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MODELING ERROR ANALYSIS OF STATIONARY

LINEAR DISCRETE-TIME FILTERS

RAJNIKANT PATEL* AND NITSUHIKD TODA*

Ames Research Center, NASA, Moffett Field, Calif. 94035

Abstract. The performance of Xalman-type, linear, discrete-time

filters in the presence of modeling errors is considered. The discus-

sion is limited to stationary performance, and bounds are obtained for

the performance index, the mean-squared error of estimates for suboptimal

and optimal (Kalman) filters. The computation of these bounds requires

information on only the model matrices and the range of errors for these

matrices. Consequently, a designer can easily compare the performance

of a suboptimal filter with that of the optimal filter, when only the

range of errors in the elements of the model matrices is available.

1. Introduction. One of the problems arising in the application

of the minimum variance optimal filter of Kalman and Bucy [8] is that a

design based on imperfect knowledge of the system configuration and noise

statistics often results in poor performance. Thus, there has been con-

sidecable research on the effect of modeling errors on filter performance

[3,5,6,10,11]. In particular, errors in prior information on state

statistics and noise covariances [6,10,11] and in system models [3,5]

have been considered.

This paper is concerned with providing boun,4s on the performance for

suboptimal as well as optimal discrete-time filters based on information

*NRC Postdoctoral Research Associate.



about the range of modeling errors. These results are useful from the

practical point of view, as a designer often has information on the range

of modeling errors rather than a precise knowledge of the modeling

errors. In this paper we limit the discussion to stationary conditions

and obtain performance bounds for discrete-time filters for two types of

errors: noise covariance errors and system configuration errors. Such

bounds were obtained for continuous-time filters in an earlier paper [12].

The results reported here and in [12] are quite different from those of

earlier work in that we do not limit the discussion to small-scale

(differential) analysis as in [5], nor do we assume sign definiteness of

the covariance errors as in [11].

This paper is organized as follows: the problem is formulated in

Sec. 2; in Sec. 3, two general bounds are obtained. These bounds are

analyzed in Sec. 4 to obtain practical expressions when the system configu-

ration is assumed to be known and, in Sec. 5 when the noise covariances

are assumed to be known. The results in Sec. 4 and 5 are illustrated

by an example in Sec. 6. Section 7 concludes with some remarks on the

results and comments about future research.

2. Problem Statement. Consider a time-invariant process described

by

x(k + 1) = Ax (k) + Gw(k)	 (1)

where the n-dimensional state vector x(k + 1) is measured by an

m-dimensional vector y(k + 1):

y(k + 1) _ Hx(k + 1) + v(k + 1) 	 (2)
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The 1-dimensional process noise w(k) and the m-dimensional measure-

ment noise v(k + 1) are assumed to be mutually independent Gaussian

noises with zero mean and

E[w(k)w(j)T] = Q6 k ,3	
Q > Of 	(3)

E[v(k)v(3)T] = R6k,3 	 R > Of 	(4)

where 6k,3 denotes the Kronecker delta. The system matrices A, G,

and H are assumed to have appropriate dimensions, and A is assumed to

be a convergent matrix.

The optimal estimates i(k + Ilk + 1) that minimizes

J(k + 1) = E CI) x(k + Ilk + 1) - x(k + 1) 112] #

with observations [y(0), y(1), ..., y(k + 1)], are given by [8]:

i(k + Ilk + 1) = Ai(k)k) + K(k + 1) [y(k + 1) - HAMl k) ]	 (5)

where K(k + 1) is the Kalman gain matrix specified by the recursive

relations:

	

K(k + 1) - Po (k + Ilk)HT [HPo (k + 11Q HT + R] -1 	(6)

	

Po (k + Ilk) = APo (klk)AT + GQGT 	(7)
and

Polk + Ilk + 1) = [I n - K(k + 1)H]Po(k + Ilk) (8)

with i(0) and Po (0) provided by prior information on x(0) and In,

the n x n identity matrix. The minimized index J(k + 1) is given

by

to symmetric matrix W is denoted as W =• 0 (W 1 0) when W is
positive definite (semidefinite). Also, W > Z (W > Z) denotes W - Z > 0

(W - Z ? 0).

I w II

	

	 II W II = E I Wij 
12 112 denotes the Euclidean norm of a vec-

,j

for w (matrix W).
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Min J(k + 1) - tr[Po (k + ilk + 1)]	 (9)

where tr(W) denotes the trace of a square matrix W.

We assume that complete information on the system matrices A and H

and the noise covariances Q and R is not available, and that the opti-

mal estimator is replaced by a suboptimal estimator based on a model: 	 f
r:

xM(k + 11 k + 1) = AMicM(k) k) + KM(k + 1) [y(k + 1) - HMAM:iM(k (k) ]	 (10)

where AM - A + AA and HM =_ H + AH are model representations of A

and H, respectively, and AA and AH denote modeling errors. The gain

KM(k + 1) can be computed from the model matrices using the following

relations:

KM(k + 1) = PM(k + Ilk) HMT [HMPM(k + llk)HM
r + RM]-1	(11)

PM(k + lIk) = AMPM(kik)AM
T + GQMGT	(12)

Arid

PM(k + llk + 1) = [In - KM(k + 1)HM]PM(k + 11k)	 (13)

where QM ° Q + AQ and RM =_ R + AR are the model representations of

Q and R, respectively. The mean-squared error of this estimate is

expressed by

E [11 xM(k + 1) - x(k + 1) 11 2] = tr[P(k + 1)] 	 (14)

In (14) and in the remainder of this section, the index (jjj) is

denoted by (j) wherever appropriate. The covariance matrix P(k + 1)

is described by [11]

P(k + 1) = L(k)AMP(k)AMTL(k) T + AC(k)V(k)AMTL(k) T + L(k)AMV(k)TAC(k)T

• AC(k)U(k)AC(k) T + [L(k) + KM(k)AH]GQGT [L(k) + KM(k)AH]T

• KM(k)RKM(k) T	(15)
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V(k + I) AV(k)A:M L(k) + AU(k)AC(k) T - GQG [L(k) + KM(k)AH]	 (16)

U(k + 1) - AU(k)AT + GQGT 	 (17)

where

L(k)	 In - KM(k)Ht4	
(18)

AC(k) = L(k)dA - KM(k)AHAM + KM(k)AHAA	 (19)

P (k) °- ELX(k)x(k)TI

V(k) = E[x(k)ic(k)T]

U(k) E[x(k)x(k)TI

x(k) = i:M(k) - x(k)

P(0) = -V(0) = U(0) = EI[x(0) - 3i(0)][x(0) - j(0) IT

R(0) - E[x(0)] 	
)))

Since the modeling error matrices AA, AH, AQ, and AR are generally

not known exactly, (15) to !17) cannot be solved to obtain tr[P(k + 1)],

the performance of the suboptimal filter. However, a designer usually

has estimates of the magnitude of errors in the model matrices, e.g.,

(.AAij y in the (i,j)th element of AM. Therefore, it is reasonable to

obtain upper bounds for tr[P(k + 1)] based on such estimates. It is

also helpful to obtain lower bounds for tr[P o (k + 1)] as functions of

the estimates so that tlie designer can evaluate the performance degrada-

tion, tr[P(k + 1)] - tr[P o (k + 1)], which he should expect with the

possible modeling errors. Such bounds are obtained in later sections

for stationary conditions.

3. Performance Analysis for Stationary Conditions. The covariances

of estimation errors are constant matrices for stationary conditions, i.e.,

in (6) to (8), Po lk + ilk) = Po (klk - 1) and Po lk + ilk + 1) = Po(klk)

5



and, in (15) to (17), P(k + 1) - P(k), V(k + 1) - V(k), and

M + 1) - U(k) for stationary conditions. Hence the stationary filter-

ing error covariance matrix for the suboptimal filter is denoted uy P

and the stationary filtering and (one-step) prediction error covariances

for the optimal filter are denoted by P F and PP , respectively. In this

section, general expressions for an upper bound for tr(P) and a lower

bound for tr(PF) are obtained. These are specialized in later sections

to obtain more practical expressions.

In the sequel, the notation W ® Z is used for the Kronecker

product of matrices W and Z. The column string of an n X n matrix W,

ducted by cs(W), is defined by the following n 2-dimensional column

vector:

c3(W) _ [w11 . . . wni, w12 . . wn2 , . . ., win .. wnnjT

where wjk is the (j,k)th element of matrix W. Note that

tr(W) - [cs(In)]Tcs(W)	 (20)

and

II cs (w) II - 11 W II	 (21)

Theorem 1: An upper bound for tr(P) is given by

tr(P) < 71 = iTK-lb + I{ 
(K-,)Ti 

{I {{ D {I	 (22)

where

M = In2 - LAM ® "AM	(23)

L = In - KMHM	(24)

i = cs(Id

T Tb cs(B), B = LGQMGL + KA&`	(25)
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D =_ LGQMGTAHTKMT + KMAHGQMGT (L + KMAH)T + ACVAM
TLT + LAMVTACT + ACUACT

(L + KMAH) GAQGT (L + KMAH) T - KMARKM
T
	(26)

AC =_ LAA - KMAHAM + KMAHAA
	

(27)

Remark: Note that in the expression for ir l , only D contains the

error matrices AA, AH, AQ, and AR. In Secs. 4 and 5, the term 11DII

is analyzed further to obtain more explicit expressions.

Proof of Theorem 1: Equation (15) can be written as

P = LAMP (LAM) T + B + D

and, in Kronecker form, as

cs(P) = [(LAM) ® (LAM)]cs(P) + cs(B) + cs(D)

Recalling (20), we obtain

tr(P) = iTcs (P) = iTM" lb + iTM lcs(D)

iTM' lb + II (W l ) Ti II II cs (D) ► 1

where the Schwartz inequality was used to obtain the inequality. Noting

(21), we obtain (22), thereby completing the proof.

Next, we obtain a lower bound for the filtering error covariance

matrix of the optimal filter.

Theorem 2: A lower bound for tr(PF) is given by

-a2 + 
^a22 + 4ala3

tr(PF) ? x2 =	 2a	 (28)
1

where

al ° II ATHTR-1H, II s5	 (29)

111W11  = max[a(WWT)] 1/2 denotes the spectral norm (maximum singu-

lar value) of a matrix W; max a(W)[min X(W)] denotes the maximum

[minimum] eigenvalue of a symmetric matrix W.

7
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n
a2 n + tr(HTR-1HGQGT )	 1A (A)1 2

i•1

and

a3	 tr(GQGT)
	

(31)

Proof of Theorem 2: From (6) to (8), we obtain

In + HTR 1H(APFAT + GQGT) PF 1 (APFAT + GQJ)

Taking the trace of both sides yieldb

n + tr[HTR 1H (APFAT + GQGT)] tr(PF, lAPF,AT) + tr (PFIGQGT)

Appiying Lemmas 1 and 2 (see Appendix), we obtain the following

inequality:

n + II ATHTR 1 H II str(PF) + tr(HTR 1 HGQGT) > E IX i (A) 12 + 
tr(GQG; (32)

i=1	 F

which can be rearranged in the form

al [tr (PF)] 2 + a2tr(PF) - a 3 > 0

Solving the above inequality for tr (P F), we obtain (28), thereby com-

pleting the proof.

4. Performance Bounds with Incorrect Noisy^ Covariances. We now

consider the case for which A and H are known exactly, i.e., AA = 0

and AH = 0, and we obtain bounds for tr(P) and tr ( P F ) in terms of

AQ and AR explicitly.

Theorem 3: If AA = 0 and AH = 0, then an upper bound for

tr(P) is given by

tr(P) < ff	 T3 = iK- lb + II (	 I ) r i II (II LG II s 11 o4 II + II111	 s11 oR II ^

(33)

(30)

r
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Proof of Theorem 3: Since AA - 0 and AH - 0 in (26),

II D II - II LGAQGTLT + KMARKMT
 II

_< I ILG 11 B II AQII + 11 KMa1IARII

where the last inequality follows from the inequality () W7. II _< II W II g II Z II

(2, p. 37 1. The result in (33) then follows from (22).

V	 Theorem 4: If AA = 0 and AH - 0, then a lower bound for

tr(PF) is given by

-a2 + a22 + 4a1a3
tr(PF) > n4 =_	

2a i
	(34)

where

II HA II
a l	

min A (RM) - II AR II

	 (35)

a2 
_ n + II HG II 2 (I) QM II s + I, = II) -	

I Xi (A) 1 2	 (36)
min A (RM) - ! AR j	 i!=rl

and

r. 3 = tr (GQMGT) - L II G 11 2 11 AQ II	 (37)

Proof of Theorem 4: In (28), ffL decreases monotonically as al

and a2 increase and as a3 decreases. Hence, to obtain the bound

1r4,- 	 bound al and a2 from above and a3 from below in terms of

II AQ II and II AR II . This is done by bounding II ATHTR-lHA II s and

tr(HTR-1HGQGT) from above and tr (GQGT) from below.

An upper bound for II ATHTR-1HA II s is given by

s	
HA s

it ATHT R 111A II s _ II HA it 2 II R7 1 II S = ^i ► ^I(s ^	 II	 II	
(38)

min A (RM) - fI AR II

9



where Lemma 1(i) in the Appendix is used to obtain the first two

inequaliLies. A lower bound for tr(GQGT) is obtained as follows:

tr(GQGT) - tr[G(QM - AQ)GT]

- tr(GQMGT) - tr(GTGAQ)

2 tr (GQMGT) - k J I GTGAQ II s
> tr(GQMGT) - k II G II s II AQ II	 (40)

where the first inequality follows since G TGAQ is an RXt matrix.
.`	

I
Using (38) to (40) in (24) to (31) results in (34), thereby completing

 !	 the proof.

Remark: For AQ 2 0 and AR ? 0 (respectively, AQ 1 0 and AR -< 0),

Nishimura [11] has given bounds on the matrix P of the form PM 2 P

(respectively, P > PM). These results also hold for the nonstationary

case. Note that the results of Theorems 3 and 4 do not require any sign

definiteness for AQ and AR, although they are limited to the stationary

case. However, unlike the analysis in [11], the results of the theorems

do not require that the filter gain KM be obtained by a Kalman filter

design ((11) to (13)).

5. Performance Bounds with Incorr-,,t Process Configuration. We now

assume that AQ - 0 and AR - 0, i.e., Q and R, are known exactly.

Theorems 5 and 6 then give an upper bound for tr(P) and a lower bound

10



for tr(PF), respectively. The analysis used to obtain the upper bound

for tr(F) is more involved than that in Sec. 4 since (15) is coupled

with (16) and (17). To derive an r?per bound, we first analyze (17) for

the stationary case to obtain the following.

Lemma: If AM ij diagonalizable, then, for stationary U,

IlUll s < s = 2 II UMII3 exp - 2v IIIn - FM 112(IIAAII2 + 2IIAAII II^IIS)^
C

(41)

where

FM = 
(A 

T + Iti
)-1(AMT 

- In)
	

(42)

a _ max[Re MM)] < 0 (real part of dominant eigenvalue of FM)

K = I) T II s II T-1 II s (spectral condition number of matrix T)

similarity transformation matrix to diagonalize AM

and UM is the solution of the Lyapunov equation:

FMTUM + UMFM = -(In - FMT)WGT (In - FM)

Remarks: (a) It is easy to show that a similarity transformation

matrix T that diagonalizes AM also diagonalizes FM.

(b) The diagonalizability condition in the above lemma can be

removad by the following procedure: when a model matrix AM is not

diagonalizable, we can always find a diagonalizable matrix A M such

that IIAM - AMIi s is as small as we wish [4, p.11l]. The lemma can

then be used for such AM.

(c) The (Cayley) transformation in (42) maps the eigenvalues of AM

inside the unit circle to the left-ha'.f complex plane, Re(A) < 0.

11



Proof of Lemma:	 For stationary	 U, (17) can be written as

^
U	 AMUAM

T
 + AAUIA

T
	AAUA 

HT
	 AMT UAA + GQGT (43)

From (42),

TAM 	(In 	FM T )- ' (I
n
 + FM ) (44)

Pre- and postmultiplying (43) by (I
n 	 T)	 (Inand	 F.) respectively,

and substituting for	 AM 	from (44) yields:
T	 I	 T	 T	 T	 T	 TFM U + UFM 	 (in	 FM ) (GQG + AAUAA	 AAUAM	 AmU" )(In Fm)

Therefore, U	 can be expressed by the following integral [1, p. 239]:

T	 T	 T	 TU
2 UM	 2 f ' exP N t) I (In	F.	 (&AUAM + AMU&A0

AAUAAT)(In - FM) [exp(%t)]dt

which yields the norm inequality

CO

U	 -1	 M 11 2 (11 &A11 2
s < 2	 % 11 s + f 11 In	

F
s0

+ 2 JJAA 11	 11 AM 11 s) 11 exp (FMt) 11 2 11 U	 dt
S

Applying the Bellmaw-Gronwall lemma [7, p. 420] yields
1

exp	 F
U 11	 -j	 11 UM	 M 11 2 (Ij _^A 11 2

s 5	 [11 Ins	 s

f000
+ 2 11 AA II	 II AM	 jII exp (FMt) 11 2 dt (45)

s

Since	 T	 diagonalizes	 FM, it follows that

exp (FMO = T exp(At)T-1

where	 A	 is a diagonal matrix. with the eigenvalues of	 FM 	on its

diagonal.	 Therefore,

11 exp (FMt) 11	 :5	 11 T 11	 11 
T	

1 II	 11 exp (At) 11	 s K	 exp (at)s	 s	 s	 s

12



Hence

II exp(FMt) (I s dt 
5	 K2 exp(2vt)dt - -

Joa*

	

f0*0
 2v

Substituting the above result into (45) yields (41).

We can now derive the following upper bound for tr(P) from

Theorem 1.

Theorem 5: If AQ = 0 and AR = 0, then an upper bound for tr(P)

is given by

tr(P) < n S =_ (1 + 11 1 2 + 11 2)2 	 (46)

where

11 1	 III 
(W-,)Till 

IILAM II g (1ILII 11 M11

II KM II s '' 'M II S IIAHII + II KM II S II AH II	 II AA II)

and

U2 = iTNr lb+ II(M" 1 ) Ti1I[0(II 1. II s IIAAII + IIKMIIsIIAMII$IIAHII

+ IIKM II s II AH II	 II AA II) 2 + IIKMIIsIIGQGTIIsIIAHII2

+ 2 II KM II s 11 LGQGT II s II AH 111

Proof of Theorem 5: Since AQ = 0 and AR = 0 in (26),

II D II 5 2 II LGQGTAHTKMT II + II K AHGQGTAHT%T II + 2 II ACVAMTLT II

+ II ACUACT II
(47)

5 2 II LGQ GT II g 1I KM II s 11AH 11 + IIKM!Is1IGQGTIIs11AH112

+ 2IIACII	 I1v11 s 11LAM II S + IIAC1121IUIIg

13



From (27),

-	
llAC11 1. 11 L 11 8 11&A11 + Il KM I1 8 1lAM 11 8 11AAll + llYMll8

Since

	

P VT	

IX

x XT

	

- E .T	 T

	

V U	 x xx

is a covariance matrix, it is positive semidefinite, an

`	 Lemma 3 (see Appendix) yields

II vil s < II P II s/2 N U N s/2 	[tr(P)) l i2 IlU II

Using inequalities (47) to (49) in (22), we get a quadr

in [tr(P)]1/2:

tr(P) - 2u 1 [tr(P)] 1/2 - P2 S 0

which yields (46).

Theorem 6: If AQ = 0 and AR = 0, then a lower

is given by

-Y2 + Y22 
+ 4yly3

	

tr(PF) > n6 -	
2Y1

where

Y1 = (11 H,,	 + 11 AH 11) 2 11R7 1 11 S (11AM 11 S + 11

Y2 = n + (11 H-ri 11 s + 11 AH 11) 2 11 R-1 11 S tr(GQGT)

2
_

Li
	 _ ^IAAii1

i=1

and

Y3 = tr(GQGT)

where AA 
ii

denotes the (i,i)th term of AA.

14



Proof of Theorem 6: As in the proof of Theore-,

a2 from above and a 3 from below in (28) to obtain

a1 { I ATHTR 1HA II s < II H 11 s IIR-1118IIA11 2

I (IIHM II B + 11 all ) 2 1JR 1 I1 8 ( I { AM 11 8 + 11

n
a2 = n + tr(HTR 1HGQGT) - ^'lAi(A)12

i=1

5 n + 11 HTR71H 11 s tr(GQGT) - n [tr(A) )2

< n + (11 HM II s + 11 AH 11) 2 11 R7 1 	 tr(GQGT,

- n [tr(AM) - tr(AA))2

where Lemma 1 (i) and Lemma 2 are used to obtain th

a2 . Since

[tr(AM)- tr(AA) ) 2 > 
l
Itr (AM)1 - (tr(&

and

n
I tr(&A) 1 <	

{ AA,,
i=1

it follows that a2 < Y` . Finally, we note that a,

n2 decreases monotonically as a l and a2 increase,

above bounds suffice to obtain the bound 7r 6*

6. Example. To illustrate the results presented in the preceding

sections, we consider a process with the following state space description:

aMl
	 0	

1,

x(k + 1)
	

x 	 +	 w(k)

aM2 a
M3	 0

y(k + 1) _ [1
	

0)x(k + 1) + v(k + 1)

15
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The numerical values for a model are specified as aMl - -1/3, aM2 - 1/10,

and aM3 - -1/4. The modeled noise variances of the zero mean white

noises are

q  = E[w(k)2]
model - 

10 ; rM a E[v(k)2]
model - 5

The parameters aM2 and aM3 are assumed to be correct and the modeling

error bounds for the parameters 
aM1 , qM, and r

M are given by

IAa.1 1 5 0.1 ,	 jAqj 5 1 ,	 and	 jArl s 0.5

For the numerical values specified, Theorems 3 to 6 yield the

following bounds:

Theorem 3:

Case 1 n 3 = 3.567 (3.519)

Case 2 n 3 = 3.748 (3.644)

Theorem 4:

Case 1 W4 = 2.206 (3.295)

Case 2	 n4 = 2.432 (3.171.)

Theorem 5: n 5 = 4.246 (3.450)

Theorem 6: n6 = 2.506 (3.390)

For comparison, the least upper bounds for tr(P) and the greatest

lower bounds for tr(P F) are given in parentheses. Cases 1 and 2 for

Theorems 3 and 4 denote the following:

Case 1: jAqj _< 1 ,	 Ar = 0

Case 2: jArl 5 0.5, Aq = 0

16



7. Conclusions. The performance of Kalman-type, stationary, linear,

discrAte-time filters in the presence of modeling errors has been analyzed.

The mean-square error of the estimates was used as cae performance mea-

sure; modeling errors in the system configuration (AA and AH) and in the

noise covariances (AQ and Ate) were considered. Upper bounds for Che per-

formance measure of suboptimal filters with modeling errors are given in

Theorems 1, 3, and S and lower bounds for the optimal filters without

errors are given in Theorems 2, 4, and 6. The bounds in Theorems 3 tc 6

require knowledge of only the model matrices and the range of errors of

these matrices. Consequently, these bounds are useful in practice, as a

designer often has information on the range of modeling errors rather

than on the exact values of the error matrices.

It has been implicitly assumed in the derivation of the bounds that

stability of the system and the filter is preserved in the presence of

modeling errors AA and AH and that sign definiteness of Q and R is

preserved in the presence of modeling errors AQ and AR. It should also

be noted that the bounds obtained in this paper may be conservative for

some systems, e.g., those with very small stability margins, and it may

be desirable to obtain tighter bounds for specific cases.
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8. Appendix: Inequalities for Positive Semidefinit,^ Matrices. Some

of the inequalities used in the proofs of the theorems presented in Li,o

text are proved below.

Lemma 1:	 (1) If A > 0 and B >- 0, then

tr (AB) s 11 A I I s tr (B) -< tr (A) tr (B)

(ii) If A > 0 and B > 0, then

tr(A7 1 B) > tr(B) - > jr(B)
11 All 

s	
tr(A)

Proof of Lemma 1: (1) Since A > 0 and B > 0, A1/2 and B1/2

exist; hence

tr(AB) = tr(A1/2B1/2B1/2A1/2)

	

= II A1/2B1/2 11 2 < II A1/2 11 2 11 B1/2 II 2	 11 A II str(B)

and since A > 0, 11 A II s < tr(A), thereby completing the proof.

(ii) To show the second i<<equality, we write

11 A II s tr(A7 1 B) = II A1/2 11 2 tr(A-1/2B 1/2B 1/2A 1/2)

= II A1 /211 sII A- 1/281/2 11 2 z 11 B 1 / 2 11 2 - tr(B)

and since A > 0, tr(A) > 11Al! s , thereby completing the proof.

Lemma 2: If A > 0 and ¢ is an n x n matrix,

tr(A-1 0AOT) ? ^la i ($)1 2 _> n [tr(^)J2
1

Proof of Lemma 2:

tr(A 1^A^T) = tr(A-1/20A1/2A1/20T A-1/2)

= 11 A-1/2^A1/2 11 2

n
Since II W 11 2 >	 1 A i (W) 1 2 for any n x n matrix W and

i =1

Xi(A 1/20A1/2) = ai(0),

i°
4

ii
E
E	 .

18



tr(A 1¢A$ ? L,1Ai(^)I2
i=1

Using Cauchy's inequality [9, p. 42], we have

.	 2

(a)1 2
 > n ^'. ai (^) I

i=1 i	 i=1

The result of the lemma then follows since

L, 

1.	 n

i
m l ? E X1 (0) - tr(0)

i= i 	 i=1

Lemma 3: If A > 0 is partitioned as

Al A3
T

A3 A2

where A l > 0, then

11A1 11 a 11 A2 11 8 - 11A31182

Proof of Lemma 3: Since Ai l exists:

r In 	0 Al 	0	 In A11A3
A =

LA3Ai1 I 0 A2 - A3Ai 1A3T 0	 In

Therefore, A -> 0 implies that A 2 - A3Al 1A 3T 2 0. Using Weyl ' s inequal-

ity for eigenvalues [4, p. 1571, we have

max X(A2) - max A (A3Ai 1A 3T) -> min a (A2 - A3A71 1A3T) 2 0

i.e. ,

11 A2 11 9	
max X (A3Al 1A3T)

= max a(A11^2A3TA3Ai1/2)

11 A-1/2A
	13TA 3A, 1/2 II s
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