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A DTSCUSSIC N ('r DYNAMIC STABILITY MEASUREMENT TECHNIQUES

;'ayne Johnson*

Ames Research Center and
U.S. Army Air Mobility R&D Laboratory

ST ,!'1,ARY

Techniques for the neasurement of the dynamic stability of linear

systems are miscusse r'.. Particular attention is given to an analysis of the

errors in the procedures, and to methor's for calculating the system r1amping

from the data. The techniques discussed include: transient decay, moving

block ana.lysi-, spectral analysis, rar. ,'om r'ecrement signatures, transfer

function analysis, and parameter identification methods. The special

oroalems of rctorcraft dynamic stability testing are discussed.

INT`t DL'CTT( N

The flutter testing of an airplane or helico pter requires a method

for measuring the dynamic stability of the aercelastic system. The ob ;ective

of the test is to Pstablish the stability level throughout the operating

range of the aircraft.	 he caTability to accurately determine the Stability

•	 trends is necessary to safely conduct such a test. Thus a method is require'

to reliably uetermine the frequency and damping of all important modes of

the system, using measurements of the system response to existing or prescriber'

inputs. Eynamic stability measurement is a particularly difficult task for

rotoreraft, where many -'egrees of freedom are involved and the process anr'

measurement noise 'evels can be very high.

A number of techniques have been implemented or suggested for measuring

dynamic stability. ':'heF•e techniques may be usefully classified as transient,

no-input, input-output, and parameter identification metho d s. Transient metho,'s

use the ecaying transient re°ponce of the system to determine the dynamic 	 y

stability. "he moving block analysis is a particular procedure for analyzing

transient data. The no-input methods use the response due to existing random

d isturbances of the system (such as aerodynamic turbulence), with averaging of

IF
the res pon°e to reduce the errors in thF: estimates. Examples of no-i np:t methods

*!3esearch Scientist, Large Scale Aerodynamics Branch.
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are spectral anal ysis, correlation, and ran,'.om decrement signatures. The
input-output methods use the response Oue to a measureable external input to

determine the --yster.. characteristics alone, as well as tc re .,?uce the error.
Examples of inpi_t-output metho l's are cross-correlation anj transfer functiol.
analyses. Parameter identification metho's use statistical estimation
procedures to obtain a best estimate of the system characteristics from the
meas • ireO res ponse. 111 of these metho a s have been use,', in rotorcraft or
airplane flutter testing, with varying degrees of succec.s de^ending on the

aircraft involved and the test environment.

The stability measurement procedure .^.ust perform with some level of
process and measurement noise present. A primary concern is, how such noise
reduces the accuracy of the measurements, hence introduced error into the

determination of the system dam ping. This report presents, an error analysis
of the various stability measurement metho rIc. Some of the results are new
(such as the rans om decrement signature error analysis an y the c'iscu:-sion of
parameter identification technioues for rotorcraft), while others are available
in the standar^'. literature. A unified treatment of the error analysis allows
a consistent comparison of the accr.iracy of the available stability measurement

techniques. Thus this report provides a guiA e for choosing the techni.gve
appropriate to a particular experiment.

The basic stability measurement procedure in all cases gives only an

estimate of the response, in either the time or the frequency domain. Further

processing of the data is reouired to determine the system parameters from the
response, in particular to obtain the damping ratio r•.hich gives the quantitative

level of stability. Thus. for each procedure some alternatives for Hata processing

are discusser'. The following stability measurerent technioues are : tI.rdier' in
detail: transient riecay, spectral analysis, ransom r ecrement signatures,

transfer function analysis, and parameter identification methoc's . First however,
a mathematical definition is ;riven for the aeroelastic system consir'ered.

LINEA -1 SYS'PEM 1)YNA''ICS
To examine the dynamic stability measurement technioues, a linear

system is considere,l, with excitation by various control inputs and external
-2-



disturbances. :he response of the system is measured, perhaps with significant

measurement noise such as vibration due to rotor imbalanne or vibration from

the engine. 'i'he excitation of the system can be erovided by existing unknown 	 A

disturbances such as aeror3 ynamic turbulence, or by a measureable external
input .inplied s pecifically to r?etermi.ne the dynamic stability. The system
motion is therefore described by linear, ti.^ie-invariant differential equatienF,

of the form:
x= Fx+Gu
y=Hx+v

where x is the ^tate vector and y the observation. The vector v is random

measurement noise; and u is a ran rl om input exciting the system, either an

existing disturbance or in external in put. The matrices F, G, an('. H are
constant since the eystem is time-invariant. ':he solution for the response
to excitation by u, with initial conditions at to , is

X(t ^ = 2 
Ct-to> 

X (to) 
+ )to Q' ^t^ ^) G U a'r

(t) = 14 x (t) -4 - v

The stability of the system is determine' by the eigenv,_lues of F. "he

eigenvalue_ usually occur in com plex conjugate pairs, of the form

X = — ;WH 4:L toW 	r2

where L,)— is the natural frequency anr! ; the dam ping ratio of the mode.

The mode is stable if S > 0, and is an exponentially decaying oscillation

for 0 < ^ < 1. It is usually the lcw dam, a modes of the system which are

of interest, i.e. 0 < S < 0.1 . Note that If —A- is the diagonal matrix

of the eigenvalues of ^ , an ,' ii the matrix whole columns are the corresponc'ing

eigenvectnrs, then,	 1L''-1. tor. further infcrmatior; on the ^ ynamics of

linear r ystems, the rea, er is ('irected to references 1 -3.

kegar°less of the stabili ty measurement pioceOurxe used, ^ basic

requirement is that the system be controllable and observable. This means
that the input to the system munt sufficiently excite the modes of interest,

and the modes must be observable in the response of the variables measured.

-3-
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TRANSIENT DECAY

The transient motion of a dynamic system is composed of exponentially

decaying oscillations of each mode. A particular measurement is often

dominated by one, low-damped mode. r'rom the oscillation period and the

decay rate of the trace, the frequency and damping of the mode may be

estimated. The typical procedure involves establishing a large amplitude

a sinusoidal motion by means of an external excitation at the natural

frequency of the particular mode of interest. The excitation is =topped,

and then the subsequent transient motion is analyzed (often by hard) to

determine the damping.

Consider the linear, time-invariant system

x=Ex+Gu

y=Hx+v

where x is the s=tate and y the measurement; u is process noise such as

aerodynamic turbulence, and v is measurement noise. It is assumed that

u and v are random disturbances with zero mean. The motion following

time to , where the initial con?itions x(t o ) are established by the external

excitation, is

xCt^l + Y ^F(t— ^ ) Gu byX (t) = e-	 ^-t,

^(t) - HK (t) + v

The first term in x is the transient we wish to observe. The second term

is the noise in the `..race due to the disturbances occuring after to.

The influence of this noise is the primary concern with this method.

Statistics

The expected value of the observation is just the transient

response:	 iz Lt —ta)

The external excitation must establish a large, non-zero initial condition

for the modes of interest. The variance of the observation is

_1y_



^	 F(t- 'C) 	^Tlt-'t )

to

where it is assumed tha, u is white noise with Eu(_q )u T ( ,r,) = QS(s, - 'it),

so also u(t >t0 ) is uncorrelated with x

'

t o ) . The measurement noise

correlation is Ev(`L,)vr('[=) = ?('c,-Tj). It has been assumed that the

initial conditions x(to ) are deterministic, not ranfom, variables.

Considering a single degree of freedom system, so the integrations

are easily performed, the expected value and variance of the observation

are:

t	 2a (t-t)
t^ z	 Q•,

s^z 4 	a ce - toy
1— e	 +

Z^

So -the normalized variance is

Z.	 „2
^t z >^

E z	 x o	 -
 Z,>.

Note that the stea^y std .e variance of the F-tate x with c my the erc'_t.atinn a 1s

t.	
Jx - 9 2

q/(- 2 	so
T_
	 — 2^ (t- to)	

Xjzl^	 el
-
IL

xa

At t = to the only contribution is from the measurement noise, E t= r/h2xo.

As t increases, the noise due to the disturbance u becomes more important.

The transient is decaying, whi.le the motion r?ue to u quickly builds up
to the level V x . Thus the ratio of the noise to the transient grows

exponentially:	 _ 2),(t-rt•7)
E Z = Vi ^ c,	 _' ^

xo

-5-
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•	 To determine the damping ratio it is necessary to observe the transient

while it decays, to a fraction f of the initial value (f = .3 to .5 typically).

The maximum error which must be dealt with is thus

E7.
	 = vx C^-3-1^

xo

+	 So E max is of the or'er of 2 to 3 times the ratio of the --ms response

clue to u and the initial respon:^e amplitude. This result holds for the
case of more than one degree of freedom also. Note that the stea rl y state variance

,f t`ie resnon. e of the Fysten to the r ; icturbance a alone is given by

- ( iX + XF
T
 ) - G
 CT

from wh ,ch it follows that V	 X.
y

To reC uce the error in this procedu~e, one can only increase the

amplitude of the initial conditions x(t o ), or re•iuce the noise source
u and v. The measurement noise v is frequently small, or at least under

some control by the experimenter (e.g. the rotor 1/rev vibration can be

reduced by improving the track). The process. noise can also sometimes

be controlled, e.g. by conducting a flight test under calm atmospheric

conditions only. In wind tunnel experiments however, often there is little

which can be done to reduce the turbulence significantly. Increasing the

initial excitation may not be practical either; the largeF.t value possible

is often used to :tart with. In summary then, the noise parameter i'x/xo

often can not be controlled by the experimenter. 'Phis parameter is typically

large (say .5 2), so that the error in the transient trace is a major problem.

Data Processing

'ihe frequency and damping are often determine r) by hand, from an
oscillograph trace of the response. It is assumed that the motion io.e.
the form of a decaying oscillation of a single mode:

X= k  e, 	 LAM (W" I,--[Vt-- 1 .-)

Then the frequency is given by the period of the oscillation, w - 1/" (Ha).

To determine the damping ratio, consider two peak amplitude measurements x1

r

i
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and x ? , which are n oscillations apart. Then

x s = ^^^	 — S
	 •ti 2n

a nd

-&A%I /xz

R.

	

ZT K	 )

For example, s equals .11 divided by the number of cycles to one-half

amplitude.

In general, the envelope of the oscillation x = x 0exp(- SL-" t)
gives In x = In xo - S w,t, or

a 9«x 1&C
2 Tr

_ d2JtM x d2s ^-	
2 -	 —

+	

Z -TV w

where c.) is the oscillation frequency in Hz. The ramping ratio then may

be calculated from the slope of the log-decrement; the Previous metho ,4 ie

just a special case, where the slope is calculated from the two pc*nts

x 1 and x 2 . Cne data processing procedure is to plot In x 	 vs. t (removing
the mean value first if necessary). The slope of the envelope of this plot

gives the damping ratio ; . in general, determining the envelope of the

transient is a difficult task to mechanize however.

A different approach is to find a least-squared-error fit to the
data for the curve	

\

Identifying the parameters v-- and W is a nonlinear problem however, so an

iterative solution is reiuire ,?. There have been some successful applications

of this approach. However, c;)nvergence problems are very likely with a

high noise level.

I

I
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•	 Moving; Block .analysis

The moving block analysis is a particular r?ata reduction technicue

for transient notion. The Fourier transform of a block of data from 2
to 't+T gives a function v(t ). The magnitude of the sprectrum line at

the natural frequency w„ plotted vs. 'C gives then the damping ratio.

Phe moving blcck analysis is defined by the linear operator L:

L _	 1	 ^...^ e-	 at
T	 _ ;

C•^
z-Ty	 a	 t -T t ^c

So 3(2) = Ly(t) . The expecteO value of y is
Ftt — zoo

•	 F c LEj = LIA C,	 Xo
Jl. C t - "t o

M Lv	 ^o

T ^• ^^.^ t _rto^ - :S1'II

	

HM [ Z 5, ^-	 at 9,

SlYr

k	 =	 FCC -tA7	
!_-

The dependence on •t is e	 soy is still a neasure of the t-ancient
i

motion. The last factor in Ey is in0epen('ant of z , and contains the

only dependence on the spectrum frequency SZ . This factor is a maxlmu,-n

when the frequency S -L is equal to the natural frequency of X . 'When
fi	 SZ is near the natural frequency ►,)- of a mode, the quantity

Ca -^S2>T
S^.,,T

L	 •	 ZR C,,y:tZ)
2lr ^ uw

is large; away from the resonance it is small. Thus the largest line

of the spectrum y will be at the natural freq ,,iency of the mode dominating

the response y. Considering only the line at SZ = ww therefore, and

neglecting all modes but the dominant one (with eigenvector u), we have:

C



^i.(t- toy 	 e.

TV,,	

(K.,1>

Thy magnitude of this line is:

an exponentially decaying function of M . The moving block analysis

thus results in the envelope of the decaying oscillation directly; this

Is the principal advantage of the technique.

In summary, the moving block analysis involves applying the Fourier

transform to the block of data from t. to 2 + T. usually the FFT algorithm

}	 is used, with a sampled time series of data. The magnitude of the line at

-	 the natural frequency u.. is obtained; if the data is not too noisy, this
1	 line will have the largest magnitude in the entire spectrum, and the frequency
f

of the mode may be determined by searching for this peak rather than being

input. A plot of 171  vs . 2 gives then the envelope of the decaying

transient; the slope of 1npy vs. 'z.	 gives the damping ratio S as
discussed above. Since the procedure gives the envelope directly, it

is simple to mechanize the calculation of the ramping ratio, such as i
by finding the least-squared-error fit of a straight line to lnlyl	 vs. Ir .

This is a significant advantage compared to the processing required to

find the damping ratio from the transient motion y.

Tn choosing the block size T, it can not be too small or the operator

reduces to sim ply L = 1/21T ; and if 5w—T is small, then the 12 = w_

line of the spectrum does not have the largest magnitude. So there must

•	 be a significant decay of the oscillation in the time T. A block length of

3 or 4 periods is probably satisfactory. Te i.ncrease the frequency resolution,

the FFT shoulr not be applied to the block of length T, but to one several
times as long, filled with zeros after the data.

-9-
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	 Now consider the error involved in the moving block analysis.

The linear operator L can have no fundamental influence on the error.

'.he normalized variance of y(T-) must have ba: ically the same value a.
that of y(t), i.e. error level determined by the parameter V xlxo. Working
in the frequency domain helps, since only the noise around the frequency
Wa is important. This may be expected to reduce the effect of the measurement

noise significantly. The operator has little effect on ..he process noise

however. The response of the system to a will be mainly a superposition
of oscillations at the natural frequency W w , which then is transmitted
to y along with the transient oscillation.

':he variance if y is

 :.. S	 u G e.	 2
J	 C t 0 	'	 to

'ihe eval?ra.tion of Vy is complicated by the operator L. oonsir ? ering only

the domi. nt mode In the response, the expected value and variance are

approximately
_ 1

1n _ H e

19F,

T

	

J^	 (i	 h r

The normalized error is

T	 'I	 ^.,	 ^ x
E = 

CE ^
^Z = xo

•	 which is indeed essentially the name result as for the normalized error

of the original transient trace. 'The minor improvement in the error

statistics due to the moving block operator is not the reason for its use.

•	 The principal advantage of the procedure is that iT. extracts the frequency

and exponential envelope from the decaying oscillation, which greatly

facilitate: the mechanisation of the data processing task.

T4

I
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SPECTRAL ANALYSIS

To improve the accuracy of the measurement of the s ystem respor:e, the
data mLat he averaged in some fashion. Spectral analysis is a fundamental

technique for measuring the ranr'om response of a system. The excitation
of the sy-,tem is provider' by existing, random disturbances, such as
aerodynamic turbulence. only the response y of the system is measured.

Let Syk) be the auto!-pectrum of a particular measure(? time series of :?ata.
'.'hen an estimator of the true epectrum of the response in given by the
-nsemble average over 1' calculations of the spectrum:

'r.
5 [N)

The s pectrum Sy may be obtainer! by either digital or analog processing.

In general, thi Process noise exciting the system may consist

of multiple inputs (:..g. sever-1 gust comror.-nts), so the true output
s pectrum is relate ,' to 'he in ,)ut spectra by the exrression

r

where Hi is the transfe7 function of the resporre y tc the i-th input,
an( I S i is the unknown) input autospectrum. i-or the linear system
under considerate ^n, ii i is a rational function, anr' the denominator h((-^)
is the sane fo-r ill inputs (it is the characteristic enuition). 'Thus

'	 Z	 1

Z	 ID'W^i

de are primarily intere.,Aed in the poles of the characteristic equation,

which .rive the damping cf the r•:-tem. The output auto , spectrum Sy is

a ('irent measure of 1).	 ".'here wi) 1 be a resonant peak of I ., near the
C	 ''n.-Aural frequency of a low - r amped mode,	 long as there is no correspcndir l-

r	 zero of N, near the po1F- . Such ., numerator rero may arise if the mo,?e

,r
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•	 is not observable in y, or if the input spectrum is varying greatly in

the vicinity of the resonance. Therefore the mode must contribute

significantly to the measured response y, as usual: and it is necessary

that the input spectrum be reasonably plat near the resonance. The latter
restriction is not too severe since the resonances of low-damped modes

are very sharp.

"pect.-al analysis and correlation analysis are entirely equivalent,

the former in the frequency domain and the latter in the time domain.

Thus the correlation techniques will not be discussed here; their statistics

are similar to those of spectral analysis. With a digital processor

and hardware FFT units, the s pectral analysis is more convenient; it is
also better s ,iite,' for data reduction, such as finding the Ramping ratio.

S tatistics

An analysis of the statistics of the estimator S v of the autospectrum

is available in the literature (see references 4 and sj. The expected

value an^ variance of S are

E S (w)	 S. a^ + 24 Sr^^w)

	

A„	 tv S (w7	 S (w')
K

where o0 is the freq-,ien ,;y resolution in the spectrum, and K is the number
of averag%s. These results are essentially in('ependent of the statistical

properties of the input and output, hence E-.re applicable to the response
to general random disturbances. The normalized bias error is

`	 awz S..
.	 ^ J 2H S

• The most critical case is at a resonant veak, where the greatest: ac^uracy

is req °ed, and S" is largest. Assuming that in the vicinity of the peak
the spectrum may be apprcxImated by that of a single degree of freedom

-1''-



system, one obtains S/S '' _ S w^	 So for a given bias error, the

following frequency resolution is zequired:

p w = 12E6

Then	 .o cJ = z S wM gives E6 = .02, which is essentially negligible
bias error (twice that resolution is probably satisfactory). Note that

the half-power bandwidth of the peak is ew e = ZS o,,,•	so this resolution

corresponds to covering the bandwidth of the -peak with spectral lines.

the bias error is easily made negligible by a proper choice of

the fr . ency resolution. The remaining error is the normalized

variant-,
Vs	 z	 ^

The error is inversely proportional to the square-root of the number

of averages, the standard result for sample means. The estimate of the

spectrum may thus to made as accurate as desired, by increasing the

number of averages.

An important parameter of the spectral analysis technique is the

total record length required:

k	 2-

So the total time over which the data is collected must be increased as

the damping, frequency, or error is decreased. This is a fundamental

result for the amo,int of data required to define the system from the

output due to random disturbances, applicable to all no-in put techniques.

•	 Data Processing;
	 i

In using the 	 ctrum to determine the system properties,

it is generally assumed that thr :nj of spectrum is flat in the vicinity of
the resonances. Since the low-damm-_l modes are of most interest, the

assumption is only required over the narrow frequency range nw/o j 2

-1-'-



Assuming that the spectrum in the vicinity of a resonance may be approximat(

by that of a single, second order mode:

CA+^ STo^.^T

4	 N7

it follows that the damping ratio may be determined from the spectrum

peak and an integral through the resonant peak:

I.2w..

t

	

	 I	 ^
^'	 Z	 L
_., S w ^2.a	 ti .34	 S, Q ^M s w Q,,,,

7	 Z^ WN	 S	 ^ 3
P	

'^	 s P
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RANDOM DECREMENT SIGNATURES
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	 The method of random decrement signatures (randomdec) is a procedure

developed by C)le (reference 6) for analyzing the response of a linear

system to ranr?or, disturbances. 	 It is designed to give an estimate of

the impulse response of the system. The randomdec estimator v is

defined as the ensemble average of the transient response to existing

random disturbances:	 It

1C k )
k t-t

The key to the prrc^aure is to select each ensemble yk with the same

ii:i tial cone i tions by an appropriate triggering method. Then all records
have an identical transient due tc the initial conditions, while the subsequent

Noise averages out.

Cor-s ider a linear system excited by the unkn•wn random disturbance

u; the response measurement is y, and the measurement noise is v.

The system is de=cribed by the differential equations:

x = Fx+Gu
y=Hx+v

The soluticn using the initial conditions at time t o is

XCt ' = 
	
k Lto) + 

Sto e• CsH^`C

^(tl = N x^t7 + ^

The observation y(t) is a random process, depending on the random variables

U, v, and x(to ). The ex pected value of the ran-^cmdec signature is

.	 _ ^	 F(t--toy	 (t F (t-^r^	
1

	

k	
t li e,	 t x ktt•1 + )tQ e,	 G E L4k & V-^ 4 E ^k 1

N F (t-moo)
ko

ri
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k

where i t ;ias been assumed that u and v have zero mean, and that the

initial conditions are stationary random variables with expected values

x  = Ex(t0 ). Thus y is an unbiased estimator of the system transient

response.

In order for a particular mode tr , be analyzed, it must be observable

in y, and excitable by u. The initial conditions x(t
0

) are due to the

random disturbance u over the time up to to , so the frequency content of

u must be sufficient to excite the modes of interest. This is a fundamental

regUirement of methods using existing random c'isturbances of the system,

arising here through the initial conditions at time t o . Furthermore, in

order for a particular mote to be present in y, it is necessary that the

initial condition for that mode have a non-zero average value over all

the ensembles, i.e. Ex(to ) * 0. The response x(t) is a random process

with mean

Ex = F -1G(2,u) = 0

So it is not possible to arbitrarily select the ensembles. The result

would be xo=0 and hence Ey7 0. It is necessary to trigger on the response

in such a manner that Ex(t )
0 # 0 for the modes of interest. Note that

triggering on y=0 is not possible either., since it giver zero initial conditions

(it would be possible to trir;ger an y=0, with positive slope only, an,'

hence obtain a non-zero average valuo of the initial velocity; the variance

of the initial velocity would be large howe 3er, leading to a large error

in y as discussed below). The usual procedure is tc trigger the start of

the ensemble on a fixed, non-zero level of the response y, with either

positive or negative slope.

As usual, the ergodic hy pothesis is used, any'. the ransom decrement

signature is obtained by averaging* over recor ,̂ s which are sequential in

time:	 K

Tt is assumed that the records are uncorrelated, which is generally

satisfied if there is no overlap (ref. 6). % ith digital sampling and

-16-
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	 processing of the data, the requirement that each record be triggered on 	 4

the basis of the response means that the records must be nor.-overlapping.

Using records with some overlap would reduce the total sample time some

(a factor of 2 is about the maximum possible reduction), but increases

the correlation of the records.

Statistics
The variance of the random decrement signature —y is

Sto

v ►̂  = E ^ Z — ^E'7)z 	;

CK
xo^

The ensembles are uncorrelated, except for the initial conditions. The

initial condition x(t ) is a random variable with mean Ex(t
U	 O
) = x and

variance wxo= Ex(to )x (to ) - x0 , determined by triggering on the response

y in some fashion. dote that the response of the system to the random

disturbance u has zero mean and variance V  = Ex(t)xT(t), which are not the

same as x  and Vxo due to the action of the procedure for selecting the

initial time t .
J

Now assume that u and v are uncorrelated with each other. Let

Ev(-C, )vl (-rt ) = R'Ic — 'C^; any? assume white noise for u, so Eu(Ir,)uT('ti)

Then also u( t > t0 ) is uncorrelated with x(to ) . Then the
variance of y is

Lt- ta> Tct— t e) ,-r-
V

S
d

- 1
.t	

(t-'L)	 Y	 F T Ct

N 	 6 Q v e.
— K)	 T

ti !-^	 + R
k t

e.
o

i
- The term in brackets is the same error as was fonnd for the transient

decay trace.	 It is the response of the system tc the random disturbance

` u subsequent to the time to where the initial conditions are determined.

-17-
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•	 This term is zero at t = t o (except for the measurement noise contribution),
and increases with time until it reaches the steadv state level given by V .

x
The relative size of this term increases exponentially as the transient signal

decays. The total normalized error due to this source is approximately

So the ensemble averaging reduces this error, inversely proportional to

the square-root of the number of averages. This error source can be

made as small as re q uired by increasing the number of averages.

	

The remaining term it	 depends upot: the variance of the initial
conditions, vxo . Both thi:, term a ,td (Ey) 2 decrease with time at the same
rate, so the normalized er-rcr is always about the same value:

	

Ez, _ V	 Vx"1	 n..
CE z	

obi

Thus the normalized error of y is equal to the normalized error in the

initial conditions x(to ). the averaging process does not reduce this error
term, so the accuracy of the signature depends upon kee ping the variance
of x(to ) as low as possible.

The variance Vxo depends on the procedure for triggering the start
of a sample record. Zero error V xo = 0 requires that the same initial
conditions x  be produced exactly by every triggering event. An important

observation concerns the influence of the matrix H in '.'y. Since (at t = to)
;y = !F^'xo :iT , it follows that the variance in the initial conditions of the
unobserved states do not contribute to :`y. The triggering process, based
nn the measurement y, can not be ex pected to nrOuce a specified initial
condition for an unobservable state. -or such r^tates the initial con,'ition

will hive a .,ero mean, and a variance equal to the value in V x . This
large variance does not contribute to ''y however, so it is of no concern in
the randomdec procedure. An important example is, the velocity of the

degrees of freedom of an aeroelastic syetem. The state variables consist

of the displacement an(' velocity of the degrees of freedom, but generally only

the displacements are measured. The velocities c.re unobservable .°.tates
-1P-



then; the velocity initial conditions will have large variance when the

triggering process iisec the measured response y, but only the errors in

the -+isplacement initial conditions contribute to Vy',

Consider a single degree-of-free r'om, second order system, with

states x and x. The response x is - pea ureci , and the sample recorr, is started

by triggering on the level of x. 'Then Vy is Just the variatice of the initial

conf?ition on x alone. An efficient triggering; rrocess shoulc' give a small

`! x0
 for the rl isplacement. Therefore this exam ple shoul ,' have low error

in the ranco-i decrement signature y due to the initial ront?ition errors.

Gbvioucly the triggering procedure is a central element in the

calculation of the random r1 ecrement si€nature. A procO ure i ,:z required

to establish the initial conditions with the following properties. The

expected value Ex(t0 ) = X  must be large enough for the important mo('es

_

	

	 that they have significant excitation in the measure(? transient. The

variance of the initial conditions ,'x /x 2 must be small for the observable
k	 o 0
9	 states; this is essential for low error in the signature. Finally,

Feither : r 0 must be small, or a la rge number of averages must be made

so that the error due to the random disturbances after t0 it emal? . ( f

s	 cc•urse ^' /x 2 c,n not be very small, since the same ran dom input u pro('uces
X o

both x and x(t), of which x(to ) is a member. In summary then, x0 sho,ll,'

be large both to re('uce the errors and to increase the magn'. ti.0e of y.

If too large a value of x0 is chosen for the triggering process however,

the correlation of the records increases. Cole (ref. 6) suggests, on the
R

basis of an analysis of the statistics of the methor', that the triggering

R	 use s level y = 1.0 to 1.6	 (where ^^ lr^ the rns value of the response).

Minimizing the error di-e to the initial conditions variance require:

that the triggering process select, t 0 on the basis of the measurement y

such that the response x has the prescribed value. There are two basic

reason: why this may be difficult to accomplish, both of which must always

be present to some extent. the existence of measurement noise, ane systems

with more than one movie obser,., able in the measurement. 'measurement noise

-19-
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hre:.ent in y will give a lower bounc' on the variance V x G .	 nlike the UVL

term, th.i:: eff'ect of the meanuremen+, noise does not average cut. Depenr?ing

on the syr tem, VAs may be a ceriou:- noise source or 	 n°f*ligible one. Note

that errors in the tri.ggeri np process hive an effect similar to the measurer.ent
no!--.e.

A usiu-.1 case Livolves a single mea:;urement of the response of a
multi-mo-'.e system. 11' r.ure than one modE it ob::erva'r,le in y, then obviously
it is not po(aible to uniquely determine the values of the obr ervable state.:
and tiaur trif,ger the reco& solel,; t)ase ,• on the single value y(t). In
general the initial con c'ition- can not be rtet(,rmi,e(' if the r?i.menrion of

y is le-.s that the ('i.men: ion of the observable states is x o . In practice,

only thos,. suite:: which contribute ignificantly to y are of concern,

:tnd freq ient l y there is onlyy one such :state contributing to the measurerent.

An exe.mnle of where more than one mode is observable is the neasurenerit of

ti:e tip motion of a cantile-er beam (e.g. a wing or rotor bla , 'e). Tn =uch

a case the frequency rantre may be restrictec, or only a - .ngle mo- k- excite(?,
: o t rat there it no practical ('i.fficulty, or in fact it may he necessary to
determine the initial cornlitions of all the modes based on the one mear.urement.

I t is uo:,nible to obtain an estimate of the :state x(t) from limite r' noisy
r:pas l trements y, if use is male of the past history of y. This is. a c1.-scical
filterinf; problem; the solution in thic case i: : the Kalman filter, which
depends on the characteri::tics of the system being investigates ♦ . I t is
possible to identify the , •ystem as the measurement: proceed, anr' thus update

the l alter rno^ l el. This become:: a rather involve s? procedure simply to
trigger the :.tort of the record.

In summary, it is often possible to trigger on y with low variance
of the initial condition: of all obserrible :.fates, hence with low error
in the r-andomdec signature v. With	 high or'er :z yrtem, or with mertrurement

noise ;,he trif*yrerinr to:-.k becomes more i'ifficult, ani the error in v

increar.es. In the extreme case, th em t.riggerinfr procedure becomes. the

•	 hr•ohlem of i-lentifyi ng the state x(-.) from noisy iiearurements of an i:nknown

linear proce:'-. -- esnentially a definition of the entire !ynamic stability

measurement t.:-k.

-1'0-
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1 t sho ul(' be noted that with .multiple to ter c b,ervable in y, %11
are requires to take the nrescr.i;,ee initi;il conOitions at the triggeriv.
instant. The time interval between such rcnurrence; c-: iJ l increase an the
niziber of stater increases, hence the totcl testing time ( not the sampling
time) call increase. Alternatively, fcr 	 riven terting t_me the: errn^r
mu t be allot-,e ms to incrc-;Lse, either '-)y relax.Lng the trir;;er criterion an'

ro increaFinr `,'xo , or b;,• taking Cewcr average;.

!	 '::ne ai,ove result for "Y was based on white noire for the w:n'or

F
-i. turbance u.	 ­e result, will be .-imilar for a -eneral snectram,

1	 -^,u^'T,) a ('L L ,	 ..; 2, — 'rt l , Which .inc'ee ,! ie more real ; ^ tic t h _n ;:"ci tF

t
noise. ;he basic influence of averaging in reducing the ncis,e it inch nre^!,

s	 :Ithoi:gh the nunber of a.verap;es require , '. for	 rnecific val;,e of error
will be ;nfli.iencer l :-.omec:hat by the spect — in of u. -,f the ;nput s pectr ,

is lour, at the frequency o' V e nos e to be invertigate r', it will be necessary
to increase the ntu^.ber of averaree. to compens.-ite for the low rid-n11 to
noise ratio there. An important cons i A eration for tae rans om ^ecrer-r:t.
r)roce'nre it the effect of h-.ndwinth-linite' i nput c'irturbancFs on the
initial con^ttions. fhe ran('om `istiirbance n irc the source of x(t), fro^,
c;hich the initial concc itions must be chosen. Bence the fre q uency content

of the input has a .'irec'. influence on Ex(to ) ant' Vxo.

inally, consider the ;arnle tine require'. 'tole givee an nrtimate
of T base? on the st,.atisticr of y 	 or the - rohle^ of me_r ring the

ti

I.mpinC ratin, the result is
Z

:;here E	 is the normali^ef' error of the eaml:ing estimate, "hin is the
, e result as for s pectral analysis (altho igh the interpret-. tion - of

6	 6 are somewhat different in the two cases). The anount. of -'3ta requi.recl ,c.

extract information about the cystermm, witrn a given accuracy it a :un('amenial
characteristic, in,?e penr'ent of the procedure ured to extract the infc,rm3t'Gn.

-, l
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	 As with spectral :^mlysis, for z- given i' it i!-. n^cessary to traw'e
off the munber of averages and the freouency revolution. ':he 'reQ,,ency

revolution of the r:mr'omriec sit-nature is (!eter^linen by how man;; periods

•	 of the oscillation ire meartured. If' there are n cycler with frequency

L)^ In the sii(n,1L • .re, then the length of each - ecorr , Is t = n/W,,,,

he r : r^ber of ave ,-nre , 	thrr.

_ ^ = S ,n Es

'I'ith	 S : .01 to .02, E = .1 t3 .2, and n _ 4, the number of averages

req uired is,	 - 1000 to `000. ^ole nuggestr the uo;e of n	 anrl a sample
rate of r - 16o, (ro the signature consist.. o r Q4 sam nles'). ':vnicaI

anplications of the ranr'o r- -'ecrenent proce a ure require 1:_ ^^000 to ''G00

averagec for 5atisf,%ctory accuracy (references 6 an' ?').

Data ; rccesr inr

'_'he r.^nr'o!l (^ecrement signature y is an estimate of the system transient

res= xmn e. 'rhos, the proce,*ures - = iscu,se , :hove for etermin:n , the r,--m- ing

ratio from the :s ec,%yinp, transient trace are arpl1c%b1c, with 'm,rove-
iccuracy Aue to the avera n inE;.	 etermini.ng the r, ,_ .ins- nrr' frequency
by means• of a leart-rq ,iared-error fit of a -'ecaying oscillation tr, the Hata
it more successafiul than with the unnverage f' trac , bue to the rer' l rction in
the error of the estimate of the tra p: ient. ,hand;	 -level-nec such
a , r atz rrocessinr technique for the ran'onci ec metho'.

In cenc1 1.a1en, the s pectral analy p is, correlation, an,, ranr'ori
- l ecrement techniquen are all mer , erg of the general class of netho(ls
for analyzing the rrovert.ie- of linear r'ynamlc ryntems utilizing existing

(unknown') ranrlorn riisturbancen,	 with averaging to rer'uce the e-•rcr.

As such, all of these techniques have ha=ically the same rtatirtical
characteristics. The choice of method He pene4r on the experiment, the
,4 ata Processing equipment,, anr4 1:. often on the Preferences of the
experimenter. Correlation Is the clarrical technique. :-r ith cr:rrent
,4 igital Processors and . _:, 'T harriware, it is more useful and convenient to
work in the frequency domain with spectral analyrir. The ran(iom eecrement

_2^1_
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•	 ctatli^ticl,l are somewhat e-recial '_n their O epen'ence on the variance of
the initial conrli.tions, anc' hence on the triggering, Process. The Censitivit.y
of V X 0 to measurement noire, an(' the (I iffi.culties of the multi-mo(le
caee are of greutert concern. 'he spectrim of the output 'eDenl 4 rectl,y
on th- f requency content of the input, while the rarn'om l ec siE,nature

vcncl. on the Input opectrun in' irectly, particularly throuf;h x an' ''.0	 xC
All pro ce('ures are er^ent.ially in ,'epenf 'ent of the level of the inrut, as
ex.*ctc.0 for a line-r system. The normalization 's imrlirit I n the

r3.nr'omlec triggerin[r , an-' 3y me.), be normalize' by I ivVing bl. 7- 3	 ) 
.111 of the nrocs r'ures rec,uire further 7!rocesrinr; to extract t l :e rlamrinf;
ratio anr' other para ,ieter--. In this reran' the snectr%1 analysis it ,(.re
conven;er.t than correlati;,n or mmf'crn i ec teo. lniques. which give the respone-e
in the tide lonnin.



'i"iAN,]FE? Fi'N "I( ;I Aj:ALYSIS

Stability analysis techniques which rely on existing, unknnwr.

•	 ~a.ndon Oieturbances to excite the system have the husk limiVition that

the measured response repen('s on the properties of both the ryntem arr^

the unknown intjut. 9y measuring the input as well an the response, it

i:• por!-ible to ''etermine the characteristic:-. of the °yntem alone, as well

ac reduce the error in the analysis. .'rually it is necessary to apply

a measurable external input specific;illy to excite the system. The

cross. -cnectra between the input and cutput, in ad(i itlon to the autospectra

Ire foun,' . ?he ratio give: the transfer function 11 ( W) between the input

w and the re ,.,non:-e y, fron which the zystem parameters may be detPrmi.nea.

.on_i^?er now	 1?near system wits i put. and ;,.strut measlrements:

X	 X + G 1 + Ew

y = x t 
v 

z = w + V.
i

The actual system reF-.ponee anr? inpi.t are x an ,' w; y an(, z are the measured

response any? input, inclu''ing rand om measurement noire.	 he vector u

In the prose ;c not^e, an unknown rnn rl on r4 L-tl i-bance of the system. .'he

trant-fer function between y and w	 i

x

Let Sko be the cross-snectr , un between	 and y hat-.eO. on the k-th recor,'

of rl ata, and S
AL)

and Sy th e corresponiing a l )tcspecta. "'hen an entimat.ur

r' the transfer function H(W) is given by the ratio of the average,i

-Toss-spectnin 3nl input autospeetrum:

A	
A	

! i— -S
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stati:.tico

the an•aly- s of the statif tics of the ef-t.imator t ? of the
system freauency resoenz^,e in available in the literature (see reference-Is 

and, 5). For the +>pectral analysis techn!que the variance of the
A	 /4r;,e r, +.r? estimators S	 and S were discussed. 'the statistics of their

A	 zy	 7,

ratio 1i are c?ifferent howevor. reflecting the fact that nrt ust the input

or cutput is being nearureF', but the correlation between the two. Sias
A

Error: in H ?-e usually such les-- th?n the r>inftm errors (as long an +he

frequency resolution is chosen properly), :-o they are not discusse(l.
A

The analysis of the variance	 F gives the following resalt.

The probability i , o.< that the magnitucl e of the difference
w

between the esti^tate H. W) and the true value 	 l.3) is greater than

the function r(L3). Thur with confi ,'ence ;1 -oc ) H licr within a circle
A

of ray ius r about '.{ cn the plane of is H v:. le 	 so

Fi - ly 1 Z < r t

where

Al	 S

J S:2

n
Here 1, is the number of .averages; Z^;,, is It., e: timate of the coherence

function between the input and o'Jtput,

S 
z 

Z

any? F is the value of the ! dintr'hution with. - ' nd 	 lerree: of

freedom at the probability level	 i.e. irobt. , '> ^a )	 a-4 ).

Note that ideally	 11!1 ` > :,_ .

y

/S -,-Anil for larFo , fin'

 ^•' — JL^ oc

.	 Hence the normal ize l error of the	 • :mate of	 tr%nsfer f.mction is

k-1	 .

t
F



5,i

i
f

•	 For a confidence level of ')5.' ( of _ .05), find IF ~ 1.1; at the q7.5

and 99 level.,, r	 3. p and 4.F3 respectively. Ae.suming a Gaussian distribution,
the variance (one stanc'ard deviation corres ponds tc a confictn^e level
of 69-, which gives	 = 1.16. Hence except for ;h-- effect of X; y , the
Normalized error is Et ~ 1`K, which is the same result as for the variance
of the s pectruri alone.

The coherence function ^^^ is a measure of how well z and y are
correlate	 'ith no nci^-e in the system, ^re^ would be exactly equal to 1.1 Z
30 1 1 - ) i a ,,ieasure of the effect of noise on. the calculation of
the resoonse r?ue to a particular input. For the systen described above,
assume u, v i , anl. v  are uncorrelated ranc'on noise; let H be the frequency
raGponse of x due to w, a.n e' ;i the frealeney reFT:onse of x clue to theU
.'.istur.bance u.	 ;'her.

n ^	 A

5 z :^

(sw t s^; ^ s,,

I\J	 7A N SM	 V O	 S ^.

The first term i.s the ratio of the systeir respor.c•e clue to he Histur ance u,
to the total response: it is always le:-s than 1 s=ince the l,a.tt.. - jr the

m of the respon ,e to a anc? w. Thl.s• tern. may be reduce r' b,., i ncre- inr
the level of the measure , '• input w relativ ,- to ti.e i r,,knawn ini—L u. The
la:7 t two terms are the r?.tio f the measixer:ent ^.oi.., e to s ignal  for th;
output and input.

It is concluded that for	 givf.n number of averages ( hence f lx r . '
sample time), the error in the transfer fu-ct'_on is substantially le—S

the:n the error in the individual spectra. "'he error n?.y be d'_rec' _y

S

ti

t
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reduced by increasing the level of the measured excitation w. The improved

error statistics compared to spectral analysis or equivalent techniques

Is a particularly important factor for full-scale testing, where the

•	 frequencies are low and thus the sample times required tend to be long
( recall that T = 2/Sw, j) . The other principal =_dvantage of the
transfer function analysis is that it produces more information about

the system than Foes the spectral analysis of the response alone. The

result is independent of the input spectrum (always assuming that the

input :sufficiently excites the relevant moOes).

Data Processing

Processing of the frequency response data to obtain the damping

is similar in some respects to the processing fer -rectral analysis, althoiigh

of course the assumption that the input spectrum is flat in the vicinity
of the resonance is not required. A typical procedure involves approximating
H near the resonance of a low-damped mode by the frequency response of a

single, seconO-oreer degree of freedom:

_	 V W& _

WM	 'wl- -4- L SVZ .. W

^.	
Tt follows that the damping ratio may be calculates from integrals of the

measured transfer function about the resonance:

S
'° t N 1L ,a2 A,a
J

.34)•8w..
^•• 1+ w Qa

\JS La...	 IHIt ut ^

"'he greatest effect of other mode-- on the resonance is usually a phase
Ushift. "'he assume(I single degree-of-freedouw response has a phase 1-31 = -00

at the natural frequency, but the phase of the measured 11 can be shifted
significantly by nearby modes. Thus the measured frequency response phase

be shifted as follows before applying the above expression to

calculate 5	 MP
IHpI

wF ere 11P is the measured response at the resonant peak.

-27-
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	 An alternative approach is to use the methods of Kennedy and

Pancu (reference R). Cn the ImH vs. ReH plane, the transfer function

r
describes a circle in the vicinity of each resonance. near the natural

frequency, the ideal response of the single degree-of-freedom system is

arproximately	 Z ( w — I)
N	 (^L	

' -t--e,	
L	 w,.

the radius of this circle thus gives the damping of the mode. The

procedure may be implemented as follows. First the data should be

shifted to phase -9Oo at the peak frequency, as indicated above. "hen
the circle

1"11 +

on the 3 1 plane is fitted to the measured transfer function, using the

least-squared-error metizod to calculate a and b. Cnly a few point-- around .

the peak should be used., say 3 to 5 on either side; and a weighting

function should emphasize the errors for the points nearest the peak.

Then the damping coefficient is
1

CS = 2%,A u + = Z	 b

To find the clamping ratio however, it is necessary to further consider
the variation of the phase with w at the resonance. A least-equared-error
fit of the line

to the ^ata gives the slope c, and hence the damping ratio 5 = 2/c.
A simpler nroce0ure resultz if the inverse of the transfer function is

considered. The iO eal, single degree-of-freedom response H-1 is exactly

a parabola on the complex plane:

^	 L

Thuz the curve 'ReH-1 ) + a(ImH-1 ) 2 = b, may be fitted to the data, using

the least-squared)-error approach. Then the damping ratio is given by
1

S = (4ab) 2.

-2R-
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	 Another approach is to fit the data to a high order rational

function, e.g. by least-squared-error :aethods. The roots of the denominator

polynomial then give the stability of all modes of the system obrer-vable

in the response. The assumed representation of H de pends nonlinearly

on the parameters however, so an iterative °olution is required. Convergence

problems are possible with such a procedure, especially if there is

significant noise in the measure' transfer function.

'A

A

-2-0-
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PARAMETER IDENTIFICATION 	 --

•	 Parameter identification techniques for dynamic stability measurement

s	 require further development. It is possible to define the problem for

rotorcraft testing however. An algorithm is required to estimate the

frequency and damping of all important modes of the system from measurements

of the various input and output signals. For rotorcraft there are usually

many degrees-of-freedom in the system, and a high noise level in the

measurements. It is necessary to identify the Structure an ,' ^tntistics

of the noise as well as the system for good accuracy. The assumptions

about the system mu°t be minimal. It is seleom possible to make assumptions

abort the model without compromising the effectiveness in identifying

unforeseen stability charocteri. tics . -.n  particular the order of the ti ys ten

mwGt be identifies', i.e. the number of significant mode: involve(' in the

response. The algorithm must give an accurate estimate of the damping cf

the system, with assured converges.^e and computational efficiency. It must.

operate on-line, providing the est`-nates in a reas.one.ble time after the

collection of the data for all input combinations, with the calculations

performed by a limited capacity computer.

It is assumed that the system is described by linear, time-invariant

differential equations, excited by various control inputs and aerodynamic

turbulence. The turbulence is defined as the response of a linear process

excited by white noise. The system response and input are measure?. The

measurements can have three kinds of noise: bias error (balance or zero

;hif L), random error (not necessarily white noise), and discrete frequency
error (correlated with rotor azimuth, e.g. 1/rev or N/rev vibration). The

input signal,. may often be considerer? noise-free. Thus the following

description of the system may be used. Modal coordinates are used

since the system is then defined in ninimal form, and directly in terms

of the eigenvalues X (the eigenvalues are probably complex however, so

actually a real form of the following description is required). The

model is:

-30-
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system:	 q = JL q + Cu + Ew
output measurement:	 y = Hq + vo*3 + v09 + voD
input measurement:	 z = w + vi'

.3 + viR + viJ

turbulence model:	 u = Du + v 

Here y and z are measurements of the response and the input, with noise

v (bias, random, and discrete components). The aerodynamic turbulence

is u, excited by the white noise vG.

The data consists of the measurements of the res ponse and the
input, probably in the form of sampled time series. Sequential measurements

are made for the various input combinations (including no in put . 'hen the
parameter identification algorithm is applies'. It is necessary to identify

the system (-A- , G, E, H, order), the turbulence model ('), order, v.), and

the measurement noise model (v D , vB, v1^ ). The eigenvalues A are of

primary concern of course. Clearly the magnitude of the parameter identification

task i^- very great.

There is a serious difficulty with measurements in the rotating

frame. With inde pendent blades (i.e. shaft-fixed rotor dynamics) the
meanurements an(' the equations defining the system can be in the rotating

frame. With coupled motion of the blades and the rotor support, the states

and equations must be defined in the nonrotating however, including those

for the rotor (other.Jise the system is described by periodic coefficient

equations, needlessly in this case. For exanple, the rotor flapping; motion

should be de-cribed. by the coning; and tip-path-plane tilt motions of the
rotor rather than by the flappin of the inrlividual blades. If only
measurements in the nonrotating frame are ma3 e, there is no difficulty,

except that due to limited. information. If neasurements are avai.l:able
for the motion of all the blades of the rotor., then they can be transformed

by analog or digital processing to the nonro ating degrees-of-free?om.

But very seldom are rotors instrumented for the stability measurement

requirement, so almost always just one blade will be instrumented. It

would be very valuable to have an algorithm capable of using; the single

blade measurements in determining the dynamic stability of the system.
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•	 The methods which have been discussed so far (spectral analysis, and

•

	

	 transfer function techniques) can not use single blade measurements,

except for the cave of inc'ependent blade dynamics. These techniques

require measurements representing the response of a time-invariant system,

so they must have measurements from all the blades or they are not able

to use the additional information. I'arameter identification techniques

however have the potential for using the limiter.' information in the single

bla ,l e measurements. It would not be as accurate as having measurements

of the notion of all the blades, but it would be better than ignoring the

rotor motion entirely.

^onsicl er the revisions of the neasurement repres.;ntation required

to account for having only rotating measurements for a single blade.

Assume for now that there is only one neasurement y of the blade motion.

Let y be the corresponding n measurer ents of the states in the nonrotating

frane (;'	 the run'he- of re-±c-	 So ^ 	 is related to the modal

E

	

	 coordinates by y NR = Hq as usual. Now y is related to L:ie nonrotating states

by a linear (time-varying) transformation y = h ly,.^ ; i.e. the response y

i.s clue to the response of all the y i` _, component.^.. 1 Tor example, the flap

motion of the m-th blade is given by
N_1 ]//
	

/	 R	 /^'(.,>^ t ` =
	 o t +	 L ( {3 M lt> CoS H ^`+'... -+ "n S ^tl SM^ `^ T vM,

-r' 17 N ^'t 1 ^` I ,^`` s

,where ^y =SI t + 2n/N, and (3 N 1 7_ is preFent	 LE N is even. Thus

..	 h is the 1-by-N vector:

1

c.os ti 4'w,
JQ^

It follows that y is related to the modal recnon: e q by the expression

y hTHq + vo

This result is easily exten(?ed to the general case. Let the first nr
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elements of y be the measurements in the fixed frame, and the last n.

•	 elements of y be the measurements on the rotating blade. 'Then

y - TlIq + v 

•	 where

z T	 O
SL.

O	 ^T

The matrix h and therefore '. are Known. The only effect of using the

rotating bla-le measurements is an increase in the dimension of the matrix

li which must he i dentified. Note that H is just the matrix which must

be founO if all N of the nonro tating rotor states are measured, rather

than the rotating degrees-of-freedom of the single blade. The matrix

T (i.e. h l ) accounts for the reduction in measurements (an(' information)

when only the single blade instrumentation is used.

•	 For rotorcraft dynamic stability meacurenents, it is also necessary
to consider the periodic coefficient case. There are two usi.ial sources of

periodic coefficients: the aerorynamics of the rotor in forward flight,

i.e. M> 0 ( ,t> .5 in practice); or a two-blared rotor on 6n anisotroptic

support. In the periodic coefficient case the system is describe' by the

same model as above. The eigenvalues are given by JL as usual. Now

however the matrices H, G, and E are periodic functions of time (thc period

is 2vr/'49Z if in the norrotating frame, and 2vt/SZ in the rotating frame,
where XL is the rotor speeO). 	 _he nar.?meter identification probler. is
increased therefore, since there matrices must be found over the entire

period. now. ( undoubtedly the required sample time will be increase'.

It would probably be desirable to synchronize the sampling of the data

with the rotor speed (with the trim rotor speed, since there are cases

•	 where the dynamic response involves significant rotor speed nerturbationr).
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!1 number of methods for measuring the dynamic stability of linear

system:- have been ^iscussec'. Particular attention has been given to an

analyr^is of the errors involve!. it was found that a significant

reduction in the error i.a achieved wher, averaging is introduced, an ,' again
when measureable external input_F:.re used. The results are a guiHe to

the design of experiment- and the choice of the measurement technique.

No universal conclusion about which technique shoul,' be uce-1 is possible.
.he choice r'epends, on the experiment, what noise is 'uresent, what error is

acceptable, anr' on what. data processint- equi:,ment is availab l e.	 -^
rotorcraft testing the dynamic stability measurement is a critical factor

however, so generally the most accurate metho ,' possible is desire'.

The state-of-the-art of r' ynamic stability testing in the aircraft
inr'ustry has been r'escriber' in a number of surveys (Fee for example
references 9-19). The ?-roblem irvolve,' is uFu31ly the flutter teGt i ng; of
the aircraft wing or tail in flight. Some form of frequency-response

analysis proce r3 ure is common. There are m;ny variations, but a typical
Trocer'ure involves swe pt-sine excitation, ' 1 1gital arutly,i:- of the response
(:analog analysis is also still co^:mon), with the damning det rminer' from
the circle on the H plane (see the ,above disci; sion, and ref. g ) .

The techniques Sr i scuFsed may be implemented in many ways. Among
the significant options are: the response may be in the time or frequency

domain; the input may he ­.-wept- r-- 	 or ranr l o:i excitation; -i-nalog or ligital
processing may be ueed ; and the ; 4 ata reduction may be accomplishe r nanua.11y,
with a special ptrroFe processor, a mini-computer, or with a large capacity

com puter. The discussions here have r?ealt with those characterintics
which ire fundamental to the problen of ^iynami.c Ftabili.ty measurement, an^
hence are inr'epenr?ent of the metho d of implementing- the rroceeure, .

Finally, this report has: been limiter? to an examination of the basic

characteristics of the methods for measuring Oynamic Ftability. •urther

developrent of techniques for rotorcraft te.-A rif, requires computer 7imulations,
and additional applications to Ftability measurements in rotor experiments.
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