mr- (MO + EM1) = E *>$1b +u0 + 

y 
0  ) +702 ( g__)

I. 2x „/CD K ,g-----K
D
oo

A 2
'

+ Ox
3 
yiCD K +Ylb-2-kuo +Aliol +4x2y yo (u0 +AN)} (5. 31)

o

air- 0, y0 + ex yl + c2x = - xHO - {xH1+xMO 
[ lb  "0 (Ylb 2 3-21--)
2xICD K 'vc70-7

o o

Ylb 
+ 4x2y (u0 +4

110)D + c2{.- XH2 XM1L2x,/cijj

+4x2y (u + )] - (y
+YO \Ylb CDoK 

0 0 MO 1 lb

+-2-M--)+4x2y (u1+PP11) - Ml (4x2y +  
Ylb 

2x,IC
^/CD K D

oo 
K 

)11

(5. 32)

aF 
(Xh 

+EX111 + c
2
) ) = - c {XMO • 

[4x2v
0 ' 
+(v

lb 
+8x

3
y,/CD Kko +LS-10)1}

0

d

+ E
2

- 
Xwus[

4x

Xm
1

2
y

[4x
2 
3' YO + (Ylb + 8x

3 
y^/C-1.3 KX110

3

+11110)]

.TAT \11.

(5.33)

- • 1+ (• lb +8x
IA(

D
o
-1 \u1 - M1

(x 
+EX

- p.i
(XMO { - 'lb

Ylb

0 (4x3y /71:117 71b)mr- MO M 1)

- (4x2y + (yo +2x„/CD K d10)} (5. 34)
2x,/CD K

o

Expanding the equation Jeu = 0 gi 'es
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(Lieu)0 + E(..*u)i + E
2
(lift4)2 = a X y0

2
YO +(Ylb 

+8x3y+ c (ax
yl 
+ X
M

b/l
b 
+4x

+ c2{aX
y2 

+X
M1
[y

lb 
+4x

2
YO +(Ylb +8x

3

vt77, )(a0+110)]}

X170RXACTO u0)]

+ Xmo[4x
2y Yl

- (2ylb +8x
3yjCip

—1 +(Ylb +8x3y4C73-7)(A1/1+ualf

(5. 35)

Similarly, the expanded Hamiltonian is

. 1+a(xvoul+xylui)/f= {axyouoi-xHool+c 4-(xFiel+xe0)

▪ ‘11,10LY113(1 +u0 +
Do 
K /

+ 
YO
2 ( Ylb  xy 
 )+Y0(u0 +LS10) 4x2y

2xx
YO 

"DK

Ylb 
o

+ (4x2y + 
2 x 

)
,,/C

Do
 x(u0 0)21, e{a(Xy0u2 +Xylu1+xy2u0)

o
/ rip < 

 \ (71b

• (XHOYO +X}ny1+XH2Y0) x1141[Ylb(14-u0 
+ 
YO
2 xy 

Do o

+ 70(u0 +CIAO) 4x2y + (4x2y +  
Ylb  ),/CD K x (u0 + PH0)2]

2x,/73-gl o

Ylb ( _32_y_)+4x2y (y
▪ x1%.1.0[Ylb(ul - M1 2xvt--r-T ) YOYI 

+ 
1
u 
0 
+ y 

1 0
'Do

K

+ youl +Thal) - Mluo(8x3y ,\TET:7‹ + 2ylb)
0

• (4x2y +  lb  )1L- yoMi +2x„jeD -1‹ (AHoul
2x ,ICD

▪ a1u0 
u0u1 Aft0A141)D
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I

Because X
MO 

is a constant we can now see that the costate equations

are linear and the Hamiltonoan is quadratic and we should now be able to

develop and analytic solution.

5.3 The Optimal Control 

The required optimal control, u, must minimize the Hamiltonian,

that is

a
Vi '71' = °

Considering first the zero-order part of .Yfu we must have

X
YO 

= 0

(5. 37)

(5.38)

and since the Hamiltonian must itself be zero along the optimal trajectory

we mustalso have, from .yeo = 0

X
HO 

= 0 (5.39)

Now the optimal u0 can be determined from the first order part

of .x.' = 0u

(..le )1 = 0u (5.40)

4.a 2
aX 1 4. XMOLY1b ' -3c 3'7

3 \ '
0 (5.41)

,1 4.1,1 r,. „,f7.17) K x yl cu + AA )]=70 ' cYlb / 0 0
o

An expression for the optimal

the second order part of XII = 0

(.Ou )2 = 0

value of u
1 
results from considering
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("eu)2 = aX + Xy2 Mh 
IY1b-"

2 
yy +8 3
0 
+(y lb x yAri7)(uo +år, )10„

2 3y 
A

4" X 4x [,fe—RD Xylb+8x
3
yveT7—<)(41I-11-1-ua = 0MO Y V1 - 

Ml(2ylb
 +8x

(5.43)

We can now solve for the optimal uo and u1. It will be shown that the

optimal uo satisfies a hornogeneous fourth order linear differential

equation with constant coefficients. Furthermore, the coefficients of the

first and third derivatives are zero, indicating that the roots are symmet-

rically located in the complex plane with respect to both the real and the

imaginary axes. Next the optimal u1 will be shown to satisfy a non-homo-

geneous equation, the hornogeneous part of which is identical to the

equation for the optimal uo. The non-homogeneous part, or forcing part,

will be a function of M1 which is itself a function of the optimal trajectory

of the zero-order problem.

First, since (baelau)1 = 0 over the entire optimal trajectory, it

follows that the derivative of this partial derivative, with respect to R,

the independent variable, will also be zero over the entire trajectory.

Such derivatives will be indicated by primes. Similarly, all higher order

derivatives will be zero. Proceeding, then, to tak ccessive derivatives

of (a0.7tibu)1, the differential equation for the optimal uo is derived. At

each step the derivative of a state or costate variable is replaced by its

defining canonical differential equation.

arr- oci)1 = aX ;#1+XMOL4x y y + (Ylb +8x
3 
3r1C—A(u10 +åriso)] 

(5.44)
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0 . 
aL

+ XMO

2

^_ , 
}il

_ , Ylb +.-( +-2-SX—) +423rtif-10]]

(5.45)

^ MOL ' 0 
kr•••
1b2x.JCD K \/C

o
D K
o

(Ylb "x3y N/CD K)(Y0 +u '0)o

d--2. ( ) = a 2a7--)+E X 'HI - XMO 1-,ic
2 A4x y PH 0]].Yeu IdRL

0LY Vlb

o
3
y+ XMO011b +8x /C-170 ) (Y() + u"0) (5.46)

3 2 (y +
0 = aXMO(7lb 

+8x yvt7R)(u0 +4110) - Xima
0

-Y_
lb )uo ir, K

v 'D
o

+ Xmo (8x3y ,ICD K + yth)(auci + u 0) (5.47)0

No further substitution for variables is required and the next two

derivatives are taken as a single operation
•10•.

Ewa,+ 2xy7
lb yo ic

V Do
ii

ut
V 
+ u

0 0
2a + a

2
u0 = 0a

2

3
yup +8x y ive"TrC

o
di•M•

OM.

Using p as a derivative operator and defining Z as

,fa-
Z = -Ir.

Ylb + 
2x

,,/CD K
o

Yl.b +8x3y CIrTr<o

the differential equation for u0 may be written as

[p4 + p2 (2a - [2Z,111]2) + a21 uo = 0

or in the equivalent factored form
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1

(p
2 
+ 22,fi p + a) (p

2 
- 2Z,rip + a) u0 = 0 (5. 51)

The roots of this equation depend on a, which is a function of v,

and Z, which is a function of v, x, y, CD and K. At a given Mach
o

number C
D 

and K are constants. Since x is a function of y we can say
o

(d(SFC)) CD If atthat the roots depend on velocity and y, that is,

a given velocity d(SFC)/dCF is allowed to vary between zero (constant

SFC) and + co, the root locations for a particular airplane will vary

as shown in Fig. 5.1. It is obvious that the effect of increasing the slope,

d(SFC)/dC
r 

away from zero is to increase the damping ratio. The

natural frequency on the oscillatory brench remains constant.

A locus of roots as velocity varies is somewhat more difficult to

obtain because of the fact that y as well as CD and K would have to be
o

described as a function of Mach number. However, if y is zero, as is

sometimes necessary to assume, this difficulty is greatly diminished.

Such a locus of roots as velocity varies and y remains zero is shown for

a particular airplane in Fig. 5.2. In this figure it is seen that the effect

of increasing velocity is to reduce the damping and the natural frequency

of the oscillatory branch. Below a velocity of 409 ft/sec the roots are

non-oscillatory.

Returning now to Fig. 5.1 and the equation for u0 we can say that

on the oscillatory branch we have for natural frequency and damping

ratio, respectively,

w
n 

= %/-1. (5. 52)

C = Z (5.53)
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When the roots of the equation are all real they are

p = t li: [Z ± P7:1] (5. 54)

The damping is principally attributable to the slope of the curve of

SFC vs C
F 

for the engine. From (5.51) we see that if Z were zero, the

dynamic modes represented by that equation would have no damping. The

damping comes from the term a2 
(•

1,
lb 
+ 2xy/ „/CD K). Each of these0 

terms originates in a y02 term in the cost functional. Since yo is propor-

A
tional to dt.11/dR

L' 
they represent a penalty on altitude rate excusions.

The first of these terms can be traced to the effect of the cosine of

the flight path angle on range. The second comes from a combination of

the restriction of velocity to be constant and of the modeling of SFC as a

linear function of C
F. 

Mass rate is therefore proportional to T
2
, and

since thrust must have a component equal to Wy, the second y
2 
term

enters the cost functional. The second contribution to damping is the

larger one.

The equation for the optimal value of u0 can be solved to express u0
A

as a function of RL. Then, in turn, the equations for y0 and GH0 can be

solved and the entire zero-order state and control are known as functions

of RL. Finally, it is seen that M1, Xml, Xyl, and Xin are functions of the

zero order state and control and hence they, too, can be expressed as

functions of RL.

say

Returning now to the expression for the optimal value of u
l' 

we can

aX 
y2 

+X
MO 

[4x
2
y yi+(y1

b
+ 8x

3
y.„/CD

o
 K) 0. -1-u

1 
')] - f

1 
(13
L 
)= 0 (5.55)1
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where

11 (RI) = - IMI kb + 4x2y YO + (Ylb +8x
3 
3' "/CD

o 
K) (u0 + AO)]

+ XMO M1

or using (8.)1018u)1

f
1 
(R
L
) = aX

3
y (5. 56)

(5.57)

[2y1b + 8x ,/CD K]
o

= 0,

XM1 + X ( 
y1 (Xmo) MO

M
1

2y + 8x3y ,/CD K)
lb

o

Proceeding to

d
('Yeu )2 = a

take

{- AH2

derivatives with respect to RL we have

- AMO [Y1 (ylb +-1-"q"-- ) + 4x2y4S11]- f2 (RL)}
Mr-
L IC-D—TC'

3

o

+ Xmo (ylb

where

+8x y,/CD0K)(u 'I+yl) - f ii (BL) (5. 58)

f2(13L) = AM1
Y b 

+ ( 
.,. 2)___c_y_ ) +4x

2
y (u0 +AO]

[2x," YO \vlb 'C... K ,/c. K /
uo 

Do

- Xmolkill (4x
Y1b )2

y + (5.59)
2x,ICD0K/

The next derivative is

Ad
2

(.Ye )2 = a {
X
MO 
(y

lb 
+8x

3
y,/CD Kk1+ 41111) - f3 (RL)}

—7 u
dR
L 

o

where

- a2X
MO

il
1 
(y

lb 
+-2-a—) - 2f 2 (RD - f 1 (RD
,fC—

vo

+ X
MO

 (ylb + 8x
3
y ,/CD K) (tei + au1)

o
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+ mlxmo (Yth "x3y '17:7)0
Two more derivatives yield the following expression

4
....1.1. cyo,u)2 ., 0 = axisA0 

(7
lb 
+ 8x

3
y„/CD K)(01+au1) - ar3(RL)

dR
L o

- a
2 
XMOual (ylb + --2.----,---) 21112 (RL) - 

fiv 
1 \II
(Di

vCD
K
o

+ XMO (Ylb + 8x3yr 
Cr, K) (uliv + au"

1 
)

'-'o

Finally, this can be rewritten as

fiv + af III 4_ afll
ui
1 
v 

1 
+u" [2a - (2Z /57)

2
] + a

2
u1 =

1 2 3
 

XMO (Ylb 4- 8x
3 
y %/CTR)o

(5. 61)

(5.62)

(5. 63)

The homogeneous part of this equation is seen to be identical to the

equation satisfied by the optimal u0. The forcing terms are seen to be

functions of the zero-order optimal state and cuntrcl.

Having derived equations for the optimal uo and u1 in the left side

boundary layer it is easy to do the same for the right side boundary layer.

Since the development is a direct parallel of that of the left side boundary

layer, the details will be omitted. The results will be presented,

preceeded by some comments regarding differences that appear in the

right side results relative to those of the left side.

Fast, because of the assumption in the equation for M that M -; 0

and Q -7 1 in the boundary layer, we define iii and 4:c5 as follows
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m
f 

mA r_
mf

M.
1 m

mf -

-0(h - hf 
+ Anx)

= eQ = e

(5.64)

(5. 65)

(5.66)

That is, mass is referred to its final value and altitude to the value

that would obtain on a Breguet cruise when mass reaches its final value.
Aga

As a result of the definition of M, we have the costate relationship

xm- =
m
f ,17-1

Second, because of the stretching transformation

(5.67)

R
f 
- R

Rn = (5.68)

and the resulting derivative relation

d = _ 1 d

nr13'
(5, 69)

all three state equations will have the signs of their derivative terms

reversed. This sign reversal will, of course, appear in the Hamiltonian

in the inner product of the costate vector with the differential equation

of the state vector. As a result, all three costate equations will also

have the signs of their derivative terms reversed. Third, since boundary

conditions on M and Q are r-lw specified at R = Rf, the constants of

integration in the state and costate equations will be different from the

corresponding values frorr the left side.

Despite these differences, the equation for the optimal u0 in the
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— —4

right boulidary layer is identical to that of the left.

utv ull
o (2a - 

[22111
2
) + a

2
u0 0

0

The equation for the optimal u1 is also unchanged.

fiv
al"' + af"

11 + (2a - (2Z v a 
,-- 
)
2 
) + a

2 
u
1 
- 1 2 3

Xivm (yth +8x
3
y .,/CI)

(5. 70)

(5. 71)

The apparent difference in the sign of the forcing term af 2 is due to the

fact that odd-power derivatives with respect to RH have the opposite sign

from the corresponding derivatives with respect to ItL. Expressing all

derivatives with rebp_tct to R, no sign differences occur. Finally, it

should be noted that the coefficients and the forcing terms in the above

equations are defined exactly as they were in the left side boundary layer.

5.4 Matching the Optimal Initial Transient to Cruise 

We proceed now to investigate the Golution of the differential

equation for the optimal u0 and to determine the conditions under which

solutior.s in the boundary layers can be matched to the cruises) soilution.

The general solution for u0 on the oscillatory branch (Fig. 

5.1 

WnilL
u
0 

= (u
01 

C OS R
L 
+ u

02 
sin (.4.: R

L
) e

+C IA;

+ (u03 
cos ce R

L 
+ u

04 
sin cs.: R

L
) e (5. 72)

where te
n 
and C, the undamped natural frequency and the damping ratio,

are given in Eq. (5.49), (5.52), (5.53). The frequency of oscillation is

Ca:
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If motel-ling is to be possible, then the outer expansion of the

houndary layer solution must be finite for small values of c. This means

that the solution can not have positive exponential terms. Therefore,

u
03 

and u
04 

must be zero. Now we proceed to take the outer expansion of

u0 from the boundary layer. First we transform the independent variable

=RL T

and then we take the limit as c •-• O. It is seen that

-Cw„Ric
Hai e 0

(5. 74)

(5. 75)

and hence the outer expansion of u
0 
from the left boundary layer is

simply zero. This will be written in notation similar to that of O'Malley

ruirica
L (5. 76)

The use of the superscript i denotes the inner solution associated

with the initial boundary layer. The superscript f will signify the inner

solution associated with the final boundary layez. The outer solution

represents cruise and is identified hy the superscript o.

At this point the inner expansion into the left boundary layer of all

of the state and costate variables from cruise will be determined to first

order in E. Obviously, no transformation is necessary to determine inner

expansions of variables that are constant in cruise. These include u0, u
1'

and Xm. The others require transformingYO' yr MO' XMO' X XHO' X yl 

the independent variable arid applying the lir.liting processes describvd in

Chapter II. We have

70



2  Y1131.. 
2xy1 (1 - x

2
)

[a°2("1-)] = tY1(13L 2xVCDK viCu K (1 + 6x2 - 3x4)

from which

f apio21i2 = c R
2xylb (1 - x2)

LY1b L (1 + 6x
2 
- 3x

4
)D

o

A

[AH1 - YlbRL ./CD h (1 + 6x
2 
- 3x

4
)

2xylb (1 - x
2
)

(5. 77)

(5. 78)

(5. 79)

(5. 80)

Also 
2

[M62(ERL)] ={1 
e-Y1b131_( c2e-Y1bBLE  

, 
Ylb 'L.  )1 

(5. 81)
2x 1E—r<D

o
from which

= o (5. 82)

m1cli =

Finally,

Ex o2(ER

which yields

o i
IAMO I

Y1bRL

Y1bBLE 2 YlbRL( (1 + x2 \)1 = 
+

(c. 83)

(5. 84)

(5. 85)

e 
e )L Ylb 3x - 1

1
- y

-lb

oi
(5.86)

These values are summarized in Table 5.1.

Now u0 
from the left side boundary layer has been shown to havc
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Table 5.1 INNER EXPANSIONS OF CRUISE VARIABLES INTO THE

LEFT SIDE BOUNDARY LAYER

Cruise Zero Order First Order
Variable Expansion Expansion

0 71b

2xylb (1- x2)
AH 0 /i1313L  

 +M
Ib(0)/CD X (1+6x2-- 3x-)

o

VlbRL Mlb(0)

u 0 0

0

0

1

71b

72

1
a

1

2 x ,%/CDOK

M
lb 
(0)

RL +



an outer expansion of zero, thus rnatching the inner expansion of u0 from

cruise. We can write the boundary layer solution as

!ni3 Lu
0 
= (u

01 
cos ce R

L 
+ u

02 - 
sin R

L 
) e

-C 
(5. 87)

In this forn,, integrals of u0 will have the same form as uo, that is

cenilL
yo = (yoi cos (A: RL + y02 sin ex RL) e Y03 (5. 88)

Obviously, in order to match y0 = 0 from cruise, y03 is required to be

zero. Furthermore,

0 "= WI
01 

cos RL + 
P.P102 sin (A: EL

) e
-CU% nRT 4. A 

03 
,5 
' 89)

A

and tH03 = 0 to match cruise conditions.

From inspection of the costate equations in the boundary layer it is

obvious that XMO' X y0 
and XHO 

are all constrants. Matching to cruise

conditions is simply a matter of equating these constant values to the

corresponding cruise conditions shown in Table 5.1. The values required

of X 
y0 

and x
HO 

agree with those values needed to minimize the zero-order

Hamiltonian in the boundary layer. The first order Hamiltonian must also

be zero everywhere along an optimal trajectory. If we consider its outer

expansion for small values of € we can take advantage )f the fact that the

A

outer expansions of y0, u0 and AH0 are all zero. The first order

Hamiltonian then becomes

il0 = 0

7r1 j AM 0 rlb

which iriplies that
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Lin = + 
1

Iviv Ylb

agreeing with our matching value.

(5. 91)

Three first order variables in the left side boundary layer are

completely determined by the zero order state and optimal control.

These are M
1' 

X
H1 

and Xmr Consider first the costates.

r 
m 1 

li 
= - Xmo S {4x

2
y yo + vylb + 8x

3
yVCD K) (110 + AT104 dRL (5.92)A

o

Every term of the integrand is of the form of u0, a damped sinusoid, and

hence integrates to the same form. Thus the outer expansion of XH1 is

simply the constant of integration. For matching with cruise, this constant

must be  
1  

, from Table 5.1.
2x 
fCD

o
K

The solution o: the canonical equation for Xivil contains one secular

term, and all other terms are damped sinusoids.

xisAl = XMO S {Ylb + u0 (8x3y r-----
D K + 2y1b)
o

+ (4x2y + 
Ylb  ) (yo + 2x ,XT:0 17 41110)}

2x cTi< o
o

. .The outer expansion of [Xx/1
1 
] is gIven by

[xmli]cl = xmo ylb RI, + c

dR
L (5. 93)

(5. 94)

The coefficient of RL is equal to one, because of the value previously

assigned to XMO, and matching occurs if the constant of integration is

(Mlb(0)/ylb).
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Now consider the equation for M1

RL \ 2 lb
M1 = S tYlb +u0 +

2x .,/C
 ) V-12-

0 D `/CD K
o o

A

+ (4x3y ./CD K +4tY )(u0+4110)2+4x2y yo (110 + Af10)} dRL (5. 95)

Again, all terms are damped sinusoids except for one secular term. The

outer expansion of M1 is

[M111° = Ylb RL
(5. 96)

where 
.

c.
1 

the constant of integration, has a value such that the initial

value of M
1 
is zero. Thus the specified initial value of M is wholly

satisfied by the initial value of Mo in the boundary layer. Now if M from

the boundary layer is to match with M from cruise (Table 5.1), then ci

must equal Mlb(0).

If ci happens to be zero, then the initial conditions that determine ci

will describe a locus of points from which transition to cruise can be

accomplished at the same schedule of range and mass that would be

experienced along a pure Breguet cruise. This locus will, of course,

A

include the origin in y0 - PH0 space. In general, ci will not be zero and

then M
lb
(0) represents the initial mass of the Breguet cruise that matches

the transition. A negative Mlb(0) represents the fuel penalty incurred in

climbing to cruise and a positive Mlb(0) represents a fuel saving as, for

example, in transition to cruise from a higher altitude than cruising altitude.

The first order control, up will have the same form as the zero order

control, namely a damped sinusoid, but it also has forcing terms. The
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outer expansions of the forcing terms must be determined before u1 can

be matched.

The first of these forcing terms is fliv where

I
fl = Vlb +4x

2 
y Ylb +8x

3 
3' 'AT;
- A 

‘,110 Af'10)]M1

ximml (2v1b 8x3y K)
o

(5. 97)

Notice first that the coefficient of M
1 
is a constant. Also, from Table 5.1,

the inner expansion of M1 is a constant plus a secular term. Only two

derivatives of M
1 
will remove the effect of its secular term, and hence

the contribution of M
1 
to the outer expansion of f1

1V 
is zero. The same is

true of the term XA41 b•
The remaining terms involve a sum of damped

sinusoids (within the brackets) multiplied by \An, which is itself a damped

sinusoid plus a secular term. Every term in this product will be multiplied

by a decaying exponential and will have an outer expansion of zero. The

other terms, f2 and f3, are of the same form as h and since each of them
is differentiated at least twice in the forcing function, they too will

contribute outer expansions of zero to the forcing functions. Thus the

outer expansion of u1 will not be affected by the forcing functions. As was

the case with u0
, the outer expansion of ul

 
will be a constant and the value

of that constant will be zero, to match the value in cruise.

Integrating u1 gives us yl, whose outer expansion will be a constant.

The value of this constant is seen from Table 5.1 to be the first-order

A
flight path angle from cruise. Finally, integrating y1 gives us ani which

will have a secular term from the integral of ylb
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fAHlilO= YlbRL
(5. 98)

The constant is selected from Table 5.1, and matching of state, costate

and control between the left side boundary layer and cruise is completed.

We now briefly consider the optimality condition that .02 = 0 over

the entire optimal trajectory. Considering those variables whose outer

expansions are non-zero we have

f.Ye2
i
l
o 
= 1 lb + Am0 lb ( 

lb
 M1 +  )+ XH1Y1 = 0 

(5.99)
2x ,,./CD K

o

Substituting outer expansions we have

71b  
M (0) + XH1 b = 0

R + 1M (0)+ ylbRL •lb L 2x Ir 
- Do

XH1 
2x,/CD K

o

(5. 100)

(5.101)

which is consistent with our previously determined matching conditions

on XH1*

5.5 Matching the Optimal Final Transient to Cruise 

Matching conditions at the right side boundary are similarly

established. The development is a direct parallel of thai of the left side

boundary b•.t with different values required for matching. Table 5.2 shows

the inner expansions of state, control and costate variables from Breguet

cruise when extended into the right side boundary layer. These values

were developed by stretching the independent variable in the vicinity of

equals RF for the Breguet solutions by means of the transformation
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Table 5.2 INNER EXPANSIONS OF CRUISE VARIABLES INTO

THE RIGHT SIDE BOUNDARY LAYER

Cruise Zero Order First Order
Variable Expansion Expansion

y 0

taH

M

u

Ylb

2
y
lb 

R
f0 y

lb
R
f0 
+ 

x 
y
lb fl

-R
R
) +  + M

lb
(0)

2x ,/Cn K
—o

2301 (1- x2)

C171.--< (1+6x2 - 3x4)

_ e -YlbRf0 e  
"Ylbn Lylb Rfl-RR) Mlb(0)

a y 0

XH 0

2 u
'lb "M 

2x C/7<

1
a

1

2x,ICD K
o

XM 
e1 Ylb Rf0

eY1bRf0 r M lb( ° ) Ylb Rf0 

)11a y
• lb 2x ,/CD K

o
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.4

R = R
f 
- ER

R
(5.102)

and expanding the dependent variables for small E. Also, since Mf is

specified, we have at Br

MOf = Mf

Mlf 
= 0

and the unspecified value of R
f 
can be expressed as an expansion

Rf = ROf 
+ ER

lf

(5.103)

(5.104)

(5.105)

thus accounting for the fact that since the first order solution does not

change the final value of mass, it must change the final value of range.

In the right side boundary layer the optimal control on the oscillatory

branch has the form

u = e
-CwnRR

0
(u01 cos 

(.4,1 R
R 
+ u02 sin ci; RR)

+Cc4.:
n
R
R

+ e (u03 cos to.: R
R 
+ u

04 
sin cc RR)

(5.106)

The coefficients in the divergent term are taken as zero so that matching

will be possible. The exponential term is transcendentally small for

small E

-2Cwn(Rof + (Rif - R)/c
e -• 0 (5.107)

It is seen that the outer expansion of u0 from the rignt side boundary layer

is zero, which matches the constant value of zero from cruise.
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It follows directly that yo in the boundary layer is a damped

.
sinusoid and its constant of integration is zero. Furthermore, Atio in

the boundary layer is also a damped sinusoid and its constant of integration

is also zero. That is, from the definition of ågo, namely

Ar10 ARO - Inx Ylb ROf

we will have at Ago equals zero

AH0 = ift•ix v
•lb 110f

as shown in Table 5.2.

(5.108)

(5.109)

The form of the equation for ll is unchanged from the let: side

boundary. It is again a secular term plus a constant of integration. A11

secular terms in expansions from the right side boundary layer are

oppos te in sign from their counterparts in the left side boundary layer

because of the previously noted sign difference in the differentials dRL

and dR
R. 

Continuing with fa'we have

Imf lilo
71b RR + f

im fiy =
(n-4..rn Y1bRR f

(5.110)

In order to achieve a specified value of Mf we must have the

constant value of Mo equal to Mf and the constant, cf, must be chosen

such that the value of M
1 
is zero when R

R 
equals Rf. We have

(Mii2) mt. (rnf 1
\r7i7) 71b'R (5 . 112)

This must match the expansion from cruise which is, from Table 5.2,
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• [1,0021 e-YlbROf 
+ ce

- 
2

71b110f Vlb R0f 
Lvlb(lilf-RH)+ 2x,r-17

+M
1
(0)] (5.113)

o

Now we have the following conditions tor matching

= Mf

m
f

m.
p 2p

e-71b"Of  7/11, 'Of c
f  + MO 7/1) + 1313 1f.iL2x .jCi)

o

The first condition defines ROf 
and is in fact a zero-order statement

of the Breguet range equation. The second condition is equivalent to the

first since by definition of Mf

1 - ylb  
m

= M 
f

f = 1 - 5.11 7)
1"1

The third condition relates c,. and RH'. 
Since we know that Mlf 

equals

zero, the equation for M1 evaluated at Rf serves to define c in terms of

the zero order terminal state (411-10f, yof). The third condition therefore

defines Rlf in terms of cf. 
The derivatiion of the required value of cf 

is

deferred until after matching has been established for the remaining

variables.

The final value of mass on the matching Breguet cruise is

2p

Mf
o 
= 1 - e

-Y113130f + {‘e-Y1b130f 
[mlb(0) 

Ylb 'Of p
  ylb"lfiJ

2x „/CD
o

or

Mf = 1 - e
-VlbROf

+
ef
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which does not in general equal the specified final value of mass. The

difference is the first order term above and it is attributable to three

sources. First, the initial value of mass on the matching Breguet cruise

may have a non-zero value, Mlb(0). Second is the fuel penalty paid to

account for the climb at constant flight path angle that is characteristic of

2

the Breguet cruise, Ylb ROf Third is the penalty p, '.ct in o:der to
2x ,,/Cro K

o

achieve a terminal state that may not be on the Breguet cruise, v•lbRlf.

This is discussed more fully at the end of this chapter, where a more

general range equation is developed.

As before, the costates X y0 
and X

HO 
aro constants whose values are

seen to be both zero. The value of XMO' 
another constant, is determined

from the requirement that .74 = 0

rat,flo = 0

r Amo vlb

1
X,„"'n =
"Iv Yu)

But since

mf
X1110 mi XMO

we have

^ 

m.
= 1 e lb f= 

MO m
f •lb Ylb

(5.120)

(5.121)

(5.122)

(5.123)

The solution of the equatior. for Xin again involves a damped sinusoid

and a constant of integration. The constant is chosen as 
1  

and
2x '/C

D
o
K

matching is achievL d for Xm. The equation for Xml again yields a secular
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term plus a constant of integration

f o
1X13.41 1 X3110 Ylb RR 

+Z

f o 
e 
Y1b13f 

R + c[XM1 I

The value of the constant is, from Table 5.2,

e+Ylb
ROf Mlb(0) Ylb 130f 

L.Rlf 
+ 
2x ,/CI) K

(5.124)

(5.125)

The form of the forcing functions in the right side boundary layer

is the same as it was in the left side. Again, they contribute nothing to

the outer expansion of lir The constant of integration associated with u1

must be zero. Now has only a constant as its outer expansion and that

constant must be yth. The non-zero value of •yth introduces a secular

term into the expression for 4.110. We have

14i101.1° = y1b
RR

c

and the value of c is

/lb
2 
" 
p
Of 2x ylb (1 - x

2
)

c =
2x ‘/CD K 'CD K (1+6x2 -3x4)

+M
lb(0)+ ylb lf

(5.126)

(5.127)

The optimality conditions on the Hamiltonian are consistent with

the matching values of these variables. F.3r .yro = 0 we have

It 
y0 

= X
HO 

0

Frorn.Ye
1 
= 0 we have already established that

x ( 1 ‘1eYlbROf

M° "'lb/
83
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For .W'
2 
= 0 we have

f o 71b 
RIR = XIZIO [- 1-C41 + 2x fc---RDo

= -[}3 _ 
M 
1b
(0) 

+  
y R 
lb Of 

Hl lf R y
lb 2x K

o

x = -

(5.130)

2
1 r 71b Ylb RIX (5.131)
y L   Ylb (Rlf 13R) Mlb(°) 2x.„/CD Klb 2x \/C

Do
K

1

2x ,jcpoK

which is the vllue required for matching, from Table 5.2.

(5. 132)

5. 6 Composite Matched Asymptotic Expansions and Costs in Transitions 

Ha-ing established the conditions for matching cruise to both

boundary layers it is now possible to express the optimal values of state,

costate and control variables in matched asymptotic expansions. These

will be be uniformly valid over the optimal trajectory hetween the point

at which the trajectory leaves the constraint of maximum CF and the

point at which it meets the constraint of r&nimum SFC.

For this problem a matched asymptotic expansion of a variable will

consist of the sum of the solutions for that variable in cruise as well as

in the two boundary layer3, minus the inner expansions of this variable

as it passes from cruise into the boundary layers. Using the notation of

O'Malley we have, for mass

M
c2 

= M
i2 

+ M°2 + M
f2 

- (M
02
)
i2 

- (M
02
)
f2

84

(5. 133)



•
In order to proceed with the expansion it is necessary first to solve

the zero-c:der state differential equations (first order for M) in the

boundary layers. Consider the expression for the optimal value of u0

in the left side boundary layer as a damped sinusoid

110 = (um cos ce RL + u02 sin W RL) e (5.134)

Integrating twice and using the previously identified constants of integration

ccnnT-C
y0 = e {(-Cwnuol- wu02 cos w RL 

4J-n01- 
Cwriu02)sin wRLI

(5.135)

which can also be written as

y0
= e 

iy01 cos w RL + y02 sin cc RL1

and

(5.136)

A _

AHO - —2— (cc° 
nY01+wy02)cos w RL + 

ccy01- CccnY02) sin wRL}
wn

(5.137)

or

LH
A 

0 
= e 

—CWIIRL A

01Ail cos w 
RL 

+
02 

sin w RL} (5.138)

A A

The initial conditions on y0 and Allo are obviously yol and 411101.
A

The remaining constants, u01, u02, 41102 and y02 could be expressed in
A

terms of yol and P.Hoi. However, a more useful relationship exists

among u0, y0 and Allo. Consider the following definitions

y01 Ccen1101 - W1102
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(1 (
YO2 = +441101 Cwnu02°. u01 = Val 0'02 4. Cwnu02)

"01 (TL7 (Cwny01 +4;7'02)
n 

AA02 = (-7) ("701 - Cwn702)con

(5.140)

(5.141)

(5.142)

Substituting for ym and then u01 from (5.139) and (5.140) into (5.142)

yeilds

W102 + u02 = 
- 2 (C n v

—12-) '02
con

Substituting (5.139) and (5.140) into (5.141) yeilds

(Cn\
A401 + u01 = y01

and from these two results we have the composite result

PAO 
+ u

0 
= - 2 (-C-

co
) v
n

Now simply by regrouping terms, the M equation can be written as
„21

y0
'

M1' = Vlb (1 u0 + 2x jc----r< 
Ylb 

Lv0
2 
(uo + Alio) J

Do

24x3y1U-1--) L(uo + PH0) +
A )10  J-1- 

2x ,ICD

Making use of our result for u0 + Lifi'0 this becomes

M1 Ylb 
+ u0 +

YO 

2x ,,/CD

(5.143)

(5.144)

(5.145)

(5.146)

2 Ylb+ y (1+4—(7)+4x3 c( 1 
0   21D )

2 

} (5.147)
n o 2x,s/CD K 

co
n
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The first term is easily integrated by relating u0 and y0 to the

differential equations for y0 and dio respectively to give

Ar. L yn pi
"I 0
 y0 

 "140 
Ylb

1+ + ) dR - Ylb(RL+ a + )+c (5.148)
2x,)CTI L 2x 

" 
K

1-o o

To integrate the second term, express y0 as a damped sinusoid

"CwriRL •
YO = e (y01 cos co RL + YO2 sin (") RL)

2 -2CwIsTRL
YO e 0,012 cos

2
 co RL + y02

2 
sin

2 
co RL

+ 2y01 Y02 
sin w RL cos w lit)

(5.149)

(5.150)

S y0
2 
dRL e 

Co L w--ti (Y012 " co022)+6in 2RL 
(wy012 wy02

2

n

- 2 CwnY01 Y02) - cos 2 coRL (CwnY012 +Cwny02
2 
+2wy01 02

(5.151)

Summarizing

2 \Ylb  AHA0 +1:T_Ylb (1 + 4 +2. )
M1 = ylbRL + 23c D K "'n

3     IV,
2-
1(-1—A-)e

-2CconRL con 2 2\+ 4x y,)CD K \   Obi Y02o 2x„/CD0K "In/ -I \Con4/

+ sin 2w RL (wy01
2

 wy022 2CWnY01 Y02)

- cos 2w RL (CwnY01
2 
+ CWnY02

2
 + 2wy01 Y02)] + ci (5.152)

The coefficient of the exponential is simplified by substituting for

C2 from its definition (5.49), (5. 53) and then combining like terms. Then
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after substituting the appropriate functions of RL for yo and Atfo, and

substituting for y02 in terms of yoi and dloi we have

nb -CwnRL [vOi 
M
1 
= y

lb 
R
L a • +---- e cos wRL 

(-n2 
- 

Oi 
4-Ew 

n 
y
Oi 
) sin wRL]

y e
lb 1 A
  [al110i

La
L c4; cos +— (y

Or 
. + cw

n Oi
) sin w RL

]
2x N/CD K

o

-2Cw R.n , wn 2 2 2+---2---e (\yib +  2x5r  8x2y-.1)L +w 401.H +2cw, .4Si .)w
n 

--r Oi n Oi,/CD K 
n Or Or

+ w sin 2w RL (Y0i2 wn2 Af40i)

2 2wn A 2 A 2
C (A:

n 
cos 2w RL Or 

. + 41-1Or .yOr . + wn 
AHOr 

. + c. (5.153)

Since the initial value of M
I 
must be zero in the boundary layer

solution, we have for the constant of integration

Oi  AmOi  
\ + 

)4_0

Y1b -4772x,/CD K
TeZ;)(Ylb+,t%- 8x2y.1..)( 

2 2

cen Y0i +wn A
ki2)

1

Do (5.154)

A similar expression in terms of RR, yor and aim applies in the

right side boundary layer. The signs of the expressions for v•01, 702'

and AH01 and PH02 are now opposite from those 
of the left side boundary

layer. This leads to a change in sign in the expression relating the

optimal control and the state

uo + 0 
+ 2 (4-5-

n
) y

0
(5.155)

The sign reversals are due to the reversal in sign of the derivatives
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of the state variables in the right side boundary layer. We have for ill

Ylb 

-Cwn1311
= - y R + e y

Of
cos ceR +1(ce 2 - Cce y ') sin w RR.11 lb R a R 4: 

e-CwnRR
lb 

-2C":
R
R

+
y

2x  
[Aiinf. cos wRR +1, ."(.enAllot.yof) sin celiii] e 

4w
2 '}'lb

,je -
DoK

2xy_ 2 _C. ,L._ wn (_. 2+ , 2 Ari 2 , ii+  +8x y ,., ) -e- 7..._ ci, 2CwriA cifyof)+ cesin2wRR (y0f2
,ICD f< ""ri 

in - n Of -

o

2 2 2 
2ce

n + , 
2nH 

2 \
Of 

Li+Zf (5.156)- wn Allof )+Ccencos2wRR kyof - __r A1-1000 -,
n

From this we can write

-YlbRff Ylb -CwnBR  -M
1
= e 

YlbRR 
+ 
a 

e Lyofcos wR
R
 +1-45 
( 2

Liflof-Ccenyof)sinc‘RR]

Ylb  -Cw RRe n [LkHof.coscelin+Ll-s(Ccendiof - 
YOf
) sin w 

RR]2x,/CD K
o

-2CcenRR
  a 2 _c_- cen 2A-1-x 2 ,

2-2— @lb 23cY  " ce
n
/CT YOf wn Of - awn"1-10fY0f)4ce

o

2 2 "" 2 t 2 2w
+ ce sin 2 ceRR (yof - cen ‘.kHof + Ccen cos 2 ceRR yot. AFlof yof

2 -
wn AH0f

2 
11} cf (5.15 7)

The value of the constant is such that M1 
is zero e.t the final value of

R (when R equals zero). The specified final value of M will be satisfied

exactly by the final value of M0. Accordingly we have
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ti

-VlbROf r ( yOf  AC1Of c
f 
= - e 

LY1b C"2" '2x4/CD Kton

1 („, 4..132_ 2 r Azi+ 
\ 'lb 4/C K 

D

 +8x y-a-) (y 2 
2

con Of 'n 'Of /J

o

when the final state is fully specified.

(5.158)

Transforming both boundary layers to functions of R we can write

out the constituent parts of the composite solution for M

-NOR YOi  /111
Oi   ) cos (.t13)

n DM
12

= ylbR +(e LVlb
ts,; 2x 4/C K

Cw4.Vlb _g_ _ _
'OiL ten s/C K Ot 

5 
2x,JCD n K sin 

(44)]2x  Do

▪ c („,
lb 8x2y-L) e -Cc4nRIE [ ( 2 

2 2

4‘.L.
/ con 

--r voi wn "Oi
D
o

+2CwnY0i4A0i) w
/ 2 

wn
2 
4j40i2) sin (E)

/ 2 
2to A 

2 A 2 2toRyj
+Cwn )10i 

+ .ych . + n pH01 . cos

YOi 

  / 'T-CriVlb y co
n
/V0i wn Oi+2:4/110i 4- E---n +4/C2x:

oK 
8v2 --C"V'' 2+ 24'4 2‘CD

o (5,159)

Mo2 = 1 - + ce-710   
lb 
(c)l

J 
(5.160)

L2x 4/CrD K
o
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+(e-Y1bRf-Cwn(Rf-R)/Er (YOf  Alii0f  )

1.71b —7
+
2
x 
fcR- cos (f [11 1. - RDcg,:n D

o

+7b (Ail {I+  Ccen  n
 J - YOf [.4"+ 1, ]) Sin (4 Lnf - RDCsJ \"I Of L

2x ,ICD if n 2xyCD K
o o

--4(7 + 23---a___ + 8x2y7i 
eY1bilf-2Cwn(131-R)IE - con f 2

4w 4 \ lb
/C--7:;--g wn L- T 0/Of

o

+wn
2 2
AnOf 2Cwna0fY0f) w (71Of n 2- w Of 20R 2) 

sin (2c 
R
f 

R
w ])

2 2wn,
+Ccon yof - 7--AHofyof + con241H-012) cos [Rf - RD]

- c L / YOf  11110f 
Y1b

con 2x „/C
Do
K/

4_ („v 8x2 2 + 2y1
Trc—o Ylb   con/ VOf wn "Of JJ

%/ DoK

Livio2T2 Lmi2-102
J = n E Wi lb(0)

(5.161)

(5.162)

L—
mo2 1f2 [x/f2]02 e Ylbnf yth 

(13f = R)]

2
Ylbnf L  lb 131 ivf

+ c e
-Y

lbJvCD
o
K 

(5.163)
2x 

Finally, the composite solution for M to two terms is

sl



Mc2 i2 o2 f2 [M - 
02]i2 

M
o2y2=M +M +M - (5.164)

At this point we can note that similar composite solutions can be

expressed for u, y, AH, and the costates, and the matching constants

have already been evaluated. In all these cases, however, the results

will depend on ul. While ui is, in principle, evaluated quite directly, in

fact the high order derivatives involved in the forcing functions make an

analytic evaluation quite laborious. It is shown in Chapter VI that a very

good representation of the optimal trajectories comes from considering

a zero order boundary layer solution to match its corresponding cruise

solution through first order in c, and the labor involved in evaluating the

first order corrections to the transients is not justified.

We have seen that the constants of integration associatedwith M
12

and M
f2 

are an indication of the difference between the fuel consumed in

transition to and from cruise and the fuel that would have been used in a

pure Breguet cruise over the same interval of range. The equations

defining them have the same region of applicability in AHo - y0 space as

do the state equations, and matching between cruise and transition to and

from cruise is possible everywhere within that .7egion. It is possible

therefore, to assign a cost number for any point (4H0, yo ) in the region

and to develop contours of constant cost. Each contour will define a

locus of initial conditions from which the same cost is incurred in

traversing a matching transition to cruise. The same could be done for

final conditions on transitions from cruise. The cost is easily evaluated

relative to the cost incurred in a pure Breguet cruise of the same range

using equations (5.154) and (5.158).
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The cnntours are not optimal trajectories. Trajectories, as we

have seen, are damped sinusoids as a function of R. In AHo - yo space

these become spirals. In traversing a spiral one passes through a region

of higher as well as lower initial cost. This is because the spiral

trajectory may include a region of n ?;ative PH wherein the airplane is

climbing and requiring more thrust and hence a higher fuel consumption

than for cruise, as well as a region of positive PI-I wherein the airplane

could fly down to cruise at reduced thrust.

Since any point in PH0 - yo space within the region of applicability

of the equations can lie on an optimal transition trajectory, it is possible

t o assign to each point the throttle setting or thrust coefficent that the

optimal trajectory would requi..e as it passed through that point. Obviously,

all optimal trajectories will include the origin, at which point the throttle

setting equals that required for cruise. Moving away in one direction all

thi-ottle settings will ultimately reach maximum. In another direction all

settings will reach minimum. These and other loci of constant thrust

coefficient are discussed in Chapter VI in connection with some numerical

examples.

5. 7 Non-Oscillatory Optimal Control

Thus far we have considered only the oscillatory form of the

optimal control. It is, of course, possible that the roots of the

characteristic equation of the differential equation for the optimal control

will all be real. We then have

+r
1
R +r

2
R +r3R +r

4
R

u
0 
= u

01 
e + u

02 
e + u

03 
e + u

04 
e
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The roots are symmetrically located about the imaginary axis so that

we have

r1 = r3

r2 = - r4

(5.166)

(5.167)

The development of the boundary layer solutions and the matching

of these solutions to cruise proceeds in almost identical fashion to the

oscillatory case. If there is to be matching, the coefficients of the two

divergent exponentials (say u03 and u04) must be zero. Then, by directly
A

integrating the zero order differential equations for yo and PH0 we have

r
u
01 

+r
1
R u02 +r2R]

YO = a e e1 2

+r,R u,„2 +rR]

Afi0 = a e e 

, 

rl r2

(5.168)

(5.169)

We would like to express the optimal control, u0, as a linear
A

combination of the two elements of the zero order state, y0 and AHn. To
r
1
R r

2R "
do so we solve the above two equations fSor u01e and u

02 
e in terms

A
of y0 and hiflo and then express their sum, u0, as

„ (rlr2) AA r
l
+r
2

"0 \a/ '0 \-1-1 ro (5 . 17u )

Th.'s is the optimal control for initial transition. For final

transition (away from cruise) the control law is slightly different due to

the change in sign associated with the state equations in the right side

boundary layer. The control law for transition from cruise is

r r r +r
( la 2)

~HO 
la 2 ) yo
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In order to derive an analytic expression for the cost in fuel

associated with transition we consider the state equations in the form

r, R r2R

YO Y01 e + Y02 e

r R r R

" 0
= Api

01 
e 1 + A 
"

pi 
02 

e 2

Initial conditions are defined as

YOi~y01 + Y02

= d101 + di02

(5.173)

(5.174)

(5.175)

Now from a comparison of equations (5.168) and (5.172) we can

write for equation (5.174)

_ a a
yOi 1 

 
+ 2 u02u01 " 

(5.176)

Similarly, equations (5.169) and (5.173) allow us to write for equation

(5.175)

= um +Arun
rl r2

(5.177)

The right side terms of equation (5.176) will change sign for descent.

Now equations (5.176) and (5.177) can be solved to express u01 and u02
A

in terms of the initial conditions, yoi and PH01.

2 
( r -

u (r1 ‘•0i 2 0i) 
01 \ a (r1- r2)

(r
2
\ (r14:t 140i-y01)

u
02 

= + 
2

\ a (r1- r2)
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For descent, equation (5.179) is unchanged but equation (5.178) becomes

2 ( A '\

(r1 Obi+r211HOil u01 = - a I (I' r
2
)

(5.180)

From a comparison of equation (5.172) with equation (5.168) we have

yol = (f1 .) u01

y02 a (Pi) u02 (5.182)

with the negative signs applying in final transition (descent), and from

equation (5.169) and (5.173) we have

(5.181)

4'1401 =(-7) u01
(5.183)

r1

41102 =(-17) u02
(5.184)

r2

The fuel cost associated with the initial transition is expressed by

the equation
AI 

RT
71b  44/104.S -̀{.412 [702 +(u0 + AN)2]

M (R )= y R + "b-y +1 L lb L u 0 2x,/CD K 0
o 2

+ 4x3y,s/CD K [(u0+i,S10)2+  70  +  YO  (u +Ail )3 
dRL

o 
  0 0 

4x2C
D
K U./CD K
o o (5.185)

For descent
R
R 7  ‘21

M (R )= - e-71bRRr 
yth 

Ylb   C i lbr 2 i
1 R 1_71bRR+-a—Y0+ 23c,/c /4 Afai0+ 3 r2— CYO + 110+411/0) J

Do 
0

2

+ 4x3yATKRun+A1-10) + -.4-2 2 V° + yo Cuetkii0)]} dRR]• - x CD K 2x,riTir
o o (5.186)

To evaluate these equations we need the following expressions

2 2r1R 2 
2r2R 

(r +r2)R

Y0
2 

YO1 e YOL. e + 2701702 e 
(5.187)
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2 2r1R 2 
2r
2R (r1+r2)}?

u0
2 
= u01 e + u02 e + 2u01

u02 
e

2 2r.R A 2 2r R

Asi0 ' = 
411 

 01 e 1 e 2 
2AA 

A (r
1+r2)R

01AH02 e

2r P 2r
2
R

2u
0 
Aci
0 
= 2u

01 01 
e I + 2u02

AA02 e

(r
1+r2)R

2(uOld102 + u02AP 1) e

(r1+r2
)R2r

1
R 
+u v, e

2r
2R

+(u y
u 2u Y e 02.u20 0 01 01 u 2y01)e01 02 0

(5.188)

(5.189)

(5.190)

(5.191)

A 2r2R (rl+r2)13
YOACIO Aft01Y01e + Y02"02 e + (V01A1A-102 + '02-01'

1 . 

(5.192)

Now define the following constants

a0 (1101 + AC100(1102+ 41402)(Ylb+ 8x3y17)

+4x2y aucv.L +411101) Y02 + (UO2 +"II02 YOUI

+Y01Y02(Ylb
CD Ko

Ylb
  Y01H 3 

1<)+,101L\-12-4",jc Kal 2 .K1101+ 11%1) 
(
2 
Cr+4xy,/cD
Ylb

+4x2y 
(u01 + A1101)]1

= 
(/ lb xy

[(
Y
-2— +VCD

AtA7 \2(lb +4x3y
a2 \u02 '02) VYT- N/CD

x)+Yo2o 
Y02

K

+4x
2 
y 
/ 
1102 + AP102)J

}
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where

The ascent cost can now be written as

A
Ylb 71b  4 A

O 
+ 

ra-I0-r 

e(r
1
+r
2
)R
L

M =y
1 lb

R + y 
L a 0 

+
2 lre-g. x 1 2D

oA A
a
l 

2r
1RL 

a
2 

2r
2
R
L+ 2 -is- - e + 2-1—, e + c.

1
1 2

A A A

Ylb 71b 0c =-
a yOi - 

2v-c,---vx 
A • -

a

i il 0 t r +r - 
a1 

a
2

27-- 2-/—•
1 2 1 2

D
o

The corresponding cost for descent transition is

-y
lb
R
f f-,, „p, , 

y
lb „  71b 

M1 
= e   AI!L 'lb - Ft ' —a— f0 ' 

2VC Kx 
0

D
o

(5.196)

(5.197)

-i"0 (r
1
+r
2
)R
R 

a-1 2r
1RR 

a'
2 

2r
2
R
R]

+ e + e +'T e + c
f 

(5.198)r
1
+r
2 

27 
1 2

c = e
-71bRf I-71b ,„ 

+ 
 71b 

a- a‘i 7.
20

LSI + + + (5.199)f Ca— 'of  
2v-C-7-cx 0f reT2 27-1. 71-.2]

Do

5,8 Solution Without a Cruise Section 

If the specified final value of mass is sufficiently large the solution

will not achieve cruise altitude. The end conditions on altitude and flight

path angle may even lie within the initial boundary layer. For slightly

smaller specified values of final mass there will be two boundary layers

but they will coalesce, and no cruise section will exist. In the absence

of a cruise section matching is not required. As a result it is necessary

to use the most general form of the optimal control in evaluating a

solution. Those constants associated with the positive exponential, which

were required to be zero in c,-der to achieve matching, may now be non-

zero.
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The optimal control, flight path angle, and altitude difference are

now expressed as

u
0 
= e 

nRL 
(u

01 
cos 4; RL 

+ u02 
sin a: RL)

+CwnRL
+ e (u

03 
cos 4; R

L 
+ u

04 
sin te. RL)

-CLeRL
y0 

= e 

n 
(yol cos ca.: RL + y02 sin w RL)

+CcenRL
+ e (y03 cos (.•.: RL + Y04 Sin Cl;

A 

0 = e

-CwnRL A

(LB01 
cos cc RL 

 + d102 sin cs., RL)I114 

+CwnilL A
(4.1103 cos

 (.•.: R + AP+ e I
04 

sin a; RL)

The twelve unknowns in these equations can all be identified in

terms of the specified initial and final values of the state variables.

A

First, by differentiating the above expressions for P110 and y0 with

respect to RL and equating the results to y0 and au0 respectively we

have

ddlo -CWnRL A A

711— = yo = e [(wAR02-Ccenda,1-101) cosa:RL
L 

- ("A01 + Cwn44102) sin calL]

+Cw+ 
enilL L(w"04 + Cwn

d103) cos w RL

(-"A03 Cwn4211104) sin tali
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dy0 -CwnRL
= au = e

° L(wYo2 - Cceny01) cos w RL

- (4%1 CwnV02) sin 4̀  RL]

+ 
e+CW1IRL L(wy04 + Ctony

03) cos w RL

sin co R
L
]+ (- 03 4° C4;nY04)

(5. 204)

Now by comparing terms from these differentiated expressions

with the original equations for y0 and u0 we have

= A 410

A -1
= A

0 10

110 = a A y0

where the matrix A is defined as

-CLGn w 0 0

-w 'Cu:n
0 0

A
0 0 C4=n

w

and
0 0 -w Cw n

A
-1

ton wn

0

w - -F- 
an 

0 0
wn

0 0
w

w
n 

- —7
co
n

0 0 -C-
w
ncon
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(5. 236)

(5. 207)
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We now have equations to express the eight elements of the vectors 1.10

and Ali
0 

in terms of the four elements of the vector lb. Two more

equations are available from the initial conditions

yi Y01 + YO3

A = 4.:1 03

and two from the final conditions

-C(xnni•
yf =e (y01 cos Rf + Y02 sin w Rf)

+ e
+CwnRf + y04 sin cc) Rf)(y03 cos u. Rf

A - C":11.13f A

e (46H01 
cos (); R

f 
+

02 
sin cc R

f
)

+ccnf
(PH 

A A
+ e 

03 
cos ce, R

f 
+ LtH

04 sin ct; Rf)

(5. 212)

(5. 213)

These final conditions introduce another unknown, Rf, and hence require

another equation. The required equation is that of M. the specified

final value of M

.

0

R Y Y  2

Mf = {S LLY1b(14.u0+
2v-cr<x

0  \ , lb /
) -1- -2- 0'0

2 
+ Luo +4111o] )

D
o

2 I+ 4x3y \I-CI—Tr< (u0 +Lifti0 +  Y0  ) dR 1
L

o 2 VT
D 
-T‹ x R

L
=R

f
o

(5.214)

This expression can be integrated directly. Some of the tedium is

removed by referring to the manner in which this expression was

integrated in the initial and final boundary layers for matching with

A 
cruise. First, it is useful to compare the sum of u0 and AH0 with y0
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1

A.. + A tir :„ _-CiA: Rn LV_le_ , 4_ 

4-112.Y02U0 lari0 e r01 .
n wn

A r-

(uuo 0 
+ = e

-CWnRt 

1oi + COSWR
Ol 

L 
(1102 + A02 LJ

+ e+CwnRLf-(u03 + aiH03) costoRL +(u04 + Pr104) sinwRI ..] (5. 215)L 

(.6.:

- (.4-Y01 -2. Y02)coswIlL
n w

n

+ (- 1..4.. y 44 y + w' y --Cy ) sinwRi02 7:77 01 :77 01 wn 02n
"-n wn

+ e
+CL4nRL

n
103

+
-7'04 (i.

n 

+ y
03 

- w yo4)coscoRL
(A;
n

▪ (c4".: Y• 04 Y03 +-7Y03 44-Y04) sinwRL]ca w
n

A 2-1-le-CwnRL (y c s +01 ° L Y02 sinwRL)u0 "n0 wn

+ e
-C"Ini3L 

(y03 coswRL + y04 sinceRL)}

(5. 216)

(5. 217)

Now we can evaluate the combinations of products of the terms

y0 and u0 + dlo that appear in the integrand in terms of the components

of 10. We have

-2CwrIRT 2
yo
2 

= e (y01 coswRL + y02 sinwly

+ e
+2Cw

n
R
L

+ y04 sinwly2(y03 coswilL

03 Ly02 218)sinwR)(y costal_
L Y04 sin

2(y01coscaL+
ce RL) (5.
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A 2 0 2, 2 -2Cu:
n(u

0 0
) = 4  e (yolcosccliL + y02 sinw1311

2

(A:n
+2C(.1.:„ 
" 

13,
+ y04 sinc‘RL)

2+ e (y03 costiRL

- 2(y01cosceRL +y02 sinccRL)(y03 coswEL (5. 219)+y04 since"i_.)

-2Cce RL

Y
0
(u0+AA0) = 2 n (y01 cosceRL 

+ y02 sinwlY
2

-n

+2CccnRL
+ y04 sinwRL) f- e (y03 cosceRL 21

M =

Combining terms we can now express M as

S
o 
L f,Ylb (1+n0+ 2 

o 

D 
x

Y )

o
-2CcenRL

2+ 702 sin (Ay+ e (y01 cos (.4:13L

x y  + 8x2y-.5- (1+2 x VC, K 4--)]
cs̀ n wn0CD K

+2CcinRL
+ e (y03 cos 

wRL + y04 sin

Ylb (1 + 4 -C--2-)
n

).2\2 Ylb /
wilL) L-r 4- 4

+   8x2y -4- - 2 4
T,

)]
t.g.n\iC K o

"o

(5. 220)

+ (y01 cos wRL + y02 sin (.4:11L)(y03 cos wRL + 
y04

 sin wi3L) LY1b 
2x y
VCD K

- 
8 

v 
lb + 4x3 

y VTD R)1 dRL• 

n

The following integrals can now be used, in the appropriate

combinations, to express the integrated form of M
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C
R
L fl YO _ )dRi., = 

Vlb I RCRL+ Yibjlo  IRCRL

.)0 Ylb elle-   YlbRL + a VOIR =0 2\rcRx R =021ICD Kic L Do 
L

o (5.222)
i2Cw_RT

RL ±2Cw
 RL 2

e n cos wRL 
dRL =Jo 4w

n

+ wsin 2calL fCwn cos 2‘.41iL]

±.2CwnRL cgnR
L e

±2CwnRL sin2 cat dR 
= e

L L L
n

- wsin 203L 
Cce

n 
cos 2(.43L

]

R
L 

+.2CwnRL 
+-2C4;nRL w

n
sin caL 

cos cat dR = e
L L L*1-

'10 4wn

(5.223)

(5. 224)

* Ccen sin 2WRL - wcos 2wRi (5.225)

2 
RL 

sin 2ceRL
cos w13 dR = + (5. 226)

• 0 
L L "2-

SRL 2 
co 

R sin 24;13
sin RL 

dRL 
_ 

74T— 
(5. 227)

— 4
0

0
SRL

1
sin caL cos caL dRL = - -4; cos 403i_ (5.228)

The two coefficients have previously been simplified as follows

2
71b-2- (1+4--C-7)+--1Y-- ±8x2y-C- (1±2x li trt-)= ywn 

Do 
g- 

wn lb 
+ 
vriz2xY 

*8x2y7:18.)
wn n

Do 
Do (5.229)

Finally we have our equation for the specified value of Mf in terms

of the four components of y0 and RLf
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1
, 71b „,  7lb  

(anf - dlod
Mf = 'Ylb 1lLf + ---2. ‘0f- '0i) +

ccn 
2 Vr---TZ x —

D
o

-2CunRLf u.
e 

2y-zir!-X- 7
y01 y022  (vlb +734-j-1-7---- n (2 +2)+1:4 (Y01 - Y022 2)+ 8x

vC
Do
K n

4“:n

sin 2(.03Lf - ILICwn( 2 
2\ cos 20.:Rul

- 2CcenY01Y02] \.)01 - YO2 )+244yOly02]

+2Cci;nR
e 

u 4.: n (_.032 21
+   + 8x2y 4-) {7t,-

2 (Ylb+ 2).---1Y-- 7 + v04 )
VCD K 'n

4":n
o

+ [4: 
/ 
)'o3

2 
v04 )

2 \ + 2 Cunyo3y04 sin2cau+ [unC(y...,us2 - v• 042)-2(1'2%3)/041

(,,,
r2 \ i r2 1. i RLf

+ ''Ylb (1 - 4 -a-2j + k 

1

K x 
2 - 8 --7-127 1 L-2- 01v03 4- Y02704)

Li;n 
CD (.4

n
2

o
sin2ccR

Lf , 
cos 2ceR

Lf ,,„ -1+ 
—4---- ̀ y01703 - V02 Yo 4) 4 ' '01'

, 
+ 04  '02

1,, 
03'1J 

(5. 230)

Since this equation is highly non-linear, an exact solution is

impossible. An iterative solution can be obtained by guessing a value

of R Lf, solving for values of the components of yo, then evaluating Mf

from the above equation and repeating for a new gues,-,ed value of Hu

until a satisfactory agreement with the specified value of Mf is achieved.

To evaluate the components of y0 we can easily simplify our set

of eight equations in eight unknowns (Do elements are not required).

From our equations for dim and y01 we can say

2
cen

y02 Va101
n 
701)
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A 1
AH = +— w (y + )02 01 n 01

Similarly

wn
2
( A _

Y04 V11403 wn Y03 )

A Cwn
AH = — y + AH04 w 03 w 03

(5. 233)

(5. 234)

If we eliminate y03 and API03 from the latter two equations by means

of our initial condition equations

Y03 = yOi - y01

AP103 = 
. -01 01

and then substitute for •02' •04' A1102 
and AHv v 04 in our end-condition

equations we have two equations in two unknowns

YOf 
..+C(4/1RLfLym cau. + 

cos 1 /
w\Cc

`'ny01-
 ccn2 A1101) sincaLf]

Cwn
= - 2 [cosw.Ru sinhCwnRu. + coshCwnRu]

2

+ 2 (4n sinwR
Lf 

sinhcw
n
R
Lf
) API

01

+C A1
e LAI

w r.

n II •01AziOf 
cos:au + (y01-CwnA1-10i) sino.aiLd

Cwn
= - 2 [coswRr sinhCwn 

RLf - w sinwRLf 
coshCw

n
RLf 01

2(sinwRLf 
sinhCw RLf) Y01
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1

Now the solution proceeds as follows

1. Guess a value of H
U

2. Solve equations (5. 237) and (5.238) for yol and
2101

3. Solve equations (5.235) and (5.236) for y03 and PPI03

4. Solve equations (5.231) and (5.233) for y02 and y04

S. Solve equation (5. 230) for Mf and subtract thc spccificd value

of Mf. Plot the difference against RLf. If the difference is not

sufficiently close to zero, return to step 1, guess a new value of PLf

and repeat until the difference at step 5 is sufficiently close to zero.

Since the sign of dM/dRL must always be positive, the process of

locating the zero crossing on the plot should not involve many trials.

So far in this section we have considered solutions in which both the

pocitively and negatively damped exponential terms make non-negligible

contrihutions over the entire trajectory. If the specified final value of

M
f 
is steadily increased, the effects of the negative exponentials on the

final state and of the positive exponentials on the initial state will

approach zero.

y0i r y01

=
01

There results

2

YOf e
+CwnRLTy03(coscaLf +C:n sinwIlLf)-CS103C1÷sincaiLf)]

Of 
= e+CwnRLf[Ari03 (cosceliLf + C4'n sinwELf) + 4!Y 3 sinu.,RLf]
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The term with tne negative exponential factor now no longer appears in

the equation for Mr but otherwise that equation is unchanged. The

solution proceeds in the same way as before, but the equations are some-

what simpler.

The equations of the state and optimal control now have the following

form in the vicinity of the initial point

u
0 

= e-CwriBL (u01 
cos

VO = e
-CwnRL (y01 cos

coRL + u02 sin ceRL)

wRL + y02 sin ce.R )

A ". C R L A
AH0 = e 

(AH01 cos 
wRL + 4#.1.H02 sin wRL)

(5. 243)

(5. 244)

(5. 245)

A

From the general expression for the sum of u0 and AF10 we see that the

control law in the vicinity of the initial point is

uo = - -
0 ce

n 
y 
0

(5. 246)

which is identical to the control law in the left side boundary layer in the

matched asymptotic problem. Similarly, in the vicinity of the final point

we have

u0

pH

+Cw
n
R
L

= e

+Cu:,nRL= e

+Cc,:
n
R
L= e

(u03 cos 
wRL + u04 sin caRL)

(Y03 
cos wRL Y04 sin wRL)

(di COS WR + Aft 8 in W )
0 03 L 04

A

Referring again to the general expression for the sum of u0 and in.H0

we find the control law to be
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u0 = -Ario te + 2 -.C.... v
n 
,0

(5. 250)

which is identical to the control law in the right side boundary layer in

the matched asymptotic case.

The optimal control must pass from its initial form to its final form

at some intermediate state. By inspection of the two forms it is obvious

that the only requirement for that state is

.
YO = O 

(5. 251)

The altitude difference need not be zero since it has the same sign and

coefficient in both forms of the control law. Thus in some short range

problems the trajectory may not he recriired to reach cruise altitude.

It is useful to compare this short range problem to the matched

asymptotic problem. If in the short range problem the positive and

negative exponential terms interact, it is as if the two boundary layers

of the asymptotic problem were so close as to overlap. If the positive

and negative exponential terms do not interact, it is as if the two boundary

layers matched asymptotically to each other without an intermediate

(cruise) section.

Both forms of the short range problem are singular perturbation

problems and require the transformation

R = LI
L
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to become regular. This transformation allowed investigation of an

interval along the R-axis of width on the order of c and is consistent with

our restriction to short ranges. Without the restriction to short range

we must consider the cruise problem, which is of course qingular. Thus

by further extending the range, or final value of mass, we are led to the

matched asymptotic problem with its initial and final boundaey layers

matching an intermediate solution representing cruise.

5. 9 Breguet Range Including Corrections for Transitiorn

In concluding this chapter we can evaluate an expression for final

range. We have already modified the Breguet range equation to account

for the gradual increase in altitude and the resulting increase in fuel

consumption. We now can incorporate first order corrections to account

for the possibilities that the initial and final values of yo and LBO may

not correspond to values on a Breguet cruise.

From our terminal boundary layer matching condition we have

1 - e
71bRN Mf

(5. 253)

That is, the specified value of Mf determines the zero order value of the

unknown final range

Rf0 = - 1 Am (1 - Mf)
71b

(5. 254)

The first order corection to final range comes from the other matching

condition
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2
1 + 

Rf0 eR +VlbilfCrij
n

= - I 

Ylb I 2x1/CDK 
c
f

0 
(5.255)

A

The value of ci is defined as a function of initial conditions on 16 and PII0

by (5.154) for C s 1 and by (5.197) for C >1. Likewise cf is defined as a

function of final conditions on yo and P11-0 by (5.158) for C s. 1 and by

(5.199) for I;; > 1. We now have for the final range

f Rf0 + c Rfl

y R-1 1..(1 - M ) c [ lb f0 Ylb— in (1 - 11 )]R -- c e - c. +
f
—= 
Ylt f 

+ 
Ylb f 1 f

21, C
D
k x
o

Ylb  bR1 f0= - (-1--)t.(1 - - c, + c r e
f 'lb 211CD 

Ylb

(5. 256)

(5. 257)

(5. 258)

The first term is seen to be identical to the Breguet range equation

as it was developed in Chapter II: a correction factor appears, decreasing

final range, to account for increasing altitude at constant flight path angle

in cruise. The second term represents the change in range clue to

transition from an init6.1 state that is not on the Breguet cruise. It can

be related to a non-zero value of mass on the matching Breguet cruise

at R
L 
equals zero. It can be expressed in terms of the initial values of

A

yo and PH0 and is zero if they are also zero (i.e., if they are on Breguet

c ruise).

The thi:d term represents the change in range due to transition to a

terminal sthte that is not on a Breguet cruise. It can be related to the

mass difference (at R equals Rf) between specified final mass and final
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mass on the matching Breguet cruise. It can be expressed in terms of

the final values of yo and GHD and is zero if they lie on a Breguet cruise.

Finally, by making use of Eq. (4.45), (4. 81), (4. 83) and (5.253),

the range equation (5. 258) can be identified with the more familiar form

of the Breguet range equation

(r ) 1  v  12,

0- 

1 !tin
1. max LUC` _ 

(

0 - Jmax

)(1 _  ( Ylb 

2\xDmc. 
ECii-EC, 

in

m.

o

(5. 259)

Both of the range correction terms can be positive, negative or zero,

depending on whether the average thrust required for transition is less than,

more than or equal to that required on a Breguet cruise over the same

range. A positive value of ci will result in a reduced final range. This is

to be expected, since a positive ci means that the Breguet cruise to which

the initial transition matches has a fuel budget that is reduced at R equals

zero by E ci Similarly a negative value of cf. means that the matching

Breguet cruise terminates at a value of mass that is less than the specified

value, Mf, and hence translates into a loss of range incurred in

diverging from cruise to meet the specified final values of yo and 4.110.

Both of these terms are zero if the initial and final state are on the

Breguet cruise and in that case the range equation is identical to that

derived from Breguet cruise in Chapter IV.
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CHAPTER V1

COMPUTATIONAL RESULTS

6.1 Introduction

This Chapter gives the results of some computational studies of

transitions and the costs associated with them. Several non-optimal

control policies are described and comparisons are made between them

and the optimal policy. The comparisons are made for three aircraft.

The Boeing SST is used to represent aircraft that cruise at supersonic

speed. The Boeing 707 represents aircraft that cruise at transonic

speed. The McDonnell Douglas F-4 is used to study transonic cruise in

an aircraft -.hat is capable of supersonic flight. Finally, some comments

are made about how the optimal policy might be implemented in a flight

control system.

6.2 Alternate Control Policies

It is useful to compare an optimal initial transition trajectory and its

cost with a series of trajectories which use non-optimal controls. These

transiticns assume that the aircraft has already accelerated to its cruise

speed and is attempting to reach cruise altitude and level off. The first

non-optimal control assumes that the aircraft maintains maximum power

setting until it reaches cruise altitude and then assumes its cruise power

setting and levels off in zero time. This trajectory will be called the

(C
F
)
max 

traject3ry. In the second, the power setting is first set at its

cruise value and the aircraft then eventually levels off at its cruise alti-

tude. This trajectory ill Uc -11ed the (CF)cruise trajectory. The
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third is a constant rate of climb trajectory, identified as 
ycopar 

Here

again the power setting and attitude are assumed to change instantaneous-

ly to cruise values as cruise altitude is reached. The fourth trajectory

is the optimal trajectory. uopt.

All of the suboptimal controls represent a constraint on one variable

in the equation for constant velocity. The exact equation may be written

C
F

2- pli - pH
- 1
)

e le ._....z___ .(1 4. o)2 
(6. I)

C
D 

( 

o
x2 xrE

o

If C
F 

is a constant, whether (C
F
)max or (CF 

)crut .se or any other

value, we must have for u

P-2PH - CI1) 2_72__e H
u 2/ - 1 ± SQRT

[(CCF xlaT
Do Do

If y is a constant, then u must be zero and we have for CF

2 

-pH 1
C
F 

= C
Do 

1 + —13c' 
1 + 

.7—
e-

2,111 x FT{
o

If u is u
opt 

for initial transients

u = -pH- 2 --C--- y
wn
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and we must have for C
F

u (CF Cn 1+o
x2 El_ a

PH 2 - 2ACI Y 2 + e (6.5)

e

y)
D K

1)

For the 
(CF)const 

tra
jectories there is obviously a limit on the

values of pH and y such that the argument of the square root (6. 2)

A
remains positive. This is easily identified in PH - y space. It

corresponds to the condition

u = -1 (6.6)

and from our definition of u this is equivalent to saying that lift is zero.
A

Obviously, at a particular value of pH there is a maximum value of y

at which constant velocity flight can be maintained. That situation cor-

responds to minimum drag since lift, and hence the induced cornponent of

drag, is zero.

It is also true that in constant rate of climb trajectories there will

be a maximum climb angle above which constant velocity flight cannot be

maintained. This value is (4?termined from considering the maximum

value of C
F 

required for such flights.

The maximum value cannot occur below cruise altitude, or it will be

impossible to maintain the constant rate of climb, and the trajectory will

become a (CF)max trajectory. Accordingly, using (CF)max and cruise

altitude (Aft s o) we have

[
1 

(CF)max CD0]
( 

x2 C
D

-1 (xGR) =
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t

The optimal trajectory will be limited by a locus of points correspond-

ing to a maximum value of CF, with u satisfied by the optimal control law.

A similar locus will exist for the minimum value of C
r

Now using the zero order equations for altitude and flight path angle,

(5.21) and (5.22), and the first order equation for mass, (5.23), it is

possible to evaluate zero order trajectories and first order costs associ-

ated with them for these four ontrol laws. The equations are integrated

using a fourth order Runge-Kutta routine. The stopping conditi- :cr

uopt and (C doroise is the attaining of steady state altitude. For the other

two controls the stopping condition is the event of altitude exceeding its

cruise value.

These equations are the state equations for the linear-quadratic

problem and small initial values are chosen so as not to violate the

assumptions inherent in the equations.

6.3 Boeing SST

For our first cost comparison we choose an initial altitude of

A 33 "• 0.30HOi (6.8)

For various values of initial flight path angle up to the respective maxima,

trajectories have been calculated for the four controls and the resulting

costs plotted in Fig. 6.1. The airplane used in these calculations was

the Boeing SST (Appendix A) in supersonic cruise. The variable plotted

on the vertical scale of Fig. 6.1 is the difference in the first order mass

term between the indicated transition climb trajectory and a pure Breguet

cruise of the same range, that is M. - v Rlb 11 It is based on equation

(5. 23).
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It is seen that (CF
)
cruise is a good approximation to minimum cost

but its range of feasible initial flight path angles is severely restricted.

It can be concluded that if (C
F
)
cruise were identical to (CF)max then

these two trajectories would be identical to each other and their cost

would be virtually the same as that for the uopt trajectory.

In a narrow range of angles the yconst trajectories also compare

well with minimum cost. This comparison worsens as yt approaches its

maximum feasible value and worsens rapidly as yi approaches zero.

For realistic attitudes associated with climb to cruise, the constant

velocity transition must be either uopt or (CF)max. In general the recom-

mended procedure for a pilot to follow in flying his transition to cruise is

to accelerate and climb at (CF)max until cruise speed is reached, then to

climb at (CF )max and constant speed until cruise altitude is reached, and

then to level off at cruise altitude and speed in an unspecified manner [22,

23, 24 ] . It is seen from Fig. 6.1 that in this comparison the cost im-

provement in terms of M
1 
ranges from 0.38 to 0.20. To convert this

number to a weight it is necessary to multiply by € and by the initial

cruis weight. For the SST this converts to a weight of from 540 to 285

pounds of fuel.

Figure 6.2 is a comparison of the zero order trajectories for the
.

four controls in R - P H space. All start from an initial flight path angle

of -0.05 radians and an initial p Ho of -0.30 or -6,240 feet. The opti-

mal trajectory overshoots in Ano by 0.00127 which is equivalent to 26
.

feet. Figure 6.3 shows the same trajectories in PH0 - y space. This is

essentially a phase plane, and optimal trajectories spiral into the origin.
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Figure 6.3 also shows a (C
F
)
max trajectory approaching from some

much lower altitude than cruise. If pursued to its limit it would settle at

the maximurn cruise altitude of the aircraft. This trajectory acts as a

separatrix for all other (C dmax trajectories originating at other initial

conditions. All other (C
F
)
max 

trajectories will fare smoothly into this

separatrix and continue on to maximum altitude. None will cross it. This

also applies to trajectories from higher altitudes than the maximum

cruise altitude. They would fly down to the maximum cruise altitude re-

maining on one side or the other of the extension of the trajectory from

infinity (separatrix). The separatrix for ascent at (CF)cruise is also

s hown.

For negative values of A Ho the separatrix follows fairly closely a

locus of zero lift at maximum CF. This locus is also indicated in Fip.

6.3 It is evaluated by equating u to -1.0 in Eq (6. 2). Above this locus

the flight path angle would be too steep to maintain constant velocity

fl ight.

Figure 6.3 also indicates a locus of points at which throttle setting

is maximum if the opt imal control is used. This locus comes from set-

ting CF to (CF)max 
in Eq (6.5). Above this locus the throttle setting re-

quired for a constant velocity range-optimal transition would be greater

than the maximum throttle setting. If one follows the (CF)max separatrix

backwards to lower altitude, eventually the separatrix will be above the

locus of maximum throttle for uopt. The point at which this intersection

takes place is interesting because in ascending at (CF)max from some

large initial altitude difference this will be the point at which it is possible
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to begin using the optimal control. Figure 6.4 is a sketch of that inter-

section and an optimal trajectory from it. Approaching from some lower

altitude at (CF)max one follows the separatrix (A - A') until point C.

There one begins the optimal spiral into 0, down-throttling all the way.

Consider now point B' as an initial condition. The optimal spiral requires

upthrottling initially and the throttle saturates at B'. The extension of

this optimal trajectory is indicated in a dashed line. From B' a (C—r ) max

arc fares into the separatrix and eventually comes out of satwation at, or

very near, C, frorn which it follows an :13timal spiral to 0.

For the Boeing SST the separatrix and the locus of (CF)max at uopt

essentially overlap in the vicinity of their intersection. From studying a

digital computer print-out of the trajectories in the vicinity of their inter-

A

section, the point (-0. 745, -0.300) in PH0 - yo space was taken as the

intersection. Since this point would be well outside the linear-quadratic

region, a comparison was made using the full state equations (5. 3, 5.4,

5.5) and the linear-quadratic optimal control (5. 137) which, for these

equations, becomes a sub-optimal control. The comparative trajectories

are shown in Fig. 6.5. The optimal trajectory overshoots the Breguet

cruise by a Q H of about 0.03 (624 feet) and returns to meet the Breguet

cruise at a value of RL of about 
15. This corresponds to a range of about

60 miles and would require about two minutes to complete. The difference

in M between the two trajectories would be 0.00076 which corresponds to

a fuel weight savings of 487 pounds. This can be converted by the Breguet

range equation to a range improvement of 5.44 n. mi. In Fig. 6.6, u and

CF are plotted as 
functions of RL for the two 

transiVons of Fig. 6.5.

122



7

Figure 6.4. An Optimal Trajectory with Thcottle I.imiting



o

-0.20 -

-0.40

....
ba
alu

-0.60

-aeo I 

BOEING SST

AW = 487 lbs

Figure 6.5. Altitude Transient for uopt as a Sub-Optimal Control



CF

0.04

0.02

0 2

CF max

4

uopt

6

1
10

Figure 6.6. CFmax and u Transients for the Trajectory of Figure 6.5

125

*3.



Figure 6.7 shows in AH0 - y0 space a comparison of two complete

climb-cruise-descent trajectories. Single arrowheads denote the uopt

transitions and double arrowheads denote the (Cdmax. (CF)min transitions.

The cruise segment (A %axis from 0.0 to +0. 10) is corn.-non to both

trajectories. Initial and final values of yo are zero. Initiel altitude is the

same as final altitude. The initial value of A H0 is taken as -0.20 and the

increase in tillo during cruise as +0.10. This means that the final value

of A H0 is -0.30. These altitude values are kept small in order not to ex-

ceed the assumptions inherent in the linear-quadratic problem. The in-

crease in tillo during cruise can be related to a zero order final value of

range through the constant cruise flight path angle and then to a final

value of mass which must be the specified final value of mass.

In this presentation one can see that the zero order ascent and des-

cent and the first order cruise are the most significant parts of the trajec-

tory. The first order corrections to ascent and descent would be of order

€ smaller and would not make an observable change in the figure. The

zero order cruise, on the other hand, would be represented by the origin

alone and would not fairly represent cruise. It is possible to speculate,

therefore, that one could make a simpler approximation to the analytic

representation of the solution by asymptotically matching the zero order

boundary layer solutions to the first order cruise.

We now proceed to evaluate some numeric results related to Fig.

6. 7 in order to show the relationship to the Breguet range of the first

order corrections to it due to initial and final transitions and to non-zero

cruise Might path angle. The numeric values used for the SST flight

parameters are shown in Appendix A.
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The altitude difference re.. :ing from cruise is +0.10. This

implies a zero order range of

AH
0

ROf = 
- 0.4649

71b

and a final mass of

- R
•

MOf = 
1 - e 

v
lb Of st 0.09516

The zero order range in nautical miles is

v 1 ) 715.8 n. mi.range = (R )( )( 6076Of.. -6— 0

(6.9)

(6. 10)

(6. 11)

The complete first order correction to i•ange has been shown to be

ef 
y
lb
R
Of

R
If 

= - + 
1  

t,m(1- M0f) 
(6.12)

71b 71b 
2 F DoR x

The third term is the Breguet correction due to non-zero cruise flight

path angle. Its value is

1
t, m(1- MOf) =

 -0.9903

2xIEKDo
p range = -.9903 ( O)(007o

) = -3.4 n. mi.

(6. 13)

(6. 14)

Thus the range achieved on a pure Breguet cruise for which the final

value of M is 0.09516 is

range = 712.4 n. mi. (6.15)
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Since initial and final conditions are not on a Breguet cruise there

will be increments in fuel or range associated with meeting the initial

and final state. From digital solutions using the linear-quadratic problem

we have

ci
t

c
f

u
opt

0.44124

0.53041

(CF)max

0.76852

0.48846 (6. 16)

The first order correction to the uopt problem due to ascent and

descent transitions is

R
lf 

= -2.0513 + 2.2312 = +0.1799 (6. 17)

årange = +0.6 n. mi. (6.18)

for a total of 713.0 n. mi. For the (CF)max - (CF)min problem the

correction is

ARlf = 
-3.5728 + 2.0548 = -1.5180 (6. 19)

Prange = -5.2 n. mi. (6.20)

for a total range of 707.2 n. mi. and the saving of u
opt 

over (C
F
)
max

- (CF ) .nitn is 
+5.8 n. mi.

Looking at the components of the first order corrections for u
opt we

see that the amount of range lost from a pure Breguet cruise because of

cptimal transition to cruise from a lower altitude is

c.
AR z -c I (6.21)

71b
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1

range = -7.0 n. mi. (6.22)

The amount of range increase over a pure Breguet cruise as a result of

optimal transition from cruise to a lower altitude is

CfAR = -( e
y
1b
R
Of
 (6.23)

71b

Arange = +7.6 n. mi. (6.24)

The sum of the increments is +0.6 n. mi. as has already been shown.

The u
opt 

transitions will of course require less fuel than the

(C 
F
)
max

- (CF )min 
transitions. The amount of this fuel saving is calcu-

lated from ci and cf. In ascent

AW = ActWie = 466 lb. (6.25)

and in descent

AW = AcfWic e 
ylbROf

= 54 lb. (6. 26)

for a combined weight saving of 520 lbs. The minimum value of CF was

taken as 0.011 instead of 0.012 so that the entire flight could be made

with the afterburner on, that is, with a uniform engine description through-

out the flight.

Figure 6.8 shows the additional range realized by using uopt instead

of (CF)max in an 
initial transition to cruise. The increment in range is

plotted as a function of the initial value of yo, with the initial value of

H0 taken as -0.30. 
Incremental savings in mass, from Fig. 6.1, are
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converted to range savtngs by the modified Breguet range equation. The

additional range in these transitions is comparable in size to the increase

claimed (3. 8 n. mi.) for complete trajectories with climb and descent

transitions . in [ 10 ] .

The demonstrated fuel savings are, of course, a small part of the

total weight of the aircraft. Indeed, the use of singular perturbation

methods implies that weight saving relative to the total weight will be on

the order of ( in comparison to one. So will the resulting increase in

range when compared to the total range. But as a percent of payload the

saving is not insignificant, since the percentage of payload to gross weight

for an SST may be only on the order of 5% [25 1. Furthermore, flight

experience with the first operational SST, the Concorde, has shown it to

have fuel reserves only on the order of 24,000 lbs after a flight of 3400

n. mi. (equivalent to a Paris to Washington, D. C. flight) carrying a

payload that also happened to be 24,000 lbs [26 ].

6.4 McDonnell Douglas F- 4

We next consider an early version of the McDonnell F-4 (Appendix

A). This aircraft is capable of supersonic cruise, but we shall consider

it only on transonic cruise. The principal reference for this aircraft 11)

assumes that it has constnat SFC. The authors recognize a weak-

ness in their assumption but justify it on the fact that better data were not

available to them. We shall use this aircraft to observe the effect on cost

of various values of the parameter y which is proportional to the slope of

the curve of SFC vs CF in the 
vicinity of the cruise value of SFC. We

assume that the cruise value of SFC does not change as y changes. There-
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fore, since

SFC c
0 
+

1CF

= c
0 
[1 + y —CF

C
Do

and to zero order in cruise

we have

CF C
D

(1 + x
2
)

o

SFC = c
o 
[ 1 + y(1+ x

2
)1

(6.27)

(6. 28)

(6. 29)

(6. 30)

The value of x is determined solely from y. Since SFC at cruise is to

remain constant, the value of c0 must change with y. Changing c0 will

affect the value of € since

c
0c (6.31)

13v

Finally, from the equation for SFC, we see that the maximum value of

SFC will increase as y increases.

Figures 6.9 through 6.13 show a comparison of the cost between a

full throttle climb to transonic cruise and the optimal cost for five values

of y. First notice that if y is zero the cost of both trajectories is less

than it would be for any other value of y. Then as y increases, the cost

of both trajectories increases but the difference between them becomes

greater. The largest value chosen for y is slightly larger than the value

based on the Boeing SST data. The middle value of y corresponds to the

cruise value of the Boeing 707- 320B whtch uses the PW JT3D turbofan
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engine. The effect of increasing y is to increase the value of SFC at

maximum thrust. As y increases, the cost of operating above cruise

',hrust is increased. The optimal trajectories therefore tend to become

much more heavily damped as y increases. This relationship of y to

damping was mentioned in Chapter V. Figure 6.14 is a comparison of

the transient responses in p Ho ls a function of RL. It shows clearly the

relationship between y and damping.

Figure 6.15 shows the fuel saving in pounds associated with Cie

various values of y. It is a restatement of the data of Figs. 6.9 through

6.13 for an initial weight of 30,452 lbs. It is seen that if y is zero the

weight saving is only on the order of 10 to 20 lbs. However, for larger

(but not unrealistic) values (yf y substantial savings in fuel can be realized.

In Fig. 6.16 the effect of the parameter y on the range improvement

for the uopt initial transition over that for (CF)max is shown. The fuel

weight savings from Fig. 6.15 are converted to increments of range by

the Breguet relation

P range =
1

Yib

v 1
4.0(1 - P M)( )( ) n. mi.

co 6076

The first order cruise flight path angle has been shown to Se

(2x/rTc 1 + x
2
) 

Y1b Do
(3x

2 
- 1)

(6. 32)

(6. 33)

The parameter co changes with y so that SFC at cruise is constant. Its

value is also plotted in Fig. 6.16. Fuel savings are based on the data of

Fig. 6.15 at an initial flight path angle of zero. It is seen from Fig. 6.16
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that for values of y that are almost all less than that of the SST (i.e.,

0. 357), the F- 4 achieves range increases that are generally much better

than that of the SST.

The result of this parametric study La to enable us to describe the

conditions under which maximum range transitions to cruise can produce

worth-while saving in fuel. First it has been seen that the thrust re-

quired in cruise must not be too close to the maYimum thrust capability

of the aircraft. If required cruise thrust approaches maximum thrust,

fuel saving will approach zero. Second, the specific fuel consumption

associated with maximum thrust must be greater than that required for

cruise. If it is not, then the potential fuel saving will be negligibly

small even though the maximum thrust may be much greater than the

required cruise thrust. In summary there must be sufficient thrust

capability over and above that required for cruise and there must be a

cost associated with using it.

A large number of aircraft do meet these conditiona but it is also

important to note that a large number fail to meet these conditions. Most

of the commercial aircraft currently in service with the airlines fly at

nearly their maximum thrust and in a fairly flat part of the curve of SFC

vs C
F' 

This holds for the PW JT3D which powers the Boeing 707 and

the McDonnell Douglas DC- 8, and also for the PW JT8D which powers

the Boeing 727 and 737 and the McDonnell Douglas DC- 9 [291. Both of

these engines have a value of y on the order of 0.04 and cruise at approx-

imately 80% of maximum thrust. For the 707 in an initial transition to

cruise, there appears to be no first order difference in cost between the

u
opt 

policy and any of the other policies. For example, from an initial
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state of (-.30, +. 10) in afici-y0 space, the fuel cost associated with optimal

transition to Breguet cruise is 0.3600Ni. The costs of the other three

policies are 0.3620Ni, 0.3720Ni, and 0.374€Wi for (C
F) cruise' (CF)max'

and v
const, 

respective]y.
• 

6.5  Implementation of the Optimal Control Policy

This thesis has developed the optimal control policy in terms of

incremental changes in lift away from its cruise value. The control thus

developed is a linear combination of the elements of the state vector and

hence is suitable for implementation as a feedback control. It is also

possible to implement an open-loop or programmed control system. Since

analytic solutions are obtainable it is necessary only to program one of

the zero-order state varibales, yo or QH0, or the control variable, u0,

as a fiinction of range. It would even be convenient to program h.H0, which

is yoR, as a function of range.

It is probable, however, that to follow closely an optimal transition
A

trajectory would require a degree of accuracy in the measurement of p Ho,

p1710 or y0 that could only be achieved by an inertial unit. Certainly the

transition described for the SST in Fig. 6.5, requiring an overshoot in

altitude of 624 ft in a transition requiring 60 n. mi. and two minutes to com-

plete, could probably not be duplicated by the pilot using a clock and a rate

of climb meter for his cues. Exact duplication, however, may not be required.

Simulation of transitions with a pilot in the loop would be necessary

to determine how well a pilot could follow an optimal trajectory, what cues
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he would require, and how sensitive the cost is to deviations from the

optimal. In the case of the SST, pilots have encountered difficulties in

trying simultaneovsly to maintain constant Mach number and to level off

to cruise altitude [24 ]. These difficulties were observed both in ground-

based simulations and in flight simulations of the SST climb profile. Pilots

had difficulty in avoiding overshoot in altitude and in Mach number while

monitoring Mach error and pitch attitude. No data were available on fuel

cost associated with the overshoots.

Cost savings achievable throilgh optimal transitions would have to

be weighed against the dollar and weight cost associated with the cues

needed to implement the optimal transitions. For an aircraft that already

has an inertial navigation system on board, it would be a simple matter to

implement the optimal cruise transition policies of this thesis. Individual

cost determinations would have to be made for other aircraft.
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CHAPTER VII

CONTRIBUTIONS, CONCLUSIONS, RECOMMENDATIONS

FOR FURTHER WORK

7.1 Contributions

This thesis has contributed an approximate analytic solution to one

of a class of airplane performance optimization problems for which even

computational solutions have been extremely difficult to obtain [8, Il].

The analytic solution was obtained by the use of singtilar perturbation

techniques in conjunction with the minimum principle of Pontryagin.

Solutions were obtained in cruise and in transitions to and from cruise

and then these three distinct segments were matched asymptotically.

Inclusion of the normal acceleration equation made possible the

inclusion of rnaneuvering lift effects on induced drag, an effect previously

appearing only in computational solutions. Singular perturbation tech-

niques allowed the drag force, which can not be linearizad in any meaning-

ful way, to be expressed as a quadratic function of state and control vector

elements. The costate for mass, which is associated with these quadratic

terrns in the variational Hamiltonian, was shown to be a constant, to zero

order in E, thus producing a solvable linear-quadratic optimal control

problem.

Optimal control laws have been developed for constar.t velocity

transition to and from cruise in three dimeneional state space (altitude,

flight path angle, and mass), and expressions for the cost associated with
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them have also be.n developed. These cost expressions can serve as a

lower bound for purposes of evaluating other techniques of performing

these trans it lora .

7. 2 Conclus ions

Two basic conclusions can be drawn from this thesis, one from the

analytic point of view and the other from the practical point of view.

The first conclusion is that singular perturbation methods offer the

possibility of approximate analytic solutions to certain optimal control

problems that would otherwise have to be solved by computational inethods.

An important class of such problems is airplane performance problems in

which equations involving aerodynamic drag (mass and veloaity equations)

can be neglected as a zero order approximation to the solution in the

neighborhood of the singularities. The analytic results should be useful in

themselves but should also provide clues toward finding methods of easing

the computational difficulties associated with higher order versions of

these problems.

Second, for sorie aircraft the optimal control policy for transition

developed in this thr:sis offers the possibility of significant fuel savings.

These are a!rcraft that do not cruise at or near their maximum power

setting (including transonic cruise for aircraft that are capable of super-

sonic cruise) and for which the specific fuel consumption at maximum

p , er setting is somewhat greater than that for cruise.
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7.3 Recommendations for Further Wori

The first recommendation would be to apply the techniques demon-

strated in this thesis to the solution of Other similarly structured optimal

control problems, for example, problems in which velocity varies Glowly

in the boundary layer and is constant to zero order in E.

The solution obtained in this thesis should be studied in conjunction

with higher order computational solutions to try to gain insights into the

nature of the optimal solutions and thereby to determine how best to

approach computational solutions to this and similar problems with higher

order state vectors.

One could also expand the present study to consider the nature of the

control if the slope of SFC as a function of CF were not merely a straight

line in the vicinity of cruise but a series of connected straight line seg-

ments. Such a representation would be mor accurate in the case of most

power plants. The value assigned to the slope in a linear approximation

dtrectly affects the damping inherent in the optimal control through the

parameter y (Fig. 5.2), and y determines x, the altitude parameter which

represents the difference between optimal cruise altitude and the altitude

for maximum lift-drag ratio. Since the altitude for maximum lift-drag

ratio remains constant, a change in x represents a changG in the optimal

cruise altitude. Thus as d(SFC)/d(CF) changes discretely from one value

to another, so also do two important aspects of the optimal control prob-

lem: damping in transition and optimal cruise altitude. There appears

to be no point in using higher order fiirictions of CF to describe SFC. If

a quadratic function were used, then the mass equation would be third
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order in thrust. The thtrd order effects would be lost in forming the

linear-quadratic optimal control problem.

The descent from cruise could also be studied further. The poss-

ibility of decelerating flight at minimum thrust or at zero thrust has not

been considered here. Nevertheless the cruise- glide solution is a very

real possibility for maximum range flight. Optimal gliding flight is

easily described by energy state methods. The transition from optimal

cruise conditions when the engines are shut off to optimal gliding flight

could possibly be set up as a boundary layer problem. Higher dimensional

glides might be established as perturbations about the single variable

optimal glide from energy-state methods.

It is also possible to study the maximum range problem from take-

off through cruise and to landing by combining energy-state methods fc:

acceleration and climb and for deceleration and descent with the optimal

transitions and cruise developed in this thesis. This would require

patching of solutions as opposed to matching. The energy climb (computa-

tional solutions) would be followed until cruise velocity is attained. This

state would become the initial condition for transitions to cruise. Similar-

ly the state at the end of cruise when the engines are shut down becomes

the initial condition for the transition to optimal glide.

The nature of the most general optimal transition from cruise to

descent would in itself be an interesting study. Is there a throttling

solution that is superior to an instantaneous zerotng of thrust? Should

transition from cruise to the htgher altttude for optimal glide be made

while throttling or at constant thrust (including zero)?
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It is hoped that this thesis wtll stimulate others to pursue these

and other related topics of research in optimal airplane performance

and the application of singular perturbation techniques thereto.
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APPENDIX A

CHARACTERISTICS OF TYPICAL SUPERSONIC AND

TRANSONIC CRUISING AIRPLANES

Thts appendix presents those pararnetera necessary to describe

the airframe and power-plant of three aircraft that cruise at constant

Mach number in the stratosphere.

A. 1 Boetng SST 

The first ts the Boeing supersonic transport. Data is from [ 10 ].

For the airframe •se have

W
i 

640,640 lbs initial cruise weight

S 7578 sq ft wing area

v 2479 ft/sec cruise speed

M 2.56 cruise Mach number

CD 
0.00878 proftle drag coefficient

o
K 0.5 induced drag coefficient

Table A. 1: Boeing SST Atrframe Characteristics

The power plant consists of four turbojets with afterburners, and in

supersonic cruise the afterburners are on. Specific Fuel Consumption

as a function of thrust coefficient is shown in Fig. A. 1. As a linear

approximation to this function in the afterburning region we can write

SFC • c0 + c C1 F
151

(A. 1)



0.3

0.2

0.1

o

AFTER
BURNER
ONI 

I ,

MOD

CF Tin CF auise

Om•

NM.

0 0.01

CF num

1 
0.02 0.03

Figure A.1. SFC vs CF for Boeing SST
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SFC • 0.000265 + 0.010789 CF (A. 2)

with dimensions of inverse seconds.

Now certain parameters which are defined in Chapter III can be

evaluated for the SST. If we write

SFC = c0 
1 + y

CF

CDo

(A. 3)

c 
1

y = CD (A. 4)
c
0

then we have

y = 0.357 (A.5)

Since x is determined solely by y we have

x(y) = 0.762 (A.6)

The first order value of the cruise flight paZh angle becomes

yib(x, , K) = 0.2151
""o

The cruise value of CF b
ecomes

CF(x, CD )
 = 0.01388

o

which is 60% of Its maximum value.
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Finally, the parameter c becomes

e(v, c0, 13) = (1/450)

In the stratosphere the scale height of the atmosphere is

0
-1 

= 20,800 ft

(A. 9)

(A. 10)

The range-optimal control for this airplane is a damped sinusoid

in R. It has the following natural frequency and damping ratio,

respectively

wn 
= 0.33

C = 0.8762

(A. 11)

(A. 12)

The parameter a, which appears in the y equation, is equal to the square

of w
n
.

a = 0.1089 (A. 13)

A. 2 McDonnell Douglas F- 4

The second airplane is an early version of the McDonnell Douglas

F-4. It was used by Bryson, et al [1 ] and recurs frequently in later

literature. This aircraft is capable of supersonic cruise but we consider

it in transonic cruise. For the airframe
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W.
i. 

30,452 lbs Initial cruise weight

S 530 sq ft wing area

v 872 ft/sec cruise velocity

M 0.9 cruise Mach number

C
D 

O. 014 profile drag coefficient
o

K 0.2095 induced drag coefficient

Table A.2: F-4 Airframe Characteristics

The power plant consists of two GE J- 79 turbojets with afterburners.

Specific Fuel Consumption is taken nominally as 0.000625 sec-1. That is,

if

SFC = c [1 + y
C
F

0 C
L Do

(A. 14)

then y is assumed to be zero. In the parametric study of Chapter VI, y is

allowed to assume various constant values while SFC at cruise remains

constant. Figure A. 2 shows the extremes of this function. It is obvious

that c0, the intercept on the SFC-axis, changes and hence the perturba-

tion parameter, c, changes too. The cruise value of CF is not allowed to

vary. It holds constant at 0.028, which is 32% of its maximum value.

The parameters of Chapter III all depend on the value assigned to y.

As a result they are presented in Table A. 3 for various values of y. The

roots of the range-optimal control are shown in Fig. A. 3.
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Figure A.2. SFC vs CF for Various Values of y for F-4
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y 0 0.01 0.0425 0.2 0.4

x 1 0.9813 0.9336 0.8165 0.7517

71b 0.1083 0.1104 0.1172 0.1474 0.1833

1600c0 1 0.9807 0.9263 0.7500 0.6150

-1
c 67.0 68.0 72.0 89.0 109.0

Table A. 3: F-4 Cruise Parameters for Values of y

A.3 Boeing 707-320B

The third airplane is the intercontinental version of the Boeing 707.

The airframe parameters are from [27 ] , with drag coefficients extracted

from information on cruise thruse in [ 27 ] and [28 ]. We have

W.
I 

270,000 lbs Initial cruise weight

S 2892 sq ft wing area

v 775 ft/sec cruis a velocity

M 0.8 cruise Mach number

CD 
0.0114 profile drag coefficient

K 0.062 induced drag coefficient

Table A. 4: 707-320B Airframe Characteristics

The power plant consists of four PW JT3D turbofan engines without

duct-burning capability. Specific Fuel Consumption as a function of thrust

coefficient is shown, for cruise in the stratosphere, in Fig. A.4. The

plot was developed from data in [20]. The aircraft cruises in the
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positive slope region close to maximum thrust coefficient. Note that a

range-optimal solution will not use the negative slope region which would

increase SFC as CF is decreased. Instead the range optimal solution

would resort to chattering: minimum SFC would be maintained ae thrust

was reduced below the value for SFCmin by alternately using zero thrust

and thrust for SFCmin. The duty cycle would be determined by the amount

of thrust required.

As a linear approximation to the function of CF in the vicinity of its

cruise value we can write for SFC, from (A. 1)

SFC = 0.0002014 + 0.0007508 CF (A.15)

with dimensions of inverse seconds. The parameter y is

and

y(c0' c CD ) = 
0.0425

o

The other parameters of Chapter III are

x(y) = 0.934

ylb(xl CD' K) 0.05750 

(CF)cruise 
= 0.02134

(A. 16)

(A. 17)

(A. 18)

(A. 19)

which is 80% of its maximum value. Finally, the perturbation parameter

is

c = (1/ 185)
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The range- optimal control for this airplane has two real roots.

The values are

pl = -7.493

p2 = - O. 149

The parameter a has the value

a = 1. 116
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