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The Karman vortex street develops ,is a final state for a variety

of unstable shear flow prof iles I fn two-dimensional Navier-:.token;

f lu i (lb 1.3 or elect rust itic guiding, center plasmas. 4 The vortex street

Is an old anti familiar experimental phenomenon s which has apparently

never been explained theoretically. 'though painstaking and accurate

numerical solutions of the Navicr-Stokes equations have followed the

development of initially instable shear flow profiles into vortex streets

(see particularly Zabusky and Deem 
6
), there is apparently no simply

accessible theoretical picture of why the two rows of oppositely-signed

vortices arrange themselves as they do in the characteristically staggered

arrangement across the street. The purpose of this letter is to suggest 	 1

a simple expla ► tation of the vortex st.eet on a statistical-mechani_al

basis.

Our sLacLlnb puint is a generalized application of the two-temparatnrp

CL mical. distribution of K-3ichnao 7, 8 for inviscid, two-dimensional,

Navier-Stokes flows. The coordinates of the phase space over which this

ensemble is defined are the real and imaginary parts of the velocity

field Fourier coefficients in a truncated Fourier representation. 9 The

canonical distribution varies as exp( -aE - B=2), where E and 0 are the

mean energy and "enstrophy" (mean square vorticity) densities. a-1 and

B-1 are two temperatures, one for energy and one for enstrophy. The

relaxation of arbitrary initial conditions to final states which have

properties that are accurately predicted by this ensemble has been given

extensive numerical investigation by Seylcr et al. 
10 

Relaxation to this

equilibrium state now appears to be beyond dispute.
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One of the more interesting predictions of the two-temperature

canonical distribution is for the expectation value of the kinetic

energy density associated with the k th Fourier component:

<ju(k)I 2>	 (a + Sk2 ) -1 .	 (1)

The angular brackets < > denote an average over the two-temperature

canonical distribution. The reciprocal temperatures a and S are in

effect Lagrange multipliers whose values are determined by the requirements

that Eq. (1) lead to the correct initial values of E and n:

E	 ^.. (a + Sk2)-1
k

(2)

° E+ 
k2 (a + Sk2)-1

k

The interesting thing about Eq. (1) is that qualitatively different

spectra and flow patterns 8,10 are associated with different regimes of a

and S. Either a or S (but not both) can be negative, depending upon the

ratio P/E. In particular, for either large kmax or low values of Q/E,

a<0, 0>0, and a + Sk2 is only slightly greater than zero at the minimum

allowed values of k2 . In these cases, the gross features of the macro-

scopic turbulent field are dominated by the first few Fourier coefficients

(longest wavelength modes) and become relatively insensitive to the higher

wave-number contributions. The flow consists of a large pair of counter-

rotating vortices that fill up the box inside which the Fourier analysis

is performed. 11 This basic pattern had previously been noted in numerical
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solutions for the finite viscosity case by Deem and Zakusky 12 and

Tappert and Hardin, 
13 

and for the discrete line-vortex representation

by Joyce and Montgomery. 14

The point to be made now is that the two-temperature canonical

distribution lies a wider applicability than simply to the case of periodic

boundary conditions in a square box. For more elaborate geometrical

arrangements in which fully developed two-dimensional turbulence is

expected, another set of eigenfunctions than simply all the plane waves,

exp(ik • x), may be appropriate. Statistical -mechanical analyses of hydro-

dynamic situations of a ore general character using an arbitrary set of

basis functions have be, suggested by Thompson. 15

We discuss a situation qualitatively similar to one considered by

Zabusky and Deem, b though detailed comparisons are not in order (we omit

viscosity). An unstable shear flow profile with velocity parallel to

the x-axis is assumed to develop into a vortex street between y = -L
Y 
/2

and y = +Ly /2. The fluid velocity u(x) has only x and y components and

is independent of the z coordinate. The vorticity p() = pxu = p(x,y)ez

lies normal to the xy plane. The stream functiou ^(x,y) obeys 02^ _ -p

and is related to the fluid velocity by u = V^ x ez . (Each realization

of the ensemble will of course be time-dependent, but we suppress the

time arguments.) We assume periodicity in x with a period L x . We require

that there be rigid frictionless walls at: y = +L y /2, so that ey • (0 di x ez)

vanishes there. The effect of the boundaries can be replaced, using the

method of images, by an infinite periodic array of image vorticity with

period 2L  in the y-direction. The vorticity elements outside the basic
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box of width L  are chosen so that equal anu opposite elements nre always

connected by straight lines which are perpendicularly bisected by the

walls. A situation studied by 7.abusky and Deem was for initial velocity

u = ux ex , where ux = U o - Uco exp(-Y
2 /A2

), with 1,y»2A, so that the

shear flow velocity was essentially zero at the walls. it is convenient

to work in a coordinate system in which the final vortex street is at

rest, which implies a non-zero average flow velocity in the x-direction.

Since the absolute square of each Fourier coefficient except k = 0 is

invariant to a Galilean transformation anyway, the mean square vorticity

distribution can easily be transformed from one coordinate system to

another. The k = 0 component of the fluid velocity is determined strictly
by momentum conservation, and is not involved in a discussion of the

-r
interactions of the k # 0 modes.

The most general representation of the stream function under the above

periodicities is (again suppressing the time arguments and omitting the

part associated with the uniform translation):

M -j

-+

Cx,y) = 2 [Ax (nx ,ny) sin k  x
nx,n

Y

+ B (nx ,ny) cos kx x] [Ay (nx ,ny ) sin ky y

+ Dy (nx ,ny) cos ky y] (3)

a

1

where x = 21f nx/Lx,

ny = 0, 1, 2, 3, ...

situation demand tha

(nx ,ny ) = (0,0) does

nx = 0, 1, 2, 3, ..., and ky = 21T ny/2 Ly,

. However, the geometrical requirements of the

t certain of the A and B coefficients vanish. First,

not become involved in the dynamics and may be omitted.
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More importantly, the condition tint ey • (a z x VQ,) w 0 at y . ± Ly/2

demands that for n x ¢ 0, Ay (nx ,ny )	 0 for ny odd or zero, and that for

n  V 0, By (nx ,ny) = 0 for n  even or zero. For n x P 0, the presence of

the walls imposes no additional condition, but the physical requirement

that the average x velocity at the upper and lower boundaries of the box

be equal requires that By (0,1) = 0.

For the present situation, the prediction of the <-,can modal energy

given by Eq. (1) is still correct in the frame with zero total momentum,

as long as one keeps in mind that the space of eigenfunctions has been

somewhat pruned. For large values of B/Q (and since in the Zabusky-Deem

example, this ratio is Just A 2 as long as A<<Ly , this can be as large

as we like), we are in the regime a<0, 5>0, and a + R k2
very small and

min i
positive, so that only the lowest k-modes dominate. Since k ^ 0 for the

modes described by Eq. (1), the expectation values are the same in any

frame, including the one in which the contours of constant vorticity are

expected not to translate. The problem reduces itself o that of

enumerating the allowed modes with non-vanishing Fourier coefficients

and the lowest values of kX + ky. Since the (n x ,ny ) 	 (1,0) is ruled

out, the first two modes clearly are (n x ,ny ) 	 (0,1) and (1,1). Since

By (0,1) = 0, only the sintry/Ly term is permitted. To :Ao extent that

40k »a + Rk2>0, values of ny>1 need not be considered. The energy

associated with the (1,1) mode is comparable to that- of (0,1) to the

extent that RkX is of the order of a + R kY (this implies kY»kx, or

1,x>>Ly ). The energy of the (1,2) mode is not totally negligible compared

to that of the (0,1) mode under these circumstances (a factor of about

1/6 follows from assuming a + R ky	 R k2),  but for purposes of determining

wsti
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the qualitative behavior, a{;;nificant insight can be gained by estimating 	 ?

the flow field solely on the basis of the contributions from the (0,1) and

(l,l) modes plus the uniform translation nssociatcd with the (0,0) mode.	 jl

9

Zabusky and Deem found in fact that the significant fraction of the energy

4
was contained in their first three modes. 16

	
+

Irrelevant phase factors, not provided by the canonical distribution,

are associated with each realization of the ensemble and must be assumed

in order to draw typical flow fields. For illustrative purposes, there
A.

is no reason to assume they are anything but zero. For a first approxi-

mation, then, we may assume for ^ the approximate form ( omitting the

uniform translation):

a sin (Try/Ly)

+ b cos (Vy/Ly) cos (27r x/Lx) ,	 (4)

where b /a is a number comparable to, but somewhat less than, unity.

Figure 1 is a schematic representation of the way the maxima and minima

of this simple approximate form (4) for ^ combine and interfere to produce

the vortex street configuration with periodicity length Lx in the

x-directiun. Addition of higher terms of the series will modify the

details of the contours of constant ^, but cannot change the gross confi-

guratioa. It is therefore suggested that the two-temperature canonical

distribution explains in an exceedingly simple way the basic structure of

the Kdrmfin vortex street.

r
i

7

_:.. Tif `r uT



^IZ	 ^ {

The intention is to carry out future numerical inviscid solutions

to the 2D Nu,rler-Stokcs equations in the present geometry, watch the

vortex street develop, and attempt a detailed comparison of the time-

averaged modal energies with the spectral. predictions of F.q. (1).

The author thanks Drs. P. D. Thompson and C. G. Leith each for a

helpful conversation. Part of this work was performed at the University

of Iowa under NASA Grant NGL-16-001-043.
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FIGURE CAPTION

Fig. 1	 Schematic arrangement of the maxima and minima of the stream

function (the uniform translation omitted) mid/or the vorticity.

The upper panel is For the first term in Eq. (G), the middle

panel for the second, and the bottom panel for the sum. Without

loss of generality we may assume a>b>0. 	 The values chosen, for

illustrative purposes only, are a - 1.0, b - O.S.
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