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Abstract

The theory of production of radiations in the transoptical

region by the passage of high energy charged particles through

the interface of two media is diieussed. Based on the theoreti-

cal model calculations are made for electrons of selected energy

range passing through mylar.
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1. INTRODUGTION

The prediction, by Ginzberg and Frank (Ref. 1) that transition

radiations will be produced in the optical an well as in the x-ray

frequency range when charged particles of extremely high energy pass

through the interface of two media, has opened up a new ,technique for

experimental det!.,ction of charged particles occuring in upper atmos-

phere and also those produced in artificial laboratory eonditiona.

The theoretical model to explain the mechanism and to evaluate the

quantity of radiation produced has been developed by Garibyan (Re g * 2)

and also is extensively discussed by Ter-rtikaelian (Ref. 3)

The present work is primarily concerned with quantitatively

evaluating the x-ray production cross sections based on the theoretical

method developed by Garibyan. A computer program is developed where

varying parameters of the particle and detectors can be introduced to

evaluate the x-ray production under varying conditions.

Transition radiations are reported to be emitted in an extremely

narrow forward cone which is dependent on the energy of the incoming

particle. Further it is also reported that the intensity of the

radiation in the x-ray region has log y dependence where y is the

Lorentz factor. Also it is of interest to investigate the increase

in yield by using multilayer detectors. Therefore the code in designed

to Vary parameters ouch as energy of the incoming particle and the

number of layers in the detector array.

A brief summary of the development of the theoretical model adopt-

ed is also discussed.
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2. THEORETICAL DEVELOPHISNT

Radiation yield by the passage of charged particle through a

laminar medium is dependent on various parameters of the particle v

such as its energy usually exprosned in terms of the Lorentz factor

Y where y . (1-02)- ^ , the charge a and detertor parameters such as the

• number of layers N, the absorption coefficient of the medium, the spac-

ing between detectors and other similar quantities discussed below.

A brief summary of the model used in this investigation is discussed

below.

When a particle with a velocity v enters from one medium described

by a dielectric constant e l and magnetic permeability 
p  

to another for

which similar quantities are described by c 2 and N 2 , it is reasonable

to neglect the enrgy loss per unit- path length compared to its kinetic

energy. The field associated with the particle can be described by

Maxwell's equations.

OxH w n 2t + IucYed , (r v0	 (1)

i
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(2)
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OxE	 cat '	 (3)

V -5 . 4ve6 ;(r - vt)	 (4)

Resolving into triple Fourier integralstone can write

-i(kr-wt)
E(r,t)	 fL(k) e	 d^c 	 (5)

Where	 m kv,
i

D(k)	 ck,
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Then the Fourier component of the fields enn be written as

i

^ dN
ti (kl ^ n V u Yi	 (8)	 u

llere	 X n 1'10

From 7 and 8 5 and 11  are easily evaluated, The quantities which

refer to both media one and two may be expressed by appropriate suffix

1 or 2 in equations 6 through 8 so an to get the relevant equations Vor

the first or second medium. It in convenient to asoume that the particle

is moving in the positive Z direction and nlso to set the interface at

Z . 0. The solutions for the fields must nl.wnys satisfy the physical

boundary conditions to be acceptable. In this case the obvious boundary

conditions are the requirement that the tnngentinl component of E and 11

and the normal components of D and B be conti .nioue at the interface

(Z w 0). Clearly the solutions for L and H as given in 7 and 8 do not

satisfy these conditione. It is necessary to take into consideration

the homogenous Maxwells equations also and add the solutions of those

to the solutions of the inhomogeneous care as given in 7 and 8 and

and thus obtain a general solution and thus satisfy the required phy-

sical boundary conditions.

The solutions to the homogeneous Maxwell's equations are written

in the form (Ref. 4)

Eh (r ' t) C	 r1 1 (k) exp {L(xp + NZ - Wl)j dk 	 (9)

Similar expression can be written for the 11 field also. In equation

9 0 p is the , component of the vector r in the x-y plane and

3



A2 - 
() 2 X - x 

2	 (10)

^f	 A y.A r :^. Arr	 (ll)

`	 where A vis the real part and A I' in the imaginary part of A. Obviously

J
!	 the first medium extends from Z < 0 to -- fin d therefore the solution

for the homogeneous Maxwell's equnLioa as given in 9 will diverge nr,

Z-*-w . This can be averted by placing the restriction a°a< 0 for the

first medium. Aleo from the phynicnl fact that the radiation propognteu

fonly in the negative Z direction in the first medium it cnu be concluded

that 0 ' < 0 for the first medium. rrom identical consideration it in

seen that A' > 0 and X" > 0 for the necond medium. Similar to erprenn-

dons in equations 7 and 8 one can write corresponding quantities for

the homogeneous case. Thus for example

•

	

	 r	 i^
11 M ' (WS-) L x + uA) x Ti' (k),

Ad-piing the following notations

- (el - v "Ag) 	v°

n	 (K X2 !u	 >	
(^)

Or

an¢	 ' s 2 Al _ e A2	 (14)

.	 1

Garibyan (Ref. 6) ' has shown that

,

	

^' I t (k)	 c 2 x !L '1	 0.5)
2

-ci	 le
E' 

In (k)	 27r2 	' 	 (16)	
4

K ei	 E^/(V
Rl (k)	

_ -
2-q2	 x	 +1	 (17)
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Here t and n denote the transverse and normal components respective-

ly. Identical expressions are obtained for medium 2 by replacing suffix

1 by 2 in equations 15 to 17.

11, Radintion from a charged particle passing through n layer of thin plates

When a thin plate of thickness n, is ;introduced at Z n 0 0 the region
a^

of space through which the charged particle is traversing can be considered

i	 to be divided into three se-tions. As before, assuming the particle to

°be moving in th e positive Z direction, in the region of space behind the

plate specified by Z <0 there will be only reflecl'i^d waves. In the rogion

0 < Z < a which is the region occupied by the plate there will bs both
Ill	

reflected and forward moving waves. The region infront of the plate

I
which is specified by Z ?a, there will be waves silly in the positive Z

direction. Let there be N plates of thickness a, each placed parallel

with a distance of b between each plate. This arrangement can also be

classified into three regions. Clearly the region behind the platen where

there are only reflected waves can be specified by Z l < 0. The region

ahead of the plates where Z'> Na + (No - 1)1), there will be only torwn)'el

moving waves propogating in the positive. Z direction.

The region of the plates satisfy the condition 0 < Z < Na + (11-1)b

and in this region there will be both reflected and forward moving waves.

For particles of interest here it is reasonable to assume that 0 - v + I.
c

Further is the frequency region of interest the dielectric constant of the

medium is given by

•	 s(w) m 1 - `U

where' 	 o . krncl
m

i

i
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In this case Garibyan (Ref. 2) has given the following expression for

the tangential component of the R field emitted in the forward direction

b l for the case of N plates

^,	 d

NNt(k) .
	 ;rei	 w2 IF, 	 (1-e

2tt2. 	
exp	 ; i$JO 	 ( a`^°b ) (N-1) +i(1oa^

0

of

X (I -leXp''	 - i(^ - A) a+
/ 1 - exp { -: i° wX '> „ (	 (l0)

In equation 18 the following additional notations are used

t

t A. k2 - d=d7 e

.	
v°

z
A	 ok2-W.

ll o	 C2

k2 	 x2 4.x!2
C

- AO )O	 V

'' (a + b )

x . as + A  

I^

1 2
a m2	

-

x2
II O	 CT

2	 U!2	 2^ c	 -x

x

` I ll The radiation angle 0 is related to the dielectric constant of the platen

+
t

of the media through the inequality

Sint 0 + (1-02) <<	 h/e	 - lI	 (19)

This often written in the approximation	 I N/e.- 11 ro 1

So that the inequality is expressed as

l Sine u + (1 - 02) << 1

{
Obviously this will be satisfied in the extreme relativistic case if 0 is

^} extremely emall as is expected.	 It 'remains to write down the flux of the
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poynedng^ vector S beyond the stack of plates. This is written as

/,tt2	 h/2
SN v c^^ EN,t (k) 2 w 2 dw 21rSinOdO : (20)

a, A^

Introducing the expression for ralt from equation 16 and vearrang-

ing terms one obtains, r

A	 S	 Be2^- f" s&-e) 2   SO OdOdw

N na , o (1-62c.os20 C1—p2(e- "Sin20))2

2

	

X Sin 
Lz (^ - ,X)1 L S	

2	 (21)
Sil

l X 1

L	
J	

JWhere
X	 -^ - A) 2 + { v - 1 2)	 (22)

Clearly, the term Sin 2NXcan be replaced d % functions. The condition to be
Sin

satisfied for this substitution is as follows.

lim Sin2NX	 tt N	 6(X - irn)	 (23)
N-+-- Sin

Clearly for a. finite number N of the order 10 2 or 10 3 which would be the
1

ease in an experimental situation, this condition is not strictly sntinflvd.

However, this substitution is valid as long as tint part of the inr°sll,rsalatil

which does not have a finite range is n smooth function of 0. Turther one

can assume that in the case of transition rodiations.© will be small.

Obviously reflection takes place at each boundary of between the succeunive

'	 plates and the gap betweeen them and this produces reflected waves in the

region of the plates. However the stipulation that

r m We - 1) (^/c i 1)

o Go- x << 1	 (24)

f !	 '
1	

requires that the contribution due to reflected waves nt a single plato

l is small compared Co the forward moving wave and hence can be neglected.

Even in the case of an array of N plates, N being a finite number of LIM
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order 10 2 and therefore condition

(rN) z e< 1	 (25)

in clearly satisfied. Thus it is safe to assume that the contribution

will he mostly due to the transmitted waves. It is also a reasonable

to assume t;rat the transmitted radintion will be confined to a narrow

forward cone so that in the small angle, approximation one can write

Sin 0 -r 0	 (26)
t°

In addition to these assumptions, the following notations are

introduced.

I#lrv_

w^ w n(1 - per) r	 (27)

r	 lnrywp p(l

w it	 so
a 4iry

wit „ 2Q
P	 dttv

p- a+,b	 r

^+ w 1 - a2	 r

n w 1-02 +a	 r

and	 y w 02

Now equation 21 for the Poytyting vector can be rewritten as

S w 4 Vic? r W
d'JI
w 1 y Sin2

1r ( (a bia 4nv y)âi	 .	 '	 t
0	 0	 7 dy	 (28)

+ y ) 2 (n + y)2

^,	 g
a

J



Sin Nit	 w ,a	 W	 11W	 2

rw	 W	 4itv (28)

W 1 1	
GI	 pw

Sin it a I. .,.. .I.— y

W	 U111)	 1191v

This can be written in a more compact form by making use of the following;

definitions.

W 
to	

GI	 sw
Y . it r a + — + — y l (29)

W	 w Q	 41m	 I

W 	 W	 pw
and	 X IT

+	 Wr+ ^19fV	 y)
(30)

P

Equation 25 will now take the form

be2o2 	dm	 5iu2	 NXr y Sin t Y.

S N" ire f w^ /	 (^ +	 (n +	 Sir`°'lZ` g dyy ) 4	
y ) 2' 31(	 )

o	 JJJJJJe

The part of the integrand in 31 which depends on y can be written as

110-2
ire

where 	
2w	 (
,—r--

Y)	 Y (93)

r2 " Sine Y (3^1)

The remaining part of the integrand should lead to a d function Jn

the light of previous discussion. 	 It is of interest here to investig;atc

the maxima of r l and r2 .	 Treating r l as a function of y and equating the

first derivative of r l to zero it is seen that the maximum of r, occurs

for

y '.	 (n + g ) +	 (3 T1+ 4) + 12ng

9
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Noting the definitions of n and 	 it is easily concluded that the maxi-

i
mum of r 3 occurs for

u y ro (1 - 3 1 ) (35)
a

u On the other hand a similar investigation of the maximum of P2 seer

to occur When,

l,y	
.,
	 0

ay

is 	 2 6inYCosYdY"O
i
i This obviously leads to the condition that

conY - O
^ r	 rr

is,	 Coe Ett	 wa	
w	 aw	 1 .

( w * ern	 4wv yl
 0

^_

FA

w itTr

or	 tt
^a

+ W + aw y( ( 21n + 1)^ (36)
\	 o	 //

Where m	 can only take integral values 0, 1 .......
.^

'	 From 36 it is easily seen that,

`y	 n —'—WV ,. C(.2m+ 1)k - ( W-+ )^ (37)L	
6)0'

From the definition of wn no

A 41ry
wa all- z) r

or	 4av . (1 —t12)W	 r (36)

°and using 38 in 37 one obtains for

'W	 We	 JJ1

From the definition of y it is seen that negative values are ex-	 4	 j

eluded and therefore m should start with integral values larger than

1

3.0
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^^w^* w	 1	 t

W	 wo' 2

It is necessary to evaluate the width of r l and r2 to assess the

composite effect of these two fuuct:LO110 which effectively enter into the

calculation of poynting Vector. The definition of r l an given in equation

33 is used to obtain the width of the function. The required condiLiun

is that at the two nearest minima

r l (Y) - r1 (Y + 1.)	 (40)

Further the first drivatives of eaoh be zero ned the second derivatives

be positive. These conditions ennble one to evaluate the value of L

after some algebraic manipulations. It is found that

L N (1 - a2 )	 (41)

A similar investigation of the zeroes of r2 can be easily carried

out by making use of equation 39. The zerocs should be between oucccoulve

values the variable integer expressed within Lb°e square bracket. Clearly

then the width of this function will. be

w'
A r2 	 (l.	 0 2 )	 (4L)

When ws ' > w clearly the contribution from r 2 and r l will over lap

when this condition is satisfied. On the other hand for the region

W > ws', from equation 39 it is readily seen that y,the maximum of

r2 will rapidly fall off and there will not be a sharp peak in the

contribution from r. Thus the frequency restriction is stipulated

through the 'condition

•	 we' >> w	 (43)

It is only the region which satisfien. condition 43 which contributes

to the integrand in equation 31. The frequency w" which satisfies

°	 11

c

i
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a condition 43 can be denoted by go where wa can be made to satisfy the

I required inequality by defining

'A o „wall

` (nl'V) r
114

I ^ 	 and from the definition of wa" and In tl 	 in equation 27 clearly

J
wa «wof 45

3 
„' From 2	 one C an then write

l 	
Zo ft I^^	

wa	
a	 (1-)

wa s 	
(41rv)2. 46

Then from 44

- ,	 w^ a7o(1-(iy1
' ws	

(III	 ')	 (4rry 47

Since, s
	

<	 wa,

in order that the equality in 46 holds true clearly,

1	 ♦ 	 [12 c!	 r52
(Ilhl'	 )	 47fV)2,

(m* z)	 a2a
OY 116

(1-5 2 )	 N(v)2

When this inequality is satisfied the intensity of the radiation will

i°
be a maximum.

' Thus one is left with the evaluation of the contribution of the term

Si- in2 X in equation 31 for the Poynting Vector.	 Clearly the maximum
sin X

of this functica will occur at

Xdttn,	 .

Let the corresponding value of y be denoted by yn.

Then from equation 30.
P

if
12

7
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M

a.l

n
IM Sol n (W+1 + W, ^ L yn )

and then

y b, 4nv (u - Wa n , w	
47^)

	

n	 p w	 w

n	

to

It is possible that ( wa + W ) may not be an integer, This can be
,W	 wl^

made into the nearest larger integer by defining the complement d(w)

where,

0 <, d (w) 4 1

Then the nearest integer can be written

nmin a wa" + w
	 d (44)

It)	 incp	
50

When n- nmin in equation 50, the correspon-

ding value of yn will be zero. In order to obtain successive maxima,

then n must be written as,

n e nmin •1• k	 51

where k	 m 0, 1, 2......,

or equivalently from 50 and 51
n

n e ( .	 .I. W ) 4• d (a)) 4 k.	 r'L

W Wt 

Therefore it is necessary to rewrite equation 48 which gives for

maximum due to this part of the integral for 5 N as

r 4nVW .
H W' ̂  + 

d (w)+ k - 
w2 w, ^ 17

yk	 pw . ^\ p	 J

riry r

	

(I (W) i k 1	 (5J)
put	

`	 J

xrom 27

4nv	
(1"OZ) 

W , p	 (54)

p

d

^t^



r

.	 i

Gp

t0
e

Thus

Yk - wW.
	 (1-a2)	 Cd(w) .I. k] (55)

The distance between successive nmxinin tire given by

WW

1
	(1-3 2 )A	

Yk+1	 yk
Cd(w) + k I' 1] - rd(w) + 

k]

L` JWO P	
(,1-fie)d (56)

w

The width As of a particular maxisin of this psi't of the function the

value of •y - yk + As is used in equntion 27 for X.

8 . n	 (' w ,^1'	 .I.	 WI^1	 .1. IM',	 (yk + Ae)J

X	 wn„	 w II ^rn v Yk_
and As

it 	 w	 wl'IL 
pm -

w	 4%v	 4vv r d (w)+kl .

—P -I

X
it -	 w	 pW 1	 J

4nvrX	 n

Pwln

 _j

(57)

where the defenition of yk in terms of d(w) and k as given in equation

53 is used.	 prom 57 it is readily seen that

Lew. As	 X	 n ] ._ (58)
e

0 [,n

In order to evaluate As the stipulation is mnde that equation 58 has

an order of magnitude of N
	

,

Thus,

11w As ro 
L -	 (59)

Ov	 N

From the defenition of w'p as given in 27 it is readily seen

	

W1 	 47Tv	 -	 (60)

	

W	 pw(l-a2)

Then from 59 and 60

1
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^

As -

	

	 47IV

N PW

	

„ W!2 (1'bZ	 (61) e
+ W	 N

+ In order to transform Sin
2
NX , it is necessary to require that the width

Sin X

of the maxima due to this part be lens than the width of the maxima

obtained from the analysis of r, and 1' 2 . Thus the conditon
A S `< h r2	 (62)

t

or

AS
Ar2. « 1	 (63),

is imposed, It is already shown in 42 that
i

W,

Art d WC^ (1-t^2)

W'
AS 	 W (1 ' 02) 

N

Dividing one by the other

A6 ^

	

W t

 y l	
(64)

Are w a N

Combining 63 and 64

W'
WW1 '- N « 1 ,

a

or	 ,
N >> W^
	

(65)
s

Depending upon the frequency region chosen by the louditions W $> w'a

and w ' a > w as set in equation following 42 and in 43, it is possible to

investigage the restrictions on N. Condition 62 .lends to 65 which is no

restrictrion on N at all. On the oL•herhand if the frequency region of

interest is such that condition 43 is to be satisfied, N has to satisfy

the inequality

{ _l	 N »	 (66)

i_



In addition to this restriction on N au givers by equation 66 0 N should

also satisfy the condition laid out in equation 25,

(rN) 2 « 1.

This earlier restriction has come about from the fact that in an actual

experimental situation No the number detrctor plates will be a finite

quantity. These two limiting factors lead to an interesting restriction

on w'p as discussed below..

N

From equation 249

r o « l	 (67)
4w

From 25	
N2« xZ

	

N 
x< 

1	 (68)

Combining 65 and 66 it is Owen
2

	

N« 4a	 (69)"

However„from the requirement

	

W< W'	 (70)
-- a

when combined. with 66 leads to

W•	 W

W1 	W

Combir ing 66 , 68 and 71
^	 2

W P « W « 4a 	 (72)

W 	 W

or	 co'	 w « w' << 40	 (73)
p	 o,a

3.6
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,1

From definitions in 27

+ (7`+)

W It	 P

Further From 24

n<< .
%mom	 '

or^u	 (75)
« n1

When 74 and 75 are used in 71 the inequality becomes„

	

g^/o 	<< W , p << 1+t,r3	 (76)

	

p 2	 0

The indicated aum of 6 functions from the integrand for the poynti.ng

vector is now carried out nu follows
W

Sin 2 NX m N EA.d(Y-Yk)	 (77)
Sinx k=O

Where yk is given by 55 and A by 56.

Now it remains to calculate Foynting vector as given in equation 31

which can be written as 	 (70
'0

4e2o2	dw	 Sin2 (it + Ty)S	 ,.	 °Y_ "'Z 	 2	 dy N —+ A.6 (Y"Y,)
N	 ttc	 w4	 (: + +) (h Y)	 k-o	

i.
c	 n

where

R
.	

n (l^r 
fl 'F w ^	 ..

T aw
41ry

and A andyk are already defined. The integration on y is rathertedious,

It owever when carried out leads to

S 

r, 
N 4e2 w

++ 
r i E 

(k+d) Sin 	w	 wii v

N	 ttc	 p J w
(k+dt w	

+ W
W	

,)2 (k•Iclh	 p,.)2	 I'

(79)-

].7
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Garibyan (Ref, 5) has shown that the number of quanta beyond a stack of

N plates is given by

` _ . n N (w) 
AL̂2 W9 P 7	 /	 ( âc` I Q) 1â .i.n2 

^. -Ptr (
Ic° I°d Y 11w 1L â ^, ) I

dw	 ve	 w	 two __o_._	
n J

(us0)
^n^

(IrV°^ â 1 • _ Yi •c, w J2 (k+d•{• w J Z
W	 ui'p	 W1 

where

1 _ e-1inN
N (w) M.-

 . o pn	
(81)

In the above equation U in the x-rny absorption coefficient fox

the detector material. 	 4

Computer Code Trax uses equation 80 to determine the x-rny photunn

emitted. The various quantities occuring in the equntion are defined :Ln

the previous discussion. The listing of code in given in the appr_•ndi::.

A sample problem is run 4 for a parallel, plate geometry using 100

myl.t • detectors. The x-ray absorption corffici.e^it for Nylar was tniton

to be

3062	 934 .h 0.29 (1-• 392.91
-3

 V •Y• 2.1-5 12)u- t^ 	 r^
L. y	

-	
Y L'

where R is the x-ray energy in keV. In the snniple. problem energies fur.

3 to 9 GeV were used for incoming electrons. The reoulta are shown in

Vig. 1 and 2•

Higashi etal have measured the x-ray production and have given the

results for 3 and 8 GeV electrons. They have observed a transition radix-
.

tion peak at about 2.2 keV in the case of mylar. They have reported that

though theory predicts emission of transition radiations to much lower
u

'	 I

18



	

)II
	 enemies such radiations were not observed probably clue to absorption

	

`

I	in the detector. Further it is also reported that they have -,et been able

j	 to observe a linear increase in intensity with increasing y. On the

other hand Prince etal (Ref. 6) have reported that they have observed

	

^ , J!	 the yield of transition photon to rise steeply with energy up to about

5 GeV and that it reaches saturation between 5 and 70 GeV,

	

; ,, 7jj	 0

.J

o

ti



Y

H	 in keV
v

dm
dw

0.32 .01.49
0.34 10.033
0.36 97.73
0.36 2013.61
0.40 371.3
0.42 349.43
0.44 243.91
0.46 132.76
0.43 33.5
0.50 42.18
0.52 20.52
0.54 10.26
0.56 4.39

TABLE - 1, X-ray Photon Production
for 3 GeV electrons in a parallel
stack of 100 Pfylar detectors.
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C

EV in keV dN

0.2 2500

0.25 390

0.3 200

0.35 54.4

0.4 420.2

0.5 53.6

0.55 3.6

0.6 1.3

0.65 1.3

0.70 0.6

1.0 0.3

1.2 0.04

1.6 0.02

2 0.01

2.2 0.03

2.4 0.1

2.6 0.12

2.3 0.09

3 0.04

TABLE - 2. X-Ray Photon Production for 5
GeV electrons (Photon range from
.2 to ,3 keV) using a stack of
100 mylar dectectors
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APPENDIX

COMPl ER CODE THAX

1
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1, `l

01=3.1415927
Mon
PTA=100
K=1
RuAn(p° r31 Wjw,F,A,H,P

A FORM (17.)/9 4 0 9 .2/N=1Q.^a/1 (1.7/F9.3/Ffl..`i)

2 FORMAY 1 1 KFI2.6)
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0 1r• (d-21 15,18,18
p e 1
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7 J=J•i°1
(°,n Yn ]o

n Rejol
M1 Yu 38

A Ale( -1)+,aW( (h1U''RAWA)>kMIR
AWAI°+A2
APM-).1 , ln;, J I (MII i$ A) M)/R
olmpl•l0

n IF (J-101 17,411,
4 nntFr. A=I^AH^=O..G /I.(i5^0h)001n.fh:00;01i

SIf+ 11pt = (A.TI aV,pMt'e(MM/11
nm F2A=(A0,0SInp0)/(4.0*pI*V)
nMF7P=(P 0 SIAMA)/14.0*010)
nMF GAP= f 4.0*PI* V* GA1s MA**2,0) /P
n=((n)° l F 2A/nMFPAI+(nMFGA/nMFGA p )) - ((0M12A/0I1PGA)+( w'A I°`5GA/nMFGAP11 )o
YenNFgp/nhEAA

=nmpnA/nhFPAP
X=STNIPI* ( A/ P) *(K+D+(l° l MF2p/nMPGA1+(1tMIGA/OtaVGAP))) >>" 2
S=(K4n+(nmE?p /n,MFC,A) +(nMFGA /nMFGAP) )00:,2
T =(R+n+(nMFGA /nMEGAP) )**2
SHMmo.n	 u fl

nn 75 K=1,200
SHM=SHM+((K +nl*(SITU(PI*(A/P)*(K+n+Y+7)))a' *2)/

1 ((K+O+Y+%) **2 ),b ((K +n+7,) **2 )
2.5 COMYNH p	1^

noDw2=MLI* DMnW	 ORIGINAL PAGE IS
WRITF 13,301 F1,PvrnM W2	 OF POOR QUALITY	 .
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WRIABLES
I

i

M - Mass of Particle
NV - Energy of Photon in, keV
El - Energy of Particle in GeV
N - Electron density per cubic centimeter

MU - Photon absorption coefficient in
detector material

`	 (	 ETA - Number of detectors
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