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A DTSCUSSICN CF DYNAMIC STABILITY MEASUREMENT TECHNIQUES

Yayne Johnson*

Ames Research Center and
U.S. Army Air Mobility R&D Laboratory

SUMMARY
Techniques for the measurement of the dynamic stability of linear
systems are discussed. Particular attention is given to an analysis of the
errors in the procedures, and to methods for calculating the system damping
from the data. The techniques discussed include: transient decay, moving
block analysi~, spectral analysis, random decrement signatures, transfer
function analysis, and parameter identification methods. The special

orovlems of rotorcraft dynamic stability testing are discussed.

INTRCDUCTION

The flutter testing of an airplane or helicopter requires a method
for measuring the dynamic stability of the aercelastic system. The objective
of the test is to establish the stability level throughout the operating
range of the aircraft. ‘'he capability to accurately determine the stability
trends is necessary to safely conduct such a test. Thus a method is required
to reliably cetermine the frequency and damping of all important modes of
the system, using measurements of the system response to existing or prescriberd
inputs. Dynamic stability measurement is a particularly difficult task for
rotorcraft, where many degrees of freedom are involved and the process and

measurement noise levels can he very high.

A number of techniques have been implemented or suggestec Tor measuring
dynamic stability. These techniques may be usefully classified as transient,
no-input, input-output, and parameter identification methods. Transient methods
use the ‘ecaying transient response of the system to determine the dynamic
stability. The moving block analysis is a particular procedure for analyzing
transient data. The no-input methods use the response due to existing random
disturbances of the system (cuch as aerodynamic turbulence), with averaging of

the response to reduce the errors in the estimates. Examples of no-input methods

*Research Scientist, Large Scale Aerodynamics Branch.
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are spectral analysis, correlation, and random decrement signatures. The
input-output metheods use the response due to a measureable external input to
determine the system characteristics alone, as well as to reduce the error.
Examples of input-output methods are cross-correlation ani transfer function
analyses. Parameter identification metho's use statistical estimation
procedures to obtain a best estimate of the system characteristics from the
measured response. 4ll of these methods have been used in rotorcraft or
airplane flutter testing, with varying degrees of success depending on the

aircraft involved and the test environment.

The stability measurement procedure must perform with some level of
process and measurement noise present. A primary concern is how such noise
reduces the accuracy of the measurements, hence introduces error into the
determination of the system damping. This report presents an error analysis
of the various stability measurement methods., Some of the results are new
(such as the random decrement signature error analysis and the discussion of
parameter identification techniques for rotorcraft), while others are available
in the standard literature. A unified treatment of the error analysis allows
a consistent comparison of the accuracy of the available stability measurement
techniques. Thus this report provides a guide for choosing the technique

appropriate 10 a particular experiment.

The basic stability measurement procedure in 211 cases gives only an
estimate of the response, in either the time or the frequency domain. Iurther
processing of the data is required to determine the system parameters from the
response, in particular to obtain the damping ratio which gives the quantitative
level of stability. Thus for each procedure some alternatives for data processing
are discussed. The following stability measurerment technioues are ctudied in
detail: trancient decay, spectral analysis, rancom decrement sigratures,
transfer function analysis, and parameter identification methods. irst however,

a mathematical definition is civen for the aerocelastic system considered.

LINEAR SYSTEM 2YNAMICS
To examine the dynamic stability meacurement techniques, a linear
system is considered, with excitation by various control inputs and external
<P=



disturbances. The response of the system is measured, perhaps with significant
measurement noise such as vibration due to rotor imbalance or vibration from
the engine. The excitation of the system can be provided by existing unknown
disturbances such as aerodynamic turbulence, or by a measureable external

input applied specifically to determine the dynamic stability. The systenm
motion is therefore described by linear, time-invariant differential equations,
of the form:

Fx + Gu

Hx + v

-
X

y
where x is the state vector and y the observation. The vector v is random

measurement noise; and u is a random input exciting the system, either an
existing disturbance or an external input. The matrices F, G, and H are
constant since the system is time-invariant. The solution for the response

to excitation by u, with initial conditions at to' is

€ (t-to) t +t-
X+ = o x(td + ol YGu B

.)m= Rx(t) +v

The stability of the system is determined by the eigenvalues of F. 'The

eigenvalues usually occur in complex conjugate pairs, of the form
A= —[wn iond 1~ G2

where Ww 1is the natural frequency and ; the damping ratio of the mode.
The mode is stable if ; > 0, and is an exponentially decaying oscillation
for 0< g < 1. It is usually the lcw dam;.c modes of the system which are
of interest, i.e. 0 <{< 0.1 . Note that if A is the diagonal matrix
of the eigenvalues of ¥, and !1 the matrix whose colunns are the corresponding
eigenvectors, then ff=I‘JLIT_1. Tor further infcrmation on the dynamics of

linear systems, the reacer is directed to references 1-3.

Regardless of the stability measurement p.ocedure used, a basic
requirement is that the system be controllable and observable. This means
that the input to the system must sufficiently excite the modes of interest,

and the modes must be observable in the recponse of the varizbles measured.

————



TRANSIENT DECAY

The transient motion of a dynamic system is composed of exponentially
decaying oscillations of each mode. A particular measurement is often
dominated by one, low-damped mode. From the oscillation period and the
decay rate of the trace, the frequency and damping of the mode may be
estimated. The typical procedure involves establishing a large amplitude
sinusoidal motion by means of an external excitation at the natural
frequency of the particular mode of interest. The excitation is stopped,
and then the subsequent transient motion is analyzed (often by hand) to
determine the damping.

Consider the linear, time-invariant system

X Fx + Gu

Yy =Hx +v
where x is the state and y the measurement; u is process noise such as
aerodynamic turobulence, and v is measurement noise. It is assumed that
u and v are random disturbances with zeroc mean. The motion following
time to' where the initial conditions x(to) are established by the external

excitation, is " Elt-")
~to) -
x() = e " %) + (4 @ Gu &y

ﬁff\: Hx (£) + v

The first term in x is the transient we wish to observe. The second term
ics the noise in the irace due to the disturbances occuring after to.

The influence of this noise is the primary concern with this method.

Statistics
The expected value of the observation is just the transient

response: E Lt —to)
E;b = He X

The external excitation must establish a large, non-zero initial condition

& M |

for the modes of interest., The variance of the observation is
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Ny = ECy-Ept = EyT-CEyY

t  Flt-%x) Tt
= H Bto e caT e st W +R

where it is assumed tha. u is white noise with Eu(=, )uT('r‘) =Q5(T-1),
so also u(tﬁ>tb) is uncorrelated with x(tc). The measurement noise
correlation is Bv(',)v (%) = R(%-1). It has been assumed that the

initial conditions x(to) are deterministic, not rancom, variables.

Considering a single degree of freedom system, so the integrations
are easily performed, the expected value and variance of the observation

are:

t-to)
E‘) = Lx. ?.)\(
t 22 (t=-%)
\:.3 . '?"1311 St, @ ¢ Sc +

- &::;% <‘_ez>tt-t.3 ) i
20

So the normalized variance is

[3

. ~to)
2 _ \,5 1L }_} c —23T~To _ S»
== S = %2 {.(-2). MRL -'5\1

Note that the steady stal.e variance of the state x with cnly the excitation u is

. 2

V.= 8a/(-2X), so _ .
! - -to

(Ne+ 22 ) e ——_\"x

2

—_—
—

&
Xa'

At t = to the only contribution is from the measurement noise, él= r/hzxoz.
As t increases, the noise due to the disturbance u becomes more important.
The transient is decaying, while the motion due to u quickly builds up

to the level \’X. Thus the ratio of the noise to the transient grows

exponentially: 20t =te)

C":Y:z(b "\)
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To determine the damping ratio it is necessary to observe the transient
while it decays to a fraction f of the initial value (f = .3 to .5 typically).

The maximum error which must be dealt with is thus

1 W -2
€Cuin = —1.. (1 -1
Wo

So enmx is of the orier of 2 to 3 times the ratio of the rms response
due to u and the initial response amplitude. This result holds for the
case of more than one degree of freedom also. Note that the steady state variance

of the response of the systen to the disturbance u alone is given by

-(FX+XFT)=GQGT

from wh.ch it follows that Vy~' Koo

To recuce the error in this procedure, one can only increase the
amplitude of the initial conditions x(to). or reduce the noise sources
u and v, The measurement noise v is frequently small, or at least under
some control by the experinenter (e.g. the rotor 1/rev vibration can be
reduced by improving the track). The process noise can also sometimes
be controlled, e.g. by conducting a flight test under calm atmospheric
conditions only. In wind tunnel experiments however, oftem there is little
which can be done to reduce the turbulence significantly. Increasing the
initial excitation may not be practical either; the largest value possible
is often used to start with. In summary then, the noise parameter Vx/sz
often can not be controlled by the experimenter. This parameter is typically

5
large (say .57), so that the error in the transient trace is a major problem.

Jata Processing

The frequency and damping are often determined by hand, from an
oscillograph trace of the response. It is assumed that the motion s
the form of a decaying oscillation of a single incde:

x=%o ¢ 5™ oy (wudimgt 't O

Then the frequency is given by the period of the oscillation, @ = 1/T (Hz).

To determine the damping ratio, consider two peak amplitude measurements Xq



and X5 which are n oscillations apart. Then

_ 5o
Rz =%, Wp ( ‘—_E, w2 3
and
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For example, 5 equals .11 divided by the number of cycles to one-half
amplitude.

In general, the envelope of the oscillation x = xoexp(- Su..t)

gives 1n x = 1n X, - Qu.t, or

_ 8 x /O
[ = il ~ _ Siux/ax
- 2w W
— &y /1 QT
r\+( e )

where & 1is the oscillation frequency in Hz. The damping ratio then may
be calculated from the slope of the log-decrement; the previous method is
Jjust a special case, where the slope is calculated from the two pcints

x1 and Xo e Cne data processing procedure is to plot ln x vs. t (removing
the mean value first if necessary). The slope of the envelope of this plot
gives the damping ratio g + 1n general, determining the envelope of the
transient is a difficult task to mechanize however.

A different approach is to find a least-squared-error fit to the
data for the curve

-—T
X=%p & - cm(w't"-tﬁ\

Identifying the parameters e and « is a nonlinear problem however, so an
iterative solution is required. There have been some successful applications
of this approach. However, convergence problems are very likely with a

high noise level.



Moving Block Analysis

The moving block analysis is a particular data reduction techniaue
for transient motion. The Fourier transform of a block of data from T
to 'TtT gives a function ¥(% ). The magnitude of the sprectrum line at
the natural frequency W, plotted vs. ' gives then the demping ratio.

The moving blcck analysis is defined by the linear operator L:

T+ . (v - T
_ L sty o N
L= = . > e St
- —sseE
= _J_S Csray } e at
2z o t=t 4+

So §(&) = Ly(t). The expected value of ¥ is

F(t—-to)
5\3= LE\3 = LR c %o
At =1To)
= “\M L ﬂo
S (-c-ot—-‘h?—"nv -
= HM 211_: Sa e ot Jol’
F("l’.—tn) (x-\S’L)T. I
= He M i————‘f‘ e
Zw (N-15L) -
F("‘."’to)

The dependence on 't is e , S0 y is still a measure of the trancient
metion. The last factor in Ey is indepencdant of " , and contains the
only dependence on the spectrum frequency S& . This factor is a maximum
when the frequency S 1is equal to the natural frequency of » . When
S2 is near the natural frequency w. of a mode, the quantity

z(;-\R\T- | - QT

(14

2w (N~ is2) 2 ;9\—

is large; away from the resonznce it is small., Thus the largest line
of the spectrum ¥ will te at the natural frequency of the mode dominating
the response y. Considering only the line at §2 =w,. therefore, and

neglecting all modes but the dominant one (with eigenvector '13). we have:

- -
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Th~ magnitude of this line is:

o ;u,&t -ts)

ad

, E‘-)\nsu. \ = cowsYaut * 2

an exponentially decaying function of T . The moving block analysis
thus results in the envelope of the decaying oscillation directly; this
is the principal advantage of the technique.

In summary, the moving block analysis involves applying the Fourier
transform to the block of data from "™ to ™ + T. Usually the FFT algorithm
is used, with a sampled time series of data. The nignitude of the line at
the natural frequency . is obtained; if the data is not too noisy, this
line will have the largest magnitude in the entire spectrum, and the frequency
of the mode may be determined by searching for this peak rather than being
input. A plot of |§\ vs., T gives then the envelope of the decaying
transient; the slope of 1n‘§‘ vs. T gives the damping ratio S as
discussed above. Since the procedure gives the envelope directly, it
is simple to mechanize the calculation of the damping ratio, such as
by finding the least-squared-error fit of a straight line to 1n\§| vs. "C .
This is a significant advantage compared tc the processirg required to
find the damping ratio from the transient motion y.

In choosing the block size T, it can not be too small or the operator
reduces to simply L = 1/2W ; and if GQw.T is small, then the JS2 =w.,
line of the spectrum does not have the largest magnitude. ©So there must
be a significant decay of the oscillation in the time T. A block length of
3 or 4 periods is probably satisfactcry. Tc increase the frequency resolution,
the FFT should not be applied to the block of length T, but to one several
times as long, filled with zeros after the data.



Now consider the error involved in the moving block analysis.
The linear operator L can have no fundamental influence on the error.
The normalized variance of y("C ) must have basically the same value as
that of y(t), i.e. error level determined by the parameter Vx/xoz' Working
in the fraquency domain helps, since caly the noise around the frequency
W, is important. This may be expectad to reduce the effect of the measurement
noise significantly. The operator hus little effect on ihe process noise
however. The response of the system to u will be mainly a superposition
of oscillations at the natural frequency W, , which then is transmitted
to Y along with the transient oscillation.

The variance of y is

- t fT (%) r
vg = we[ LG T entn Lfy e I

The evaluation of Vy is complicated by the operator L. Considering only
the domi. nt mode in the response, the expected value and variance are

approximately

_ F (t-"te) LT .

ER £ He [ === 3>
Ele=te) N é’“""n -1 S e T (x-te) W

vy He [. » ( Zn s

The normalized error is

1 \JES Vy
E = st AT “:;
EW °

(14

which is indeed essentially the same result as for the normalized error
of the original transient trace. The minor improvement in the error
statistics due to the moving block operator is not the reason for its use.
The principal advantage of the procedure is that it extracts the frequency
and exponential envelope from the decaying oscillation, which greatly
facilitatesr the mechanization of the data processing task.

-10-



SPECTRAL ANALYSIS

To improve the accuracy of the measurement of the system resporse, the
data must be averaged in some fashion. Spectral analysis is a fundamental
technique for measuring the random response of a system. The excitation
of the sys'em is providerd by existing, random disturbances, such as
aerodynamic turbulence. (nly the response y of the system is measured.

Let S;tnbe the autospectrum of a particular measured time series of data.
Then an estimator of the true spectrum of the response is given by the
rnsemble average over K calculations of the spectrum:

[ cky

S S (»
k=l

S (W
w) =
9

)
b | K
-
The spectrun Sy m2y be obtained by either digital or analog processing.

Tn general, th2 nrocess noise exciting the system may consist
of multiple inputs (c.g. several gust conpor.=nts ), so the true output
spectrum is related to ‘the inmit spectraz by the expression

¢ >
553 = 7;.“4;\ S,
-
where Hi is the transfer function of the resporse y t¢ the i-th input,
and Si is the (unknown) input autospectrum. lor the linear system

under consideratinn, H, is a rational function, and the denominator D(LJ)

is the same for 211 inputs (it is the characteristic equation). Thus

- 1
oo £ NS = B L e
b — —— - .~=
‘b‘z \b('ﬂ‘)l

e are primarily interested in the poles of the characteristic eqyuation,
which give the damping cf the sv=tem. The output autospectrum Sy is

a direct measure of 1), There will be a resonant peak of S near the
ratural frequency of a low-damped mode, s« long as there is ;o correspending

zero of N? near the pole. Such a numerator rero may arise if the mode

=11



is not observable in y, or if the input spectrum is varying greatly in

the vicinity of the resonance. Therefore the mode must contribute
significantly to the measured response y, as usual; and it is necessary
that the input spectrum be reasonably flat near the resonance. The latter
restriction is not too severe since the resonances of low-damped modes

are very sharp.

Spectral analysis and correlation analysis are entirely equivalent,
the former in the frequency domain and the latter in the time domain.
Thus the correlation techniques will not be discussed here; their statistics
are similar to those of spectral analysis. With a digital processor
and hardware FFT units, the snectral analysis is more convenient; it is

also better suited for dztia reduction, such as finding the cdamping ratio.

Statistics
A
An analysis of the statistics of the estimator SV nf *the autospectrum

is available in the literature (see references 4 and 5). The expected

value ant variance of § are
E ety & siuy + 28 <70
24
v g(w) 9 ¥ (W
|4

where A 1is the frequency resolution in the spectrum, and K is the number
of averagcs. These results are essentially independent of the statistical
properties of the input and output, hence are applicable to the response

to general rardom disturbances. The normalized bias error is

ant 7
Z4 S

=
-

L

The most critical case is at a resonant peak, where the greatest accuracy
is req =~ed, and S'' is largest. Assuming that in the vicinity of the peak

the spectrum may be apprcximated by that of a single degree of freedom

=12



system, one obtains S/S" = %-S?U:'. So for a given bias error, the

following frequency resolution is required:

Aan= J12€y, 5w

Then A = 30w, gives €&, = .02, which is essentially negligible
bias error (twice that resolution is probably satisfactory). Note that
the half-power bandwidth of the peak is aw, = 26wo, , so this resolution
corresponds to covering the bandwidth of the peak with 5 spectral lines.

The bias error is easily made negligible by a proper choice of
the fr ., ency resolution. The remaining error is the normalized

variances A
= [
<7 ldedy R

The error is inversely proportional to the square-root of the number
of averages, the standard result for sample means. The estimate of the
spectrum may thus te made as accurate as desired, by increasing the

nunber of averages.

An important parameter of the spectral analysis technique is the
total record length required:

X —
= 2 = L., €*

So the total time over which the data is collected must be increased as
thc damping, frequency, or error is decreased. This is a fundamental
result for the amount of data required to define the system from the

output due to randum discurbances, applicable to all no-innut techniques.

Data Processing

In using the ocuisu. < 2ctrum to determine the system properties,
it 1s generally assumed that *the injut spectrum is flat in *he vicinity of
the resonances. Since the low-damped modes are of most interest, the

assumption is only required over the narrow frequency range Aw/w, = 25 .

~]3-



Assuming that the spectrum in the vicinity of a resonance may be approximated
by that of a single, second order mode:

CRMm STom T -
. Cad=~wty* +(25u0\)"

e

5

it follows that the damping ratio may be determined from the spectrum
peak and an integral through the resonant peak:

2w

1 S:‘- S w8 Av ~ o3F S.?u.. S w0 F0u
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RANDOM DECREMENT SIGNATURES

The method of random decrement signatures (randomdec) is a procedure
developed by C>le (reference 6) for analyzing the response ot a linear
system to random disturbances. It is designed to give an estimate of
the impulse response of the system. The randomdec estimator ¥ is
defined as the ensemble average of the transient response to existing

random disturbecaces:

u
Jo = ¢ o, 4 (83

The key to the proceaure is to select each ensemble Y with the same
initial conditions by an appropriate triggering method. Then all records
have an identical transient due tc the initial conditions, while the subsequent

noise averages out.

Consider a linear system excited by the unkwown random disturbaunce
u; the response measurement is y, and the measurement noise is v.
The system is de=cribed by the differential equations:

» -
X = Fx + Gu

= Hx + v
The solution using the initial conditions at time to is
F(t-to) t -
x(HD= < % (te) + St. e,‘:‘.t "C:'u&'c

»3(& = RAx®) 4+ ¥

The observation y(t) is a random process, depending on the random variables

u, v, and x(to). The expected value of the randcmdec signature is

Ew = 'L' & Ewx
_ E[\ S °3+St ”""},EW“"‘}*EW]

Flt-To
H@l )\t.



where it has been assumed that u and v have zero mean, and that the
initial conditions are stationary random variables with expected values
X, = Ex(to). Thus y is an unbiased estimator of the system transient
response,

In order for a particular mode tr be analyzed, it must be observable
in y, and excitable by u. The initial conditions x(to) are due to the
ranion disturbance u over the time up to to' so the frequency content of
u must be sufficient to excite the modes of interest. This is a fundamental
requirement of methods using existing random disturbances of the system,
arising here through the initial conditions at time to. Furthermore, in
order for a particular mode to be present in‘?, it is necessary that the
initial condition for that mode have a non-zero average value over all
the ensembles, i.e. Ex(to) ¥ 0. The response x(t) is a random process

with mean 1
Ex = F ~G(

)

u) =0

So it is not possible *o arbitrarily select the ensembles. The result

would be xo=0 and hence E¥ == 0, It is necessary to trigger on the response

in such a manner that Ex(t)) # O for the modes of interest. Note that
triggering on y=0 is not possible either, since it gives zero initial conditions
(it would be possible to trigger on y=0, with positive slope only, and

hence obtain a non-zero average valuz of the initial velocity; the variance

of the initial velocity would be large however, leading to a large error

in ¥ as discussed below). The usual procedure is tc trigger the start of

the ensemble on a fixed, non-zero level of the response y, with either

positive or negative slope.

As usual, the ergodic hynothesis is used, and the random decrement
signature is obtained by averaging over records which are sequential in

time: ) \é: ¢
v Yy = T (t+T,
5L+., K & »3

"

"

Tt is assumed that the records are uncorrelated, which is generally

satisfied if there is no overlap (ref. 6). With digital sampling and

-16-



processing of the data, the requirement that each record be triggered on
the basis of the response means that the records must be norn-overlapping.
Using records with some overlap would reduce the total sample time some
(a factor of 2 is about the maximum possible reduction), but increases
the correlation of the records.

Statistics

The variance of the random decrement signature ¥ is
T
\I’S = - (EV))
Ht el +V }
- E [-_ £ 1\.\\ MON +St Gw 3"23 v.

-to ) 2
— (mef )

2

The ensembles are uncorrelated, except for the initial conditions. The
initial condition x(t_) is a random variable with mean Ex(to) = x_ and
variance Vyx = Bx( to)x (tc) - xo2 , determined by triggering on the response
Y in some fashion. HNote that the response of the system to the random
disturbance u has zero mean and variance \"x = Ex(t)xT(t). which are not the
same as X and on due to the action of the procedure for selecting the

initial time to .

Now assume that u and v are uncorrelated with each other. Let
Zv (e, )vT('r,.) = R(¢;~"Cp); and assume white noise for u, so Eu('t‘)uT('c‘) =
Q8 (®~%;). Then also u(t » to) is uncorrelated with x( to). Then the
variance of 7V is

V3

t-to Ve oo -
FL 3\,*.8:(1; t\H't-

t  g(t-T) +~ FTle-%) T
+“Lf,¥-\3t° GRG e St H +Rj

The term in brackets is the same error as was found for the transient
decay trace, It is the response of the system to the random disturbance

u subsequent to the time to where the initial conditions are determined.

-1~



This term is zero at t = t (except for the measurement noise contribution),
and increases with time until it reaches the steady state level given by Vx'
The relative size of this term increases exponentially as the transient signal
decays, The total normalized error due to this source is approximately

e* = X3 > 3 M

(JES'YL K Y.

So the ensemble averaging reduces this error, inversely proportional to
the square-root of the number of averages. This error source can be

made as small as required by increasing the number of averages.

The remaining term in V7 depends uporn the variance of the initial
conditions, VXt Both this term and (ES’)2 decrease with time at the same
rate, so the normalized error is always about the same value:

€7. - \’-‘5 ~ V)to

Thus the normalized error of y is equal to the normalized error in the

initial conditions x(to). The averaging process does not reduce this error
term, so the accuracy of the signature depends upon keeping the variance

of x(to) as low as possible.

The variance on depends on the procedure for triggering the start
of a sample record. Zero error on = 0 requires that the same initial
conditions X, be produced exactly by every triggering event. An important
observation concerns the influence of the matrix H in Vy. Since (at t = to)
vy = HVXOHT, it follows that the variance in the initial conditions of the
unobserved states do not contribute to Vy. The triggering process, based
on the measurement y, can not be expected to produce a specified initial
condition for an unobservable state. ror such ctates the initial condition
will have a zero mean, and a variance equal to the value in Vx. This
large variance does not contribute to VY however, so it is of no concern in
the randomdec procedure. An important example is the velocity of the
degrees of freedom of an aeroelastic system. The state variables consist
of the displacement and velocity of the degrees of freedom, but generally only
the displacements are measured. The velocities zre unohservable states

-18-



then; the velocity initial conditions will have large variance when the
triggering process uses the measured response y, but only the errors in

the displacement initial conditions contribute to Vy.

Consider a single degree-of-freedom, second order system, with
states x and x. The recsponse x is measured, and the sample record is started
by triggering on the level of x. Then V¥ is just the variance of the initial
conlition on x alone. An efficient triggering process should give a small
on for the displacement. Therefore this example shoul? have low error

in the random decrement signature ¥ due to the initial condition errors.

Cbviously the triggering procedure is a central element in the
calculation of the random decrement signature. A procedure is required
to establish the initial conditions with the following properties. The
expected value Ex(to) = x_ must be large encugh for the important modes
that they have significant excitation in the measured transient. The
variance of the initial conditions ‘.'xo/xo2 must be small for the observable
states; this is essential for low error in the signature. Finally,
either Vx/xézmust be small, or a large number of averages must be made
o that the error due to the random disturbances after to is small. (Cf
course Vx/x;>can not be very small, since the same random input u procduces
both .x and x(t), of which x(to) is a member. In summary then, xo should
be large both to reduce the errors and to increase the magnitude of y.

If too large a value of X, is chosen for the triggering process however,
the correlation of the records increases. Cole (ref. 6) suggests, on the
basis of an analysis of the statistics of the method, that the triggering

use 2 level y = 1.0 to 1.65 (where v_:) is the rms value of the restonse).

Minimizing the error due to the initial conditions variance requires
that the triggering process select tc on the basis of the measurement y
such that the response x has the prescribed value. There are two basic
reasons why this may be difficult to accomplish, both of which must always
be present to some extent: the existence of measurement noise, and systems

with more than one mode observable in the measurement. Measurement noirce

={G=



present in y will give a lower bound on the variance on. "'nlike the R/¥

term, this effect of the measurement noise does not average cut. Depending

on the system, this may be a ceriour noise source or n nerligible one. Note
that errors in the triggering procecs have an effect similar to the measurenent

noise,

A ususl case iavolves a single measurement of the response of a
multi-mode system. If rore than one mode is observable in y, then obviously
it i not possible to uniquely determine the viilues of the observable statec
and thus trigger the record solely hwasec on the single value y(t). In
general the initial conditions can not be determined if the dimension of
y is less that the cdimension of the observable states ia L In practice,
only those staites which contribute ignificantly to y are of concern,
and frequent!y there ic only one such state contributing to the measurenent.
An example of where more than one mode is observable is the measurenent of
the tip motion of a cantilever beam (e.g. & wing or rotor blaﬂe). In =uch
4 case the frequency range may be restrictec, or only a s.ngle moce excited,
20 that there ir no practical cdifficulty; or in fict it may be necessary to
determine the initial conditions of all the modes based on th2 one measurement.
't is possible to obtain an estimate of the ctate x(+) from limited noisy
neasurements y, if use is made of the past history of y. 7This is a clascical
f'iltering problem; the solution in this case i: the Kalman filter, which
depends on the characteristics of the system being investigated., It is
possible to identify the system as the measurements proceed, and thus unpdate
the tilter nmodel. This becomes a rather involved procedure simply to

trigger the start of the record.

1n summary, it is often posrsible to trigger nn y with low variance
of the initial conditions of all observiable states, hence with low error
in the randomdec signature y., With & high order syctem, or with mezsurement
noise Lhe trigrering task becomes more d4ifficult, and the error iny
increases. In the extreme case, the triggering procedure becomes the
problem of identifying the state x(t) from noisy measurements of an unknown
linear procers -- essentially a definition of the entire dynamic stability

measurement ta:k.,



It should be noted that with multiple states observable in y, 211
are requirecd to take the nprescrived initizl conditions at the triggering
instant. ‘The time interval between such occurrences will increase as the
number of states increases, hence the total testing time (not the sampling
time) will increace. Alternatively, for a given testing time the errcr
mizt e allowed to increiase, either Hy relax.ng the trigzer criterion and

AU

co increasing VXgt OT by taking fewer averages.,

|-

‘“ne above result for VY was based on white noise for the ranion
“isturbance u. 'he recult will be Similar for a general snectrun, '
ISu('t.)ul(':l) = ;,('t.-'tz). which inceed ic more realictic than white

noise. The basic influence oi averaging in reducing the ncise ic unchanged,
z1thongh the number of averages required for ~ mpecific valne of error

will be influenced somewhat by the spectrum of u. If the input spectrum

is low at the frequency of the mode to bhe investigated, it will be necessary
to increase the number of averages to compensiate for the low sigFnmal to

noise ratio there. An important consideration for the ranfom Aecrerent
nrocecnre is the effect of bandwidth-linite? input disturbances on the
initial conditions. The random ‘isturbance u is the source of x(t), from
vhich the initial conditions must be chosen. Hence the frequency content

. . . o T 4 ) '
of the input has a direc* influence on gx\to) anc \Xn'

“inally, consider the sample time require?, Tole gives an estimate
of T based on the statistics of ¥. [or the 1roblem of meas ring the

camping ratio, the result is

=1 =

2
Ce.e?

where € ic the normalized error of the damping estimate. This is the

cane result as for spectral analysis (although the interpretations of
€ are somewhat different in the two cases). The amount of “ata required ic
extract information about the system witn a given accuracy if a funfamenial

characteristic, indevendent of the procedure used to extract the information.



As with spectral ~nalysis, for « given T it ic nncessary to trade
off the number of averages and the frequency resolution. “he frequency
resolution of the randomdec signature is determined by how many periods
of the oscillation are measured., If there are n cycles with frequency
D,. in the signatre, then the length of each recerd is t = 0/ Wa .
‘“he nimber ol averager ' then

- 2
R

with Q = ,01 to .02, € = .1 to .2, and n = U4, the number »f averarges
required is I = 1000 to 5000. Cole suggests the use of n = L, and a sample
rate of r = 16, (5o the signature consists of Al camples). ?ynién\
applications of the ran‘om “ecrenent procefure require K = /1000 to ~000

averagec for satisfactory accuracy (references & an' 7).

Data lroceseing
''he randon decrenent signature ¥ is an ectimate of the system transient

response. Thus the procedures discusserd above for etermining the dammning
ratio from the decaying transient trace are applicable, with improver
accuracy “ue to the averariag. ‘ieternining the danoing an? {requency

by means of a least-squared-error fit of a “ecaying occillation to the data

is nore successful than with the unaverage® trac , due to the reduction in
the error of the estimate of the transient. Chang (ref, 7) devel-med ruch

a data orocessing technique for the ran'omdec nmetho’.

In conclusion, the svectral analysirs, correlation, and randonm
decrement techniques are all memters of the general class of methods
for analyzing the properties of linear dynzmic cystems utilizing exicting
(unknown) randon (isturbances, with averaging to reduce the error.
As such, all of these techniquecs have basically the same statjistical
characteristics. The choice of method depends on the experiment, the
data processing equipment, and as often on the preferences of the
experimenter. Correlation is the classical technique. W¥With current
Aigital processors and FT hardware, it is more useful ani convenient tc

work in the frequency domain with cpectral analycis, The random cdecrement

3%
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ctaticstics are somewhat cpecial in their ‘epenience on the variance of

the initial conditions, and hence on the triggering process. ‘'The censitivity
of on to measurement noise, and the difficulties of the multi-mode

cace arc of greatect concern. The spectrumn of the output depends “irectly

on the frequency content of the input, while the raniomdec signature
’epends on the input spectrum indirectly, particularly through X and Xt
All procecdures are ecsentially independent of the level of the input, as
expected for a linear system. ‘The normalization is implicit in the

o)

randonlec triggering, an’ :'.,y mey be normalize’ by dividing by ".) = Sﬁiw O .
All of the proczdures recuire further processing to extract the damrinh
ratio and other parameters. In this regar’ the spectral analysis ic nmcre
convenient thzn correlaticn or randendec technigues, which give the scesponce

in the time Jdonain.



TRANSFER FUNCTICH ANALYSIS

Stability analysis techniques which rely on existing, unknown
randon disturbances to excite the system have the bacic limitation that
the measured response ceven’s on the properties of both the system and
the unknown input. By measuring the input as well as the responre, it
ie porsible to letermine the characteristics of the system alone, as well
as reduce the error in the analysis. \sually it is necessary to apply
a measurable external input specifically to excite the system. The
cross-spectra between the input and cutput, in addition to the autospectra
are found. The ratio gives the trancfer function 1{/&D) between the input

w and the resvponce y, from which the cystem parameters may be determined,

ZConsider now a linear system wity iaput and cutput measurements:
X = Fx + Gu + Zw
y=x*v,
7z =W + vy
The actual system response and input are x ani w; y and z are the measured
response and input, inclu'ing ran‘om measurement noicse. ‘he vector u
is the process noise, an unknown random disturbance of the system. UThe

trancfer function between » and w is

R(w) = é; = (iw - F:\)—.‘E?

W ,
Let S, e the cross-spectrum between 7 and y based on the k-th record
=y (N}
a

z
‘I the transfer function H(W) is given by the ratic of the averaged

(%)
of cdata, and S nd S. the corresponding antospecta. "hen an estimator

cross-spectrum and input autospectrum:

o | E sm
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‘The analysis of the statistice of the estimator H of the
system frequency rasponce is available in the literature (see references
4 and 5). For the spectral amalysis technique the variance of the

A A
spertra estimators S and S were cdiscussed. ‘lhe statistice of their

Z 7.
ratic ﬁ are differentyhowevor. reflecting the “act that not just the input
or cutput is being measured, but the correlation hetween the two. Bias
errors in ﬁ ave usually nuch less than the random errors (as long as the
frequency resolution is chesen properly), o they are not discussed,

A
The analysis of the variance ot H gives the following result.

The probability is ok that the magnitule of the difference
LY ’
between the estinate H(&@) and the true value H{(d) is pgreater than
the function r(W). Thus with confidence {1 -o¢ ) H liec within a circle

A
of radius r about 4 on the plane of ImH ve. Rell, Co

IR-nIT <2
where a &
2 3
~t = ‘—‘—':; FQ,')_(g_n-)d (\—(! ) ‘\3
Sz

A
Here L is the number of averages; 6}5 is the estimate of the cchereance

function between the input and output

A z
4 \ Sz,
e e
-9
and F is thc salue of the * distribution with © 2nd 2(K-1) degrees of
freedom at the probability levei (1 -e¢ ) (i.c. frob(: > i, ) = & ),

Note that ideally |u\” - 5,/8 3 and for large I fin’

Ao
Fa2e-)y &0 = SRt

Hence the normalize? error of the ectimate of the transfer function

2 _ a2
== 5o X‘3>



For a confidence levei of 95/ ( & = .05), find F ¥ 3.1; at the 97.5°
and 99 levels, ¢ ¥ 3.8 and 4.8 respectively. Assuming a Gaussian distribution,
the variance (one standard deviation) cerresponds tc a confidence level
of 68, which gives I = 1.16. Hence except for 'h: effect of 9!‘ , the
normalized error is 6‘ ;'1/K. which is the same result as for the variance
of the spectrum alone.
A

The coherence function 335 is a measure of how well z and y are
correlated. 'With no ncice in the systen, ‘éh would be exactly equal to 1.
So (1 - %é;) ic a measure of the effect of noise on. the calculation of
the response due to a particular input. GHor the system described ahove,
asTUNE U, Vi, an’ v, are uncorrelated random noise; let H be the frequency

response of x due to w, an! Hu the frequency response of x due to the

disturbance u, Then
A A A
A T
|- ‘KQ_\) = SeSy — 1534)

3 iy
P— Sw(\‘\t Sus Sv.) 'T‘: sy-‘S\5
(Sw -+ Sv;) S‘s

A~ WS Sv. , Su
— S
ES.) D Ss

The first term is the ratlo of the systen resporse due te “he disturbance u,
to the totzl response; it is always less than 1 since the latt.  is the
sum of the response to u and w. This term nay be reducer by incressing
the level of the measure’ input w relative to tl.e wnknown input u., The
last two terms are the rz=tio -f the meazsurement noise to signal for th:

output and input.

It is concluded that for » givea number of averages (hence fixed
sample time), the =rror in the transfer furction is substantially lecs

than the error in the individual spectra. The error mzy be direc*

-6~



reduced by increasing the level of the measured excitation w. The improved
error statistics compared to spectral analysis or equivalent techniques

is a particularly important factor for full-scale testing, where the
frequencies are low and thus the sample times required tend to be long
(recall that T = 2/Qw.e*). The other principal ~dvantage of the

transfer function analysis is that it produces more information about

the system than does the spectral analysis of the response alone. The
result is independent of the input spectrum (always assuming that the
input sufficiently excites the relevant modes).

Tata Processing
Processing of the frequency response data to obtain the damping

is similar in some respects to the processing for cpectral analysis, although
of course the assumption that the input spectrum is flat in the vicinity

of the resonance is not required., A typical procedure involves approximating
H near the resonance of a low-damped mode by the frequency response of a
single, second-oxcer degree of freedom:

Vi

B S e a L 2ts

e —— ——

It follows that the damping ratio may be calculated from integrals of the

measured transfer function about the resonance:

(4 z

: (S:’)\n\-\ w&asl POy (S‘&&hw&:B
0= wo Tl T 2w
MNMWOn Low -

SR W Lt 2D
%a (2] R ~ ¥ S-%u..

The greatest effect of other modes on the resonance is usually a phase

shift. The assumed single degree-of-freedom response has a phase &H = -90°

at the natural frequency, but the phase of the measured H can be shifted

significantly by nearby modes. Thus the measured frequency response phase
‘11.1d be shifted as follows before applying the above exnression to

calculate 5 :

. We
- -t —
By = W % (=0 8 D)
where HP is the measured response at the resonant peak.
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An alternative approach is to use the methods of Kennedy and
Pancu (reference £). (n the ImH vs. ReH plane, the transfer function
descrites a circle in the vicinity of each resonance. Near the natural

frequency, the ideal response of the single degree-of-freedom system is

approximately . L2 (R )
v {l Vi R 1
o
ug R

ne

H

The racdius of this circle thus gives the damping of the mode. The
procedure may be implemented as follows. First the data should be
shifted to phase -90° at the peak frequency, as indicated above. Then

the circle
VL R e R T S

on the H plane is fitted to the measured transfer function, using the
least-squared-error method to calculate a and b. C(nly a few points around .
the peak should be used, say 3 to 5 on either side; and a weighting
function should emphasize the errors for the points nearest the peak.

Then the damping coefficient is
)

To find the damping ratio however, it is necessary to further consider
the variation of the phase with @ at the resonance. A least-squared-error

fit of the line o=
2l iN-0) = -5 -

to the data gives the slope c, and hence the damping ratio § = 2/c.
A simpler procedure resultc if the inverse of the transfer function is
considered. The icdeal, single degree-of-freedom response H-l is exactly

a parabola on the complex plane:

(R;H") + _:‘:i <I"‘"‘—‘)L — W\“’:

Thus the curve (ReH-l) - a(ImH.l)2 = b, may be fitted to the data, using
the 1east-s?uared-error approach. Then the damping ratio is given by
6 = (ab)7=,
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Another approacl'_\ is to fit the data to a high order rational
function, e.g. by least-squared-error methods. The roots of the denominator
polynomial then give the stability of all modes of the system obrervable
in the response. The assumed representation of H depends nonlinearly
on the parameters however, so an iterative solution is required. Convergence
problems are possible with such a procedure, especially if there is
significant noise in the measured transfer function.
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PARAMETER IDENTIFICATION

Parameter identificatior techniques for dynamic stability measurement
require further development. It is possible to define the problem for
rotorcraft testing however. An algorithm is required to estimate the
frequency and damping of all important modes of the system from measurements
of the various input and output signals. For rotorecraft there are usually
many degrees-of-freedom in the system, and a high noise level in the
measurements. It is necessary to identify the structure an® ctatistics
of the noise as well as the system for good accuracy. The assunptions
about the system must be ninimel. It is selcdom possible to make assumptions
about the model without compromising the effectiveness in identifying
unforeseen stability characteristics. In particular the order of the systen
must be identified, i.e. the number of significant modes involved in the
response. The algorithm must give an accurate estimate of the damping of
the system, with assured converger~e and computztional efficiency. It must
operate on-line, providing the estimates in a reasonable time after the
collection of the data for all input combinations, with the calculations
performed by a limited capacity computer.

It is assumed that the system is described by linear, time-invariant
differential equations, excited by various control inputs and aerodynamic
turbulence. The turbulence is defined as the response of a linear process
excited by white noise. The sysiem response and input are measured. The
measurements can have three kinds of noise: bias error (balance or zero
shift), random error (not necessarily white noise), and discrete frequency
error (correlated with rotor azimuth, e.g. 1/rev or N/rev vibration). The
input signals may often be considered noise-free. Thus the following
description of the system may be used., Modal coordinates are used
since the system is then defined in minimal form, and directly in terms
of the eigenvalues )‘ (the eigenvalues are probably complex however, so
actually a real form of the following description is required). The
model is:

«30=



system: qQ=Aq+Gu+Ew
output measurement: y = Hq + Voy + Vo + v°D
input measurement: 2= W+ Vig + Vip + iy
turbulence model: i = Du + Va

Here y and z are measurements of the response and the input, with noise
v (bias, random, and discrete components). The aerodynamic turbulence

is u, excited by the wbite noise Ak

The data consists of the measurements of the response and the
input, probably in the form of sampled time series. Sequential measurements
are made for the various input combinations (including no input). Then the
parameter identification algorithm is applied. It is necessary to identify
the system (A- , G, E, H, order), the turbulence model (D, order, vG), and

the measurement noise model (vD. Voo Vq)' The eigenvalues _A. are of

primary concern of course. Clearly the magnitude of the parameter identification

task is very great.

There is a serious difficulty with measurements in the rotating
frame. With independent blades (i.e. shaft-fixed rotor dynamics) the
measurements and the equations defining the system can be in the rotating
frame. With coupled motion of the blades and the rotor support, the states
and equations must be defined in the nonrotating however, including those
for the rotor (otherwise the system is described by periodic coefficient
equations, needlessly in this case). For example, the rotor flapping motion
should be described by the coning and tip-path-plane tilt motions of the
rotor rather than by the flapping of the individual blades. If only
measurements in the nonrotating frame are made, there is no difficulty,
except that due to limited information. If measurements are available
for the motion of all the blades of the rotor, then they can be transformed
by analog or digital processing to the nonro ating degrees-of-freedom.

But very seldom are rotors instrumented for the stability measurement
requirement, so almost always just one blade will be instrumented. It
would be very valuable to have an algorithm capable of using the single
blade measurements in determining the dynamic stability of the systen.

]



The methods which have been discussed so far (spectral analysis, and
transfer function techniques) can not use single blade measurements,
except for the case of independent blade dynamies. These techniques
require measurements representing the response of a time-invariant systenm,
so they must have measurements from all the blades or they are not able
to use the additional information. TYarameter identification techniques
however have the potential for using the limited information in the single
blade measurements. It would not be as accurate as having measurements
of the motion of all the blades, but it would be better than ignoring the

rotor motion entirely.

Consider the revisions of the measurement represcntation required
to account for having only rotating measurements for a single blade.
Assume for now that there is only one measurement y of the blade motion.
Let Y\R be the corresponding N measurements of the states in the nonrotating
frame (I e *he number of »~+or hlades), So Y\p is re’ated to the modal
coordinates by Yim = Hq 2s usual. DNow y is relzted to the nonrotating states
by a linear (time-varying) transformation y = hLyHR; i.e. the response y
is due to the response of all the Yy conponents. Tor example, the flap

motion of the m-th bhlade is given by

% [n_._l 3
(3‘ ) = Bol(#) + E_,:' (ﬁ,‘(t\usv\‘i’.. + Bws (£) e m W )
- Cigfét\ ="

where A, =£rt + 2w/N, and (~jz is presentomly if N is even. Thus
h is the 1-by-N vector:
|

cos M Wau
R’\ ' &\M“v‘-
(="

Tt follows that y is related to the modal response q by the expression
50 WP
Yy = h"Hq + L

This result is easily extended to the general case. Let the first n_

32~



elements of y be the measurements in the fixed frame, and the last g
elements of y be the measurements on the rotating blade. Then

y = THq + Vg
where
L — oy
o N

The matrix h and therefore . are known. The only effect of using the
rotating blade measurements is an increase in the dimension of the matrix
H which must be identified. Note that H is just the matrix which must
be found if all N of the nonrotating rotor states are measured, rather
than the rotating degrees-of-freedom of the single blade. The matrix

T (4.6, hT) accounts for the reduction in measurements (and information)

when only the single blade instrumentation is used.

For rotorcraft dynamic stability measurements, it is also necessary
to consider the periodic coefficient case. There are two usual sources of
periodic coefficients: the aerodynamics of the rotor in forward flight,
i.e. m> 0 (/«> .5 in practice); or a two-bladed rotor on an anisotroptic
support. In the periodic coefficient case the system is described by the
same model as above. The eigenvalues are given by -A~ as usual. Now
however the matrices H, G, and E are periodic functions of time (the period
is 2wr/NS2 if in the nonrotating frame, and 2w/SL in the rotating frame,
where £L is the rotor speed). The parameter identification problem is
increased therefore, since thece matrices must be found over the entire
period now. Undoubtedly the required sample time will be increased.

It would probably be desirable to synchronize the sampling of the data
with the rotor speed (with the trim rotor speed, since there are cases

where the dynamic response involves significant rotor speed perturhations).
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CCNCLUDING REMARKS

A number of methods for measuring the dynamic stability of linear
sycstems have been discussed., Particular attention has been given to an
analysis of the errors involved. It was found that a significant
reduction in the error is achieved when averaging is introduced, and again
when measureable external inpute azre used. The results are a guide to
the design of experiments and the choice of the measurement technigue.

No universal conclusion about which technique shoul? be used is poscsible.
The choice depends on the experiment, what noise is vresent, wha'l error is
acceptable, ani on what data processing ejuivment is available. :«nr
rotorcraft testing the dynamic ctability measurement is a critical factor

however, so generally the most accurate metho” vossible is desired,

The state-of-the-art of Aynamic stability testing in the aircraft
industry has been describe’ in a number of surveys (see for example
references 9-13). The problem involved is usually the flutter testing of
the aircraft wing or tail in flight. Some form of frequency-response
analysis procedure is common. There are many variations, but a typical
nrocedure involves swept-sine excitation, “igital analysis of the response
(analog analysis is also still commen), with the damping det rmined from

the circle on the H plane (see the above discussion, and ref. 3).

The techniques rdiscussed may be implemented in many ways. Among
the significant options are: the response may be in the time or freauency
domain; the input may be swept-<ine or random excitation; znalog or ligital
processing may be used; and the data reduction may be accomplisher nanually,
with a special purpose processor, a mini-computer, or with a large capacity
computer. The discussions here have dealt with those characteristics
which ~re fundamental to the problem of dynamic stability measurement, ani

hence are independent of the method of implementing the procecurer,

Finally, this report has been limited to an examination of the basic
characteristics of the methods for measuring dynamic stability. ‘urther
developrent of techniques for rotorcraft testing requires computer simulations,

and additional applications to stability measurements in rotor experiments.
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