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1. INTRODUCTION

With advancements in space flight technology, a new generation of
aerospace vehicles will soon come into service. Such a vehicle, designed
to have lifting capability, can operate as a satellite for an extended
period outside a planetary atmosphere, and upon accomplishing its mission
can enter the atmosphere and use its aerodynamic maneuverability to reach
a prescribed region before performing an approach and landing on an air-
field like an ordinary airplane.

The portion of the trajectory, starting at the top of the sensible
atmosphere and ending at a point at low altitude and low speed where ap-
proach and landing procedures can be initiated--the entry trajectory--is
the most critical portion of the flight path. It is during this phase of
flight that the speed is reduced from orbital speed at high altitude to
subsonic speed at low altitude. During this rapid decrease in the kinetic
energy, the deceleration, dynamic pressure and heating rate all vary
markedly. It is important for preliminary design or mission planning to
have accurate, yet simple formulas expressing the behavior of different
trajectory variables and physical quantities associated with the trajectory.

For planar entry trajectories, there exist several analytical theories
with various degrees of sophistication. Mathematically, one of the best
theories is Chapman's theory for analyses of planetary entry (Ref. 1).

In Chapman's formulation, the pair of equations for plamnar entry into a
planetary atmosphere is reduced to a single, ordinary, nonlinear differen-

tial equation of the second order by disregarding two relatively



small terms and by introducing a certain mathematical transformation. The
equation is integrated numerically for different cases of entry and the
functions obtained, called the Z-functions, are tabulated (Ref. 2). An
outstanding feature in Chapman's theory is that the tabulated data of the
Z-functions are universal in the sense that every solution determines the
motion and heating of a vehicle of arbitrary weight, dimensions, and shape
entering a planetary atmosphere.

A major deficiency in Chapman's theory is that, because of his two
main assumptions, the equations derived are only approximate, and the ap-
plications are restricted to entry trajectories with small flight path
angle or small lift-to-drag ratio.

Recently, these restrictive assumptions have been successfully re-
moved. A set of exact equations for three-dimensional entry trajectories
has been developed using modified Chapman variables to perform the mathe-
matical transformation (Refs. 3 - 6).

In this report the method of directly matched asymptotic expansions
is applied to the exact equations for three-dimensional entry in terms of
the modified Chapman variables, resulting in an accurate analytical solu-
tion. The two-regime approach of directly matched asymptotic expansions
has proved to be feasible and effective in previous, more restricted, ap-
plications (Refs. 7 - 10). Now, applied to these exact equations, a power-
ful, useful solution appears.

The equations of motion for three-dimensional flight about a nonrotat-
ing spherical planet and inside of its atmosphere, assumed to be at rest,
are derived in Section 2. The exact dimensionless equations using a set

of modified Chapman variables are derived in Section 3. In Section 4,




these equations are transmuted into a form most suitable for an analytical
integration using the method of matched asymptotic expansions. The two
solutions, one valid in the outer region where the gravitational force is
predominant, and the other valid in the inner region where the aerodynamic
force is predominant, are obtained. The two solutions are matched directly

and the composite solution, uniformly valid everywhere, is constructed.

2. BASIC EQUATIONS OF MOTION

The vehicle is considered as a mass point, with constant mass m ,
moving about a nonrotating spherical planet. The atmosphere surrounding
the planet is assumed to be at rest and the central gravitational field

is the usual inverse square force field.

]

>
r(t) position vector
(2.1)

il)(t)

]

velocity vector

The initial reference frame OXYZ is the planet-fixed system with
0 at the center of the gravitational field. The OXY plane is referred
to as the equatorial plane (Fig. 1).

The position vector T 1is defined in this planetocentric system by
its magnitude r , its longitude 6 , measured from the X-axis, in the
equatorial plane, positively eastward, and its latitude ¢ , measured
from the equatorial plane, along a meridian, and positively northward.

The velocity vector ¥ is expressed in terms of its components in
a rotating coordinate system Oxyz such that the x-axis is along the
position vector, the y-axis in the equatorial plane positive toward the

direction of motion and orthogonal to the x-axis, and the z-axis completing



Fig. 1. Coordinate Systems.




a right handed system (Fig. 1). Let <y be the angle between the local
horizontal plane, that is the plane passing through the vehicle and paral-
- >

lel to the Oyz plane, and the velocity vector V . The angle vy is
termed the flight path angle and is positive when V is above the horizon-
tal plane. Let ¢ be the angle between the local parallel of latitude

and the projection of V on the horizontal plane. The angle | 1is termed
the heading and is measured positively in the right-handed direction about

> > >
the x-axis. Let i , j , and k be the unit vectors along the axes of

the rotating system Oxyz . We have

T = ri (2.2)
and
V= (Vsiny) i+ (Vcosycosy) 3 + (Vcosysiny) X (2.3)

The system Oxyz is obtained from the system OXYZ by a rotation 6
about the positive Z-axis, followed by a rotation ¢ about the negative
y-axis. Hence the angular velocity 3 of the rotating system Oxyz is

8= (sin¢ %%) i- (%%) 3 + (cos¢ %%) 4 (2.4)
We deduce the time derivative of the unit vectors ; s 3 , and i

with respect to the inertial system OXYZ

+
ad oy oy + . ddy 7
it = OXi = (cosd dt) j+ (dt) k
a3+ 46, + de, =
4] _ > _ do, 2 ., d6.
3t 199.6] (cosé dt) i+ (sind dt) k (2.5)
T S TR de, 3
it Xk (dt) i (sing dt) 3j



The equations of motion of the vehicle are

ar >
it = \' (2.6)
and
cﬁ]> 1> - >
T - E(L +D) +¢g (2.7)

>
where g 1is the acceleration of gravity and the forces f and D are
the 1lift and the drag. Expressed in components along the rotating axes,
>
g 1is simply

g = -gm) 1 (2.8)

>
The drag D is always opposite to the velocity vector, while the lift T
is orthogonal to it. Hence, based on Eq. (2.3), we have immediately for

the vector 3
B=- (Dsiny) - (Dcosycosy) 3 - (Dcosysiny) k (2.9)

In planar flight, the vector T is in the (? R 3) plane and there
is no lateral aerodynamic force. By control action, if we rotate the
vector I about the velocity vector V we create a lateral component of
the 1ift force that has the effect of changing the orbital plane. To re-
solve the lift T into components along the rotating axes, we refer to
Fig. 2. The vertical plane considered is the (? R ?) plane. Assume the
vector f is rotated out of this plane through an angle ¢ . The angle
o which is the angle between the vector T and the (? s %) plane will
be referred to as the roll, or the bank, angle. The 1ift is decomposed
into a component iESEg in the vertical plane and orthogonal to 3 and

——
a component Lsino orthogonal to the vertical plane. Let x' , y'

and z' be the axes from the position M of the vehicle, parallel to
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PLANE
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Fig. 2. Aerodynamic Forces
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the rotating axes x , y , and z . Let X > Y1 o and zq be
the axes from the point M , along the direction of Lcoso , v s
—_—
and Lsinc , respectively. The system Mxlylz1 is deduced from the
system Mx'y'z' by a rotation ¢ in the horizontal plane, followed by

a rotation vy in the vertical plane. Hence, we have the transformation

matrix equation

x' {1 0 0 cosy siny O Xy
y'l = 0 cosy -siny -siny cosy O Y1
z' 0 siny cosy 0 0 1, zll
or
x' cosy siny 0 Xy
y'|= |- sinycosy cosycosy ~ siny vy (2.10)
z' - sinysiny cosysiny cosy L zq
- 7

>
Since the components of L in the Mxlylz1 system are Xy = Lcosc |,
.+
¥y, = 0o , z) = Lsinoc , we deduce the components of L along the system

Mx'y'z' , or what is the same, along the rotating system Oxyz

> > >
L = (Lcosocosy) i - (Lcososinycosy + Lsinosiny) j -
(2.11)
- (Lcososinysiny - Lsinccosy) k

Now, if we take the derivative of T , as given by Eq. (2.2), using

Eq. (2.5) for the derivative of ; , we have

>
dr _dr 8y 3, o 4o o
T 1 + (rcoseé DI+ PHE (2.12)

By substituting into Eq. (2.6) and using Eq. (2.3) for the components of

>
V , we have three scalar equations
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dr _

e Vsiny (2.13)
dé _ Vcosycosy
dt rcosé (2.14)

d¢ _ Vcosysiny
dt " (2.15)

These equations are the kinematic equatioms.

On the other hand, if we take the derivatives of the velocity vector
v , as given by Eq. (2.3), using the Eqs. (2.5) for the derivatives of
the unit vectors 1 , 3 , and k , and subsequently the Egqs. (2.14)
and (2.15) for d6/dt and d¢/dt , we have

2

>
& _ v o v 2y
i [siny T + Vecosy ac - ¢ cos vyl i

+ [cosycosy cdl—z - Vsinycosy g% - Vcosysiny g%

2
+ Y_EQ%XEQEQ(SinY - cosysinwtan¢)]§ (2.16)

+ [cosysiny %%—— Vsinysiny dI + Vcosycosy _E.

2
+ Y §°chsinvsinw + cosycoszwtan¢)] k

By substituting into Eq. (2.7), and using the Egs. (2.8), (2.9), and (2.11)

> > >
for the components of g , D , and L , we have three scalar equations

2 2
siny %¥-+ Vcosy gy - Y_E%§_X.= % cosocosy - %-siny -g (2.17)

2
cosy-gz ~ Vsiny dy _ Vcosytany —E' Y—‘::g's‘y‘(SinY - cosysinytang)

dt dt
(2.18)
=L Lo _D
= - cososiny o sinotany m cosy
2
av dy , Vcosy dy , V cosy, cOSYCcOos wtan¢
cosy Iy Vsiny it + tany dt +— (siny + siny )
(2.19)

Lsinc _ D

= - L-cososin + —
m Y mtany m

cosy
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Solving for the derivatives dv/dt , dy/dt , and dy/dt , we have

three scalar equations, the force equations,

dv D X
E =-H - gsiny (2.20)
dy _ L V2
v It = g COsU - geosy + o cosy (2.21)
2
v dy = %%%g% - %— cosycosytand (2.22)
dt

The six equations, Egs. (2.13) - (2.15), and (2.20) - (2.22) are the
exact equations of motion for flight over a spherical, nonrotating planet

with its atmosphere at rest.

3. DIMENSIONLESS EQUATIONS USING MODIFIED CHAPMAN VARIABLES

In the equations of motion derived in Section 2, the aerodynamic

1lift and drag are now assumed to be

N

2
L = pSCLV

(3.1)
2

pSCDV

g
4}
N

where CL and CD are the 1lift and the drag coefficients, assumed inde-
pendent of the Mach number and the Reynolds number in the hypervelocity
regime. The density of the atmosphere, p , is assumed to be a known
function of the radial distance r . For each flight program, the con-
trol functions CL s CD and o are prescribed functions of the time,
and the integration of the system of six equations of motion requires pre-

scribing the six initial values for the state variables. In addition, for

a given vehicle, the parameter S/m must also be given.
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For a planar trajectory with constant angle of attack, with the ini-
tial point taken as the origin for measuring the range, that is with
ei = 0 , it is seen, by inspection of the equations of motion, that the
following quantities must be prescribed:
a/ TFor the vehicle and flight parameters
SCL/m and SCD/m (3.2)
or equivalently
SCD/m and CL/CD (3.3)
b/ For the initial conditions

r,o, Yy and v, (3.4)

By a very ingenious coordinate transformation, Chapman has introduced

two dimensionless variables defined as (Ref. 1)

u=

<
wm] o
| |o
17

(3.5)

>

Z = u

[
]
™|H

where B 1is the atmospheric density height scale defining the atmosphere

through the differential relation

S;-—= - B(r)dr (3.6)

Through the transformation (3.5) and through some simplifying assumptions,
Chapman has reduced the basic equations of motion to a single nonlinear
differential equation with 7Z as the dependent variable and u as the
independent variable. Chapman's equation is

C

—2
— =) - —:sz—-cos4y + JEF-EL cosBY =0 3.7
du du u u Z D
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with the flight path angle <y obtained from

iz  z
— - = = VYBr siny (3.8)
u u

The varying quantity r eénters the equations as the product fBr . 1In

the lower altitudes of planetary atmospheres, where aerodynamic forces
are effective, the quantity Br oscillates about a mean value. The
flight parameter appears in Chapman's equation, Eq. (3.7), as the lift-to-
drag ratio CL/CD .  Furthermore, for entry trajectories, since the ini-
tial value of Z is nearly zero, only the initial values Ei and Yy
need be specified for the integration of Chapman's equations. Hence, for
a given atmosphere, with Br considered as constant (e.g., for the Earth
Br = 900), Chapman can integrate numerically his equations and tabulate
the results for each set of values of CL/CD s Gi , and Yy - These
Tables of the Z functions (Ref. 2) can be used for any vehicle of afbi—
trary weight, dimensions and shape entering the specified planetary atmo-
sphere. Furthermore, all the physical quantities during entry, such as
deceleration, dynamic pressure, heating rate, and heat transfer rate, can
be eaSily obtained as simple functions of the variables Z , u and ¥y

The major deficiency of Chapman theory is that, because of his two
main assumptions, namely that

a/ the percentage change in distance from the planet center is

small compared to the percentage change in the horizontal component of the

velocity, that is

dr << ‘d(Vcosx)| (3.9)
r Vcosy

and

b/ the quantity (CL/CD) tany 1is small, that is
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CL
— tany| << 1 (3.10)
C
D

the validity of Chapman's numerical analysis is restricted to trajectories
with small flight path angle, or trajectories with small lift-to-drag
ratio.

These restrictions have been removed by deriving the exact equations
for three-dimensional reentry using a set of modified Chapman variables
(Refs. 3 - 6). Chapman's assumptions (a) and (b), Egs. (3.9) and (3.10),

imply that the independent variable u is monotonically decreasing. This

is only true for the last portion of the trajectory since at high altitude

u 1is oscillatory, and in the limit, for flight in the vacuum, u is
purely periodic (Ref. 5). To avoid this difficulty the following dimension-

less variable is introduced as the independent variable
by
s = f (;) cosy dt (3.11)
0

The variable is strictly increasing as long as cosy > 0 , a condition
which is always satisfied for entry at constant lift-to-drag ratio, and

for all physically realistic entry trajectories. For the equations,

2 2
u = V cosy
BT (3.12)
pSC //;
D —_—
Z = om 8
Expressed in terms of the original Chapman variables, we simply have
z = 2, 4 = T (3.13)
u

The new variables lead to a set of differential equations in a simpler
form allowing a complete qualitative discussion of the three-dimensional

reentry trajectory.
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We shall present below a slightly different derivation of the exact
dimensionless equations from the one given in Ref. 5.
First, by eliminating the time, by dividing Eqs. (2.14), (2.15), and

(2.20) - (2.22) by Eq. (2.13), we have

g§_= cosy
dr rcosdtany

d¢ _ _siny
dr rtany

2
av? P (3.14)
dr msiny
Ql _ pSCLcosc 2 1
dr =~ 2msiny 2 + rtany

V tany

dy _ pSC, sing _ cosytang
dr 2msinycosy rtany

Next, from Eq. (3.11), using Eq. (2.13), we have

ds _ dsdt _ 1
dr = dt dr  rtany (3.15)

Hence, using this equation, we can rewrite the Egs. (3.14) with s as

independent variable

dé _ cosy
ds cosd

de _ 4
ds siny
2 rpSC V2

av__ _ D _

s = mcosY 2grtany (3.16)
rpSC_ coso

gl=__.._1‘.____+ (1_53)

ds 2mcosy V2
rpSC_sino

d L

£'=-——_—2‘— - cosytand

2mcos’y
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Using the Chapman formulation, the variable V2 is replaced by the var-
iable u , while the radial distance r is replaced by the variable Z .
By taking the derivative of u , as defined by the first equation (3.12),
with respect to s , using an inverse-square law for the acceleration of

the gravity, we have

du _ coszy dV2 2V251nycosy g1_+ Vzcoszyfdr

ds gr ds gr ds gr2 ds (3.17)

Using the definition (3.12) for u and Z , with the appropriate deriva-

tives from Eqgs. (3.15) and (3.16), we have the differential equation for

u
C
du _ _ 2'/é;zu[ (——D cosotany + —2531—] (3.18)
ds cosy
2/Br Z

On the other hand, by taking the derivative of Z , as defined by the

second Eq. (3.12), with respect to s , we have
- = - Br (- 1do + —5) Ztany (3.19)
s r pB 2B8r 2 .

where B8' = dg/dr

As discussed in Ref. 3, the term in parentheses in equation (3.19) is,

t
for the locally exponential atmosphere of equation (3.6), 1 - E%; + —éf
28

For an isothermal atmosphere Br2 is constant and this term becomes

Ldo 3 . . .
o8 dr ~ 28t For a strictly exponential atmosphere this term is
1~ E%; . Finally, for an atmosphere with Br constant, this term is
1 dp 1 R .
- — <T- - 2= . 1In all these cases the direct dependency on r is of
pB dr  Br
the form Br . 1In fact, for Earth, where PBr is about 900 , the term

in question will be unity to a high degree of accuracy. As analyzed in
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Refs. 3 and 5, the equations with Br as a constant may still justifiably
be considered exact.
Finally, the differential equations for y and ¢ , written in terms

of the dimensionless variables are, respectively

& /8x Z[( o) coso + cosy () - °°32Y)] (3.20)
s cosy JBr Z u
and
dy _ VBr Z[(EL) sing - coszycos@taqgl (3.21)
ds coszy Cp YBr Z

In summary, the exact equations of motion for three dimensional flight

in an isothermal atmosphere, using modified Chapman variables are

%§'= - Br(1 - 5%;) Ztany
%§'= - Zzgggég(l + Atany + _EEEX_)
2/Br 2
dy _ !EELZ{X + —S08Y (1 - EQ§EX)]
ds cosy Jer Z u (3.22)
de cos

ds cos¢

a9 _ s

ds siny

%$_= /E;éz(ﬁ _ coszycoswtan¢)

S cos‘y /Br Z
where
c o
A EL'COSU s O EL'sino (3.23)

D D

It may be observed that, although the equations are derived for three-
dimensional flight, the first three equations are decoupled from the last
three equations. Hence, by using only the assumption of constant value
for Br , for constant lift-to-drag ratio and constant bank angle, A

is the only flight parameter that needs to be specified. For each A ,
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with specified initial conditions U s Yy s and Zi = 0 , the first
three equations (3.22) can be integrated and Tables of the Z functions
can be generated. Since Chapman's two restrictive assumptions have been
removed, the new Tables are valid for three-dimensional flight without
any restriction concerning the flight path angle and the lift-to-drag
ratio.

Reference 5 presents a qualitative and quantitative analysis of these
equations. It is the purpose of the present work to obtain an analytic
solution to the complete set of the exact equations of motion. These
equations are integrated by the method of matched asymptotic expansions.
The results of investigation corroborate the assessment in Ref. 5 that
the assumption of a constant RBr 1is very accurate. Hence, the equations
(3.22) with Br = constant can be considered as the exact equations for

reentry, and Tables of the Z functions based on the new equations should

provide accurate data for analyses of planetary entry.

4. SOLUTIONS BY DIRECTLY MATCHED ASYMPTOTIC EXPANSIONS

In this application of the method of matched asymptotic expansions,
the solutions are obtained separately for an outer region, near the
vacuum, where the gravity force is predominant, and for an inner region,
near the planetary surface, where the aerodynamic force is predominant.
Hence, the altitude is the appropriate independent variable selected for
the integration.

Let y be the altitude and let subscript + denote the reference

altitude, taken at sea level. Then

= = 1+h 4.1
r rf +y r+( ) (4.1)
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where the dimensionless altitude h 4is defined as

h = -%— (4.2)
.1.

The differential relation between s and h 1is

B dh
ds = (1 + h) tany (4.3)

For the integration, we adopt a strictly exponential atmosphere, but the
general method can be applied to any more realistic atmosphere such as,

for example, the one proposed in Ref. 7. TFor an exponential atmosphere

Py e (4.4)
where

Eﬁﬂj (4.5)

Since the constant Brf is large, e.g., for the Earth atmosphere
Bry = 900 , the parameter e 1is a small quantity. By the definition

(3.12) of 2z
h
€

p.SC -~
7 = D /(1 + h) e (4.6)

2mB €

We define the ballistic coefficient

SChPy.

2mpB

(4.7)
For each vehicle, B 1is specified and the variable Z is obtained from

z = B/ il——::—bl e (4.8)

By this relation, the first Eq. (3.22) can be deleted, and we write the
other equations with the dimensionless altitude h as independent vari-

able
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h
du_ ___u __2Bu(l +)tany) " e
dh a + h) esiny
- b
dgq _ _ - _AB e
dh T+ e °©
dé _ cosy
dh (1 + h) cos¢tany (4.9)
dp _ __siny
dh (1 + h) tany
_ h
dy _ _ _cosytand ¥ Bde €
dh (1 + h) tany  esinycosy
We have defined
q = cosy (4.10)

Also, we recall the definition of the flight parameters

C C

A= EE cosd , & = EL-sino (4.11)
D D

The Eqs. (4.9) are in a suitable form for numerical integration
for flight inside an atmosphere. For an analytical solution of the re-
entry trajectory using the method of matched asymptotic expansions, we
shall use a more convenient form using some elements of the orbit as intro-
duced in celestial mechanics, since these elements are constants of the
motion for flight in a vacuum.

As seen in Fig. 3, if I 4is the inclination of the plane of the os-
culating orbit, that is the (? s %) plane, & the longitude of the as-
cending node, and o the angle between the line of the ascending node

and the position vector, we have the following pertinent relations from



Fig. 3.
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Orbital Elements.
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spherical trigonometry

cos$cosy = cosl
j . - - tan¢
; sin(® -~ Q) Tant (4.12)

cosa = cos¢cos(8 - Q)

These relations are independent. We can easily deduce

: sing = sinIsina
| siny = +Land (4.13)
tano
sinp = sinlcos(® - Q)

Using these relations, we replace the variables 6 , ¢ , and ¢ by

the new variables o , Q , and I . The Eqs. (4.9) now become

h
du _ u _ 2Bu(l + Atany) e_lg
dh (1 + h) esiny

, _h

dg _ _ ___Jl___(l - H_o - Ag.e €
dh (1 +h) u €

_h
da _ 1 Bdsina o € (4.14)

dh (1 + h) tany etanlsinycosy

™ |z

dq Bdsina
dh esinIsinycosy

dI Bdcosoa e
dh  esinycosy

h
£

The Eqs. (4.14) are most suitable for an integration using the method
of matched asymptotic expansions. We notice that, once the elements a ,

2 , and I are known, we obtain the original variables 6 , ¢ , and ¥

from
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tan(8 - Q) = cosltano
sin¢ = sinlIsina (4.15)
tany = cosatanl

4.1 Outer Expansions (Keplerian Region)

The Eqs. (4.14) are expressed in terms of the outer variables. The
outer expansions are introduced to study the limiting condition of the
solution in the region near the vacuum where the gravitational force is
predominant. They are obtained by repeated application of the outer limit,
which is defined as the limit when € - 0 with the variable h and
other dimensionless quantities held fixed.

We assume the following expansions

u = uo(h) + eul(h) + .
q = qo(h) +eq (h) + .
o = ao(h) + eal(h) + ... (4.16)
Q = Qo(h) + te(h) + .
I = Io(h) + eIl(h) + .

By substituting into Eqs. (4.14) and equating coefficients of like power

in ¢ , the differential equations with zero order of € are

du0 _ uo
dh (1 + h)

2
dq, _ % a - 399
dh (1 + n) uy
do

0 _ 1 (4.17)

dh (1 + h) tany0
% _,
dh
dI
‘o_,
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The solution of this system is

uo(l +h) = C

1

I .20+ g 4p?

7 c 2

g 1

u, = 1+ /1 - cic2 cos(ag = Cy) (4.18)
g = Gy

Ip =

where the Ci are constants of integration. The first and higher order
solutionsare all equal to zero because at high altitude, in the limit

the atmospheric density is zero and the motion is Keplerian.

4.2 TInner Expansions (Aerodynamic-Predominated Region)

The inner expansions are introduced to study the limiting condition
of the solution near the planetary surface where the aerodynamic force is
predominant. They are obtained by repeated application of the inner limit,

which is defined as the limit when ¢ - 0 with the new stretched alti-

tude
ho= B (4.19)
£
and the other dimensionless quantities held fixed.
We assume the following expansions
u = uo(h) + eul(h) + .
q = qo(h) + eql(h) + .
a = uo(h) + eal(h) + ... (4.20)
Q = Qo(h) + te(h) + .

I = Io(h) + eIl(h) + .
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By substituting into Egs. (4.14) and equating coefficients of like powers

in € , the differential equations with zero order of € are

~

du0 _ ZBuO(l + Atanyo) e_h
dh siny
dq iy
'—..9‘ = - ABe h
dh
do. Bdsina -
USRS e 0 P (4.21)
d? tan1081nyocosyo
dQO ) Bésinao e_h
d? 31nlos%nyocosy0
dIO ) Bdcosao e_h
dh sinygcosy
The solution of this system is
; = 6 4 expl- EIQ
0 = C19p expl~ 7
9 = ABe = + 02
51na051n10 = sinC3 (4.22)

~ ~ ~ ~

0= cosC3cos(C4 - QO)

0
O
0]
Q

I

~

)
[0}
0
H
i

~ Y ~
8 I 0
0 cosCBCOSfX 1og[tan(4 + 5—9] + CS}

where the Cj are constants of integrationm.
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4.3 Asymptotic Matching and Composite Expansions

The constants of integration %

determined by matching with the outer expansions.

~

in the inner expansions will be

In this problem,

~

matching is accomplished by expanding the inner solutions for large h

expressing the results in terms of the outer variables and matching with

the outer solutions for small h

The outer solutions, Eqs. (4.18), become for small h

On the other hand, the inner solutions, Eqs. (4.22), become for large h

[=4
|

~

- ~9
= C;Cy

~

= C

2

sino,.sinlI,. =

0

il

0

cosC3cos(C4 - Q

cosC

3

= Cl
Cl
= 2 - C1C2
4 € -1
= cos (
172
= C[}

exp[- %—cos_lcz]

sinC3

~

0

§ 1
cos{x-log[tan(4 +

1 -
- COs

2

1~ .
Cz)] + c5}

(4.23)

(4.24)
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~

Matching Eqs. (4.24) with Eqs. (4.23) provides the constants C, in terms
]

of the constants Cj . We have

/ C
~ 2 _1 __._1___—
c, = 2 - ClCZ) exp[x cos 2 -¢,C, ]

1 1°2
) / C,
C2 = 2 - C1C2
- a1, &1
sin C3 = sinCssin[cos ( ) + C3] (4.25)
1 - c%c
172
; 1 4 6 -1 )
C, = cos {cos[cos (———) + C,]/cosC,} + C
4 7 3 3 4
1 - C.C
172
’ C1
. _ . s
C5 = cos 1[cosC5/cosC3] log[tanC— +-§ cos / 2 - 1 9 )]

Hence, the constants Cj are expressed explicitly in terms of the con-
stants Cj . Substitution into Eqs. (4.22) gives the inner solutions.
It is convenient to use the following notation to write these solutions

in a symmetric form. Let

u, = Cl
il
cos Y, = //2 - ClC2
21,671
sin ¢, = sincssin[cos ( ) + C3] (4.26)
1 - C2C
172
-1 R
6, = cos ~{cos[cos " ( ) + C3]/cos¢*} + C4
2
1l - C1C2
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The constants with subscript * are explicit functions of the constants

Cj - Then the inner solutions are

~ 2~
cos Y -
0 0 2
T = explTly, - )]
* COS Yy

~

~

COSY, = COSYy + ABe

~ ~

sincxosinIO = sing, (4.27)

~ ~

cosay = cos¢*cos(6* - QO)

~ ~

cosl cosI* s

Y Y
-1 ) -cos_l( ) = X—log[tan(%—+ ig)/tan(%-+ Ejb]

cos

cosd cosd,

The Eqs. (4.27) show that during the phase of aerodynamic force

predominant turning, the latitude ¢ and the longitude 6 remain constant.

The last equation gives the change in the heading Y during that phase,

The composite expansions, valid everywhere, can be canstructed by

the method of additive composition. The additive composition is

obtained by taking the sum of the inner and the outer expansions,

Eqs. (4.27) and 4.18), and subtracting the part they have in common

(the inner limit of the outer expansions or the outer limit of the
inner expansions), Eqs. (4.23) or (4.24). Thus, for the variables

u and Y, using subscript ¢ for the composite solution,
u cos ¥ ~
c _ h 2 _
<= y T expllry - vp)]

* (I1+h cos Y,

(4

u -
/ *
2 + ABe

~

COSY = cosy,

2
// ZCOSZY*(l + h) + (u, - 2cos”y,)(1 + h)

.28)

o=
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For the angular variables o , Q and 1 , we have
. c, -1

o =a.+o. -C, - cos 1(—;L—————0

c 0 0 3 —
/ﬁ - CJC

172

Fe)
[
D
+
20
I
@}

(4.29)

Hence, from equation (4.23), we have immediately Ic = I0 , and

_ cosI
cosl = cos¢d,cosicos
c O { (cos¢*

Y Y
) + %-log[tan(%-+ Egﬁ/tan(%-+ Ef)]}

(4.30)

For the angle Qc = Q. , we can use the second Eq. (4.12) to have

0
_ tan¢*
Qc =08, - sin [tanIC] (4.31)
where IC is given by Eq. (4.30).
Finally, the angle a. is given by
_q siné, _ CoSY,, u,
o = sin ~[——1] + cos 1[ ( - 1]
c sinl 3 1+h
¢ /ﬁ; + (1 - Zu*) cos Y,

(4.32)

cosy*(u* -1
- cos [ ]
/gz + 1 - 2uy) coszy*

The composite solutions are expressed explicitly in terms of the
constants of integration u, , Yi » O » 6, and I, . For the
computation in terms of the independent variable h , the angle ;0
is first calculated from the second Eq. (4.27). Subsequently, we have

u , Yy and I , and then © and «
c c c c c
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4.4 The Composite Solutions In Terms of the Initial Conditions

For the initial conditions to be satisfied identically, the five con-
stants of integration Cj » or equivalently the five constants with sub-
script * , as defined by Eqs. (4.26), are to be evaluated by using the

composite solutions. Let the conditions at hi be
u=u, , Y=Y, 0 =0, ,0=Q, , I=1, (4.33)

Using these conditioms in the composite solutions, the constants u,
Ye o O 5 0% and I, are obtained upon solving a set of transcen-
dental equations which can only be done numerically. Another obstacle
arises when, as is a common practice, in order to reduce the number of
prescribed initial values, one takes the initial (¥i R Vi) plane as the
reference O0XY plane. In doing so we have a, = 0 , and Ii =0 ,
but when I =0 , the longitude of the ascending node Q is not defined
as evidenced by Eq. (4.31). This singularity can always be avoided by

rotating the OXY plane through a fixed and arbitrary angle, say 45°

—
about the ri axis. Then the initial condition at hi is

109 < o, Q, = 0, L, = 45 (4.34)

The equivalent condition for the variables 6 , ¢ and ¢ is

6, =0 , ¢, =0 , Y, =45° (4.35)

Finally, it should be noted that the composite solutions for u and
Y » Egs. (4.28) remain unchanged for the planmar case. For the planar
case, with the motion along the equatorial plane, the variable o is the

same as the longitude 6 . The composite solution for 6 can be seen

to be
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cosy,, u,
8 = cos 1[ (1 i D] +w, (4.36)

2 2
/G* + (1 - 2uy) cos’y,

where w, 1s a constant of integration. The three constants of integra-

tion u, , Yy, and w, in Eqs. (4.28) and (4.36) for the planar case
* * *

are evaluated using the initial conditions u ., , and 6 .
i M1

i

5. CONCLUSIONS

For a spherical, nonrotating planet with a spherically symmetric,
but otherwise arbitrary, atmosphere the exact equations for three-dimen-
sional, aerodynamically affected flight have been derived. The equations
are transformed using modified Chapman variables into a set suitable for
analytic integration using asymptotic expansions.

The solutions by asymptotic expansion are obtained as an inner ex-
pansion in the aerodynamically dominated region, and an outer expansion
in the gravitationally dominated region.

The inner and outer expansions are matched directly, and a composite
solution, valid everywhere, is constructed by additive compositiom.

This method of directly matched asymptotic expansions has provided
highly accurate and useful solutions to less general atmospheric trajec-
tory equations, Ref. 7. In that work extensive numerical calculations
demonstrated the accuracy compared with exact numerical solutions.

The behavior of the exact entry equations was examined in Ref. 5.
The method of directly matching the inner and outer expansions for at-
mospheric entry trajectories was proven valid for some restricted prob-

lems in Refs. 8 - 10.
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This report has accomplished the wedding of the exact atmospheric
trajectory equations, using the modified Chapman variables, with the
method of directly matched asymptotic expansions and provides an analy-
tical solution which should prove to be a powerful tool for aerodynamic

orbit calculations.
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