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ABSTRACT

An approximate analytic solution is developed for the problem
of maximizing the range of an aircraft for a fixed end state, 1In
general, this problem can not be solved analytically and is even
very difficult to solve computationally. In this dissertation the
problem is formulated as a singular perturbation problem and solved
by means of matched inner and outer asymptotic expansions and the
minimum principle of Pontryagin.

Attention is focused on cruise at constant Mach number in
the stratosphere, and on transition to and from cruise at constant
Mach number, The state vector includes altitude, flight path angle,
and mass. Normal acceleration and maneuvering drag effects are
included. Lift is the control variable. Since Mach number is constant,
thrust is constrained to be a function of state and control variables
and is not itself a control variable. Specific fuel consumption becomes
a linear function of power setting in the vicinity of cruise values.

Cruise represents the outer solution, In cruise, altitude and
flight path angle are essentially constant and only mass changes. In
the inner solutions, corresponding to transitions between cruise and
the specified initial and final conditions, mass is essentially constant
and altitude and velocity vary.

A solution is developed which is valid for cruise but which fails
to satisfy the initial and final conditions. The cruise solution is
shown to yield the Breguet range equation. By transforming the in-
dependent variable near the initial and final conditions, we can seek
solutions which are valid for the two inner solutions but not for cruise.

The inner solutions can not be obtained without simplifying the
state equations. However, to linearize them would completely elim-
inate their dependence on altitude, as well as the dependence on alti-
tude of any potential optimal control., The singular perturbation ap-
proach overcomes this difficulty by allowing us to make a quadratic
approximation to some of the state equations under certain circum-

iii



R TE i

stances. The resulting problem is solved analytically, and the two
inner solutions are matched to the outer solution. A modified Breguet
range equation is developed whichaccounts for the changes in range
due to starting from initial conditions not on a Breguet cruise and
ending at final conditions not on a Bregeut cruise.

The optimal control policy for transition is compared to several
alternate control policies for supersonic cruise using the Boeing SST
and for transonic cruise using the Boeing 707 and the McDonnell
Douglas F-4,
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GLOSSARY

a defined in equation (3, 37)
o, 1 coefficients in approximation to SFC (3.15)
CD total drag coefficient
CD profile drag coefricient
CFo thrust coefficient
CL lift coefficient
D aerodynamic drag force
. f subscript for final value
‘Z; fl, 2, 3 forcing functions (56.57, 5,59, 5.61)
4 * g gravitational acceleration, 32,17 ft/ sec2
h altitude
AH scaled altitude increment (3.18)
ah (5.10)
AH (5.66)
K variational Hamiltonian
i subscript for initial value
K induced drag constant
L aerodynamic lift force
m mass
M normalized mass (2. 20)
My, (4.53, 4.54)
M (5.64)
M Mach number
p time-derivative operator
q dynamic pressure
xi
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SFC

scaled dynamic pressure (3,19)
(5.8, 5.9)

(5.66)

range

scaled range, the independent variable

transformed range in the left boundary layer (5.1)

transformed range in the right boundary layer (5.2}

wing area

specific fuel consumption

thrust

control variable (3.12)

true airspeed

weight

defined in equations (4.21, 4.32, 4. 35)
defined in equation (3.16)

(5. 49)

atmosp..eric scale height (20, 800 t"c).1
flight path angle

(5.15)

perturbation parameter (3. 35)
damping ratio

throttle setting, or T/ Tmax

costate for flight path angle
costate for altitude

costate for mass

costate for mass (5.67)
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CHAPTER I
INTRODRUCTION

1.1 Problem Statement

This thesis is an attempt to develop an analytic solution to an
airplane performance optimization problem: that has proven very dif-
ficult to solve by computational methods, It is the problem of maxi-
mizing the cruise range of a gas-turbine powered aircrart. The
problem is stated as a fixed end-state optimal control problem with
a three dimensional state vector (altitude, flight path angle, and mass)
in which the independent variable (range) is to be maximized. Atten-
tion is focused on cruise at constant Mach number in the stratosphe.e,
and ontransition to and from cruise at constant Mach number. Simpli-
fiad computational solutions have indicated the existence of transonic
and supersonic Mach number limiting, or constant Mach number cruise,
for range optimal trajectories [1 ] . By use of singular perturbation
techniques and the minimum principle of Pontryagin, approximate
analytic solutions are obtained as asymptotic expansions in three sep-
arate segments of the problem: cruise, and transitions to and from
cruise, and these segments are matched to form a single solution,

valid from initial through final conditions.

1.2 Maximum Range in Cruige

The problem of evaluating maximum range in cruise is of funda-

mental importance to the degign of any aircraft. It can not be separated

1
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from the basic choice of mating a power-plant, with its thrust-producing
and fuel-consuming characteristics, to an airframe with its lift and drag
characteristics in cruise and its fuel-carrying capability. An airframe-
power-plant combination will have one best altitude fcr cruise and one
best velocity for cruise, At that speed and altitude the rate of consump-
tion of fuel with respect to range is minimized. The aircraft must, of
course, be able to maintain equilibrium flight at that altitude and velocity.
The choice of the optimum altitude-velocity combination requires an
iterative approach. At a trail point drag can be calculated. Referring

to the engine characteristics (maximum thrust as a function of altitude
and Mach number) one can determine if there is enough thrust available
to balance the drag in equilibrium flight. If there is not, the trial point

is not valid. For a valid trial point the fuel consumption, in pounds per
second, corresponding to the required level of thrust is divided by velocity
to give the parameter, pounds of fuel per mile, which is to be minimized,
The minimum value will correspond to an altitude that is a compromise
between the altitude for the most efficient unpowered flight by the aircraft
(maximum lift-drag ratio) and that for the most efficient operation of the

power-plant at constant velocity.

Cruise velocity should be as large as possible but for gas-turbine
powered aircraft it is limited by two considerations and hence will occur
in one of two velocity regions. trausonic or s'nersonic. For a transonic
optimum the cruise velocity is limited by the beginning of the transonic
drag rise. The rapid increase in drag associated with the transonic
region translates to increased thrust required to balance the drag in
cruise and to increased fuel consumption., For a supersonic optimum

the cruise velocity is limited not by fuel consumption but by consideration
2
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of the maximum temperature that the airframe can withstand [2 |.

Having determined a cruise condition, one can estimate the result-
ing range capability by means of the Breguet range equation. This classic
relation equates range to the product of a powered flight efficiency factor
and the natural logarithm of the ratio of the initial mass of the aircraft
to the final mass of the aircraft after its fuel budget is used up. The
powered flight efficiency factor is a product of the lift-drag ratio (air-
frame efficiency) and the ratio of cruise speed to specific fuel consump-
tion (power-plant efficiency). This relation, of course, estimates range
only for flight at the previously determined cruise condition and in no way

accounts for flight to or from that condition.

The Breguet range equation can be said to represent a one-
dimensional approach to range capability estimation, To derive it one
need consider only the state differential equation for mass, together with
the equilibrium flight assumptions of lift equals weight and thrust equals
drag. A correction factor can be derived to account for the fact that
altitude does not remain constant in Breguet cruise but must slowly in-
crease as fuel usage causes weight to decrease [2]. Only initial and
final mass can be specified. Altitude is essentially a control variable,
chosen at a particular value of mass to maximize the derivative of range

with respect to fuel.

Edelbaum has shown [4 ] that in the larger context of a maximum
range cruise including initial transition to cruise and final transition from

cruise, the Breguet cruise describes the optimal cruise portion for those

»i
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problems in which range is not so short as never to require a cruise
portion. Edelbaum formulates a solution to the problem of range-optimal
climb to cruise and descent from cruise in terms of the energy-state
method, another one-dimensional approach. Use of the energy state
method, described by various authors [1, 4 through 9}, permits changes in
velocity and thereby a complete solution from sea level to cruise, In the
energy-state method normal acceleration is neglected (lift equals weight).

As a result drag is a non-linear function of altitude, velocity and mass,

A recent study by Teren and Daniele {10] has expanded the state
vector of the range-optimal cruise problem to two dimensions, altitude
and mass, while neglecting normal acceleration and holding velocity con-
stant., Thrust coefficient is taken as the control variable. Again, lift
equals weight and drag is a non-linear function of altitude, mass and con-
stant velocity. The problem is formulated as a non-linear two-point
boundary value problem and an approximate graphical method of solution

is presented,

Kelley, Falco and Ball [11] used a four dimensional state vector

(velocity, altitude, flight path angle and mass) in studying various airplane

performance problems including the maximum range problem. They were
investigating the usefulness of the method of gradients in obtaining compu-
tational solutions to these problems, For short range problems their op-
timal result was a boost- glide or bang-bang solution. They reported that
attempts at solving long range problems, which would include a constant

velocity cruise segment, were frustrated by convergence difficuities.

.
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This thesis considers the range-optimal cruise problem with a
three-dimensional state vector comprised of mass, altitude, and flight
path angle, with lift becoming the control variable, Velocity remains
congtant, and so the problem is restricted to cruise and transitions to
and from cruise at cruise velocity. Inclusion of normal acceleration
(equation for flight path angle) means that the effect of lift, as well as
altitude and velocity, on drag is included. Approximate analytic solu-
tions are developed through the use of singular perturbation methods
which, as will be shown in Chapter V, allow the drag force to be ex-
pressed as a quadratic function of altitude, mass, and maneuvering
lift. The equation for mass then becomes a quadratic function of altitude,
flight path angle, mass and lift. The other two state equations are lin-

earized and the resulting optimal control problem is solvable,

1.3 Singular Perturbation Problems

A singular perturbation problem [12, 13, 14] can be described
as a set of differential equations involving a small dimensionless parameter,
say €. The nature of the ¢-dependence is such that if ¢ were to approach
zero the order of the set of differential equations would be reduced. As a
result the boundary conditions associated with the equations could not all
be et simultaneously for a zero value of ¢. Viewed in another way one
could say that the method of ordinary perturbations, involving the expansion
of the dependent variables in power series in ¢, would fail to produce a

solution that would be valid in the neighborhood of the boundary conditions,
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Such problems are often solved by the method of matched asymptotic
expansions, in which a stretching transformation applied to the independent
variable in the neighborhood of the singularity transforms the problem to
one that can be solved by ordinary perturbation methods in that vicinity.
Then these solutions which are valid only in the neighborhood of the singu-
larity can, by a choice of constants, be matched with those solutions that
apply everywhere except in the neighborhood of the singularity to produce
a single solution that will be valid throughout the region of interest of the

problem.

The range-optimal cruise problem seems well suited to formulation
as a singular perturbation problem. It is convenient to think of the prob-
lem as separable into a climb, a cruise and a descent, Certain variables,
such ag altitude and flight path angle,undergo their greatest variations
during climb and descent, but remain nearly constant during cruise. For
mass the reverse ig true, it being nearly constant in climb and descent,
but varying most during cruise. Thus the problem is largely describable
in terms of mass variation at nearly constant altitude and flight path angle
except in '"boundary layers' near initial and final time, We may think of
muss as having its own characteristic time which is different from that
of altitude and flight path angle. This characteristic of the problem makes
it likely to be describable as a singular perturbation problem and offers
the hope of yielding an approximate analytic solution that is uniformly valid

over the entire time interval of the problem,
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Interest in singular perturbation methods as applied to problems in
aircraft dynamics begins with Ashley [15]. Drawing on an earlier work
by Kevorkian [16] on reduced-order modelling, Ashley was able to dem-
onstrate the separation of aircraft longitudinal dynamics into the short
period and phugoid modes on the basis of the wide separation of their
characteristics times. Kelley and Edelbaum [ 6] explored the idea of
using singular perturbation methods to obtain a first order improvement
to the energy-state solution to some optimal performance problems for
airplanes. They thereby avoid the unrealistic instantaneous changes in
altitude and velocity that occur in energy state solutions. Kelley also
has suggested the use of singular perturbations in two-point boundary
value problems and in reduced order modelling of aircraft performance

problems [17, 18, 19],

Kelley's objectives were to find reduced order approximations to
certain airplane performance optimization problems that could still be
related to the higher order computational solutions. These reduced order
solutions could serve either to provide ingights to improve the computa-
tional solution or as good approximations in themselves to the higher

order computational solutions.

This thesis carries forward the ideas of Kelley and Edelbaum by
setting up and solving the range optimal cruise problem as a singular
perturbation problem. The perturbation parameter is developed naturally

out of the parameters of the problem. The resulting solution is easily

*5

[EETE



related to lower order solutions and the nature of the solution gives in-

dications of why the computational solutions are difficult to obtain,

1.4 Chapter Summary

Chapter II presents and solves a problem similar in form to the
state equations of the range optimal cruise problem. The solution of
this problem demonstrates the techniques of solving a singular perturba-
tion problem by means of stretching transformations applied to the in-
dependent variable in the vicinity of singularities (boundary layers) and

matched asymptotic expansions.

Chapter III shows that the range optimal cruise problem can be
expressed as a singular perturbation problem with singularities occurring

at the initial and final state.

In Chapter 1V a gsolution is obtained to the problem of cruising
flight which is valid everywhere except in the vicinity of the singularities,

It is shown to be the Breguet solution.

In Chapter V a solution is developed that is valid in the vicinity of
general initial and final conditions but fails to be valid elsewhere. The
solution is obtained by applying the minimum principle after expressing
the problem as a linear optimal control problem with a quadratic cost.
An optimal control is obtained and the optimal state trajectories are
matched asymptotically to the cruise solution, A corrected Breguet

equation is developed, accounting for fuel penalties (or bonuses)

Oy ¥ monins 2




associated with achieving initial and final conditions.

Chapter VI presents a cost comparison of the optimal {rajectory
with trajectories using various non-optimal controls in the near vicinity
’ of cruise, It also studies the control as a sub-optimal control over large
changes in altitude. Applications to several different aircraft are

discussed.

Chapter VII presents the conclusions and contributions of this thesis

and suggests possible future work related to the thesis.



CHAPTER 11
SINGULAR PERTURBATION PROBLEMS

Singular perturbation problems and the technigues of solving them
are most easily presented by formulating and solving a demonstration
problem. The demonstration problem used here is chosen for similarity
to the state equations of the range optimization problem. It is adapted

from O'Malley [13].
Consider the following set of differential equations in x, y, t and ¢
X = y (2.1)
€ * -x-y (2.2)
where ¢ is a small parameter, Initial values of x and y are specified
x(t=0) = a (2.3)

yit=0) = b (2. 4)

It happens that this set of equations could be solved directly in terms

of ¢ to give the result

+r1t +r2t
x(t) = c,e + cye (2.5)
+r.t +r2t
y(t) = rc,e + rycee (2.6)
where
ry o= -_21_[14-'\/1-4(] 2.7
€

10
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rg * -5 [1-V1-4¢] (2. 8)

rqa-h

¢y = RN (2. 9)
ra- 1y
-r1a+b

Cg * ————— = a-¢, (2.10)
rg-rl

In cases where the equations can not be solved directly a useful
technique is to assume that the dependent variables can be expanded in

power series in ¢

x(t, © = xg() + ex;(t) + e2xylt) (2. 11)
Y, © =y + ey ) + ey, (2. 12)

where the X, and y; are functions of t only and are independent of .

At this point some terms will be defined as they relate to this thesis.
More rigorous definitions of thes» terms can be found in [14]. Consider

the sequence
€, c2. <3 (2.13)

As ¢ -~ 0 each term is small relative to the one preceding it. Such a
sequence is called an asymptotic sequence. OQur expansion for x(t, €)

(and y(t, €)) is a series of functions of time weighted by successive terms
of the asymptotic sequence in powers of €. If, as ¢ =0, each term of the
expansion is small relative to the one preceding it, the series can be called
an asymptotic expansion, If in some domain of interest, D, the series is
an asymptotic expansion for all values of t within D, then the asymptotic

expansion is said to be uniformly valid within D,
1
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Now our solution technique calls for the asymptotic expansions for x
and y to be substituted into the original equations. The resulting ser.es
expansion of the left hand side of each equation must equal the series ex-
pansion of the right hand side of the equation. Since the X; and y; are in-
dependent of ¢ and since the expanded equations are valid for all small ¢,
the coefficients of a given power of € on both sides of an equation must be
equal. The zero order problem (coefficients of 60) is solved first. The
first order problem is then solved in terms of the zero crder problem,
etc, This is the approach of ordinary perturbations. For it to be suc-
cessful the resulting solution must be uniformly valid in the time domain

of interest.

Proceeding with our example, the expanded equations, to first
order in ¢, are

X + e:':l = yot €y, (2.14)

€y = -(xg*y)- elx; +y,) (2. 15)

The zero order problem is

;‘o = ¥, (2.16)
Xg+ ¥g = O (2.17
Xo(t=0) = a (2.18)
Yolt=0) = b (2.19)

12
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Its solution is

-t
xo L] c3e (2. 20)

Yo * -=gt (2,21)

X, oty (2.22)
90 T ew ty, (2.23)
x,(t=0) = 0 (2. 24)
y,(t=0) = 0 (2.25)

The result for Yo is now used in solving the first order problem

-t

Xy + ¥, = -cge (2.26)
Differentiating and substituting for :'cl
y oty = cge (2.27)
-t -t
Yy ® cq¢  + cgte (2.28)
X, = -cse’t - cpet(1+t) (2. 29)
1 4 3 :

Summarizing for x and y we have a solution to first-order in ¢ or

to two terms of the expansions

t

X = c:‘let - €l + c3e't(1+t)] (2.30)

t t

y s -Cse- + ‘[ 043. + C3te-t] (2. 31)

13



Now it is obvious that for ¢ = 0 this solution cannot satisfy general
initial conditions on Loth x and y. It can only satisfy one of them, and re-

quires that the other be equal to it.

a ®= -b (2, 32)

For any other initial conditions, one of the variables, say y, mus:
make an instantaneous jump at t = 0+ from its true initial condition to
the value -x(0) and that jump is not necessarily of order ¢. That is, at
x = 0 ve must have y - o go that we cannot say c}" -0as ¢ ~0. Borrow-
ing a term from similar problems in fluid mechanics v~ refer to this
singular region as a boundary layer. Tbe width of this boundzry layer is

of order ¢. Outside of this boundary layer, that is, for
t>ez20 (2. 33)

the solution is valid.

Such problems, for which ordinary perturbations fail, comprise a
large class of singular perturbation problems. A direct way of identify-
ing this kind of singular perturbation problem is by the fact that for ¢ = 0
the order of the system of first order differential equations is reduced.
Ins:ead of two differential equations we have one algebraic and one dif-
ferential equation. That means a reduction in the number of constants
available for meeting boundary conditions and hence a failure to be able

simultaneously to satisfy all boundary conditions.

In order to analyze the region in v'hich our solution fails to be valid

it is useful to ""stretch' the independent variable by the transformation
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—— (2. 34)
€

with the differential relationship

14 .45 (2. 35)
¢ dr dt

We can think of this device as allowing us to view the problem on a faster
time-scale as, for example, one would change the time-base on an ascil-
los..ope to reveal an initial transient in what had appeared as a square

wave. The transformed equations are

._d_x = €y (2.36)
dr
d ¢ = x-y (2.37)
dr

Again we expand dependent variables in powers of € and group

corresponung powers of ¢

—x, = 0 (2. 38)

— ¥ = X" Yo (2, 39)

— X, Yo (2. 40)

— yl = -xl - yl (2.41)

15




The initial conditions are

xo('r = 0) = a (2. 42)
yo(r =0) = b (2. 43)
x,(r=0) = yi(1'= 0 = 0 i=2,3 ... (2. 44)

Notice that the transformed equations comprise a regular perturba-
tion problem. In solving this problem it will now be possible to satisfy
the boundary conditions. It is also important to notice that the transformed
equations can be solved. If they cannot be solved, or if the untransformed
equations cannot be solved, then the boundary layer transformation is of

no value, since solutions of both problems are required.

The zeroth order problem is solved directly as

Xy = kg (2. 45)
= ke T-k (2. 46)

Yo 1€ 0 .

The first order problem i3 solved as

d - -T _ .

d—‘r X, kle ko (2.47)

X, = -kle’T - koT + kg (2. 48)

d = - -T -

d-—T’yl yyt ke Tt koT- ky (2. 49)
= - -T -T

Yy (ko + kz) + ko-r + klfe + k3e (2. 50)
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Now it is possible to satisfy initial conditions to zeroth order in ¢. -

From the zeroth order solution we have

ky = a (2.51)
kl = a+b (2.52)
The first order solution yields | *
k2 = a+b (2.53) i
k3 = 2a+b (2. 54)

Now we have a solution to first order in ¢, nr to two terms of the

expansion, that is uniformly valid in the boundary layer.

x = atefai-T-eN+b1-e 7N} (2.55)
y = -al-eNH+beT+¢lal-2+7+2 T+ e T
+b(-1+ e T+e N (2. 56)

The problem now is to reconcile this solution, valid in the boundary
layer, with the previous solution, valid everywhere in the region except
the boundary layer. It is common to call the boundary layer solution the
inner solution. The other solution, which is valid everywhere in the region
of interest except the boundary layer, is called the outer solution, In the
problem of maximizing range in cruvise there will be one outer solution
(cruise) and two inner solutions. The first inner solution will describe
the problem in the neighborhood of the initial conditions. The second

inner solution will describe the problem in the neighborhood of the final

conditions.

17
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In our demonstration problem the inner and outer solutiins are com-
bined t give a single uniformly valid solution by the technique of matched
asymptotic expansions. The solutions are not matched at a point as one
would match boundary conditions. Matching is based on the notion that the
inner solution, valid in the boundary layer, and the outer solution, valid

ouiside of the boundary layer, must both be valid in some overlap region.

The inner solution is now extended to a form that it approaches
beyond the boundary layer. First the independent variable is transformed

to that of the outer solution
ot
r = < (2.57)

The solution is then expanded in powers of ¢. The resulting expansion is

called the outer expansion of the inner solution.

The outer solution is now extended to a form that is approaches as
it approaches the boundary layer from some large value of t. First the

independent variable is transformed to that of the inner solution
t = er (2. 58)

The solution is then expanded in powers of ¢. The resulting expansion is
called the inner expansion of the outer solution. By suitable choice of the
undetermined constants of the inner soiution it will be possible to make
the inner expansion of the outer solution identical, up to a certain order of

¢, to the outer expansion of the inner solution,

First we evaluate the outer expansion of the inner solution, Using

the transformation (2. 57) we have
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x2 : aq-p + efa+b](1- e t/€) (2.59)

yi2 s cat-n + [a+bleV€a+n

-t/()

-€[2a +b) (1 -e (2, 60)

These equations are expanded in powers of ¢, and in the limit of small ¢
the exponential terms are vanishingly small, Using notation similar to
that of O'Malley we write the outer expansion to two terms (order zero

and one in ¢) of the inner solution to two terms as a function of t and ¢ as

[ x(t, :)izl °2 . a1-t) + ela+b) (2.61)

)iZI 02

[y(t, € = -all-t) - ¢(2a+Db) (2.62)

Now we evaluate the inner expansion of the outer solution. Using

the transformation (2. 58) we have

x%% = c3e'" - ¢c4e_T - €cg(l + erle €T (2.63)

y°2 = -c3e'" + tc4e°" + czcsre' €7 (2.64)

Expanding in powers ot € we can write the inner expansion to first order

in ¢ of the outer solution to first order in ¢ as a function of v and ¢

2. i2 .
[x(r, ©°°] " cy - €legr + cpe T+ cg) (2. 65)

02] i2

[ytr, © -c3 * elegr + cy) (2. 66)

Transforming back to functions of t we have
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[xtt, 0211 = cg1- ) - eleg + ¢, (2. 67)

)02] i2

[y, € = -cgll-t) + e, (2. 68)

Now, the condition for matching is that

[xt, €0°2) ¥ = [x(t, &)'%] °2 (2. 69)
[yt, 0°%] 2 = [yit, )t3) ©2 2. 70)

This is accomplished if we select the constants Cq and ¢ 4 38
=2 a (2. 71)

Cy * -2a-b (2. 72)

Now we can proceed to write a composite solution for x and y in
terms of t valid to first order in ¢ throughout the region of interest., To

begin with, this solution will be the sum of the inner and outer solutions.

However, that implies doubly describing the variables in the overlap region

where matching takes place. To remove this effect we subtract out the
inner (or outer) expansion of the outer (or inner) solution. Finally, for

our composite soultion we have

xt, 0% = xtt, o + xit, 0°2 - [xt, 0?1 °%  (2.73)

xmcz t

a(l1 - t)+ efa+ bjQ1- e't/c) + ae’
-t -t’e
-ea(l+tle + ¢2a+ble -a(l-t

- ¢(a + b) (2.74)
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y(t)C2 = -a(l1-t)+[a+ b]e't"(l +t)
-e[2a+ b1 - et L aet. e[2a +ble
i

+ cate't + a(l-t) +¢(2a+Db)

These solutions simplify to

- -t/ -
ae’t + fae V'€ a1+ net)

x(t)S2

y(t)cz (a+ b)1+ t)e't/‘ -aet1- ety

- ¢[2a+b)(et - ety

-t

(2. 75)

(2. 76)

(2.77)

It i3 evident that these composite solutions satisfy the initial con-

ditions exactly, For other values of t the error between these solutions

and the exact solutions given by (2. 5) and (2. 6) will be O(cz).
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CHAPTER III
THE MAXIMUM RANGE PROBLEM AS A SINGULAR
PERTURBATION PROBLEM

In this Chapter it will be demonstrated that the state differential
equations of the maximum range problem can be formulated in terms of
a small dimensionless parameter, ¢, and that in the limit as ¢ approaches
zero, the order of the problem is reduced, Some assumptions that are

used to simplify the equations are discussed and symbols are defined.

The state differential equations for altitude (h), range (r), mass (m)

and flight path angle (y) are, respectively

h

= v giny (3.1)

r = v cosy (3.2)

m = -——(SFC) (3. 3)
g

y- B (RI:E - cos) (3.4)

Equation (3. 4) incorporates the conventional assumption that the component

of thrust (T) in the direction of lift (L) is degligible [1].

True air speed (v) is assumed to be a constant, The constant speed
cruise condition is predicted by range-optimal energy state solutions [1 ].
It will occur either at the transonic drag rise or at the maximum supersonic
Mach number. This assumption means that the problem is restricted to

cruise and to constant speed transitions to and from cruise. It also means
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that thrust is no longer a control variable. Instead its value is constrained

to be such that v remains constant
T = Wsiny+ D (3.5)
Aerodynamic drag, D. is described as follows
D = CDSq (3.6)

The wing area is S. The drag coefficient, CD' is assumed to be the sum of

a profile drag coefficient, or drag coefficient for zero 1lift, CD , and 1 term
o

proportional to the square of the lift coefficient, The proportionality factor,

K, is the coefficient of induced drag. Both CD and K are functions of Mach

[¢]
number,
C., = C. + KC2 3. 7)
D D, L :
KL2
D = CDSq+—-——- (3.8)
0 Sq
wur2 2
D = CpSa+ KWwe(1 + v (3.9)
o Sq
The dynamic pressure, q, is
L ov? (3. 10)

q = 5 pv
and if we restrict our problem to the stratosphere we have an isothermal
atmosphere and two simplifications result: atmospheric density, p, becomes

an exponential function of altitude

- B(h - hi)
P = pi€ (3.11)
and the speed of sound becormes a constant. Mach number is therefore a

constant in view of our agssumption of constant v, and CD and K are also
o)

constants.
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The control variable, u, is defined as

L
T (3.12
W )

Specific Fuel Consumption, SFC, is assumed to be describable as a

function of thrust coefficient, CF’ where

CF [ (3.13)

It has been shown in [ 4] that SFC is a function of Mach number, power
setting, and atmospheric temperature. Since our problem is restricted to
constant Mach number flight in an isothermal atmosphere, SFC depends
only on power setting, or CF' The nature of this dependence is shown for
typical transonic and supersonic cruising aircraft in Appendix A. In this
problem we assume that in the vicinity of the cruise value of CF we can

express SFC as a linear function of CF

dSFC

SFC = SFCc +( )(CF - CFc) (3. 14)
F
We can also write SFC as
SFC = C + c1CF (3.15)
and, defining a constant, y, as
¢
y = —C (3.16)
<, D,
we have
C
SFC = col1+y F (3.17)
C
D,
24
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The constant, y, is a measure of the slope of the curve of SFC as a function
of CF‘ It recurs throughout the rest of this thesis in connection with the

description and derivation of the optimal solution,

We now define the following dimensionless variables

AH = g(h- h*) (3. 18)

Q = WJT (3.19)
S cDo

M=Mi-m (3. 20}
m:.\

R = rﬁ (3.21)

where B is che scale height of the atmosphere and the asterisks denote
reference values. For mass the reference value will be the initial value,

m,. It is now possible to express weight as

W = Wi(l - M) (3.22)

and drag as

2 2
(1-M) ‘21 + u) (3.23)

D = VJi CDKQ1+
[¢] (q'

The reference value of q is the value that minimizes the expression
for drag in equilibrium flight, that is, when T 2= Dand . = W (u = 0).

Differentiating (3. 8) with respect to q and solving for a we have

w oK (3. 24)
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Since L = W and v {8 constant in equilibrium flight, this equation defines
the altitude for maximum lift-drag ratio. Also, since & is a ratio of two

dynamic pressures, we can express it as

%%gmg
Q = (3. 25)
_l..poe-ah*vz
2
e
Q = e Bh-17) (3. 26)
Q = e 4H (3.27)

Thus, from (3. 19) and (3. 26) we have tied the reference altitude to the
reference weight, The reference value of altitude is the altitude for the
maximum lift-drag ratio attainable at the initial value of mass. At that

altitude we have
AH = 0 (3.28)
Q=1 (3.29)

Now if we express the state equations in terms of the dimensionless
variables AH, R, M and y, and convert from time to R as the independent

variable by dividing by the equation

dR u
L. B 3.30
3t = cosy ( )
we have
dAH | ..+
=& Br* tany (3.31
dR
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o ar*(._.g )(”“ i 1) (3.32)
dR Bv2 cosy

am | " (W*‘W +D ) (1 s o1 —T-)sec)‘ (3. 33)
R v W, o Sa :

Since o has ‘he dimensions of SFC, namely inverse seconds, the

quantity (v/co) is a distance. We can therefore define r” as

v

o

r 0 =

(3. 34)

Velocity will be on the order of 1,000 ft/sec, and typical values of ¢y are

about 0.0005/sec [1, 10, 20 |, so r* will be on the order of 2 x 10° ft.

In the stratosphere, B~ ! can be taken as 20, 800 ft [21]. Therefore,

Br*, or -BE‘L , is dimensionless and its value 18 on the order of 100. We
0

therefore choose its inverse as our perturbation pararieter,

(3. 35)

It will be shown in Chapter IV that this parameter can be related to the

cruise flight path angle, In fact, for y = 0 we have
L
a = 3.36
¢ [7(0) (3.36)
cruise
Finally, in the equation for flight path angle we shall use the follow-

ing definition

a» By (3.37)
gv
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This parameter is much larger than ¢. In fact it can be related to Mach

number, ., and hence is on the order of oue.

2 1/2
Mow (kg BVT/R) (3.38)

where kair is the ratio of the specific heat of air at constant pressure to

that at constant volume and has a value of approximately 1. 4.

The state equations can now be written as follows

dAH 1
—=_ = - tan 3.39)
T < v4 (
dy ., af1*tu (3. 40)
dR €\ cosy
. c
dM _ [(Wsiny + D 1 7T
1+ — — 3.41
& () (g &) e @40

It is seen that in the limit as ¢ approaches zero the differential
equations for y and AH become algebraic equations defining ¥ and u as
zero, and arbitrary initial conditions on ¥y and A H could not be met, That
is, for some non-zero initial value, y would have to go to zero in a zero
interval of range. It will be shown later that optimality consideraticns fix
the constant value of AH which would also have to be achieved in a zero
interval of range. Thus by demonstrating a dependence on ¢, a reduction
in order in the limit as ¢ approaches zero, and an inability to match given
initial conditions in the limit as ¢ approaches zero, we huve demonstrated
thai the state differential equations of the maximum range problem can be

formulated as a singular perturbation problem,
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CHAPTER 1V
MAXIMUM RANGE CRYUISE AND THE BREGUET RANGE EQUATION

We now develop the outer, or cruise, solution. If in the state
differential equations we assume that we can use a serieu approximation

to two terms for trigonometric functions of y, we have
tany = ¥y (4.1)

2
cos'y=l-22- (4. 2)
Using these approximations and substituting fcr T, W and D from (3.5),

(3.22) and (3. 23), the state differential equations become

= ?1., (4.3)

%%= %(u+§) (4. 4)

. 2 2
dM _ | (1-M°(Q+u y  (1-M)y
= {|1-M)y+/C. KQ(1+ 1+
dar {L D, ( Ry )][ oK w
(o]

sy (S 0] (05 )

Q

The optimal control problem is to find the control, u, that
transfers the state (AH, v, M), which is defined by the above three

equations, from a given initial value, (AHi, Y Mi) to a fixed final value

(AHf, Vg Mf) while maximizing the final value of the independent variable,

Rf.
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We can write the variational Hamiltonian as

< v, () +Dagr ooy Lo - wy e Tp R (@

+ é(l-M)z(lm)z)}[l+—3l') -y +y(1+“ -m)° (lm)z)](u_z.)}
o (4.6)

Expanding the state and control variables in powers of € we have
d _ajf 1 2 2/ 1 2 1
aroten) = 2tz v ) et rgn + ¥ (gt n  tapm)) @
(8Hy + €aH) = 1 () + ey + €2yy) (4.8)
aﬁ 0 (TR T £ y

It is already apparent that

up = -21-702 =0 and (4.10)
d -
% ° 0 (4.11)

which implies that

u = 0 (4.12)

also. Therefore
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1-M,.) (1-M,.)°

ar Myt eM)) = {‘/FI_);K [Qo‘“‘—QBo— [“y (1 +_g_)]}

Q

) - (1-Mp)? r/
+e{n a-My)1+2y (l +—57—)J +alQy v EfDOK L1
0

2 2 2 2
a-M_)° - . a-Mm,) (1-M,) (1-M_.)
0\ L./ 0 0 o
0 0 0 (]

QLK a-mp? ( (1-M0)2)] . 1-My)? 0 u-MO)zX}
+M -2 14y (1+ -2y +
1 T=m, L Qg2 | QZ o Q.

(4.13)

Fhe costate differential equations are

2, ..
A, = e B g 1 ) 2

(1-M)y

./CD K

(o]

2 .
+y (1 +(1—'1\§)—(1+u)2)] + 1L17 [_(I-M)-y +JC'I)—K (Q
(o]

Q

+ &(I-M)z(lm)z)]b oy “;gﬂ +y (14 “_‘V.‘}lz. a+?)]

+ 2y [1-M)y+/CL K (Q+é(1~1\1)2(1+u)2)](—CL-)(%3’1 (1+ _'53)}
(o] ,,/ R

Do (4.14)

LR {"MVCDOK (1- ugﬁ a+w)?) 1+ L (l-g)v

+y(

Q JCp K
o

2 .- -
1+ %”g-)—um)z)J + 2y L0-My + TR (Q
(o]

a2 - _ _niye 2
paM? 2y B{l)y_zy‘lal‘g)_]}@)(u!z_) (4.15)

Viorn S
[0}
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a% Am = - {"M [‘7‘ 2. CDOK (&Qw)m“)z]l.“ ﬁ (I“QM) Y

0

+y(1+ (‘—Q"i)2 av?) ]+ ay [-M)y +/Tp K (@

+ & a-mPasn?)]f- Jt_l__i%_zyu M) (112} 0+ ) 4.16)

D
2

We wish to find a control, u, such that

AN
X =0 (4.17)

Performing the indicated partial differentiation of (4. 6) we have

ax . 2
(o]

2 -
vy (1+ ‘ic‘sl‘z'”—mu)z)] +2y[1-M)y + /T3 K (Q
o}

+ 315 (1-M)2(1+u)? )] (4w (1+ -‘;-) (—lg‘z"-ﬁ} (4.18)

Now expand the state, costate and control variahles in these

equations in powers of €. In doing so the following relations are used
Yo = Yo"y 0 (4.19)

- ~AH ~€¢AH
Q= Qy+teq=edF-e 0 T loq (- can (4. 20)

and, as a notational convznience
1-M

o2 - x (4. 21)
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The following expanded equations result

d o o[, i i
TR Ay0t Ay = "gdyo * € {*a ak, 71~ Mo 1-Mp! 11

2

2y XD e{-hyp -a0 1y +A07,) - Ay (-MgIl1
2 2. 2

+ 2y (1+x7) - 071[_\( RQO(1+x JO+y(Q+x ))]

2
X"y 2 2
+ 2 Qg + Ay My 142y (143x)] = Ay g Ay (1-Mg {4y x 1}
" (4. 22)

d
a® Ao *erm’ = Amo YCn K Qo [1-x2)1+y(142)
- 2yx (1+x )]"‘E {XMI \fi R QO L(] x )(1+}(1+X ))

- 2yx’ (14 )] “AohQpHx + \yo VCp ': Qp aH, |

- (D) 14y (1452 ) -8yx ]+AM0 /F‘—R Ml(2x)[l+y(2+6x2)]}
(4.23)

d ) . 2
+€{A 2x JCR [142y(14x2)] + hwr iy, [142y+6x°y]
MI* VD Y *M0”1 : y
+ )‘MO./——CD' K AH, (2x) [1+2y+6x°y]
- Ao V/C ,/‘“—‘ ( )(2x)[1+2v+6x y]} (4. 24)
=M,

SR TN | 0
el + Qg = lan g+ P an

. 2
+ Ao [zxﬂfz‘—‘RDo (1-M,) (1+2y{1+x ])]} (4. 25)
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Similarly we can express the expanded Hamiltonian to first order in € as

1-M,)

X

= =4 2 2
Y 4 .tb + c.;rl = { 1+ )‘H071+ AMO ./CDOR (1+x%) [1+y(1+x )]}

1.2 . 2 2
te {"Ho"z g tai, (gt g ! )”‘Ml Cp OK Qq (1+x")(1+y(1+x™))
2 2 2
+ XMOYI(I'MO)II*‘zY(l"’X )]+ AMO JCDOK QOAHI [(x®-1)(A+y}(1+x"))

+ 2yx2(14x°)] - oM (2x VTG R) 142y (14x?)]} (4.26)
()
Now from (4.25) we must have

)\70 =0 (4.27)

Also, in order to satisfy the expanded canonical equation for A y we

must have
XHO =0 (4. 28)

For these costates to remain zero over a non-zero interval of range,

their derivatives must also be zero. Consider first XHO

d -
4 Arn = An VO K Q. [(1- x2)14y(14x2)) - 2yx2(1+5:2)] (4. 30)
dRr *Ho ~ ‘Mo D, ™0 y .
_ 4 2
0 = 3yx + (1+2y) x” - (1+y) (4. 31)

The positive real solution to this equation is

“1-2y + /1416y + 18y°
x = 4
6y
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It also will be useful later to express y as a function of x

2
1-x) (4.33)
(3x% - 1) (x% +1)

Figure 4.1 is a plot of x vs y for physically realizeable values of y.
Since y is the product of CD and the slope of SFC vs CF, y can never
be negative, Negative CD ios impossible in any case and a negative
d(SFC)/dC would result '31 a '""chattering' solution: the engine could
be cycled on and off in such a way that its duty cycle would achieve

minimum SFC. Therefore, x remains less than or equal to one, and

other branches of this curve have no meaning for this problem,

The fact that x remains less than nr equal to one means that the
optimal initial crvise altitude is below or at most equal to the optimal
glide altitude, which is the altitude for maximum lift-drag ratio. This

is seen from the definition of x when R is zero

+aHg;
x = (1- MOi)/QOi = I/QOi = e (4. 34)
or
1
LAH.. = Lnx — < x s 1 (4. 35)
0i ~/T

and from the definition of AH as the normalized altitude difference
measured from the altitude for maximum lilt-drag ratio. Therefore,
the value of x given by Eq. (4.32) specifies an altitude at which the
product of 1/(SFC)O and lift-drag ratio has been maximized (to zero
order in €) and this is lower than (possibly equal to) the altitude that

corresponds to maximizing only the lift-drag ratio.
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Using the optimal value of x, a constant, it is possible to solve

the differential equation for M0

M, - ./C‘T (1-My) (x + D) 4y ) (4. 36)
(1-i~x2
= (1 -M )ZXA/C —2—— (4.37)
o (3x -1)
-2x «/C;R'(Hx )R/(3x -1)
1-M, = ce o (4.38)

and the constant, ¢, is 1 so that M0 is zero when R is zero. And now,

since
* -AHO
1- MO = xQO = xe (4, 39)
we have
AH. = 2xJC K —2-—‘“"2) R+ 4 (4. 40)
0 X Do (3x -1) 7 X .

which implies that

1+
v = =y R (4. 41)
which is a constant, implying that
u, = - l‘y (4, 42)
2 2N ik

Notice that initial values of Y0 and AHO are fixed, and cannot be matched
to arbitrary initial conditions. Alternatively it could be said that from
arbitrary initial conditions y, and AH, must move to their optimal values
in a zero interval of range, thus demonstrating the singular nature of the
problem in the vicinity of initial conditions,
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Finally, the equation for Mo can be written as

-YIR
1- MO = e (4.43)

Another way of defining 2 is as follows

% = JCp K (x+3)+ya+x%] (4. 44)
_DRAG, - , SFC
. () 57y

This will be useful later in developing the Breguet equation. In this
form (]Lj\) and (SFC)0 refer to the zero order problem, in which 1ift
0
equals weight and thrust equals drag. Since the cruise flight path angle
is €y, to first order in € we see that € can be expressed as
C - -
0 \| L
€ = (apc=) LY (4. 46)
( 0> L <]5>0‘]BR'EGUET

If y=0, this expression is further simplified by the fact that co" SFCO.

Concluding now with the zero-order problem we have from the

condition that .#, = 0 that

0
-1 +).M0\/CB;'IT(1-M0)(\x +Da+ya+d=o (4. 47)
- 142y % 1-Mg) = 0 (4. 48)
Ao (;'_1) RS (4. 49)

This result is consistent with the canonical equation for )‘MO which

states that
d - T—K 2y =
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Now using the optimal constant value of x and resulting expression

for M0 it is possible to solve the differential equation for M1

d 2 .
I M, = % (1-Mp) 142y (1+x)] + aH, Q, JTR’DO [(x2-1) (1+y 1+x%))
J/Cp K
2 2 [¢) 2 2
+ 2yx” (1+x°)] + M, = [-2x° (1+2y (1+x"))] (4,51)

From the optimality condition on x the coefficient of AHI is identically

zero. Using the definitions of N and l-M0 the equation becomes

2 -y R
&M - n e 17 M (4.52)
2xJC_5_K
o
+'y1R
An integrating factor is e and we have
2
-0 R y
M, = e 1 [S—-l—-— dR+c] (4.53)
2x ./CD K
o
"Nk - 712R \ 9
M, = e L(—————z ) + My, (0) ] (4.54)
x,/C~ K
Do

The constant of integration is not necessarily zero. It represents a

first order initial value of mass in cruise,

At this point is is possible to develop the Breguet range equation.
However, first we shall investigate the first order necessary condiilions
for optimality and determine AHI’ Yo and Ug,. The condition that the

derivative of Ayo must be zero requires that

2
= Ay = Ao (1-Mg) 142y (14x%)) = 0 (4.55)
- 1
le - = (4.56)
2x~/CD K
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This is a constant and hence its derivative must be zero
_ 2 2 2 2
0 = A vCp K Qp [(1-x7) (1+y (1+x%)) - 2yx® (14x%)]
o

- Aoy Q 4957 * Ay /Cp K Qp aHy [-(14x?) (14y (1+x2))-Byx?)

2
+ >‘MO 2x‘/ZEDOK M1 (1+2y (1+3x7)] (4.57)
Here the coefficient of >‘M1 is equal to zero at the optimal value of x.
3
x Ty 2 2,4
0 =- + &H, [-(1+x%) - y(1+2x"+9x™))
./CD K
o
2 M, 2
+ 2x - (1+2y (1+3x™)) (4.58)
0

0 = -ayx° (-x’) - 2x° VTG R aH, (-3x* + 6x% +1)
[o]

+ (2x2 VT R My, (0)+ x 712R) (-3x? +6x2 +1) (4.59)
[o]
712 R 2x yl(l-xz)
aH, + My, (0) (4. 60)

2x./zfD R “/CD K (l+6x2-3x{)
o o

This implies that

2

4!
Yy ¥ ——a— (4. 61)
2x \/CD K
(o]

Again this is a constant, From comparing second power terms in the

expanded differential equation for ¥, we must have

d
HR'YZ bt u3+7172 =0 (4,62)
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ug = S S (4.63)
2x /T, K

It is now possible to determine >‘Ml from its equation

M
d _ 2 1
mel = 7IXM1+ )\Mo (1+2y+6x"y) L71+ 2x ./ CDOR (AHI' l_'Ma)] (4, 64)

- y R
An integrating factor is e 1 , and we have

+9.R -
e 1 B L+ (1+2y+6x2y) Ll

"

A1

2x./C.. K

+ Do ( 20 ) (1-x°) ]dP] (4. 65)
. 2 4 ' *

n A/CD K’ (146x° - 3x")

+v R 2
it e et 5—R] (4. 66)
(3x°-1)

Now the {irst order term in the Hamiltonian becomes

. 1N, 2

ML T Mn Ay -Mg) /T R (x+2) 4y a+x®)]
2 T

+ Ayo¥y (1-Mg) 142y (14x°)) + xMOa-MO)./’_RcDO AHﬂ_x-;) a

+y (1+x2)) + 2xy (1+x2 )] - >‘M0M1 2x ‘/E:D K [1+2y (l+x2)] (4.67)
)

The coefficient of AHl is zero at the optimal value of x, and the

remaining coefricients are more conveniently expressed in terms of 7N

2
1
Ky = A Yy FA(1-Ma) ¥y + Ay n(1-M ) —————— - A M.y (4,68)
1 H1"1 "Ml 0" 1 Mo OZXFD—R- M0T17M
(o]

Substituting for AHI’ le‘ l-Mo, AMO’ and Ml from (4.56), (4,66),
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(4.43), (4,49), and (4.54) we have

2
y %R ¥ y; R
2x./CD K 2x~/CD ¢ 2xA/CD K 2x,,/CD K
o] (o] o o
7(’1 =nec- Mlb(O) (4. 70)

and for .Wi = 0 we have

M,, (0)

c = (4.7
"b
This constant originated in (4. 66) so we now have for )‘Ml
7,2 R M, (0}, +v%.R
P i P (4. 72)
2"~/CD0“ N

Finally, "71 can be determined from the condition that (.If’u)o =0 as

follows
. 2., _
"‘71 + AMo (l-Mo) 2x./CDOK [142y (1+x)] = O (4. 73)
and, substituting for >‘M0' MO' and Y, we have

xyl=-

] P

(4. 74)

We have now satisfied the necessary conditions for optimality to
first order in €. Figure 4,2 is a diagram of the sequences that led to
the zero order optimal solution. Figure 4.3 is the g~ me ior the first
order optimal sclution. An arrowhead from one box .o another indicates
that the information in the first box leads to the conclusion in the second.
A summation oi two arrowheads indicates thai two information sources
are necessary to draw the indicated conclusion. It doe : not indicate a

summation of equations. 42
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d | a. . > -
dgRoH_1=0 Y =0 ﬁ arY0=0 . ul-O
; —
arr-170 > Yo =
(”U'—1=0 RY0=0

L 4 * R}
a%')“yq =0 RH0=0 > agﬁ)‘mfo o] x = fly) = const.

d =
(TR h‘o = f(x, Mo)

Ho = 1o Mg 10 ¥o} = 0

Figure 4. 2.

IERE!
B | ] j
y

OHg = fMg, ) —]  AHg = HR)
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Zero Order Optimal Quter Solution Sequence
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- — =1

(o = 0 Ms

d - . - . -
Sr My = 1y Mg, My) Jr Mg = 1My, R) M, = f(R)

2
=1 ¥
d5 =0 o M A yoy e
dR "0 > 2x "c K H, = f(R) 2
Do 2x \ICDOK

H 01 11 Aq Mg Apg. My) = 0|

y
a'dR' M1 = f(71, AM1.>\M0. AH1.M1,M0) _—.CO-}

D] dk e = 1R M)

Figure 4.3. First Order Optimal Quter Solution Sequence
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We return now to the expression for M and develop the Breguet

range equation,
2

-¥R R, - ¥ R
M, = (Mg +eM) =1-e Pliee 1 fL-—‘.__L-] (4. 75)
2x/JC. K
R 2R Ve
-y Y.
1-M = e lf[l-c—___l__f._] (4. 76)
2x D
o) 2P
- v°R
in (I-Mf)= - 71Rf+l,n 1-c¢€ —:l f ] (4. 77)
2x /Cp K
2 (0]
N R
tn (1-M) = = Ry - € ——— (4. 78)
2x */UD 1N
o]
- ) - 1
R = - 4n (1 Mf)l_ ] (4. 79)
/ 141
n\te "“‘“")
2x /T, K
J
v
R, = - tn (1-M) (-l-) (1-¢ —1—) (4. 80)
s 2x /C, K
(o]
Now using the following relations
m. - m m,
- 4n (1-M) = -z»(l - ~___f‘) =+ in (_‘) (4, 81)
and
LIFT, c
> - BWJSF?C" (4.82)
4! 0 0
and
= vy
rp = R (c0> (4, 83)
we have
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(el = | (e Ln ] @
f'max L(SF‘CO (B>0>max
The first brackets contain the usual Breguet range expression.
The optimal value of x maximizes the product of v/(S}‘(,‘)0 and (L/D)0

and hence maximizes range at constant velocity and fixed initial and

final values of mass.

The second brackets contain a first order correction factor
resulting from the fact that flight path angle is not zero but a small
position quantity and therefore thrust equals not only drag but also a
component of weight in the thrust direction. This extra thrust required
for climbing results in a smaller final range, but the difference is of

order €,

Rutowski [2] derived an expression for this range correction factor
from consideration of the increase in potential energy due to climbing
during Breguet cruise. He considered SFC to be coastant in his develop-
ment and did not attempt a mathematical maximization of the resulting
range expression, If the above expression for maximum range were
derived based on u constant value of SFC, then the resulting maximizing
value of x would be unity and " would be 2 JC_D_K' As a result, the
correction factor appearing above would becomg (1-¢) which agrees
exactly with Rutowski's factor of (l - E;&)

Teren and Daniele [10] have analyzed the maximum cruise range
problem using only mass and altitude as state variables and using thrust
coefficient as the control variable, They derive the following equation to

define the optimum value of C
P F 46
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(SF(‘)(CF) (Sb‘C)((‘F)
CF = CD + —— + (4, 85)

If SFC is taken as varying linearly with Cl" in the neighborhood of a
constant operating value, this equation is a cubic in ((‘F/C]) > and ¢:
o

~Cp A 2yCy Conse  Cpo , Cp
2l - W *'@B—] - (‘c—n—)Q*yq‘)L“‘ o *2Yt;;)] (4. 86)
[o] o} O 0 (o]

For € = 0 the order is reduced by one and the positive real root is

easily found as

_ 2
(CF)0 = CDo (1+x") (4. 87)

For € # 0 a first improvement to this root is found by assuming it to

Lre of the form

C.. = (C 1+ 6) (4. 88)

F F)O (

This is substituted into the cubic and solved for §, retaining terms of
0(¢) and eliminating terms that comprise the second order equation for

(CF)O. The result is

2 2.2
\ r
cp = (cp, Jasd) 1+ e 23 e (4. 89)
0o (3x“~-1) (1+6x"-3x")

The identical result is achieved if (T/Sq) is expanded using the

optimal values of MO' Ml’ AHI, and " developed in this chapter.

Teren and Daniele do not develop an expression for maximum
range in cruise, However this is easily done using their differential

equations for mass and range together with the assumptions of constant

1ift coefficient and lift equals weight. The result is
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max

C m
{v LA i
(*Prmax * L(s¥c) (c;)] Lo 'rrTf) (4.90)
where SFC and CL are determined by the optimal value of CF.

Now if SFC is a linear function of CF and if the above expanded
form of the optimal value of CF is used, together with the resulting
expanded forms of the optimal CL and SFC, this expression for

maximum range will be identical to the one derived in this chapter.
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CHAPTER V
MAXIMUM RANGE TRANSITIONS IN THE BOUNDARY LLAYERS

5.1 Introduction
In this Chapter the two inner, or boundary layer, solutions are

derived, and the results are matched with the outer or cruise solution.
The optimal control is examined and shown to produce a damped oscilla-
tory transition to and from cruise. The over-damped, or pure exponen-
tial, case is examined separately. The short-range problem, for which
no cruise segment is required, is also examined. Finally, a modified
Breguet range equation is derived which includes changes .n range due to
transitions between cruise and initial and final conditions that are not on

a Breguet cruise,

5.2 The Problem in the Boundary Layer

The boundary layer problem is described by stretching the indepen-

dent variable in the state equations by the transformations

- R
in the left side boundary (vicinity of R = 0) and
R; - R
Rp = —= (5. 2)

in the right side boundary (vicinity of R = Hf). In the left side boundary

d d .
layer IR- ‘A and the equations become
L
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2
3‘1‘} = a(u+ly) (5.3)
L
R -y (5. 4)
L
dM . ¢ {[(I-M) y +/Ch K [Q + a-m? (1"’“)2]] [1
'JRZ D, Q
+—y __A-My y Ll + (1-m)? (1+u)2:ﬂ 1+ 1;)} (5.5)
JCp K <@ Q°
(o]
The cost to be minimized becomes
.'Rf/e
J = -S ¢ dR| (5.6)
0
and the variational Hamiltonian becomes
2 .
= -cnx ardpapgyray {L(I-M)yh/CDOKLQ
2 .
(1-M) 2 Yy (1-M) ¥y |
+ (1+u) 1+ +y |l
o
2 2 .
+‘—1'—QN21-)— (1+u)2]] (1+4-)} (5.17)

Unlike the situation in cruise, a zero order analytic solution to the
boundary layer prcblem can not be found unless some further simplifying
assumptions are made about the state and control variables, Typically in
such cases one might consider a linear expansion of the boundary layer
state eyuations in the vicinity of cruise, There u, ¥ and M will be small.
Let Aﬁ be defined relative to the initial optimal cruise altitude so that

AIAJ also remains small.
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W, -
i K
Bl C.
n q D,
Q= = Q/QOi"Qx (5. 8)
Vi I o
T FI_)—
o
A
6 - xe-AH - e'AH + Lux - e-AH (5. 9)
Aff = &H - Lax (5.10)
The linear differential equations are
H%L = au (5.11)
L
L (5.12)
L
-d%"i s { /O RKx+hn+ya+ B ryn+eya+idy
o
4 - 2 1 1 2
+AH‘/CD K [2x _v(-£+x) + (x -;)(1+y(l + x7))]
o
+2 ‘/CD Kx(u-M)[1+2y(1+ xz)l} (5.13)
o

The equation for M is derived by expressing the exponential form
of é as a Taylor series in Aﬁ to first order, expanding, and retaining
only linear terms, It is then greatly simplified by making use of two
algebraic identities, First, from the definition of the optimal value of

x (Eq. 4.31, 4.32)

2x2y (x +-}%)+(x--’%) [l+y(1+x2)] = 0 {5.14)
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Second, the first-order value of the cruise flight path angle is defined by

the two equivalent expressions (Eq. 4.44, 4.50)
Y =/Cp K (x + Di1+y )] = 2 /TG Rxl1+ 2y +x%)  (5.15)
o o

The differential equation for M then reduces to

dM \
seyy, (1+u-M+—X (5.16)
dRp " Ib ( 2x/C K )
(o]

Now the FHamiltonian can be written as

W = -€+al u+A\ y+€x Y. 1+u-M+.__!___.. (5.17)
Y H Mlb( ZXJED_K)

o
A
It can be seen at this point that AH does not appear at all in the

state equations or the Hamiltonian. An optimal control, if one could be
found, would be independent of Aﬁ. Thus linearization of the state
equations fails to yield a meaningful solution because it fails to yield

a meaningful mass equation, The reason for the failure is that the drag
term, which appears in the mass equation, has no linear dependence on

altitude in the vicinity of cruise altitude.

As a second attempt to simplify the boundary layer state equations,

and thereby to be able to develop an analytic solution, consider a quad-

ratic expansion of the equations in the vicinity of cruise, The differential

equation for Aﬁ remains linear (5.4). The equation for ynow includes a

term in 72 (5.3). The equation for M becomes
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- d 1"
m.‘}-“;= ¢ [Lu-M)y+ f—x\[ a-afi+laf?) sxa+afi+dai)
. M)2(1+u)21][1+_’£L_ a+ofi+d aliB0-M) v+, T RI2a- i
L /‘(':——T\;' .2- D X
- vin 0
3 (o)
+ 2l +x a+ofi 11 aliBo-mP e ]]] 142 )} (5.18)

A A
with Q expressed as a Taylor series in AH to second order. Performing
the indicated multiplications and neglecting terms of higher order tnan

second results in the following equation

a?_ {./'-—_I\(x+1)[1+y(1+x )+ y[1+2y (1+ x2)]

+ AH/ (2x y(x +—)+(x-—)[1+y(l+x )]>+(u M) 2x, ’C‘ K[1+2y(l+x2)]

’C K
. A —-(x+—)[l+y(1+x M) + 7AH4X y
{,m - >
(o]

+ Aﬁz "E;D K (4x3y +21- (x +}1-)[1 +y (1 +x2)]> + ‘yu4x2y
o

+ (M2 +u2)xﬂ/ifD K [l+2y(1+x2)+ 4yx2] -'yM[l+4yx2 +2y (l+x2)]
)
A A . 2 2
+ (AHu- AHM) 2x \/Cl) K[1+2y(1+x%)+4x y]
)
- 2 2
- Mudx /T, K 142y 1+ x°) +2x°y]} (5.19)
0

These equations (5.3, 5.4, H.19) are sclvable as the state equations
of a linear-quadratic singular perturbation optimal control problem if we
can neglect the term -Zz- in comparison to u in Eq. (5.3). In the cruise

problem this term had no effect on the solution through first order in e,
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To show qualitatively that this term is negligible in the boundary layer,

consider the effect of the transformation
2
Us=u+ I, (5.20)

on the state equations. The equation for ¥ (5.3) is linearized and the
equation for Aﬁ (5.4) is unchanged. The effect on the equation for M
(5.19) can be shown to be merely the replacement of u by U and the
inclusion of an additive term in the coefficient of 72. This additive

term can be shown to be so small in comparison to the principal term

in that coefficient that it is safely neglected. But if that term is neglected,
the transformed equation set can not be distinguished from the set that
results from merely neglecting the term -Y; in comparison to u in the

original equation for y

Of course, the entire solution of this problem could be based on
this transformation and no appreciable difference would occur in the
result, For our present purposes we merely cite the potential of this
transformation and proceed to linearize the equati~n for yby neglecting
-‘5-2- in comparison to u. The equation for M is simplified by the use of
(5.14) and (5.15), Finally, the state equations of the linear-quadratic
singular perturbation optimal control problem and the variational

Hamiltonian are
L = au (5. 21)
dAH
I =7 5.22)
L
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zﬂ% < e{py frume ) ey2 (o _xy )

al » ~ v
2x /( n K JC D K
(o] [0}
, 2 2 2
+{ayx°+ )[ yM+2x, T} KKAH[“ -M] +“_+_M_ZI_A__”_>J
2x,/C I\
Y
+y (u+Aﬁ)4x2y-4xI‘“—cD K Mu (2_19__ + 2x2y)} (5.23)
N .

x\/f‘D K

.w’=-e+ax7u+kH7+Q {yle+u-M+2_-l———>
x. C,, K
O

+ 72 (Zg’_ +__L.>+'y(u+AH)4x y - 4x,/C l\ Mu (2’( y+——ﬁ2—>

’C K 2x . f‘_mR
O
. ¥ 2,2, A2
1 (4yx® +—1b yM+2x T l\ afifu-m) + L 2M rAI AR
ex /C L /.

(5.24)

The factor of € in the equation for M makes this a solvable problem.

The ¢ means that the equation for M is not in the Hamiltonian to zero
order in € and, as a result, the zero order value of the costate for mass,
XMO' is constant. Thus the zero order problem, for which mass is
constant, has linear differential equations for y and Afl and a quadratic
cost functional which represents an "out of the loop'' equation for M
weighted by a constant, xMo. The first order problem is of course

linear with coefficients depending on the zero order problem.

We now proceed to develop the costate diffeiential equation
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2xv n 2
L Ay =€) {; oy + )+(u+Am4xy
) ¥
- M (4x%y +__..1.‘l.__)} (5. 25)
2x‘/CDR
o}
i {yaly+ (v, +8x° M+ af )} (5.2
1ol VA A AN ny‘C?T)()‘K)(u- afi) - 26)
dx
M _ , . 3
HF.Z'-“M{'ylb_u\271b+8*’cl)oi:xy)
Y1
+(4x2y+—T—>L v+ 2x /T R (M - af ]} (5.27)
2x ./C

The condition that the optimal control, u, minimizes the

Hamiltonian is exp-essed as follows

o = - 2 ! a3
- axy+ €Ay LMp T4 Y - 2y T B y.,cl)ol\) M

/ 3 - A 9 _
+ (o, * Bx y\/t_"‘r)ox\')mu +u)| =0 (5. 28)

Now if we expand the state, costate and control variables in pcwer

series in €, the differential equations of the state and costate variables

become
d = +
'JRE ('yo + € 71) =a (u0 € ul) (5.29)
d A A
HFZ(ABC+€AH1)=70+€ 71 (5. 30)
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Y Y
d ¢ 0 2/71b Xy
M, +eM,) = €4y, {1+tu, + +y +
ar o b 0+ szc—D“K> o (2 ﬁ—x‘>
o 0

+ (ax ym -2}2)[ 0+AHQ] +ax’y v, (g +af)} 6.30

d 2 ’1b 2x
0 ~+EX €N o)== An = €4hgpy tA 4+ Xy
HRL -yO 71 Y« HO { H1 MO [2 /———R— 0 ( lb r)

+4x2y (u0 +Aﬁo)]} + ‘2{' AH2 - )‘Ml [2’“/2_11)_K
D

0

2x 2 A /
+yo * J——(:—‘Y‘I;) +axy (ug +AH0’] - "Mo[”l b

D
o]

+2%Y N4 442 ( +aH,)-M, (4 204 b
*ﬁB—K) Xy 1 1("3’ 2x4Fl)—K>1}
(o] (o]

(5.32)

3%_0‘5 e e = L +8"3WED R) (2 +Aﬁo>]}
(o]

+ el [ax’y g + (ny, + 8y LT R) (g +afly)]
(o]

“Anol8x%y 7+ (g, * 8"3”6130‘() (ag - 0y + Aﬁl)]}

(5. 33)
Hg'l':"‘MO 1) =~ Amo {72 (4"33’ vCp K7 o)
- (4x2y + b ) ('yo +2xJ-(f])_K AI"\IO)} (5. 34)

2xA/CD R (o}

(o]

Expanding the equation H, = 0 gLes
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2 =
(2))g + € ) + )y =ad, g

e {”‘yl ol *457Y Yo * (1 + 8V Df) (afty+u,)]}
+ ‘2{“72 “‘Ml[”lb +axly yy + O +8x°y.C DOK)(AﬁO +“o)]

+ )‘MO[“Zy v - @7 * 8"3WEDOK> M+ (ny + B‘SWC—BO?)\’A?H +up)J}
(5. 35)

Similarly, the expanded Hamiltonian is

H= {a"yo“o agovo) +e il *ald, guy +A, 1) Fgen A Yo)

- % 2/ A 2
A Lv (1+u +————)+7 (—2—+—’—‘1-)+y (u,+AH,) 4x"y
MOL"Ib\" " "o 0 070 ™o
2x€ K LK

c o]
2 ylb A 9 €2
+ (4x"y +————)/C K x(uy +AH,) +€daln ug +A quy HAoun)

( 2x./ifDK> Do 0 0 :l} { y0°2 “y171 Ty270
+ (AgoYo tA Yik ¥o) tA [-y (1+u +___7_°_)+72 b, Xy )
HO’0 "H1'1 "H20 MIL”1b 0 2% ,_____CDK o \o" CDK
o

(o]

Y A
+ ‘yo(uo + Aﬁo) 4x2y + (4x2y +2———1b—-)./ETD K x (u0 +AH0)2]
fo R- (o]
D
(o]
- b 2xy 2 A
* "Mol.Vlb(“l e Ry ﬂ) +yn O+ ﬂ> +4x7y (nug +7,4H,
D D

(o] (o]

A 3
+ g, +7gAH) - My u, (Bx’y /T, K + 2y, )
(o]

+ (4x2y + __VIP-——)L- YoMy +2xJCB_K (Afioul

: 2x./ED K o
: (o]
: A A A A
+ afiug - AHQM, +ugu, + AHOAH1>]} (5. 36)
;
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Because )‘MO is a constant we can now see that the costate equations
are Jinear and the Hamiltoncan is quadratic and we should now be able to

develop and analytic solution.

5.3 The Optimal Control

| The required optimal control, u, must minimize the Hamiltonian,

that is
& w= 0 (5.37)
3u H= .
Considering first the zero-order part of #,, we must have

=0 5.38
)\70 ( )

and since the Hamiltonian must itself be zero along the optimal trajectory

we mustalsohave, from ¢ = 0

Ao * 0 (5.39)

Now the optimal u, can be determined from the first order part
of 2 =0

u

(), = 0 (5. 40)

ak, ) Aol +4X°Y ¥ *+ (7, *8VTH K xy) (ug + Aﬁo)] =0 (5.41)
(o]

vl
An expression for the optimal value of uy results from considering

the second order part of .x’u =0

(J?u)z =0 (5. 42)
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0h,)z = 8y y + g 1y + 47y 7 + (g * B*SYFD_OK)(“O +afiy)]

* Amo [Py y - M2y, + axSYﬁEK)*(Vlb*B*syW)(Aﬁl +“1)] 0
(5. 43)

‘Ne can now solve for the optimal u, and u. It will be shown that the
optimal U satisfies a homogeneous fourth order linear differential
equation with constant coefficients, Furthermore, the coefficients of the
first and third derivatives are zero, indicating that the roots are symmet-
rically located in the complex plane with respect to both the real and the
imaginary axes., Next the optimal vy will be shown to satisfy a non-homo-
geneous equation, the homogeneous part of which is identical to the
equation for the optimal ug. The non-homogeneous part, or forcing part,
will be a function of M1 which is itself a function of the optimal trajectory

of the zero-order problem,

First, since (3.%’/311)1 = 0 over the entire optimal trajectory, it
follows that the derivative of this partial derivative, with respect to R,
the independent variable, will also be zero over the entire trajectory.
Such derivatives will be indicated by primes. Sim‘larly, all higher order
derivatives will be zero, Proceeding, then, to tak .ccessive derivatives
of (d. ¥ au)l, the differential equation for the optimal ug is derived. At
each step the derivative of a state or costate variable is replaced by its

defining canonical differential equation,

agf () = ax +Aol4x°Y 7 *+ (n, 85y Cnoiz))(“ orafig)]  5.40)
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-
0= a[’ i - "MOLW“—‘E)'C——K +¥o (e *%) +“"2-‘/"“’\‘0:]]

D D
o o
+ Ao (7 +85°y JCDOK)(VO *u 'o>] (5. 45)
2
a'i:—Lz )y = [~ X =7 o ( +J-CL%LK\) +ax’y afiy]]
(o]

+ Ao (7 +8XY vCDoK) (7%, +u%) (5. 46)
0 = akygo(np * Bxsyvc_D—(}-(-)(“o +afl; ) - "Moaz“o(ylb ! J%%'LK )
(o}
+ o (85°y VCDOK + ) (2ug + %) (5.47)

No further substitution for variables is required and the next two

derivatives are taken as a single operation

b * 2T .
J/Cp K
v 2 o 2
uo+u"0 2a - a +a u0=0 (5.48)
3
M * 8% YL DX

Using p as a derivative operator and defining Z as

N * _L—sz
JT D,
z:— (5. 49)
3
b +8x yJCDoK

the differential equation for Uy may be written as

[1::4 + p2 (2a - IZZﬁlz) +a2] ug =0 (5.50)

or in the equivalent factored form
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(p? +2Z./5p +a) (p° - 2Z/5 p +a) ug = 0 (5. 51)

The roots of this equation depend on a, which is a function of v,

and Z, which is a function of v, x, y, CD and K, At a given Mach

o
number CD and K are constants. Since x is a function of y we can say
o
. : d(SFC)
that the roots depend on velocity and y, that is, C,. Ifat
(deroy e,

a given velocity d(SFC)/ dCF is allowed to vary between zero (constant
SFC) and + =, the root locations for a particular airplane will vary
as shown in Fig, 5.1. It is obvious that the effect of increasing the slope,

d(SFC)/dC,, away from zero is to increase the damping ratio, The

F
natural frequency on the oscillatory brench remains constant.

A locus of roots as velocity varies is somewhat more difficult to
obtain because of the fact that y as well as Cph and Kwould have to be
described as a function of Mach number, Howoever, if y is zero, as is
sometimes necessary to assume, this difficulty is greatly diminished.
Such a locus of roots as velocity varies and y remains zero is shown for
a particular airplane in Fig. 5.2, In this figure it is seen that the effect
of increasing velocity is to reduce the damping and the natural frequency
of the oscillatory branch. Below a velocity of 409 ft/sec the roots are

non-oscillatory.

Returning now to Fig. 5.1 and the equation for u, we can say that
on the oscillatory branch we have for natural frequency and damping

ratio, respectively,
w = .a (5.52)

= 2z (5.53)
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When the roots of the equation are all real they are
r 2
p = s/E[Zz2/2% -1] (5. 54)

The damping is principally attributable to the slope of the curve of
SFC vs CF for the engine, From (5.51) we see that if Z were zero, the
dynamic modes represented by that equation would have no damping. The
damping comes from the term a’ (Ylb + 2xy/ JCY)—K) Each of these
terms originates in a 702 term in the cost functiogal. Since Yo is propor-

A
tional to dAH/ dRL, they represent a penalty on altitude rate excusions.

The first of these terms can be traced to the effect of the cosine of
the flight path angle on range. The second comes from a combination of
the restriction of velocity to be constant and of the modeling of SFC as a
linear function of CF‘ Mass rate is therefore proportional to Tz, and
since thrust must have a component equal to Wy, the second 72 term
enters the cost functional. The second contribution to damping is the

larger one.

The equation for the optimal value of ug can be solved to express U
A
as a function of RL. Then, in turn, the equations for Yo and AHO can be
solved and the entire zero-order state and control are known as functions

of RL. Finally, it is seen that Ml’ le, by and AHI are functions of the

12%
zero order state and control and hence they, too, can be expressed as

functions of RL.

Returning now to the expression for the optimal value of u;, we can

say

a2 *Amo [‘“‘25’ 7+ (o * 8"33'@ (a8, +“1)] - (R )=0 (5.55)
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where

h (RL) A [ + 4%y 7 + (”’m*a" yJ/C K) * AHo)]

+Xyq0 My [27, * 8% yA/t'—"Dox] (5.56)
or using (3¥7/3u), = 0,

n (R )= ak,y (:m + AproMy (27, + 8x ym) (5.57)

Proceeding to take derivatives with respect to RL we have

aﬁi{"”ﬁ’z = 8 {- Mgz = Ao [ (s +¢'(2T_%LT<'> +alyafh |- 1, (B )}

o]

* Aygo (75 +8¥4 EDOKX“ 1) -1 (L) (5.58)

where
¥
ty(Rp) = My [ZN%-K + % (o *%) rax’y (“o*Aﬁo)]
[o] (o]
- Ao, (4% +;;7“’T) (5.59)
(o]

The next derivative is

2
ﬁ;z‘dfu)z = 2 oM +8x3yf0'5?)(“1+ afy)- 1y (R )}
- 2% 0% (7 +—'§y—,—zg - 21 (R ) - 1 (R)
+ o (7 * B’y /Tp K) (4 + au, ) (5. 60)
(o]
where
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fy(Ry) =- "Ml[“"zy vo * (np + 87y 4 CDOR> (1o * Afy)]

3
+ My (7, + 82 yJ—cDO'K") (5. 61)

Two more derivatives yield the following expression

4

;1%? g = 0 = By (1, +8x3y‘/q‘:§)(“”1+a“1> - a’y(R.)
- 2% 202 (7 +A_ﬂ_/ciD“K-) -2t (R ) - 1) (Ry)
(o]
* o (1 *+ 8y /TG K) () + au)) (5.62)
o]

Finally, this can be rewritten as
2V +af? +af”
uli’ +uj [2a - (2ZJ?)2] +aly = 1 2 3 (5.63)

1 Mo (M * Bxy CDOR)

The homogeneous part of this equation is seen to be identical to the
equation satisfied by the optimal ug- The forcing terms are seen to be

functions of the zero-order optimal state and countrel,

Having derived equations for the optimal Uy and Yy in the left side
boundary layer it is easy to do the same for the right side boundary layer,
Since the development is a direct parallel of that of the left side boundary
layer, the details will be omitted, The results will be presented,
preceeded by some comments regarding differences that appear in the

right side results relative to those of the left side,

F.rst, because of the assumption in the equation for M that M = 0

and Q T 1 in the boundary layer, we cefine M and 5 as follows
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M= (5.64)

M/ = —lwm’ (5.65)

~ -gh - hp + Lnx)

Q:e e oH (5. 66)

That is, mass is referred to its final value and altitude to the value
that would obtain on a Breguet cruise when mass reaches its fina! value,

As a result of the definition of 1\7[, we have the costate relationship

Mg
xm = E-{ AM (5.67)

Second, because of the stretching transformation

R, - R
Rp = —% (5.68)

and the resulting derivative relation
d _ _1 d (

" ° "€ IR 15.69)
all three state equations will have the signs of their derivative terms
reversed., This sign reversal will, of course, appear in the Hamiltonian
in the inner product of the costate vector with the differential equation
of the state vector. As a result, all three costate equations will also
have the signs of their derivative terins reversed. Third, since boundary
conditions on M and Q are r “w specified at R = Rf’ the constants of
integration in the state and costate equations will be different from the

corresponding values from the left side.

Despite these differences, the equation for the optimal ug in the
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right boundary layer is identical to that of the left.

Wy (2a - (22 /@1 +atuy = 0 (5. 70)

Y 0

The equation for the optimal Wy is also unchanged.

_ flV . af’“ + afl/
+u” (2a - [2Z~a)%) + azul - 1 2 3

v

uy (6. 1)

D

AMo (7 Bxy yC “)
0

The apparent difference in the sign of the forcing term af"z' is due to the

fact that odd-power derivatives with respect to HH have the opposite sign
from the corresponding derivatives with respect to RI . LExpressing all
derivatives with resp:ct to R, no sign differences cccur. Finally, it

should be noted that the coefficients and the forcing terms in the above

equations are defined exactly as they were in the left side boundary layer,

5.4 Matching the Optimal Initial Transient to Cruise

We proceed now to investigate the solution of the differential
eguation for the optimal Ug and to determine the conditions under which
solutiors in the boundary layers can be matched to the cruise solution.

The general solution for u, on the oscillatory branch (Fig. 5.1) is

iy . “Cwn Ry
ug = {ug, cos w RL +u02 sin w RL) €

Hw, By
+(u03 cos w RL +u04 sin w RL)e (5.72)
where W, and {, the undamped natural frequency and the damping ratio,

are given in Eq. (5.49), (5,52), (5.53). The frequency of oscillation is

2
@w = w.J1=-C 5. 173)
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If matching is to be possible, then the outer expansion of the
boundary layer solution must be finite for small values of €, This means
that the solution can not have positive exponential terms, Therefore,

Uy3 and ug4 must be zero, Now we proceed to take the outer expansion of

Uy from the boundary layer, First we transform the independent variable

, . R
RL < (5. 74)
and then we take the limit as ¢ » 0. It is seen that
-(wnR/c
lime =0 (5. 175)

€0
and hence the outer =2xpansion of Ug from the left boundary layer is

simply zero, This will be written in notation similar to that of O'Malley
[uﬂ]ol = 0 (5. 76)

The use of the superscript i denotes the inner solution associated
with the initial boundary layer, The superscript f will signify the inner
solution associated with the final boundary layer. The outer solution

represents cruise and is identified by the superscript o.

At this point the inner expansion into the left boundary layer of all
of the state and costate variables from cruise will be determined to first
order in €, Obviously, no transformation is necessary to determine inner
expansions of variables that are constant in cruise. These include Uy, U
Yor N MO‘ XMO' )‘-yo XHO’ )‘yl and AHI' The others require transforming

the independent variable and applying the lir:iting processes describvd in

Chapter II, We have
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2
s NBL 2xy) (1 - x%)

|- [aA%(ery )] = {nem + e 2x /TSR ) ST, R (1 +6x° - 3x%)
[o) (o]

from which

2x71b (1 - xz) ]

A02,i2
[AH™"]™" = ¢ | R, -
[ L LR A+ - 3%
(o]
[Aﬁo°]l =0

2xylb a- xz)

= 7 R -
Ib™L ./Z‘D K(1+ 6x2 - 3x4)
o

(afi,%)!

Also 2
-¥..R; € -m.BRr€, ¥n" R
[M°2(eRL)]={1-e LS, 2 "ML ( b L )}
2x~/CD K
[e]
from which
[Mg°1' = 0
01 _
(M1 = MRy,
Finally,
R, € v, R, € 2
02 (1 MLt 2 ML 1+ x
[)\M (ERL)] = {_y—lb-e +¢ e <3—x-2—:-—1-> RL}

which yields

i_ 1

yq )t = —
MO 71b
i _ o
[xml 1" = K

These values are summarized in Table 5.1.

J

(5.

(5.

(5.

(5.

(<

(5.

.77

78)

79)

80)

.81

82)

. 83)

. 84)

85)

. 86)

Now ug from the left side boundary layer has been shown to have
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Table 5,1

Cruise
Variable

Y

AH

INNER EXPANSIONS OF CRUISE VARIABLES INTO THE
LEFT SIDE BOUNDARY LAYER

Zero Order First Order
Expansion Expansion
0 b

2:(}41b Q- xz)

0 R, - +M.. (0)
iR Niome's (146x° - 3x3) 1P
[o]
0 'yleL + Mlb(m
0 0
o .
0 —_
2x JC, K
DO
] R LMy 10
Y L
b %
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an outer expansion of zero, thus matching the inner expansion of u, from

cruise, We can write the boundary layer solution as

“Lw Ry
ug = (um coSs & RL + Ugo sin @ RL) e (5.87

In this forn., integrals of U, will have the same form as ugs that is
. “LepRy
Yo = (¥p) €08 w Ry + 9y, sin w RL) e + %3 (5. 88)
Obviously, in order to match Yo © 0 from cruise, Y03 is required to be
zero, Furthermore,

-l R

A _ I'-\] R + A . . L A
AHO = (A o1 €08 « Ry AH02 sin w BL) e + AH03 (5.89)

A
and AHOB = 0 to match cruise conditions.

From inspection of the costate equations in the boundary layer it is
obvious that >‘M0' AYO and >‘H0 are all constrants, Matching to cruise
conditions is simply a matter of equating these constant values to the
corresponding cruise conditions shown in Table 5.1. The values required
of lyO and )‘HO agree with those values needed to minimize the zero-order
Hamiltonian in the boundary layer. The first order Hamiltonian must also
be zero everywhere along an optimal trajectory. If we consider its outer
expansion for small values of € we can take advantage >f the fact that the
outer expansions of Yor Yo and A?Io are all zero. The first order

Hamiltonian then becomes
=0 (5. 90)
which iriplies that
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=+ (5. 91)

+ ——

\
MO b

agreeing with our matching value,

Three first order variables in the left side boundary layer are
completely determined by the zero order state and optimal control,

These are Ml’ xm and )‘Ml' Consider first the costates,
i _ 2 / 3 A
[\m] = - )‘MOS{4X Y *\7 t857Y CDoK (uO+AH0)} dR; (5.92)

Every term of the integrand is of the form of ug, 2 damped sinusoid, and
hence integrates to the same form. Thus the outer expansion of >‘H1 is
simply the constant of integration. For matching with cruise, this constant

; must be ———, from Table 5.1.

2x./C p K
o
The solution ol the canonical equation for )‘Ml contains one secular

term, and all other terms are damped sinusoids.

A1 = Mmo S {np + Y9 (8"3?” VCp K 7 27y,

2 b AN
+ (ax®y +—2__ ) (y. +2x /C K AH, )} dR (5.93)
( on m)(o D, o)} L
[o]

The outer expansion of [xml] is given by

i,o _
[XMI ] = AMO 71b RL +c (5. 94)

The coefficient of RL is equal to one, because of the value previously

NN A e S SR AR I gt 8 K54 s o w ity ait e s m

assigned to )‘MO' and matching occurs if the constant of integration is

R

(M, (0)/ 7y, ).

[P,
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Now consider the equation for M
R
- L Y Y

MfS g —22=) + % (7 + =)
0 22 /ChH K VCp K

o 0

1

+ (ax’y ‘/C'D_K+%‘3_) (ug + Aﬁo)z +ax’yy, (uy +aHy )} 4R, (5.95)
[o]

Again, all terms are damped sinusoids except for one secular term. The

outer expansion of M1 is
i,o _
[M17 = %, Ry +¢; (5. 96)

where Cis the constant of integration, has a value such that the initial
value of Ml is zero, Thus the specified initial value of M is wholly
satisfied by the initial value of M0 in the boundary layer. Now if M from
the boundary layer is to match with M from cruise (Table 5,1), then ¢,

must equal Mlb(O ).

If ¢, happens to be zero, then tke initial conditions that determine ¢
will describe a locus of points from wkich transition to cruise can be
accomplished at the same schedule of range and mass that would be
experienced along a pure Breguet cruise. This locus will, of course,
include the origin in Yo~ A?IO space, In general, < will not be zero and
then Mlb(O) represents the initial mass of the Breguet cruise that matches
the transition. A negative Mlb(O) represents the fuel penalty incurred in
climbing to cruise and a positive Mlb(o) represents a fuel saving as, for

example, in transition to cruise from a higher altitude than cruising altitude.

The first order control, uy, will have the same form as the zero order

control, namely a damped sinusoid, but it also has forcing terms. The
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outer expansions of the forcing terms must be determined before u, can

be matched,

The first of these forcing terms is fliv where
= - 2 / 3 ~-—-_'\ / A
== My [+ Y 7+ {80y Jc—r;of‘f' (ug +aiflg)]

3 R
+ aroMy (27, + 8x y,/‘C'—DoK) (5.97)

Notice first that the coefficient of M1 is a constant, Also, from Tableb,1,

the inner expansion of M, is a constant plus a secular term. Only two

1
derivatives of M1 will remove the effect of its secular term, and hence

the contribution of M1 to the outer expansion of flw is zero, The same is
true of the term )‘Mlylb‘ The remaining terms involve a sum of damped
sinusoids (within the brackets) multiplied by e which is itself a damped
sinusoid plus a secular term. Every term in this product will be multiplied
by a decaying exponential and will have an outer expansion of zero. The
other terms, fz and f3, are of the same form as fl and since each of them
is differentiated at least twice in the forcing function, they too will
contribute outer expansions of zero to the forcing functions. Thus the
outer expansion of u, will not be affected by the forcing functions. As was

the case with u,, the outer expansion of ul will be a constant and the value

0'
of that constant will be zero, to match the value in cruise,
Integrating U gives us N whose outer expansion will be a constant.
The value of this constant is seen from Table 5.1 to be the first-order
A
flight path angle from cruise. Finally, integrating " gives us AHI which

will have a secular term from the integral of 71b
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[AHlllo = MR te (5.98)

The constant is selected from Table 5.1, and matching of state, costate

and control between the left side boundary layer and cruise is completed.

We now briefly consider the optimality condition that #, = 0 over
the entire optimal trajectory. Considering those variables whose outer

expansions are non-zero we have

[#’i]°=x Yo + Anan Y (—M +._.11.E_...._)+x v, =0 (5.99)
2 Ml ‘1b MO “1b 1 ZX\/C'D_R- H11
(o]
Substituting outer expansions we have
M.(0)+y.. R, -5 R +—T0_ _n(0) 42 y. =0 (5.100)
197 L T ML 5 1 H1"b .
x./CL K
D
[o]
_ 1
Ay * T ———— (5.101)
2x,/§D K
(o]

which is consistent with our previvusly determined matching conditions

on >‘Hl'

5.5 Matching the Optimal Final Transient to Cruise

Matching conditions at the right side boundary are similarly

established, The development is a direct parallel of thai of the left side

boundary k-t with different values required for matching. Table 5,2 shows

the inner expansions of state, control and costate variables from Breguet
cruise when extended into the right side boundary layer., These values
were developed by stretching the independent variable in the vicinity of R

equals RF for the Breguet solutions by means of the transformation
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Table 5,2

Cruise
Variable

INNER EXPANSIONS OF CRUISE VARIABLES INTO

THE RIGHT SIDE BOUNDARY LAYER

Zero Order
Expansion

R +mx

b 0

R

-,
l-e '1b7f0

18

First Order
Expansion

Nb

2
b Fro
2x./C.. K

D
o

+ Mlb(o)

2x7i 1- x2)

Lo, K (1+6x° - 3x7)
0o

e-ylefo[ylb(Rﬂ'RR> + My, (0)

2
L Beo ]
2x~/CD K
(o]
0
-1
a
1
2x4/CD R
(o]
e"n;’*fo[R r T My Ry ]
TR M k[ K
[o]

-——
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R =R, - €R (5.102)

R

and expanding the dependent variables for small €. Also, since Mf is

specified, we have at Rf
M - Mf (5.103)

=0 (5.104)

(5.105)

thus accounting for the fact that since the first order solution does not

change the final value of mass, it must change the final value of range.

In the right side boundary layer the optimal control on the oscillatory

branch has the form

_ ~tw Rp .
ug = e (uO1 cos & RR + uyp sin w RR)

+cwnRR
te (ugg cos w Rp +ugy, sin w Rp) (5.106)
The coefficients in the divergent term are taken as zero so that matching
will be possible. The exponential term is transcendentally small for
small ¢
-28w _(R,. + €R,. - R)/ ¢
e - noOF >0 (5.107)
It is seen that the outer expansion of Uy from the rignt side boundary layer

is zero, which matches the constant value of zero from cruise,

19
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It follows directly that Y0 in the boundary layer is a damped
sinusoid and its constant of integration is zero, Furthermore, Aﬁd in
the boundary layer is also a damped sinusoid and its constant of integration

is also zero. That is, from the definition of Aﬁo, namely

AHO = AHO - Lbux - b ROf (5.108)
we will have at Aﬁo equals zero
AHO = dnux + b ROf (5.109)

as shown in Table 5.2,

The form of the equation for M is unchanged from the lef: side
boundary. It is again a secular term plus a constant of integration. All
secular terms in expansions from the right side boundary layer are
oppos te in sign from their counterparts in the left side boundary layer
because of the previously noted sign difference in the differentials dRL

and dRR. Continuing with M we have

iLo R, +¢ (5.110)

" "r TSt

(M,

Lo (M¢
(M1° = - (2 )yle +ep (5. 111)

In order to achieve a specified value of Mf we must have the
constant value of M0 equal to Mf and the constant, Cp must be chosen

such that the value of M1 is zero when RR equals Rf. We have
i2 mp
(M%) =M, + e - (2 )yle +ep) (5.112)

This must match the expansion from cruise which is, from Table 5.2,
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ne Yy R
of ", Ry
[ﬁb‘“lr‘RR’ ry—
1
[o]

“¥.R =y 1
[MO%] =1-¢ IDOF,  7Ib +Ml(0)] (5.113)

Now we have the following conditions !or matching

_7 R
1-¢ 1OL, M, (5. 114)
=¥, R m
e 170F_ E{{ (5.115)
i
. MwRorr_ Y For

I
Ce ; + Ml(O) + YlelfJ (5.116)
Vi p
(o)

The first condition defines ROf and is in fact a zero-order statement
of the Breguet range equation. The second condition is equivalent to the

first since by definition of Mf

"N For _ my

l1-e M,=1-

f 5,117)

m.
1

The third condition relates Cr and le. Since we know that le equals
zero, the equation for Ml evaluated at Rf serves to define ¢ in terms of
the zero order terminal state (AH, Yor). The third condition therefore
defines le in terms of Cp The derivatiion of the required value of Cq is
deferred until after matching has been established for the remaining

variables,

The final value of mass on the matching Breguet cruise is
2

¥ R =Yy R Y1 R
MP=1-e 1° 0y ele T OM 0+ B2 4y r 1} G.us
2x,/f?D 54
(o]
or
-Ay R
MO =1-e 1b 0f+€cf (5.119)
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whicl does not in general equal the specified final value of mass, The
difference is the first order term above and it is attributable to three
sources, First, the initial value of mass on the matching Breguet cruise
may have a non-zero value, Mlb(O). Second is the fuel penalty paid to

account for the climb at constant flight path angle that is characteristic of

" Ros
the Breguet cruise, ————— ., Third is the penalty p. ‘d in order to

2x D
o

achieve a terminal state that may not be on the Breguet cruise, yleu..
This is discussed more fully at the end of this chapter, where a more

general range equation is developed.

As before, the costates )\70 and xHO are constants whose values are
seen to be both zero, The value of )‘MO’ another constant, is determined

from the requirement that 7/’1 =0

er1° = -1+ ag50 %y = O (5.120)
Ao ® 1 (5.121)
"b
But since
mg
Ain = === A (5,122)
MO m; MO
we have
m, P
1 1 b f '
A =l il e (5,123)
MO me ¥y,

The solution of the equatior. for AHI again involves a damped sinusoid
1

and a constant of integration. The constant is chosen as - and
2x /T, K
o
matching is achievud for )‘Hl' The equation for le again yields a secular
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term plus a constant of integration

f.o _ -
[le] =~ Ajio " Rp ¢ (5.124)

M Rp
D‘Ml ]o - e bt RR +c 15,125)

The value of the constant is, from Table 5, 2,

9, R M., (0) Y. R
e 1b Oflr_R +_1b +1b of ]

oM et R
o
The form of the forcing functions in the right side boundary layer
is the same as it was in the left side. Again, they contribute nothing to
the outer expansion of u,. The constant of integration associated with W
must be zero, Now ~ has only a constant as its outer expansion and that
constant must be Nb° The non-zero value of b introduces a secular

term into the expression for Aﬁo. We have
H.1°=-y R 26
(&1 = - nRpt c (5.126)

and the value of ¢ is

v 2 2
i "1b ROf i Zx)'lb (1-x") M

(0)+ 9, R
2x /C K JC, K (1+6x"-3x) 1 b1
[o} (o}

(5,127)

The optimality conditions on the Hamiltonian are consistent with

the matching values of these variables, For .7(’0 = 0 we have

\70 = Ao © 0 (5.128)
From Jt’l = 0 we have already established that
R
1) ibrof
- (3,-— )e (5.120)
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For .¥#., = 0 we have

2
(Amfl° = - A% - Mo [ Ml +___7_1E>__] (5.130)
2x ./CD K
(o]
fo . M0 %y, Rog
g 17 = =By~ Bt ——+
1b 2x,/ZFD K
(o]
¥ Y R
L Ry-R-Mp 0 -2 O] (531
71b 2x /UD R 2x,\/CI) K
[o) (o]
*m=‘“J (5.132)
2x./CD K

(o]

which is the value required for matching, from Table 5, 2.

5.6 Composite Matched Asymptotic ¥xpansions and Costs in Transitions

Having established the conditions for matching cruise to toth
boundary layers it is now possible to express the optimal values of state,
costate and control variables in matched asymptotic expansions. These
will be be uniformly valid over the optimal trajzctory between the point
at which the trajectory leaves the constraint of maximum (‘F and the

point at which it meets the constraint of mnimum Si'C.

IFor this problem a matched asymptotic expansion of a variable will
consist of the sum of the solutions for that variable in cruise as well as
in the two boundary layers, minus the inner expansions of this variable
as it passes from cruise into the boundary layers. Using the notation of

O'Malley we have, for mass

c2 12 0?2 f2 02,i2 _

MSe = M + MO + M'¢ - (M©%) 02)f2

(M™7) (5.133)
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In order to proceed with the expansion it is necessary first to solve
the zero~c_der state differential equations ([irst order for M) in the
boundary layers., Consider the expression for the optimal value of g
in the left side boundary layer as a damped sinusoid

“Cu R

ug = (\101 cos & RL + U2 sin RL) e (5.134)

Integrating twice and using the previously identified constants of integration

= e-rwnR!‘{(-Cw U, -G, Jcos w R, +(wu ~fw u )sinu.:R }
Y0 n"o1~ “Y02/ 1+ &gy - Ceugy L
(5.135)
which can also be written as
_ CeaRp i ) 3
Y = © {701 cos w Ry +%,, sin w Ry ) (5.136)
and
A e-cwnRL . . )
AHg = T {- (€@ 1701 * w¥gp Jeos w Ry + @y C“’nVoz) sin “‘RL}
n (5.137)
or
A ':“’nRL{ A A .
AHO =e ~AHOl cos RL + AH02 sin w RL} (5.138)

A A
The initial conditions on Yo and AH0 are obviously Y01 and AHOI‘
A
The remaining constants, Ugyr Yoo AHO2 and Y02 could be expressed in
A
terms of Y01 and AHOI' However, a more useful relationship exists

A
among U, ¥, and AHO. Consider the following definitions

701 = - Cwnuo,l - wuoz (5.139)
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Yoo T *Wig) ~LWrligy=> Ugy * (&) (o2 * Cwn¥s) (5.140)
AHg = - (;l'z) (2wprer * @7p3) (5.141)
n
ARy, - (;l'z) (wrn - Cwnroz) (5.142)
n

Substituting for Y0 and then Ugy from (5.139) and (5.140) into (5.142)

yeilds

- _ Cwn
AHgy *ugy = - 2 (w—z) Y02 (5.143)
n

Substituting (5.139) and (5.140) into (5.141) yeilds

A _ Cwn
AHg) +ug, = - 2 (“'zw ) Y01 (5.144)
n

and from these two results we have the composite result

A L \
AHy +u, = - 2 (ZS;/ Yo (5.145)

Now simply by regrouping terms, the M equation can be written as

M =y (14, +"—yo""') +Z’P L7 + (50 *Aﬁofj

2x /JC, K
[o]
. 4x3yAFcD' K L(uo + Aﬁo) +_7L_]2 (5.146)
o] 2x./CD K
0

A
Making use of our result for ug + AHO this becomes

%
M, =9 (1+u,+
v (4% 2xﬁ5‘ﬁ)

o

+ g (1+4—§2) +4x%y /T K (——
0
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The [irst term is easily integrated by relating LN and Yo to the
differential equations for Yo and Af-\lo respectively to give

[

A
L Yy, AH Yy, &H
Yo ) (1+ 2+ 0 )dRL Y (R + °+__L)+c (5.148)
2x,/CT K 2x,/C, K
0 D, D,

To integrate the second term, express Yo 282 damped sinusoid

-CwnR

L,
Y% = e kYOI cos w R + 1y, sin w RL) (5.149)
-2¢w R
702 “NTL UOI cos2 w RL + 7022 sin2 w R
+ 2701 Yo2 8in w R; cos w RL) (5.150)
2 20w RL w, . .
Y7 Ry = —“!—'L T(Vm +7p2") *sin 26k (wyg” - wyg,
“n

2 2 -
= 2w, 7y 702) -cos 2wRy (‘“’n701 HlwpYpe T2wyy 702).‘

(5.151)
Summarizing
% b b / 2
M, =y, R; + 9, — + oo H +L \1+4_C.z)
1 Ib"'L 1b a 2
2x~/CD°R wn
2(w R w
\ n 2 2
+ 4x y./ﬁ K --‘ Yo1 7,
O (2 m J( 2) z ( 01 02 )
2 2
+8in 2w Ry (“’701 - WYy - HwyYg "oz)
2 2
- cos 2w Ry (Qupyg” + Cuwyyg,” + 2wy 702)] to (5.152)

The coefficient of the exponential is simplified by substituting for

cz from its definition (5, 48), (5.53) and then combining like terms. Then
817 :




A
after substituting the appropriate functions of RL for Yo and AHO, and

A
substituting for Y02 in terms of y,; and AHOi we have

N ~Sw R
1b L 21
'yleL +-——e [701°°s wR (w AHOi+c"’ 701) sin wRL]
y e-cwnRL
1b A 1 A .
+ ——————|AH,.coswR; += (7,4 + {w_AH..)sin w R
zxm [ 0i L (&( 0i n Oi) L]
o
-2fw Ry
P 2 YL 0y 2 TaR eaga g )
__Z—'Ub T—% Yo /T Yoi T%n SYoi Tes«i%Toi
D

0

. F 2 2 A
+ w sin 2w R (in - W AHOi)

2w
‘ 2 2w, A 2 A 2
+Qw_cos 2w Ry (5, + —2 Bl vp; + w,” Al )J +e (5.153)

Since the initial value of M, must be zero in the boundary layer

solution, we have for the constant of integration

A
Y AH
N s (—le +—,‘—V€—°T-1.K>+ (:rz—n)(nb*ﬁ-—";’—_ Bx” j‘)(”ol *uofg,”)
“n Do o (5.154)

A similar expression in terms of RR' Yot and Aﬁof applies in the
right side boundary layer. The signs of the expressions for Yorr Y02
and Aﬁm and Aﬁoz are now opposite from those of the left side boundary

layer. This leads to a change in sign in the expression relating the

optimal control and the state
ug + Afiy = +2 (a%) Yo (5.155)

The sign reversals are due to the reversal in sign of the derivatives
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of the state variables in the right side boundary layer. We have for l\"./'l1

~ 7 -c‘b R
_ 1b n R
Ml--'yleR+——e Lyofcosz + - (u. AH of -Lw 70f)qmeRJ
-Lw Ry -2¢w R
M ~ 1 AT . ] R,
M [AHOfC”"'RR*E(C“’n Hog=vgr) sin whiyy ‘_—2"“\7’1b
DO
2x 2.8 %ng 2, 2.~ 2 ~ . 2
+-2XY _ +8x°y yool+w “AH - 20w AH_ y..)twsin2wR, (¥
«/C—D_K u.n L T( of n of n— 0f 0f> R( of
0

. 2w "
2.2 2, ~
-w, AHOf )+Cu.ncos2wRR \70f TAHOf70f+“' AHOI )J+Cf (5,156)

From this we can write

1/ 2 ~ .
Rptg-e [Yoreos wRp +2 (&, offgg-Leyop)sine Ry |

Mo “L@pRpr ~ 1 ~ N
+—‘—e [“HOfcoszR+U(cwnAH0f - VOf) sin w RR]
2xJ(,D K
“*¢nlR 2 2, X\ 40, 2,2
e Xy n
- Y. T +8x"y -2 )i - v AH -ZCw oH Y
4(4.‘2 ( 1b ‘\/-C_I;—K- u.,n)[ T N Of of Of)
o
9 2w

. . 2 _ ~ 2 f,2_""m x>
+wsm2aRR (701“ wy AHof +(wn0052wRR Yot TAHOf'yOf

ru Aﬁofz\)]} +ep (5.157)

The value of the constant is such that M1 is zero &t the final value of
R (when RR equals zero), The specified final value of M will be satisfied

exactly by the final value of MO' Accordingly we have
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"R Y, AH

g (St
(o]

' Z'f}"Tn(ylb +%+8xzy'c§;) (vor +wn afiy”)] (5.158)

D
o

when the final state is fully specified,

Transforming both boundary layers to functions of R we can write

out the constituent parts of the composite solution for M

A
i2 “LwyRle Yy AH,; wR
M -yle+€e Nb —~y + )cos( t_)
wn 2x D

(o]

Y Lw w
o Ol &t =] - “Hol[l'g;ﬁ—';—xbsm )

n 2xA/C K
O
. -lw Rle. w
€ 2x 2. ¢\ . n n( 2, 2.A 2
+ Y, +_L-8xy e - Yo T W AH..
4“.2(11’) »\/-(_:D_K wn) [ z (01 n 0i

A 2 A 2\ . /2wR
+2C“’n701AH01> tw (701 - w,® AHy) sin (Z52

2
+lw, ("Oiz * 70)2 857y * "’nzAﬁm?') (2wR>.|

A
Yoi , AHp; 2, \(y 2+y a8} 2
- €Y. f—— )+ ( +—.ﬂ_ 8x y )(‘y . tw_ AH,.
lb( 2 ) ZZ 0i n 01}
wn 2x~/EDK A/ n
o (5. 159)
2
- R -7 Yn. R
02 _ b bR b
M%? =1-e +e [______ + Mlb(O)] (5.160)
D
(o]
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e,

Mf2

S [t + 9y (R - B)]
+ie-vlef'Cwn(Rf‘R)/G[ﬁb(:oé — j:__) cos (£ [&, - ])
n
+y_£'i(A§0fL1 * — m] [_§;+2x J’C_—KD sin (& [Rf - R])
Do
-4_‘:2< lb+J—c;—LT_<-+ ix y_;_> “HBy-28u, (R f'R>/‘L‘_ %g (502

(0]
+u, 2oy - 28w, AToyge) * w (g - “nzAﬁorz) sin (2[R, - R])

2w .
+Cuwy (7o - ‘?‘:' LaHgeyg* w, Ay, ") cos (2[R, - R])]

-y R, - Yy Aﬁ
~ee Ty (w_:f2+2x ’E_R'(z )
(o]
TE"' (7, +—22 + 82y _C_) (7o + w 2aly?)] (5.161)
/Cp K
[MO2]12 = [MP2]°2 =y R+e M, (0) (5.162)

LM°2]f2 i [Mrz]oz I [1 ¢ (B = R)]

2
“"pR fl_ "b Rf

2x ~/C

+€e

+ Mlb(O)] (5.163)

O

Finally, the composite solution for M to two terms is
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M2 = mi2 + M2 4 M2 - [Mo2]i2 i [Moz]fz (5. 164)

At this point we can note that similar composite solutions can be
expressed for u, y, AH, and the costates, and the matching constants
have already been evaluated. In all these cases, however, the results !

will depend on . While Wy is, in principle, evaluated quite directly, in

fact the high order derivatives involved in the forcing functions make an

analytic evaluation quite laborious, It is shown in Chapter VI that a very

N e e AL N

good representation of the optimal trajectories comes from considering
a zero order boundary layer solution to match its corresponding cruise
solution through first order in ¢, and the labor involved in evaluating the .

first order corrections to the transients is not justified.

We have seen that the constants of integration associatedwith Mi2 :
and Mf2 are an indication of the difference between the fuel consumed in i
transition to and from cruise and the fuel that would have been used in a ‘
pure Breguet cruise over the same interval of range. The equations
defining them have the same region of applicability in AHO - Yo space as
do the state equations, and matching between cruise and transition to and
from cruise is possible everywhere within that -~egion. It is possible
therefore, to assign a cost number for any point (AHO, 'yo) in the region
and to develop contours of constant cost, Each contour will define a
locus of initial conditions from which the same cost is incurred in
traversing a matching transition to cruise., The same could be done for
final conditions on transitions from cruise. The cost is easily evaluated

relative to the cost incurred in a pure Breguet cruise of the same range

using equations (5.154) and (5.158).
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The cnntours are not optimal trajectories. Trajectories, as we
have seen, are damped sinusoids as a function of R, In AHO - ¥y Space
these become spirals, In traversing a spiral one passes through a region
of higher as well as lower initial cost. This is because the spiral
trajectory may include a region of n jative AH wherein the airplane is
climbing and requiring more thrust and hence a higher fuel consumption
than for cruise, as well as a region of positive AH wherein the airglane

could fly down to cruise at reduced thrust,

Since any point in AHO - ¥, Space within the region of applicability
of the equations can lie on an optimal transition trajectory, it is possible
to assign to each point the throttle setting or thrust coefficent that the
optimal trajectory would requi.e as it passed through that point. Obviously,
all optimal trajectories will include the origin, at which point the throttle
setting equals that required for cruise. Moving away in one direction all
thoottle settings will ultimately reach maximum. In another direction all
settings will reach minimum. These and other loci of constant thrust
coefficient are discussed in Chapter VI in connection with some numerical

examples,

5.7 Non-Oscillatory Optimal Control

Thus far we have considered only the oscillatory form of the
optimal control, It is, of course, possible that the roots of the
characteristic equation of the differential equation for the optimal control
will all be real, We then have

+r1R +r2R +r.R +r,R
ug = Ug; © +uoze +u03e +uo4e (5.165)
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The roots are symmetrically located about the imaginary axis so that

we have
ry = -rg (5,166)
ry = -r, (5.167) '

The development of the boundary layer solutions and the matching
of these solutions to cruise proceeds in almost identical fashion to the
oscillatory case, If there is to be matching, the coefficients of the two
divergent exponentials (say Ug3 and uo4) must be zero, Then, by directly

A
integrating the zero order differential equations for Y and AHO we have

u +r,R u +ro R
01 1 02 2
Ya=t+ta|—e +—"e (5.168)
0 [rl ry ]
A Uy +rlR Ugo +ryR
aig=+a[Be T + 2 2 (5. 169)
r r
2
We would like to express the optimal control, Uy, as a linear
A
combination of the two elements of the zero order state, Yo and AHO. To
r-R roR
do so we solve the above two equations ‘or ug© 1 and Ugp © 2 in terms
A
of Yo and AHO and then express their sum, u,, as
ryr r,+r
= (.12 A 1 "2
ug = - (52) afly + (42) % (5.170)

This is the optimal control for initial transition. For final
transition (away from cruise) the control law is slightly different due to
the change in sign associated with the state equations in the right side
boundary layer, The control law for transition from cruise is

ug = - (r}:z) A, - (rlzrz ) % (5.171)
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in order to derive an analytic expression for the cost in fuel
associated with transition we consider the state equations in the form

rR ryR N
70 - 701 e + 702 e '\0.172)

rlR rzR

A Aﬁ A 73
AHO = 01 ¢ + AH02 e (5.172)

Initial conditions are defined as

Yoi = Y01 * Y02 (5.174)

A - A A 5 75
Now from a comparison of equations (5.168) and (5.172) we can
write for equation (5.174)

a a

Similarly, equations (5.169) and (5.173) allow us to write for equation

(5.175)
A . a a
rl r2

The right side terms of equation (5.176) will change sign for descent,
Now equations (5.176) and (5.177) can be solved to express Yoy and Uoo

A
in terms of the initial conditions, Yoi and AHOi'

’12 (701" 2 Aﬁoa)
u01=~+(1;.) 'il-réjr (5.178)
2 A
ugg = * (r: ) (180,701 (5.179)

("1"‘2)
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For descent, equation (5.179) is unchanged but equation (5.178) becomes
2 A
. ("1 ) (vor+r288,,)

= ("1 - '2)

From a comparison of equation (5,172) with equation (5,168) we have

Yo1 (5.130)

. (;l-) ugy (5.181)

‘a
Yo2 © ® \-‘?) Up2 (5.182)
with the negative signs applying in final transition (descent), and from
equation (5.169) and (5,173) we have

afiy, = \—2) ug, (5.183)
r)
A - a
ufiy, = (;'z) ugy (5.184)
2

The fuel cost associated with the initial transition is expressed by

the equation
2

“, y y
My(Rp )= npRy * 'b"’o ,C—Klb wH *) {‘ZIRLVo (o”‘%)]

2x

2°

*4"3”500]([(“0“‘?‘0)2* 0.0 (“o*Aﬁo)]}dRL
*%p, o (5.185)

For descent
LR Y ~ \2
My(Rp)=-e " R[”m R* a7t ; m“‘o S { [70 (o“AHo)]
2 (o]
y ~

+ax’y £ K[(“ *A“o> *"'!C K+2xJ'C(f)_K( o*‘“’o)]} dRR]

(5.186)

To evaluate these equations we need the following expressions
2r.R 2 2r2R (r1+r2)R
Yo = Yo © + %, € + 2701702 e (5,187)
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2 2 2rR g 2ryR (ry+ry)R

i , 2 _
uy” =ug e +tugy € + 2u01u02 e (5.188)
2r.R 2r_ R (r,+r,)R
a2 _ a2 2R A g 2r A A 1*r2
afiy® = afip%e 1w alile 4 +2afaf), e (5.189)
2r.R 2r R
A A 10 A 2
ZUOAHO 2“01AH01 e + 2u02AH02 e
(r,+r,)R
A A 172
+ 2(ug aft, +ug,af e (5.190)
2r.R 2r,R 1 2)R
Yo¥o “Vo1701°  YlUg2Yy2®  *lugyYpe * “02701’e (5.191)
2r.R 2r, R (r.+r_ )R
A - A 1 A 2 A A l 2
ToAHg =AHg Y e © *¥gpAHpae T+l AHgy *ygaaHp)e T o)

Now define the following constants

30={{ug * Aﬁm)(“oz* Aﬁoz)(’m* 8x’y/T Df)* Yor702 (" * %)

D
o

+ax’y [ (ugy +6figy) 7z * (vgz + o, ) Yo} (5.193)

2,y
3 = {(uor* 6Py (R+ax’yvT K)*"m[ T“J"E—y-—K) Y01

Do

+axly (ugy * Aﬁm)]} (5.194)
2,y
8, = {{ugp *aflgy) (2 a’y y ®p OR) +¥02 (2> d: *%) Y02

+axly (ug, + 8y, ) |} (5.195)
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The ascent cost can now be written as

y. Y, 2 (r,+r,)R
A
Ml_yleL+_alb Yo ¥ e AH0+r49r e 1 2L
2VCD K x 1 2
?1 2r.R Q 2r (l)"\’
1 'L 2 2L
+-2?‘-1-e +.2?2_ e te, (5.196)
where
y y 3, & 4
1b 1b A 0 1 2
C, = = == yp. = ———a— AH,. -~k - - {5.197)
i a 0i 2,r——CD ¥ x 0i r1+r2 Erl 2r2
o

The corresponding cost for descent transition is

¥R Y Y, ~
Myze 0T [ Ry o vp t —2
ZVE_‘D Kx
o]
a (r,+c,)R a. 2r,R a 2r.R
0 1*re)Rp 3 2nRp a3, 2r,Rp
+-2 e tole P ]+cf (5.198)
1172 1 2
" Be M b ~ a 3 3
c.=e do, I LH 4+ + ok + (5.199)
f [a of 2V—C?<—x of rl+r2 .2_1‘; 2?2']

5.8 Solution Without a Cruise Section

If the specified final value of mass is sufficiently large the solution
will not achieve cruise altitude. The end conditions on altitude and flight
path angle may even lie within the initial boundary layer. For slightly
smaller specified values of final mass there will be two boundary layers
but they will coalesce, and no cruise section will exist, In the absence
of a cruise section matching is not required. As a result it is necessary
to use the most general form of the optimal control in evaluating a
solution, Those constants associated with the positive exponential, which
were required to be zero in crder to achieve matching, may now be non-

zero. 98
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The optimal control, flight path angle, and altitude difference are
now expressed as

- -CwnRL .
e (u01 cos & RL +u,, sin w RL)

+e+cw“RL (Un. cos « R, +u., sin « R, ) (5.200)
03 L Y4 L '

Yo

-CwnRL
Yo = € (701 cos w Ry +7,, sinuw RL)

+e+cw“RL( 'R, + in @ R, ) 5.201)
Yo3 €08 & Ry +v,, sin w Ry (5.

- -cwnRL 1 A A 3
=e ("‘HOI cos & RL + AH02 sin w RL)

+ R o4 fi in w
e (AH03 cos w RL + AH04 sin w RL) (5.202)

The twelve unknowns in these equations can all be identified in
terms of the specified initial and final values of the state variables.
First, by differentiating the above expressions for Aﬁo and Yo with
respect to RL and equating the results to Y and au, respectively we
have
_(wnRL A A
ar— =% "¢ [(wAHOz-I:wnAHOI) cosa.‘RL

- (wAﬁOl + CwnAﬁoz) sin u;RL]

+w R, . A
+e nL L(c«.‘AH04 + CwnAf-loa) cos w Ry

A A
+ (~waly, + Cw af,) sin wRL:] (5.203)
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R Y - . - © et a T R scx o o =

PN ke e

47 ~{wnRy, .

- (wym + Cwn‘yoz) sin w RL]

Hw R;
t+e n"L L(an."y04 + Cwn‘yos) cos w RL
+ (-w'yo3 + Cwn'yM) sin w RL] (5.204)

Now by comparing terms from these differentiated expressions
with the original equations for % and u, we have

A r
= A o (5. 205)
A 1 .
oy = A 7 3 (5. 206)
- IA %
uy =g A ¥, (5.207)

where the matrix A is defined as

-K(.un w 0 0
W -Cwn 0 0
A = (5.208)
0 ] Quw,
0 0 -~w Cwn
and
w
= % o 0
n w
n
—~ - 0 0
_1 wn wn 1 T
ATl = =—y A (5.209)
w w
0 0 s 1 Bk .
n w
n
w
0 0 —-'2' Py .
w n
n
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We now have equations to express the eight elements of the vectors u

=0
and Aﬁo in terms of the four elements of the vector Yo Two more
equations are available from the initial conditions
Yi Y1t Y3 (5. 210)
B = A . + uff 5. 211)
and two from the final conditions
'CO-‘an .
Y =e (vgy €08 @ Ry + v, sin « Rp)
*Cuy R |
te (Yg3 €08 « Ry + v, sin w Ry) (5.212)
L S e I . A ;
AH. = e (AHy, cos w R, + AH,, sin w R)
+Cw_R
nf A . A L
+e (AHj, cos w Rp + AH(, sin w Rp) (5.213)

These final conditions introduce another unknown, Rf, and hence require
another equation. The required equation is that of Mf, the specified

final value of M

R, - Y, Y. 2
M; = {So L{.YIb (1 *ug +%K_x) + g (702 *Y% +‘*ﬁo] )
0

A
+ ax®y VT, K (g +oHy + (5. 214)
(o]

Yo \2A
=) Jor;}
2 CD K x RL=Rf
o
This expression can be integrated directly. Some of the tedium is
removed by referring to the manner in which this expression was
integrated in the initial and final boundary layers for matching with

A
cruise, First, it is useful to compare the sum of Uy and AHO with Yo
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A _ wnRL A ‘ R R ﬁ
U, + AHO e [(um-rAHm)cosuRL (uo2 A oz)sianL]

+CwnR

+ L{(ugg + afigg) coswRy +(u_, +Afl ) si ~R] (5. 215)
e u03 FiN 03 COoOSWw L u04 04 sinw L .

A “twpRy w w
up * AH, = e [:(‘Zc;;”m *_‘Zw Y02 ‘ac;"m L 702)°°S“’RL
n n

w w .
+ (‘ ?..S;”oz A +_2w Y01° 25;702) s““"RL]
n n

+e

+{w_R
n'L w oW
[('4,.‘-{‘703“_2704"&;'703 —7 704)°°szL
n U-‘n n U-n

o w w . )
* (1%704 —2%3* 7% *a%”o«;) sinwRy | (5.216)
n n

A “LenRp .
L AHO =~ 2-5;{&3 (701cosu;RL + Y2 smu:RL)

-« _R
+ e n L (703 coszL + Y04 sianL)} (5. 217)

Now we can evaluate the combinations of products of the terms
A
Yo and u, + AHO that appear in the integrand in terms of the components

of ZO We have

-28w_R
2 _ n L ' oo 2
Yo =€ (701 cosm.RL + Y02 smo.RL)

+e+2cwnRL( coswR, + sinwR )2
Y03 L~ Y04 L

+ 2()!01 coszL+ Y02 sinwFtL)(-y03 cosu:RL *Y04 sinw RL) (5. 218)
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2 -2fw R
A2 n L ‘ L2
(u0+AH0) = 4:{! {e (701 cosuRL * Y92 smu.RL)
n

+28w R

+ e L

(Yg3 cOSWR; + ¥, sinu:RL)2

- 2('}101 cosu:RL *%2 sinu;RL)(‘yO3 cosm:RL Y04 sinwh‘L)} (5. 219)

. =22w R
3 = __;_ : n" L \ i \ 2
yo(u0+AH0) 2 w e ('y01 cosa,RL * Y52 smu.RL)
+2CwnRL 2
-e (Yp3 cOswR; + Y04 smu.‘RL) } (5.220)

Combining terms we can now express M as

R Y,
M= S L\(ylb(l+u0+___£..__>
o - 2VCD K x
o

~28w_R
+e n L

2
\ o2 Np
(701 cos “’RL + Yo Sin u.RL) - (1 + 4 1;7)
n

+ 2y +8x2y—|§-(l+2xVCD K—;—>]
VCD K “n o “n
o

+28«_R Y. 2

n 'L . . 2 1b N

+e (703 cos u.RL + Y4 Sin wRL) LT (1 + 4 -(Tu. )
n

+ 2L gy L (1-2 x\rc;;'ﬁa';;)]

VCD K “n
(o]
. . ; 2%
+{yy; €08 wR; + 74, sin wR; N¥,, cos wR; + ¥,, sin wR. )| ¥ + <25
01 L " Yo2 L."%s3 L Y04 L [ "Mb -
/T K
D
2y o
b 3
-8, (R +ady V‘CDOK‘)]} dR_ (5. 221)

w
n

The following integrals can now be used, in the appropriate

combinations, to express the integrated form of M
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: QRL et V4R, =y r 7B, [LTRL, Ypetlo RL=RL
‘ N Mg L= MRl + 2% ——|
: v0 ZVETD K x L-O 2VC Kx R
" ° (5 222)
. R, #2l« R 20wy W
g Le L cos®wR, dR ——--,2--—e + -0
0 LL 4w T
n
+ wsin ZwRL + Cwn cos 2wRL] (5.223)
R, 20w R 2LenR W
: (Le n"L gin? wR. dR =—2__e £
- 0 L™L 4w T
i u’n
- wsin 2R} & Lu_ cos 2R, | (5.224)
Ry 28w R; *zc“' L - w
SO e sin wRL cos wRLdRL = -—:‘;—2—— L;t-z-
x n
* Lup sin2wR; - wcos 2wRL] (5.225)
' R R, sin 2«R
L 2 _ L L
So cos? wR dR| = o= + —p b (5. 226)
R R sin 2R
L L L
So sin’ R, dR| = —f - —p= (5.227)
R
S sin wR; cos «R; dR; = - T cos 2wR; (5.228)
0
The two coefficients have previously been simplified as follows

1+4 +——L:t8x L (22T R )=y, + 25 _spxly L
( _LZ/ n( D, “’n) b /T K wan

D
° ° (5.229)

Finally we have our equation for the specified value of Mf in terms

of the four components of Yo and RLf
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kY

y
i i b )
Mg = Byg *‘—Zw (Yor~ Yoi) *

Y
b A A
(L.Hof - AHOi)

n 2V-(_"1_)‘I‘(x
"2y 2 ° 2 2 2 2
e
**"—‘Z—‘(Vlb*“gv—l—“é—; - 8x y‘;‘){ (701 * %02 )*L“’("’m " Y02 >
(0]

T2 2N, - oo
- 2‘:‘*n”m”oz]m 2uwRy ¢ Lc“n<701 Y02 )““7’01702JC°52“RLH

+2§wnRLf
+ & Y +__.L2x + 8x y .5_ y +y
_——T——‘*“n ( 1b VTD_K ){T< 03 04 )
(o]

* [“" (03"~ %04") +2‘;“":1”03”04] smz““u*[“‘nc(ymz “ Vo4 )-24%3 704]}

+{np (1'4ffZ> (““"—2 B—C‘z)} “2‘ L (701703 * %02704)

O

sm2wRLf cos ZwRu

¢ —— (1% * Y20 - —T— Uor%os * YozYo)]  (5-230)
Since this equation is highly non-linear, an exact solution is
impossible, An iterative solution can be obtained by guessing a value
of RI £ solving for values of the components of Yo’ then evaluating Mf

from the above equation and repeating for a new guessed value of RI f

until a satisfactory agreement with the specified value of Mf is achieved.

To evaluate the components of Yo We can easily simplify our set

of eight equations in eight unknowns (uo elements are not required),

A
From our equations for AHOI and Yo We can say
2
“n v L
Yoo = - —— \AHOI 701) (5.231)
w
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A A
Ay, = + 5 vy * Cw, M) (5. 232)
Similarly
o 2
-_._n A -

Yo4 5 " w (‘“‘03 ‘w;; 703) (5.233)
AL =L + af (5.234)

04" % Y037 @ 03 )

A
If we eliminate Y03 and AHO3 from the latter two equations by means

of our initial condition equations

Y03 © Y1 " Ym (5.235)

A A A
AHy, = AHy; - AHy, (5.236)

A A
and then substitute for Y020 Yo4' AH02 and AHO 4 in our end-condition
equations we have two equations in two unknowns

+{w R
n Lf 1 . o 2B o
Yor - © [701 coswRy , + (‘“n"m “n AHm> sm“'RLf]

{w
=-2 [cosa:Fthsinth.«.‘nRI_‘f +—-E‘3 sianLfcoswanRLf:\ Ya1
2
D gingR, , sinh{w R ;) wfl (5.237)
+2 (—5- sinuRp g sinhfw R, () ufg) :

A +cwnRLf A 1 A -
LHg, - € | 8HgjcoswRy ¢ + = (v, -Cw, AHy,) sinwRy ; |

Cwp 1A
= -2 l:cosw1‘\’]_‘t.sinhl:u.\nRLf alarr sim.«.:RLf cosh(wnRLfJ AHOI

2
- < (sinwRy ¢ sinhTw Ry ) ¥g (5.238)

106

e s e ok o )

Y 8

e Bt ] A R 48 s T B S T it




gro e W me, o

Now the solution proceeds as follows
1 Guess a value of H”.
2. Solve equations (5.237) and (5.238) for y,, and ARy,
3. Solve equations (5.235) and (5.236) for y,, and Aﬁ03
4, Solve equations (5.231) and (5.233) for Y and Y04
5, Solve equation (&, 230) for Mf and subtract the specificd value
of Mf. Plot the difference against RLf' If the difference is not
sufficiently close to zero, return to step 1, guess a new value of R LE
and repeat until the difference at step 5 is sufficiently close to zero.
Since the sign of dM/dRL must always be positive, the process of

locating the zero crossing on the plot should not involve many trials,

So far in this section we have considered solutions in which both the
po~itively and negatively damped exponential terms make non-negligible
contributions over the entire trajectory. If the specified final value of
M, is steadily increased, the effects of the negative exponentials on the
final state and of the positive exponentials on the initial state will

approach zero, There results

701'. = 701 (5.239)
fi.. = AR 240
AHg; = AHgy,) (5.240)
+cwnRLf' CU-‘n A wnz
Yor = © |.703(c°SwRLI+T SianLf)'AHOS(TSin‘“RLf)] (5. 241)
+Hw R Lw Y,
0. n LIl A . n_._ . 03 .
"Hot‘ e [AH03(cosa,RLf+—u-:—smu.Ru)+Tsmu.RLf] (5.242)
107




The term with the negative exponential factor now no longer appears in
the equation for Mf but otherwise that equation is unchanged. The
solution proceeds in the same way as before, but the equations are some-

what simpler,

The equations of the state and optimal control now have the following

form in the vicinity of the initial point

~Cwp Ry
uy =e (uo1 cos wRL + Ugo sin wRL) (5.243)
“Qw Ry
Yo = © (Y cos wR; + 7;, sin «R;) (5. 244)
-w R A
afy=e " T L (afj, cos wR| + AR, sin wR ) (5. 245)

A
From the general expression for the sum of ug and AHO we see that the

control law in the vicinity of the initial point is
=- Al -5
ug * AHO w Yo (5.246)

which is identical to the control law in the left side boundary layer in the

matched asymptotic problem. Similarly, in the vicinity of the final point

we have

+cwnRL

ug = e (u03 cos wRL +ugy sin wRL) (5. 247)
ﬂ:wnRL

Yo = © (Yg3 cos wR; +y,, 8in Ry ) (5.248)
+w R

A _ n L A . A

AHO =e (AH03 cos a.RL + AH04 sin wRL) (5.249)

A
Referring again to the general expression for the sumof Yy and “HO
we find the control law to be
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A
ug = - afy +2 1‘2; Yo (5.250)

which is identical to the control law in the right side boundary layer in

the matched asymptotic case.

The optimal control must pass from its initial form to its final form
at some intermediate state, By inspection of the two forms it is obvious

that the only requirement for that state is
Yo = 0 (5.251)

The altitude difference need not be zero since it has the same sign and
coefflicient in both forms of the control law. Thus in some short range

problems the trajectory may not be required to reach cruise altitude,

It is useful to compare this short range problem to the matched
asymptotic problem. If in the short range problem the positive and
negative exponential terms interact, it is as if the two boundary layers
of the asymptotic problem were so close as to overlap. If the positive
and negative exponential terms do not interact, it is as if the two boundary
layers matched asymptotically to each other without an intermediate

(cruise) section.

Both forms of the short range problem are singular perturbation

problems and require the transformation

R =

L (5.252)

Py i
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to become regular, This transformation allowed investigation of an
interval along the R-axis of width on the order of ¢ and is consistent with
our restriction to short ranges. Without the restriction to short range
we must consider the cruise problem, which is of course singular. Thus
by further extending the range, or final value of mass, we are led to the
matched asymptotic problem with its initial and final boundary layers

matching an intermediate solution representing cruise.

5.9 Breguet Range IncludirﬁCorrections for Transition:

In concluding this chapter we can evaluate an expression for final
range, We have already modified the Breguet range equation to account
for the gradual increase in altitude and the resulting increase in fuel
consumption., We now can incorporate first order corrections to account
for the possibilities that the initial and final values of Yo and AHO may

not correspond to values on a Breguet cruise,

i

From our terminal boundary layer matching condition we have

-7R
oo b0

1 M, (5.253)

That is, the specified value of Mf determines the zero order value of the

unknown final range

s .l -

b
The first order corr:ction to final range comes from the other matching

condition
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. R +y.. R
Rﬂ=-_}_[ci+ b__f0 -cqe b “’] (5. 255)
M 2xVC, K
[¢]

A
The value of ¢y is defined as a function of initial conditions on % and AHO
by (5.154) for { <1 and by (5.197) for { >1. Likewige c, is defined as a
function of final conditions on y, and Aﬁo by (5.158) for { s | and by

(5.199) for ' >1, We now have for the final range

R = Ry + € Ry (5.256)
Y, R Y, -
Rp= 2 (1 - M) LT N Ry PRI IR (5.257)
Nt Nb 2\Cp, Kx
(o]

1 € Mb € ¢ MbBro
Rr=-(——-)ln(l—Mf)(l-——-——-—>'——ci*—C e (5.258)

Nb 2V, Rx Nb Nb

(o]

The first term is seen to be identical to the Breguet range equation
as it was developed in Chapter II: a correction factor appears, decreasing
final range, to account for increasing altitude at constant fligiit path angle
in cruise, The second term represents the change in range due to
transition from an initiul state that is not on the Breguet cruise, It can
be related to a non-zero value of mass on the matching Breguet cruise

at R, equals zero. It can be expressed in terms of the initial values of

L
A
Yo and AHO and is zero if they are also zero (i.e., if they are on Breguet

cruise).

The thid term represents the change in range due to transition to a
terminal state that is not on a Breguet cruise, It can be related to the

mass difference (at R equals Rr) between specified final mass and final
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mass on the matching Breguet cruise. It can be expressed in terms of

the final valvues of ¥, and AH, and is zero if they lie on a Breguet cruise.
0 0 v

Finally, by making use of Eq. (4.45), (4.81), (4.83) and (5.253),
the range equation (5.258) can be identified with the more familiar form
of the Breguet range equation

{ln(:—:-i-)(l- N4\ ) €c tec (__)} (5.259)

(rf max [S'Ft— ( f ZV—C—K

Both of the range correction terms can be positive, negative or zero,
depending on whether the average thrust required for transition is less than,
more than or equal to that required on a Breguet cruise over the same
range. A positive value of ¢ will result in a reduced final range. This is
to be expected, since a positive ¢, means that the Breguet cruise to which
the initial transition matches has a fuel budget that is reduced at R equals
zero by € ¢ Similarly a negative value of ¢ § means that the matching
Breguet cruise terminates at a value of mass that is less than the specified
value, Mf, and hence translates into a loss of range incurred in
diverging from cruise to meet the specified final values of Yo and Aﬁo.
Both of these terms are zero if the initial and final state are on the
Breguet cruise and in that case the range equation is identical to that

derived from Breguet cruise in Chapter IV,
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CHAPTER Vi

COMPUTATIONAL RESULTS

6.1 Introduction

This Chapter gives the results of some computational studies of
transitions and the costs associated with them, Several non-optimal
control policies are described and comparisons are made between them
and the optimal policy. The comparisons are made {or three aircraft.
The Boeing SST is used to represent aircraft that cruise at supersonic
speed, The Boeing 707 represents aircraft that cruise at transonic
speed. The McDonnell Douglas F-4 is used to study transonic cruise in
an aircraft that is capable of supersonic flight. Finally, some comments
are made about how the optimal policy might be implemented in a flight

control system,

6.2 Alternate Control Policies

It is useful to compare an optimal initial transition trajectory and its
cost with a series of trajectories which use non-optimal controls. These
transiticns assume that the aircraft has already accelerated to its cruise
speed and is attempting to reach cruise altitude and level off, The first
non-optimal control assumes that the aircraft maintains maximum power
setting until it reaches cruise altitude and then assumes its cruise power
setting and levels off in zero time, This trajectory will be called the

(C trajectory. In the second, the power setting is first set at its

F)max
cruise value and the aircraft then eventually levels off at its cruise alti-

tude., This trajectory i1l ue -~'led the (CF) trajectory, The

cruise

| 2]
o
(73]
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third is a constant rate of climb trajectory, identified as y const® Here
again the power setting and attitude are assumed to change instantaneous-
ly to cruise values as cruise altitude is reached, The fourth trajectory

is the optimal trajectory, u opt*

All of the suboptimal controls represent a constraint on one variable

in the equation for constant velocity. The exact equation may be written

c -2aH -AH
F 1] -8 Y . (1+u)? 6. 1)

2
‘p, x x[Cp K

If CF is a constant, whether (CF)max or (C F)cruise or any other
value, we must have for u
c -2a0  -aH
u = -1:SQRT||—— -1} & - & X (6.2)
CDo x X /CDOK

If y is a constant, then u must be zero and we have for C,

2 -AH
X e
C. = C 14 — |1+ & _2Y_ (6. 3)
F D .
o e-2AH x/CDoK

Ifuis uopt for initial transients

us=-afi-2.85, (6. 4)
wn
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and we must have for CF

2 2AH

x - -=any
Cp*Cp (1+ - Ja-an-28 )2+ 8 (6.5)
o -2AH Wn x[/C K
e D
o
For the (C F)const trajectories there is obviously a limit on the

values of Aﬁ and y such that the argument of the square root (6. 2)
. . - Iy 3 . - . . . A
remains positive, This is easily identified in AH - y space. It

corresponds to the condition
u = -1 (6,6)

and from our definition of u this is equivalent to saying that lift is zero.
Obviously, at a particular value of Afl there is a maximum value of y

at which constant velocity flight can be maintained, That situation cor-
responds to minimum drag since lift, and hence the induced component of

drag, is zero,

It is also true that in constant rate of climb trajectories there will
be a maximum climb angle above which constant velocity tlight cannot be
maintained, This value is determined from considering the maximum

value of CF required for such flights.

The maximum value cannot occur below cruise altitude, or it will be

impossible to maintain the constant rate of climb, and the trajectory will

become a (CF)max trajectory, Accordingly, using (CF)max and cruise
altitude (AH = 0) we have
(C) -C
F'max D

1 (o} _

= S -1 | x /CD K Ynax (6,7)

x D o

(0
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The optimal trajectory will be limited by a locus of points correspond-
ing to a maximum value of CF with u satisfied by the optimal control law,

A similar locus will exist for the minimum value of CF'

Now using the zero order equations for altitude and flight path angle,
(5.21) and (5,22), and the first order equation for mass, (5.23), it is
possible to evaluate zero order trajectories and first order costs associ-
ated with them for these four ontrol laws., The eauations are integrated
using a fourth order Runge-Kutta routine, The stopping conditi-- lcr
u s and (C o)

op
two controls the stopping condition is the event of altitude exceeding its

cruige 18 the attaining of steady state altitude, For the other

cruise value,

These equations are the state equations for the linear-quadratic
problem and small initial values are chosen so as not to violate the

assumptions inherent in the equations,

6.3 Boeing SST

For our first cost comparison we choose an initial altitude of

AHgy, = -0,30 (6.8)

For various values of initial flight path angle up to the respective maxima,
trajectories have been calculated for the four controls and the resulting
costs plotted in Fig, 6.1. The airplane used in these calculations was

the Boeing SST (Appendix A) in supersonic cruise, The variable plotted
on the vertical scale of Fig. 6,1 is the difference in the first order mass
term between the indicated transition climb trajectory and a pure Breguet
cruise of the same range, that is M1 - 71bkL' It {s based on equation

(5.23), 118
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Figure 6.1, Initial Transition Cost for Various Controls
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It is seen that (C F) is a good approximation to minimum cost

cruise

but its range of feasible initial flight path angles is severely restricted,

cruige Were identical to (CF)max then

these two trajectories would be identical to each other and their cost

It can be concluded that if (C F)

would be virtually the same as that for the uopt trajectory.

In a narrow range of angles the y const trajectories also compare

well with minimum cost. This comparison worsens as % approaches its

maximum feasible value and worsens rapidly as ¥ approaches zero,

For realistic attitudes associated with climb to cruise, the constant
velocity transition must be either u opt °F (CF)m ax® In general the recom-
mended procedure for a pilot to follow in flying his transition to cruise is
to accelerate and climb at (CF)max until cruise speed is reached, then to
climb at (CF)max and constant speed until cruise altitude is reached, and
then to level off at cruise altitude and speed in an unspecified manner {22,
23, 24] . It is seen from Fig. 6,1 that in this comparison the cost im-
provement in terms of M1 ranges from 0, 38 to 0,20, To convert this
number to a weight it is necessary to multiply by ¢ and by the initial
cruis: weight, For the SST this converts to a weight of from 540 to 285

pounds of fuel,

Figure 6.2 is a comparison of the zero order trajectories for the
four controls in R - Aﬁ space, All start from an initial flight path angle
of -0,05 radians and an initial Aﬁo of -0, 30 or -6,240 feet, The opti-
mal trajectory overshoots in Aﬁo by 0,00127 which is equivalent to 26
feet, Figure 6,3 shows the same trajectories in Aﬁo - y space, This is
essentially a phase plane, and optimal trajectories spiral into the origin,
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Figure 6, 3 also shows a (CF)max trajectory approaching from some
much lower altitude than cruise, If pursued to its limit it would settle at
the maximum cruise altitude of the aircraft, This trajectory acts as a
separatrix for all other (C F)max trajectories originating at other initial
conditions, All other (CF)max trajectories will fare smoothly into this
separatrix and continue on to maximum altitude, None will cross it, This
also applies to trajectories from higher altitudes than the maximum
cruise altitude, They would fly down to the maximum cruise altitude re-
maining on one side or the other of the extension of the trajectory from

infinity (separatrix), The separatrix for ascent at (C is also

F)cruise
shown,

For negative values of Aﬁo the separatrix follows fairly closely a
locus of zero lift at maximum CF' This locus is also indicated in Fipg,
6.3 It is evaluated by equating uto -1,0 in Eq (6,2), Above this locus
the flight path angle would be too steep to maintain consiant velocity

flight,

Figure 6,3 also indicates a locus of points at which throttle setting
is maximum if the optimal control is used, This locus comes from set-

ting CF to (CF)max in Eq (6,5), Above this locus the throttle setting re-

quired for a constant velocity range-optimal transition would be greater

than the maximum throttle setting, If one follows the (CF)max separatrix

backwards to lower altitude, eventually the separatrix will be above the

locus of maximum throttle for uopt' The point at which this intersection

takes place is interesting because in ascending at (C from some

F/max
large initial altitude difference this will be the point at which it is possible
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to begin using the optimal control, Figure 6,4 is a sketch of that inter-
section and an optimal trajectory from it, Approaching from some lower

altitude at (C one follows the separatrix (A - A’) until point C,

F)max
There one begins the optimal spiral into 0, down-throttling all the way.
Consider now point B’ as an initial condition, The optimal spiral requires
upthrottling initially and the throttle saturates at B/, The extension of
this optimal trajectory is indicated in a dashed line, From B’ a (CF) max
arc fares into the separatrix and eventually comes out of satu-ation at, or

very near, C, from which it follows an nptimal spiral to 0,

For the Boeing SST the separatrix and the locus of (C F)max at u pt
essentially overlap in the vicinity of their intersection, Yrom studying a
digital computer print-out of the trajectories in the vicinity of their inter-
section, the point (-0, 745, -0, 300) in Aﬁo - 7, space was taken as the
intersection, Since this point would be well outside the linear-quadratic
region, a comparison was made using the full state equations (5,3, 5.4,
5.5) and the linear-quadratic optimal control (5, 137) which, for these
equations, becomes a sub-optimal control, The comparative trajectories
are shown in Fig, 6,5, The optimal trajectory overshoots the Breguet
cruise by a Aﬁ of about 0,03 (624 feet) and returns to meet the Breguet
cruise at a value of RL of about 15, This corresponds to a range of about
60 miles and would require about two minutes to complete, The diiference
in M between the two trajectories would be 0,00076 which corresponds to
a fuel weight savings of 487 pounds, This can be converted by the Breguet
range equation to a range improvement of 5,44 n, mi, In Fig, 6,6, uand

C,. are plotted as functions of RL for the two transitions of Fig. 6.5,

F
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Figure 6, 7 shows in AHO - ¥, Space a comparison of two complete
climb- cruise-descent trajectories, Single arrowheads denote the u opt
transitions and double arrowheads denote the (C F)max' (CF) min transitions,
The cruise segment (A Hoaxis from 0.0 to +0, 10) is com.on to both
trajectories. Initial and final values of yo are zero. Initiel altitude is the
same as final altitude, The initial value of A;IO is taken as -0, 20 and the
increase in AHO during cruise as +0. 10, This means that the final value
of Aﬁo is -0.30., These altitude values are kept small in order not to ex-
ceed the assumptions inherent in the linear-quadratic problem, The in-
crease in AHO during cruise can be related to a zero order final value of

range through the constant cruise flight path angle and then to a final

value of mass which must be the specified final value of mass.

In this presentation one can see that the zero order ascent and des-
cent and the first order cruise are the most significant parts of the trajec-
tory. The first order corrections to ascent and descent would be of order
¢ smaller and would not make an observable change in the figure. The
zero order cruise, on the other hand, would be represented by the origin
alone and would not fairly represent cruise. It is possible to speculate,
therefore, that one could make a simpler approximation to the analytic
representation of the solution by asymptotically matching the zero order

boundary layer solutions to the first order cruise,

We now proceed to evaluate some numeric results related to Fig.
6.7 in order to show the relationship to the Breguet range of the first
order corrections to it due to initial and final transitions and to non-zero
cruise flight path angle. The numeric values used for the SST flight

parameters are shown in Appendix A,
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The altitude difference re. . ing from cruise is +0,10, This

implies a zero order range of

AHO
ROf = = 0,4649 (6.9)
Y1b
and a final mass of
-y..R
M. = 1-¢ 10 o o 09516 (6.10)

of

The zero order range in nautical miles is

v

1 .
range = (ROf)( co)(w;) @ 715.8 n, mi, (6.11)

The complete first order correction to ~ange has been shown to be

c. c ¥R
i f /ibof 1

1f —
Yib ”1b 2/Cp Kx

o]

La(1-Mg) (6. 12)

The third term is the Breguet correction due to non-zero cruise flight

path angle, Its value is

1 _ tm(1-Mg) = -0.9903 (6,13)
2x [Cp, K
(o]
v € .
Arange = -,9903 (5-6)(-60—76—) = -3,4 n. mi, (6.14)

Thus the range achieved on a pure Breguet cruise for which the final

value of M is 0,08516 is

range = 712,4 n, mi, (6.15)
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Since initial and final conditions are not on a Breguet cruise there
will be increments in fuel or range associated with meeting the initial

and final state, From digital solutions using the linear-quadratic problem

we have
Yopt CF max
¢; 0.44124 0. 76852
C; 0.53041 0. 48846 (6.16)

The first order correction to the u opt problem due to ascent and

descent transitions is

Ryp = -2.0513 + 2,2312 = +0.1799 (6.17) !
!
Arange = +0,.6 n, mi. (6.18)
for a total of 713,0 n, mi., For the (CF)max - (CF)min problem the )
correction is |
ARlf = -3,5728 + 2,0548 = -1,5180 (6,19)
Arange = -5,2 n, mi, (6.20)
for a total range of 707.2 n, mi, and the saving of uopt over (CF)max

-(C is +5.8 n. mi,

F)min
Looking at the components of the first order corrections for u opt we

see that the amount of range lost from a pure Breguet cruise because of

cptimal transition to cruise from a lower altitude is

AR = -¢—L (6.21)
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Arange = -7,0 n, mi, (6,22)

The amount of range increase over a pure Breguet cruise as a result of

optimal transition from cruise to a lower altitude is

¢, ¥,.R

AR = -(.__f_e 1b"0f (6.23)
Y1b

Arange = +7,6 n, mi. (6.24)

The sum of the increments is +0,6 n, mi. as has already been shown,

The uopt transitions will of course require less fuel than the

(C Fmax - (CF)min transitions, The amount of this fuel saving is calcu-

lated from < and Cge In ascent

AW = Aciwie = 466 1lb. (6, 25)
and in descent
-¥..R
AW = AcWee 17°0f 541, (6. 26)

for a combined weight saving of 520 lbs, The minimum value of CF was
taken as 0.011 instead of 0.012 so that the entire flight could be made
with the afterburner on, that is, with a uniform engine description through-

out the flight,

Figure 6,8 shows the additional range realized by using uopt instead

of (C in an initial transition to cruise. The increment in range is

F)max
plotted as a function of the initial value of Yo with the initial value of

Aﬁo taken as -0, 30, Incremental savings in mass, from Fig. 6,1, are
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converted to range savings by the modified Breguet range equation, The
additional range in these transitions is comparable in gize to the increase
claimed (3.8 n, mi,) for complete trajectories with climb and descent

transitions.in [10].

The demonstrated fuel savings are, of course, a small part of the
total weight of the aircraft, Indeed, the use of singular perturbation
methods implies that weight saving relative to the total weight will be on
the order of ¢ in comparison to one. So will the resulting increase in
range when compared to the total range, But as a percent of payload the
saving is not insignificant, since the percentage of payload to gross weight
for an SST may be only on the order of 5% [25]., Furthermore, flight
experience with the first operational SST, the Concorde, has shown it to
have fuel reserves only on the order of 24,000 lbs after a flight of 3400
n, mi. (equivalent to a Paris to Washington, D, C. flight) carrying a

payload that also happened to be 24, 000 lbs [26],

6.4 McDonnell Dou;glas F-4

We next consider an early version of the McDonnell F-4 (Appendix
A). This aircraft is capable of supersonic cruise, but we shall consider
it only on transonic cruise, The principal reference for this aircraft [1)
assumes that it has constnat SFC. The authors recognize a weak-
ness in their agssumption but justify it on the fact that better data were not
available to them. We shall use this aircraft to observe the effect on cost
of various values of the parameter y which is proportional to the slope of
the curve of SFC vs CF in the vicinity of the cruise value of SFC, We

assume that the cruise value of SFC does not change as y changes., There-
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! fore, since

SFC - cy * CICF (6.27)

= ¢ 1+y (6.28)

0

and to zero order in cruise
C.. = C. (1+x%) (6. 29)
. F Do o

we have

SFC = ¢ 1+y(l+x2)] (6.30)

The value of x is determined solely from y., Since SFC at cruise is to
remain constant, the value of o must change with y., Changing o will
affect the value of ¢ since

o

pv

(6.31)

Finally, from the equation for SFC, we see that the maximum value of

SFC will increase as y increases,

Figures 6.9 through 6, 13 show a comparison of the cost between a
full throttle climb to transonic cruise and the optimal cost for five values
of y. First notice that if y is zero the cost of both trajectories is less
: than it would be for any other value of y. Then as y increases, the cost
of both trajectories increases but the difference between them becomes
greater. The largest value chosen for y is slightly larger than the value
based on the Boeing SST data, The middle value of y corresponds to the

) cruise value of the Boeing 707-320B which uses the PW JT3D turbofan
. 133




M
0.40
F-4
W, = 30,452 1b
y =0
Cpm.x x =10
0.30 € =1/67
— (Cplmax ™ 008744
Yopt (SFClp,x = 0.000626 sec'
(SFClryise = (SFClnax
020~
0.10 |-
0 i | | 1 7; (RAD)
0 0.10 0.20 0.30 0.40 0.50

Figure 6.9. Fuel Cost for u opt and C Initial Transitions for

Fmax
Various Initial Conditions aty = 0

134

T ke SRR ~



PRI

S b

M
0.40
CF max F-4
W, = 30,4521b
y = 0.01
030 x = 09813
Yopt ¢ = 1/68
(CE) max = 0-08744
(SFC) e = 0.000651 sec™!
-1
(SFC),., ... = 0.000625 sec
0.10 |-
0 1 | L l
o 0.10 0.20 0.30 0.40

Figure 6,10,

0.50

Fuel Cost for “opt and CF max Initial Transitions for

Various Initial Conditions at y = 0. 01

135

7, (RAD)

TR

#“



) .
p
M
0.50
? cFmax
1 0.40 |~
: "opl F-4
S ———
i W, = 30,4521
y = 0.0426
0.30 I~ x = 0.9336
€ =1/72
(CEl ™ 008744 1
(SFC)m“- 0.000733sec 1
o0 (SFClyi5e=0.0006826 sec™
010 P~
0 | I | ! Y (RAD)
0 0.10 0.20 0.30 0.40 0.50 :

Figure 8.11, Fuel Cost for u ¢ and C Initial Transitions for

op Fmax
Various Initial Conditions at y = 0, 0425

136

XW T A i e

! ‘ ) _ \ .



o amb e

S iy

e o X

BE T AR i A YTt S+ gl 1l e -

M
F-4
0.90 — W, = 30,4521b
“E max y = 0.2
x = 0.8i65
€ = 1/89
(Ce)  =0.08744
0.80 - Fmax -1
(SFCly ) ~0.001063sec
(SFClyyjpq~0-000825 s0c™!
.70 i~
0.60 —
w
0.50
040 I™
L
0[ { } ] ]
0 0.10 0.20 0.30 0.40 0.50

Figure 6.12, Fuel Cost foru , and C Initisal Transitions for

op Fmax
Various Initial Conditions at y = 0.2

137

Yi (RAD)




Lo

16
F-4
W, = 30,4621b
c y =04
14 = F max x =0.7617
€ =1/100
(SFClpgy * 0.00134Bsec™"
(SFC)ige™ 0.000626s0c™!
1.2 -
10 |-
08 |-
M“oﬂ
0.6 r—
¢
0 . | 1 1 =
0 0.1¢ 0.20 0.20 0.40 0.50

Figure 6,13,

Initial Transitions for

Fuel Cost for u opt and C

p Fmax
Various Initial Conditions aty = 0.4

138

Y; (RAD)




S s o+ o

[P —,

engine, The effect of increasing y is to increase the value of SFC at
maximum thrust. As y increases, the cost of operating above cruise
‘hrust is increased, The optimal trajectories therefore tend to become
much more heavily damped as y increases, This relationship of y to
damping was mentioned in Chapter V, Figure 6,14 is a comparison of
the transient responses in AHO as a function of RL' It shows clearly the

relationship between y and damping,

Figure 8, 15 shows the fuel saving in pounds associated with the
various values of y. It is a restatement of the data of Figs. 6,9 through
6.13 for an initial weight of 30,452 lbs, It is scen that if y is zero the
weight saving is only on the order of 10 to 20 lbs. fHowever, for larger

(but not unrealistic) values of y substantial savings in fuel can be realized.

In Fig. 6,16 the effect of the parameter y on the range improvement
for the uopt initial transition over that for (CF)max is shown, The fuel
weight savings from Fig. 6,15 are converted to increments of range by
the Breguet relation

1

———— . . .32
6076)n mi (6. 32)

Arange = - A Ln(l - AM)(—CV—)(
Y15 0

The first order cruise flight path angle has been shown to he

2
s 2x oK 4*rx) (6. 33)

y
P Po (3x% - 1)

The parameter < changes with y so that SFC at cruise is constant, Its
value is also plotted in Fig, 6,16, Fuel savings are based on the data of

Fig. 6,15 at an initial flight path angle of zero, It is seen from Fig, 6,16
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that for values of y that are almost all less than that of the SST (i.e.,
0.357), the F-4 achieves range increases that are generally much better

than that of the SST.

The result of this parametric study is to enable us to describe the
conditions under which maximum range transitions to cruise can produce a
worth- while saving in fuel, First it has been seen that the thrust re-
quired in cruise must not be too close to the mavimum thrust capability
of the aircraft. If required cruise thrust approaches maximum thrust,
fuel saving will approach zero. Second, the specific fuel consumption
agssociated with maximum thrust must be greater than that required for
cruise. If it is not, then the potential fuel saving will be negligibly
small even though the maximum thrust may be much greater than the
required cruise thrust, In summary there must be sufficient thrust
capability over and above that required for cruise and there must be a

cost associated with using it,

A large number of aircraft do meet these conditions but it is also
important to note that a large number fail to meet these conditions. Most
of the commercial aircraft currently in service with the airlines fly at
nearly their maximum thrust and in a fairly flat part of the curve of SFC
vs CF‘ This holds for the PW JT3D which powers the Boeing 707 and
the McDonnell Douglas DC-8, and also for the PW JT8D which powers
the Boeing 727 and 737 and the McDonnell Douglas DC-9 [29 ]. Both of
these engines have a value of y on the order of 0.04 and cruise at approx-
imately 80% of maximum thrust, For the 707 in an initial transition to
cruise, there appears to be no first order difference in cost between the

t policy and any of the other policies, For example, from an initial
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state of (-.30, +,10) in Ai\lo--yo space, the fuel cost associated with optimal
transition to Breguet cruise is 0, 360(Wi. The costs of the other three

policies are 0. 362;W.l, 0. 372(Wi, and 0, 374¢'Wi for (C F) )

. C..
cruise’ ( F'max’

and Yconst’ respectively,

6.5 Implementation of the Optimal Control Policy

This thesis has developed the optimal control policy in terms of
incremental changes in lift away from its cruise value, The control thus
developed is a linear combination of the elements of the state vector and
hence is suitable for implementation as a feedback control, It is also
possible to implement an open-loop or programmed control system, Since
analytic solutions are obtainable it is necessary only to program one of
the zero-order staie varibales, Yo ©OF AHO. or the control variable, Uy,
as a function of range., It would even be convenient to program AHO, which

is yoR, as a function of range,

It is probable, however, that to follow closely an optimal transition
trajectory would require a degree of accuracy in the measurement of Aﬁo,
Aﬁo or ¥q that could only be achieved by an inertial unit. Certainly the
transition described for the SST in Fig. 6.5, requiring an overshoot in
altitude of 624 ft in a transition requiring 60 n. mi., and two minutes to com-

plete, could probably not be duplicated by the pilot using a clock and a rate

of climb meter for his cues, Exact duplication, however, may not be required.

Simulation of transitions with a pilot in the loop would be necessary

to determine how well a pilot could follow an optimal trajectory, what cues
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he would require, and how sensitive the cost is to deviations from the
optimal, In the case of the SST, pilots have encountered difficulties in
trying simultaneovsly to maintain constant Mach number and to level off

to cruise altitude [24]. These difficulties were observed both in ground-
based simulations and in flight simulations of the SST climb profile, Pilots
had difficulty in avoiding overshoot in altitude and in Mach number while
monitoring Mach error and pitch attitude. No data were available on fuel

cost associated with the overshoots,

Cost savings achievable throvgh optimal transitions would have to
be weighed against the dollar and weight cost associated with the cues
needed to implement the optimal transitions. For an aircraft that already
has an inertial navigation system on board, it would be a simple matter to
implement the optimal cruise transition policies of this thesis, Individual

cost determinations would have to be made for other aircraft,
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CHAPTER VII

CONTRIBUTIONS, CONCLUSIONS, RECOMMENDATIONS

FOR FURTHER WORK

7.1 Contributions

This thesis has contributed an approximate analytic solution to one
of a class of airplane performance optimization problems for which even
computational solutions have been extremely difficult to obtaia [8, 11].
The analytic solution was obtained by the use of singular perturbation
techniques in conjunction with the minimum principle of Pontryagin,
Solutions were obtained in cruise and in transitions to and from cruise

and then these three distinct segments were matched asymptotically,

Inclusion of the normal acceleration equation made possible the
inclusion of maneuvering lift effects on induced drag, an effect previously
appearing only in computational solutions, Singular perturbation tech-
niques allowed the drag force, which can not be lineariz2d in any meaning-
ful way, to be expressed as a quadratic function of state and control vector
elements, The costate for mass, which is associated with these quadratic
terms in the variational Hamiltonian, was shown to be a constant, to zero
order in ¢, thus producing a solvable linear-quadratic optimal control

problem,

Optimal control laws have been developed for constart velocity
transiticn to and from cruise in three dimengtional state space (altitude,

flight path angle, and mass), and expressions for the cost associated with
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them have also been devéloped. These cost expressions can serve as a
lower bound for purposes of evaluating other techniques of performing

these transitiors,

7.2 Conclusions

Two basic conclusions can be drawn from this thesis, one from the

analytic point of view and the other from the practical point of view,

The first conclusion is that singular perturbation methods offer the
possibility of approximate analytic solutions to certain optimal control
problems that would otherwise have to be solved by computational methods,
An important class of such problems is airplane performance problems in
which equations involving aerodynamic drag (mass and veloeity equations)
can be neglected as a zero order approximation to the solution in the
neighborhood of the singularities. The analytic results should be useful in
themselves but should also provide clues toward finding methods of easing
the computational difficulties associated with higher order versions of

these problems,

Second, for sorae aircraft the optimal control policy for transition
developed in this th2sis offers the possibility of significant fuel savings.
These are aircraft that do not cruise at or near their maximum power
getting (including transonic cruise for aircraft that are capable of super-
sonic cruise) and for which the specific fuel consumption at maximum

p ' ‘er setting is somewhat greater than that for cruise,
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7.3 Recommendations for Further Worl

The first recommendation would be to apply the techniques demon-
strated in this thesis to the solution of other similarly structured optimal
control problems, for example, problems in which velocity varies slowly

in the boundary layer and is constant to zero order in ¢,

The solution obtained in this thesis should be studied in conjunction
with higher order computational solutions to try to gain insights into the
nature of the optimal solutions and thereby to determine how best to
approach computational solutions to this and similar problems with higher

order state vectors,

One could also expand the present study to consider the nature of the
control if the slope of SFC as a function of CF were not merely a straight
line in the vicinity of cruise but a series of connected straight line seg-
ments, Such a representation would be mor 2 accurate in the case of most
power plants, The value assigned to the slope in a linear approximation
directly affects the damping inherent in the optimal control through the
parameter y (Fig. 5,2), and y determines x, the altitude parameter which
represents the difference between optimal cruise altitude and the altitude
for maximum lift-drag ratio, Since the altitude for maximum lift-drag
ratio remains constant, a change in x represents a changz in the optimal
cruise altitude, Thus as d(SFC)Id(CF) changes discretely from one value
to another, so zlso do two important aspects of the optimal control prob-
lem: damping in transition and optimal cruise altitude, There appears
to be no point in using higher order functions of CF to describe SFC, If

a quadratic function were used, then the mass equation would bie third
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order in thrust, The third order effects would be lost in forming the

linear-quadratic optimal control problem,

I The descent from cruise could also be studied further, The poss-
ibility of decelerating flight at minimum thrust or at zero thrust has not
been considered here, Nevertheless the cruise- glide solution is a very
real possibility for maximum range flight, Optimal gliding flight is

easily described by energy state methods, The transition from optimal
cruise conditions when the engines are shut off to optimal gliding flight
could possibly be set up as a boundary layer problem, Higher dimensional
glides might be established as perturbations about the single variable

. optimal glide from energy-state methods,

It is also possible to study the maximum range problem from take-
off through cruise and to landing by combining energy-state methods fc»
acceleration and climb and for deceleration and descent with the optimal
transitions and cruise developed in this thesis, This would require
patching of solutions as opposed to matching, The energy climb (computa-
tional solutions) would be followed until cruise velocity is attained. This
state would become the initial condition for transitions to cruise, Similar-
ly the state at the end of cruise when the engines are shut down becomes

the initial condition for the transition to optimal glide,

The nature of the most general optimal transition from cruise to
descent would in itself be an interesting study. Is there a throttling
solution that is superior to an instantaneous zeroing of thrust? Should

- transition from cruise to the higher altitude for optimal glide be made

while throttling or at constant thrust (including zero)?
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It is hoped that this thesis will stimulate others to pursue these
and other related topics of research in optimal airplane performance

and the application of singular perturbation techniques thereto,
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APPENDIX A

CHARACTERISTICS OF TYPICAL SUPERSONIC AND
TRANSONIC CRUISING AIRPLANES

This appendix presents those parameters necegsary to describe

g the airframe and power-plant of three aircraft that cruise at constant

Mach number in the stratosphere,

A.1 Boeing SST
The first is the Boeing supersonic transport, Data is from [10].

For the airframe we have

Wl 840, 640 lbs initial cruise weight

S 75178 sq ft wing area

v 2479 ft/sec cruise speed

M 2,56 cruise Mach number
CDo 0, 00878 profile drag coefficient
K 0.5 induced drag coefficient

i Table A, 1: Boeing SST Airframe Characteristics

The power plant consists of four turbojets with afterburners, and in
supersonic cruise the afterburners are on, Specific Fuel Consumption
as a function of thrust coefficient is shown in Fig, A.1. As a linear

approximation to this function in the afterburning region we can write

SFC = g + CICF (A.1)
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Figure A.1, SFC vs CF for Boeing SST
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SFC = 0,000265 + 0,010788 CF (A, 2)
with dimensions of inverse seconds,

Now certain parameters which are defined in Chapter III can be

evaluated for the SST. If we write

Cp
SFC = o 1+y (A.3)
C
D,
!
y ® - CD (A, 4)
s o
then we have
y = 0,357 (A.5)
Since x is determined solely by y we have
x(y) = 0,762 (A.8)

The first order value of the cruise flight path angle becomes

¥1p0% Cp s K) = 0,2151 (A, 7)

The cruise value of CF becomes
CF(x, CDO) = 0,01388 (A, 8)

which is 60% of its maximum value,
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Finally, the parameter ¢ becomes

elv, cg, B) = (1/450) (A.9)
In the stratosphere the scale height of the atmosphere is

ol = 20,800 ft (A. 10)

The range-optimal control for this airplane is a damped sinusoid

in R. It has the following natural frequency and damping ratio,

respectively
w, = 0.33 (A, 11)
= 0.8762 (A, 12)

The parameter a, which appears in the y equation, is equal to the square

of wp.

a 0.1089 (A.13)

A,2 McDonnell Douglas F-4

The second airplane is an early version of the McDonnell Douglas
F-4. It was used by Bryson, etal [1 ] and recurs frequently in later
literature, This aircraft is capable of supersonic cruise but we consider

it in transonic cruise, For the airirame
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Wi 30,452 1bs Initial cruise weight

S 530 sq ft wing area

v 872 ft/sec cruise velocity

M 0.9 cruise Mach number
CDo 0.014 profile drag coefficient
K 0.2095 induced drag coefficient

Table A,2: F-4 Airframe Characteristics

The power plant consists of two GE J- 79 turbojets with afterburners,

Specific Fuel Consumption is taken nominally as 0.000625 sec” 1. That is,

if
Cr
SFC = ¢y |1+y — (A. 14)
CD
(& o

then y is assumed to be zero, In the parametric study of Chapter VI y ig
allowed to assume various constant values while SFC at cruise remains
constant, Figure A.2 shows the extremes of this function. It is obvious

that c,, the intercept on the SFC-axis, changes and hence the perturba-

00
tion parameter, €, changes too. The cruise value of CF is not allowed to

vary, It holds constant at 0,028, which is 32% of its maximum value,

The parameters of Chapter III all depend on the value assigned to y,
As a result they are presented in Table A, 3 for various values of y, The

root3 of the range-optimal control are shown in Fig, A, 3.
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y 0 0.01 0.0425 0.2 0.4
x 1 0.9813 0.9336 0.8165 0. 7517
Y1b 0.1083  0,1104 0.1172 0.1474 0. 1833
1600c, 1 0.9807 0.9263 0. 7500 0.6150
! 67.0 68, 0 72.0 89. 0 109. 0

Table A.3: F-4 Cruise Parameters for Values of y

A.3 Boeing 707-320B

The third airplane is the intercontinental version of the Boeing 707,
The airframe parameters are from [27], with drag coefficients extracted

from information on cruise thruse in[ 27] and [28]. We have

Wi 270, 000 1lbs Initial cruise weight

S 2892 gq ft wing area

v 715 ft/sec cruis2 velocity

M 0.8 cruise Mach number
CDo 0.0114 profile drag coefficient
K 0.062 induced drag coefficient

Table A, 4: 707-320B Airframe Characteristics

The power plant consists of four PW JT3D turbofan engines without
duct-burning capability, Specific Fuel Consumption as a function of thrust
coefficient is shown, for cruise in the stratosphere, in Fig. A.4, The

plot was developed from data in [20]. The aircraft cruises in the
158
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positive slope region close to maximum thrust coefficient. Note that a
range-optimal solution will not use the negative slope region which would
increase SFC as CF is decreased. Instead the range optimal solution
would resort to chattering: minimum SFC would be maintained as thrust
was reduced below the value for SFC min by alternately using zero thrust
and thrust for SFCm.

in
of thrust required.

As a linear approximation to the function of CF in the vicinity of its

cruise value we can write for SFC, from (A.1)

SFC = 0,0002014 + 0,0007508 CF (A, 15)

with dimensions of inverse seconds. The parameter y is

y(co, Cys CD ) = 0,0425 (A. 16)
0

The other parameters of Chapter III are

x(y) = 0,934 (A, 17)
(x, C~ , K) = 0,0575 (A, 18)
Y1b D,
and
(CF)cruise 0.02134 (A, 19)

which is 80% of its maximum value, Finally, the perturbation parameter
is

€ = (1/185) (A, 20)

. The duty cycle would be determined by the amount

oo ,,f-exanw“;l




The range-optimal control for this airplane has two real roots,

The values are

-7.493 (A, 21)

P

py = -0.149 (A, 22)

The parameter a has the value

a = 1,116 (A, 23)
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