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SYMBOLS



A 

a 

aB * 

ak ' 

B 

Elf 
dimensionless flexbeam f-lapping stiffness, -

IP02t 

rotor blade airfoil lift curve slope 

acceleration of the body mass center, m/sec
2 

acceleration of the kth blade mass center, m/sec2 

EIc 
dimensionless flexbeam chordwise stiffness, io2£ 

[B] transformation matrix relating the blade-fixed axis system 
Nxk, Nyk, Nzk to the flexteam tip axis system nxk, nyk , nzk 

b 

C 

[CA] 

number of blades ( 3) 

dimensionless flexbeam torsion stiffness, GJ 

IQ 02£, 

damping matrix contribution from aerodynamics 

[CD] damping matrix contribution from structural damping 

c rotor blade airfoil chord length, m 

C 
L 

cl­ steady component of clk, m 

c k components of the 
direction, i = 

kth rotor blade mass center in the 
1,2,3, from point J, equation (16), 

n.k 

m 

ci steady component of cik made dimensionless by L 

cX damping coefficient for uncoupled X motion, N-sec/m 

CYdamping coefficient for uncoupled Y motion, N-sec/m 

c damping coefficient for uncoupled 

N-m-sec 

C motion (blade lead-lag), 

CxXdamping coefficient for uncoupled 'x motion, N-m-sec 

C'y damping coefficient for uncoupled Dy motion, N-m-sec 

c( ) cos( ) 

Cd0 rotor blade airfoil profile drag coefficient 

0v 
V 
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EAQ


-- ; also, rotor blade
D dimensionless flexbeam axial stiffness,


drag per unit length, N/m IQ02



d cd 
a 

rotor blade mass center in the nik

dik components of the kth 

direction, i = 1,2,3, from point 0, equation (58), m 

EA flexbeam axial stiffness, N 

EI e flexbeam chordwise bending stiffness, N-m
2 

flexbeam flap bending stiffness, N-m
2 

Elf 
 

e hub radius, m



e


ek



el,e2,e, space-fixed axis system, figure 1



el,e2,e unit vectors parallel to el, e2, e3
3 
 

[F] transformation matrix relating the flexbeam axis system


nk,n2k,n3k to the rotating coordinate system N1k, N2k, N3k



Fr generalized active force for the rth degree of freedom, 
r = Uk' Vk' Wk' k' 8k' 0k' X, Y,x' 'yY, 


Fr* generalized inertia force for the rth degree of freedom,


r = uk' Vk' Wk' k' 8k' 0k' X, Y, ,x y



function to be minimized to produce rotor equilibrium solution



FB force acting on the body, N



FB* inertia force acting on the body, N



Fk force acting on the kth blade, N



Fk* inertia force acting on the kth blade, N


I e02


FR force at the flexbeam root, made dimensionless by 0

in 02


Ft force at the flexbeam tip, made dimensionless by £


FuFvFw components of external force in the direction of u,v,w,


respectively, acting on the flexbeam tip



vI





I 

F4,FsF 
 

[G] 
 

GJ 
 

[GI] 
 

[Gk] 
 

g 
 

go 
 

go 
 

[H] 
 

[Hk 
 

h 
 

Ii1I21I3 
 

,12T 
 

Ix'Iy 
 

Ix'IY 

J 3 3 ,j 1 3 ,j 2 3  

[K] 
 

[KA] 
 

components of external moments in the direction of C,8,O


rotations, respectively, acting on the flexbeam tip



[B] [T]



flexbeam torsional stiffness, N-m2



gyroscopic matrix contribution from inertia forces



[B] [TkI



rotor thrust per unit mass of total aircraft, m/sec2



g



g02L



acceleration of gravity, m/sec2



Q02L



[G] [F]



[Gk] [F]



height of rotor-hub center above aircraft reference center, m



h


L 

two-dimensional airfoil section plunge velocity, m/sec 

rotor blade flapping inertia for point J; I = 12 + mL2xb2 

rotor blade mass moments of inertia for the blade mass center 
for axes Nxk, Nyk, Nzk, respectively 

I 
,x = 1, 2, 3 

body mass moment of inertia for the body mass center for axes 
NA and NB respectively, kg-m 2 

Ix Iy



I 

geometric variables, equation (66)



flexbeam stiffness matrix



stiffness matrix contribution from aerodynamics



Vi3





[KI stiffness matrix contribution from structural damping 

[Kg] stiffness matrix contribution from gravity 

[KI] stiffness matrix contribution from inertia 

[KS] stiffness matrix contribution from structural loads 

KxI Kz landing gear stiffness for each of four landing gear springs in 
the NA, NB, and NC directions, respectively, N/m 

KxL 2 KYL2 KzL 2 

xi0 
2 1iQ02 

L blade length, m 

LC two-dimensional airfoil circulatory lift per unit length, N/m 

LNC two-dimensional airfoil noncirculatory lift per unit length,
N/m 

£ flexbeam length, m 

L 

Y£x, y longitudinal and lateral distances, respectively, from front to 
rear and from left to right landing gear, figure 7, m 

vertical distance of aircraft reference center above the land­
ing gear, figure 7, m 

Tx'Y'£Z 
xx 
LT' 

Py
TL 

yz
TL 

M mass of aircraft; M = bm + mf, ,kg; also two-dimensional airfoil 
pitching moment per unit length, N 

ML2 

I 

f[A] mass matrix contribution from aerodynamics 

MB moments exerted on the body, N-m 

MB* inertia moments exerted on the body, N-m 

[MI] mass matrix contribution from inertia 

Mk moments exerted on the kth blade, N-m 

viLiL 



Mk* inertia moments exerted on the kth blade, N-m 

Mk aerodynamic pitching moment per unit length on kth blade, N 

k1k 
rLfaMk d., N-m 

MR moment at the flexbeam root, made dimensionless by IQ0 
2 

Mt moment at the flexbeam tip, made dimensionless by 10 2 

m mass of one rotor blade, kg 

tmL
2 

I 

mf mass of the fuselage, kg 

mfL2 

mf I 

NA,NBNc body-fixed coordinate system, figure 1 

NANBN C unit vectors parallel to NA' NB, NC 

N k,N2k,N3k rotating coordinate system for kth blade, figure 8 

Nik,N 2k,N3k unit vectors parallel to NIkN2k,N3k 

NxkNykNzk coordinate system fixed in the kth blade, figure 8 

NxkNkNzk unit vectors parallel to NxkNYkNzk 

nk ,nk ,n3k coordinate system fixed in the kth flexbeam root, figure 8 

k'n2k,n3k unit vectors parallel to nlk,n2k, k 

n k,n k,nzk coordinate system fixed in the kth flexbeam tip, figure 8 

n.k,nyknzk unit vectors parallel to nxk nyknzk 

qr dummy symbol used to refer to the blade degrees of freedom 

R rotor radius; R = e + k + L, m 

r position vector of point along flexbeam, made dimensionless 

by P, 

rt position vector of flexbeam tip, made dimensionless by k 

S component of aerodynamic force per unit length along the chord­
line in a two-dimensional airfoil section, N/m 

ix 



Sk component of aerodynamic force per unit length along the chord-

lle(Nyk al)o h



line (kaxis) of the rotor blade, N/m



Sk rL


Sk dx, N
Sf J0 

Smk JXSk dx, N-m


s arc length of deformed flexbeam elastic axis made dimensionless 
by £ 

S() sin( ) 

T component of aerodynamic force per unit length perpendicular to


the chordline in a two-dimensional airfoil section N/m; also


kinetic energy, kg-m2/sec2 , also tension in flexbeam, N



9" rotor thrust, N 

k I[T] steady part of [T
 

Tk component of aerodynamic force per unit length perpendicular to


the chordline (along Nzk axis) of the rotor blade, N/m



[Tk ] transformation matrix relating the flexbeam tip axis system 

nxk,nyknzk to the flexbeam root axis system nk,n2 ,n3
k 

Tfk LTk dx, N



TmkoxTk dx, N-m



U total velocity of two-dimensional airfoil section, m/sec 


U1k components of rotor blade velocity with respect to air in 


n kaxis system, m/sec 


UPk component of rotor blade velocity with respect to air in Nzk 

direction, m/sec 

UTk component of rotor blade velocity with respect to air in Nyk 

direction, m/sec 


u steady component of uk, m 


S+ ­

component of flexbeam axial deflection due to bending alone,
u5 
 
made dimensionless by 'Z



x 
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b 

ic bE 

k=1 

U'k Cos 'k' m 

uk axial deflection of the kth flexbeam tip, m 

"k 1 +-lT + Fl 

Uk unsteady component of Uk, m 

us component of flexbeam axial deflection due to stretching, made 
dimensionless by k 

b 

us 

k=1 

U k siln *k' m 

ut . assumed value for u 
dimensionless by 

in equilibrium deflection scheme, made 
P, 

UlU2,m3 coordinate system along the deformed flexbeam principal axes 

V 

V1k 

VP 

free-stream velocity of two-dimensional airfoil section, m/sec 

rotor blade mass center velocity components in n1 
k axis 

system, equation 16, m/sec 

velocity of any point P 

v steady component of vk, m 

~X +F21
£ 

b 

c E k cos ik, m 

k=1 

vi induced inflow velocity, m/sec 

vk chordwise deflection of kth flexbeam tip, m 

Vk vk-+ eiF21 

vk unsteady component of vk, m 

xl 



s ~2 

b 

Ervb. 

k=1 

Vk sin m 

Vt assumed value for v 

dimensionless by 

w steady component of 

w+ eF31 

c 
b 

Wk cosk' 

k=1 

in equilibrium deflection scheme, made


k



wk, m



wk 

wk 

flapwise deflection of 

wk 
-T + "F31 

kth flexbeam tip, m 

Wk unsteady component of wk, m 

b 

Ws b , Wk sin Ik, 

k=1 

wt assumed value for w 
dimensionless by 

in equilibrium deflection-scheme, made 
P, 

X time integral of body velocity component in NA direction, m 

x distance along N.k axis from point J, m 

xa chordwise distance from Nxk axis to aerodynamic center, made 
dimensionless by c, positive when aerodynamic center is 
ahead of Nxk axis 

xb axial distance from point J to blade mass center along 
Nxk axis, made dimensionless by L 

xc chordwise distance from Nxk axis to blade mass center made 
dijensionless by c, positive when mass center is ahead of 
NxV axis 

Y time integral of body velocity component in NB direction, m 

z vertical distance from aircraft reference center to body mass 
center, positive when body mass center is below reference 
center, m 

X11 



-

Bsteady 
 

ab 
 

Oc 

f 
 

Bk 
 

k 
 

Ss 
 

Ot 
 

Y 
 

epitch 
 

b 
 

zc 
 

f 
 

k 
 

z 

two-dimensional airfoil angle of attack, rad



component of k, rad



built-in coning angle of the blade with respect to the flex­

beam, positive tip up, rad



b 

bE 0 k cos 'k' rad 

k=1



built-in coning angle of the flexbeam with respect to the hub,


positive tip up, rad



elastic flap rotation of the kth flexbeam tip positive tip


up, rad



unsteady component of 
13k' rad



b 

bE k s 'k' rad 

k= 1 

assumed value for B in equilibrium deflection scheme, rad



peeL4


dimensionless airload parameter, I



angle of two-dimensional airfoil section, rad; also,


perturbation of flexbeam tip loads; also, flexbeam middle


surface strain, equation (73)



steady component of k' rad



built-in sweep angle of the blade with respect to the flexbeam,



positive tip leading, rad



b ORIGINAL PAGES 

b E Zk cos Pk' rad OF POOR QUAL]WII 

k=1 

built-in sweep angle of the flexbeam with respect to the hub,


positive tip leading, rad



elastic lead angle of the kth flexbeam tip, positive tip



leading, rad



X111





k unsteady component of Ck' rad 

b 

zs b 

k=1 

k sin k' rad 

Ct 
k 

Til 

assumed value for in equilibrium deflection scheme, rad 

geometric parameter, equation (18) 

TI 

Xn,'IxN'P y 

X 

isolated blade lead-lag structural damping ratio 

fuselage damping ratio for uncoupled motion in the 

and $y direction, respectively 

X, Y, Ox, 

0b 

steady component of 8k' rad 
built-in pitch angle of the blade with respect to the flexbeam, 

positive leading edge up, rad 

b 

Oe _ E 

k=1 

ek cos k' tad 

Of built-in pitch angle of the flexbeam with respect to the hub, 
positive leading edge up, rad 

0k elastic twist of the 
up, rad 

kth flexbeam tip, positive leading edge 

0k unsteady component of 6k' rad 

6s 
b 

2 E isi k' rad 

k=1 

at assumed value for 0 in equilibrium deflection scheme, rad 

e3/4 pitch angle at the blade 3/4-radius, rad 

Kcurvature in the local flexbeam flap direction, made dimension­

less by 1 

curvature in the local flexbeam chordwise direction, made 
1dimensionless by ~ 

p air density, kg/m 3 

xiv 



a rotor solidity --

T cirvature in the local flexbeam torsional direction, made 

dimensionless by 

x time integral of angular velocity component in 
rad 

NA direction, 

4y time integral of angular velocity component in 
rad 

NB direction, 

inflow angle at the blade 3/4-radius from momentum theory, 
equation (22), rad 

lPk azimuth angle of kth blade 

Q rotor angular velocity, rad/sec 

Q0 nominal rotor angular velocity, rad/sec 

0o 

MB 

wk 

wIk 

angular velocity of the body, rad/sec 

angular velocity of the kth blade, rad/sec 

components of angular velocity in NxkNykNzk 

equation (18), rad/sec 

axis system, 

xv 



AEROMECHANICAL STABILITY OF HELICOPTERS WITH A BEARINGLESS



MAIN ROTOR - PART I. EQUATIONS OF MOTION



Dewey H. Hodges*



Ames Research Center


and



Aeromechanics Laboratory


U.S. Army Aviation R&D Command



SUMMARY



Equations of motion for a coupled rotor-body system are derived for the


purpose of studying air and ground resonance characteristics of helicopters


that have bearingless main rotors. For the fuselage, only four rigid body


degrees of freedom are considered; longitudinal and lateral translations,


pitch, and roll. The rotor is assumed to consist of three or more rigid


blades. Each blade is joined to the hub by means of a flexible beam segment


(flexbeam or strap). Pitch change is accomplished by twisting the flexbeam


with the pitch-control system, the characteristics of which are variable.


Thus, the analysis is capable of implicitly treating aeroelastmc couplings


generated by the flexbeam elastic deflections, the pitch-control system, and


the angular offsets of the blade and flexbeam. The linearized equations are


written in the nonrotating system retaining only the cyclic rotor modes; thus


they comprise a system of homogeneous ordinary differential equations with


constant coefficients. All contributions to the linearized perturbation equa­

tions from inertia, gravity, quasi-steady aerodynamics, and the flexbeam


equilibrium deflections are retained exactly. Part II describes a computer


program based on these equations of motion.



1. INTRODUCTION



The general problem of helicopter aeroelastmc stability involves coupling


between the motion of the individual blades through control system dynamics


and the rotor wake, as well as coupling between the rotor and fuselage of the
 

helicopter The complexity of the problem poses a challenge to the analyst,


both in developing an analytical model and in understanding its physical


behavior. An important part of analyzing the general rotor-body dynamic sys­

tem involves the study of the dynamic behavior of rigid-body fuselage motions


coupled with the rotor motion. The well-known phenomena of air and ground


resonance occur in this way. The low-frequency rotor modes interact with the
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rigid-body fuselage motions to produce instabilities both in the air and on



the ground (refs. 1-4).



Helicopter rotors without hinges to allow rigid-body flap and lead-lag



motions of the blades are commonly called hingeless rotors. Hingeless rotors



have distinct advantages over the more common hinged (articul-ted) rotors;



these include fewer moving parts, light weight, and more control--power. In



recent years there have been efforts to develop hingeless rotors without pitch



bearings to further reduce mechanical complexity and weight. These rotors,


called bearingless rotors, rely on a torsionally soft portion of the blade



called the flexbeam (or strap) that is twisted by the pitch-control system to



provide changes in pitch. There have been several totally different designs



proposed within the helicopter industry (refs. 5-9). Of these designs, one



has a snubber (ref. 6); some have cantilevered pitch-arms without snubbers



(refs. 5, 7, 8); and one has a torsionally stiff torque tube that is very



flexible in bending and acts much like a speedometer cable (ref. 9). Both



hingeless and bearingless rotors have had some aeroelastic stability problems.



In fact, most production hingeless rotors still must rely on an auxiliary



lead-lag damper to suppress ground and air resonance instabilities One



reason for this is believed to be the lack of suitable analytical capability.



The analytical treatment of hingeless rotor air and ground resonance has,
 


for the most part, been limited to an equivalent-hinge, spring-restrained


rigid blade model for the rotor blades (refs. 1-4). The need arises when



applying these analytical models to somehow arrive at the proper orientations


for the spring-restrained hinges so as to give the proper values for the aero­


elastic couplings that arise due to blade elastic deflections, angular offsets


such as precone or sweep, and the pitch-control geometry. Even with this



apparent drawback, these relatively simple analytical models have been success­

ful, to some degree, in assessing the air and ground resonance characteristics



of some configurations. Bearingless rotors, however, have coupling parameters


that change significantly as a function of the operating condition. For


example, when the rotor is at high thrust the flexbeam may be highly twisted;


whereas, at low thrust it may be untwisted. An alternative to a rigid-blade


formulation is that of an elastic blade. Again, there is the need to do a


separate analysis, here to obtain the free vibration modeshapes. This can be



time consuming for a bearingless rotor because the coupled modeshapes will


change as a function of operating condition. Also, these analyses are much


more complicated than the rigid-blade approximations Bielawa has developed



such an analysis for the bearingless rotor, but only for the hub-fixed case


(ref. 10). Johnson has developed a rotorcraft aeroelastic stability program


(ref. 11) that possibly could be adapted to treat bearingless rotors; however,


this modification has not been made to date An analysis that possesses the


simplicity of the rigid blade model but integrates the treatment of aeroelastic


couplings would appear to be very useful. Such an analysis has been developed


and is the subject of this report.



In this report, equations of motion are derived that are suitable for use


in studying both air and ground resonance as well as the hub-fixed dynamic


behavior of helicopters with a bearingless main rotor. The blade is modeled


as rigid but connected to the hub with a structurally flexible appendage to



simulate the flexbeam portion of a bearingless rotor blade. The analysis is
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restricted to rigid-body fuselage motions and all forces that would act along


the flexbeam are neglected. Only rotor cyclic modes and body pitch, roll, and


horizontal translations are considered. Each blade has six degrees of freedom


in the rotating reference frame. This means a total of sixteen degrees of


freedom in the analytical model. The analysis is tailored to treat the con­

figurations mentioned in references 5-9 in an approximate way



In section 2, the physical model is described. In the text, the config­

uration described in reference 9 is analyzed; modifications necessary to treat


other configurations are given in the appendmxes. In section 3, Lagrange's


form of D'Alembert's principle is introduced as a means of deriving the equa­

tions of motion. The coordinate systems used in the derivation are defined in


section 4 and expressions for certain kinematical quantities are derived. The


generalized active and inertia forces are derived in sections 5 and 6. The


equations of motion are formed, linearized about equilibrium, and then written


in the fixed system in section 7. Particular attention is given to the flex­

beam structural representation in this analysis. In the appendixes are found


the details of including blade and body structural damping and the modifica­

tions to the analysis that are required to treat the different pitch-control


geometries.



An independent derivation of the equations of motion was performed by


Dr. Donald L. Kunz of the Aeromechanics Laboratory in order to check the pres­

ent derivation. His effort is gratefully acknowledged.



2. PHYSICAL MODEL



In this section the physical model used to represent the helicopter is


described. Only those elements believed necessary to model air and ground


resonance phenomena are retained. The aircraft dynamical system is composed


of two parts: the fuselage and the rotor. The fuselage is assumed to be a


rigid body. When in contact with the ground, the fuselage is suspended by a


spring system to simulate the elastic restraint to fuselage motion in an


actual helicopter imposed by the landing gear system. When the aircraft is


airborne in hovering flight, it is unrestrained elastically. The rotor con­

sists of three or more rigid blades attached to the hub by means of slender


elastic beam segments. Both the fuselage and rotor are described in more


detail below.



A schematic of the fuselage/hub is shown in figure 1. The hub, mast, and


landing gear are all included in the mass and inertias of the fuselage. The


total fuselage mass is mf and the moments of inertia for the mass center are


Ix and Iy, respectively, for the X and Y directions. The aircraft reference


center, shown in figure 1, is a distance z above the body mass center and a


distance h below the hub center. In the study of air resonance (in hover)


and ground resonance, vertical translation and yaw rotation of the body


uncouple from the other body motions and are, thus, not significant. The


other four body degrees of freedom X, Y, 4 are included.
ix, and (Dy These


quantities are time integrals of velocity and angular velocity components in


the body fixed axis system, described in more detail in section 4. The
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landing gear provides stiffness restraining the body motion depending on the


landing gear geometry shown in figure 2.



The rotor blades are attached to -the hub with flexible beam segments


called flexbeams and rotate at constant angular velocity Q. A schematic of


one rotor blade is shown in figure 3; here, the details of the pitch control


system are not shown



The blade pitch angle may be changed by twisting the flexbeam with any of


three types of pitch control mechanisms or by using built-in pitch angles ef


and 8b. In this report four cases are considered. Case I is the simplest


case, with no pitch control system at all. This configuration corresponds to


an experimental rotor set up to operate only at discrete pitch angles or to 
 an


operational rotor with a disabled control system The equations of motion are


developed for this case throughout the text. The modifications for Cases II


to IV are relatively simple and are given in appendixes A-C, respectively.


Case II, shown in figure 4, has only a flexible cable-like torque tube tor­

sionally stiff enough to twist the flexbeam. The cable is assumed to be


flexible enough in bending to put only a pure twisting moment on the tip of


the flexbeam. This configuration corresponds to that of reference 9 and also,


approximately, to the pinned-pinned torque tube of reference 5. 
 Case III


shown in figure 5 corresponds to configurations with a pitch link and canti­

levered pitch arm described in references 6, 8, and 9 Pitch change is


accompanied by bending deflections and vice versa, giving sometimes large


aeroelastic couplings Case IV, shown in figure 6, is identical to Case III


except that a snubber, intended to reduce aeroelastic couplings, is added


The snubber is modeled as an additional nonfunctioning pitch-link/pitch-arm


assembly. The pitch link is connected to the rotating swashplate and the


snubber link to a point stationary in the rotating reference frame. All the


pitch mechanism and snubber mechanism flexibility should be lumped into the


pitch link and snubber link, respectively. The mass and inertia of these


components should be included with the blade. Parameters for each configura­

tion are discussed in the appendixes.



3. DESCRIPTION OF THE DERIVATION



The equations of motion are derived through an application of Lagrange's


form of D'Alembert's principle (ref. 12). This principle reduces to Lagrange's

equations when all the degrees of freedom are generalized coordinates. This


is the case only for the blade degrees of freedom in this analysis. The body

degrees of freedom are based on components of velocity and angular velocity in


the body fixed axis system (fig. 1) and thus are not generalized coordinates.


They are "quasi-coordinates" and require special considerations, 
 The analyst
may choose to use the special form of Lagrange's equations for quasi­

coordinates (ref 13), Lagrange's form of D'Alembert's principle (ref. 12) or


Newton's laws.



Kane (ref. 12) has summarized the laws of motion in the form of a single


equation



4 



Fr + Fr* = 	 0 r = l, 2, ... , n 	 (1)



where Fr are the generalized forces associated with gravity, springs, con­


tact forces, and aerodynamics. The Fr* are the generalized inertia forces



for the n degrees of freedom. The generalized forces Fr are defined for



the above physical model as



b 	 b 

F = + b D-- + + b • 6 r = , 2 ... , nF B 	 BrB S'q Yk ' 5- + MB 	 Mk *w&
k=i 
 k=1 
 (2) 

The vectors FB and MB are the forces and moments acting on the body at a



certain point P. The vectors Fk and 1k are the forces and moments acting


VP 
 on the kth blade at a certain point Qk" The velocities and VQk are 

defined at the pointk P and Qk in an inertial reference frame. The angular 

velocities nB and w are written for the body and for the kth blade, 

respectively, also with respect to an inertial reference frame. The degrees 

of freedom qr are Uk, vk, Wk, 4k'k, k for k = 1, 2, . ., b, and 
X, Y, 4x' 0y"



Similarly the generalized inertia force Fr* is defined as



B*I * . B + (k 
+Fr* = FB* 	 - r -+ MB • - (3) 

B STq_ k B aj E k 3 
Sk=r k=1 r



where the inertia forces are



FB* = -mfaB 

-mak*
Fk* = 

* 	 k * 
 
The accelerations are aB of the body mass center and a of the kth



blade mass center. The inertia moments are given according to Euler's dynami­


cal equations, written in detail below. The velocities VE and V are for



the body and blade mass centers, respectively.



In section 5, the generalized active forces due to aerodynamics, gravity,



body springs, the flexbeam structure, and structural damping are derived. In



section 6, the generalized inertia forces are derived. Before proceeding with



the actual derivation, however, it is necessary to describe the coordinate



systems used in the report and to develop expressmons for certain velocities



and angular velocities needed in the derivation. This is done in section 4



immediately following.
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4. COORDINATE SYSTEMS



As an inertial reference frame, the space-fh3xed axes e,, e2 , and e.


shown in figure 1 are chosen, e3 being positive down. The velocity of the


aircraft reference center is defined to be



VC = MA + NB(5) 

where the unit vectors NA and NB are parallel to the body-fixed axes NA


and NB of the NA, NB, NC axis system also shown in figure 1. The angular


velocity of the body is defined to be



0B = xNA + ;yB (6) 

Note that X, Y, x, and ')y are not geometric distances and angles, they are,


instead, quasi-coordinates (ref. 13). In this report, the quantities X, Y,


4)x' and y are assumed to be infinitesimal Thus,



Nf E = K e 2 (7) 

C y - (xI -I e 3l 

where e,, e2, and e, are unit vectors parallel to el, e2, and e3,


respectively.



The rotating axes N1k, N2k, and N 3k associated with the kth rotor


blade are also shown in figure 1. The angle 'k = Qt + 2w(k - 1)/b. The


associated unit vectors are related by the following transformation
 


{E5}[k: S (8)
kstNlikc 
 
The kth rotor blade is attached to the hub (at hub radius = e) by means



of an elastic beam segment. This flexbeam is built in at point 0 (canti­

levered) along the n1k, n2k, n3k axes, shown in figure 7. The associated


unit vectors are related by the following transformation constructed from a


sequence of angular rotations Cf, of, and Of



U1 k N( 

=~ SofS f-c f c CC ~s Of cOsfI M = [F] 12k 

L-ofC fs SC +sof f Sof f- s fcof cofcof N3k3 k 
0 j I j
{I5} [ : f + f : C f 

(9)




The flexbeam of the kth rotor blade is capable of all six beam deforma­


tions at the tip. The vector of translations is 6 = uknlk + vkn2k + Wk 3k



There are also three angular rotations, Ck, Sk, and 0 so that the flexbeam
k , 
 
k
tip is along the nxk nvk, nz axes shown in figure 7. The associated unit



vectors are related by the following transformation constructed from a


sequence of angular rotations kl Bk, Ok:



(nxklC cCcC ckst s~ ik Xi



~nyk~ = osk - Ck k cekc~k - s~ks0ksok k Skek]{2} - [Tk{n2k1 

Izk k + 0k k Okck - skskcek ckc8 k1U 3k 

(10)



, Nzk
The kth blade is built in at point J along the axes Nxk, NYk
 

shown in figure 7. The associated unit vectors are related by the following


transformation constructed from a sequence of angular rotations b, 8b'


and Ob



NXk C bC~b c~sSb S b luxyk [B yk 

= -SebS~bc~b-bCb e beCc b Scb Sob Seb C b Se8 BI



zU _:cobsobscb +sebs b -sobb - s b s b e b C bleub Uzi



(11)



The Nxk, NYk, Nzk axes are the blade-fixed axes. Note that all the blades,


flexbeams, and angular offsets are identical to each other. This is reflected


in the absence of the subscript (or superscript) k in the [F] and [B]


matrices. In the undeformed state [Tk] = [I], the identity matrix. The


following additional matrices are needed in the derivation below



[Gk] = [B][Tk]



[Hk] = [Gk][F]



[T] = [Tk]I k= ,Sk=,Sk= for k=l,2,...,b (12)



[G] = [B][T]



[H] = [G][F]



Extensive use will be made of these matrices in defining velocities and angu­

lar velocities needed in the derivation.



The velocities of several points in the system and the angular velocities


of the body and kth blade are now developed. The velocity of the aircraft


reference center is, by definition
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V' - kA + * (5) 

The angular velocities of the body and kth blade are, respectively,



WD = iN'+ ;Y(6) 

6
W.= ±"A+IN + W3+ e3 k - Bl(cCl 2 k - S I1 + k (13) 

The sequence of blade angular rotations, k, Bk, and 6 k, is shown in figure 8 
from which k s determined by inspection. Thus, the velocity of the body 
center of mass is 

9 C + z!y)NA + C .)-N (14) 

The position vector of the kth blade center of mass from the aircraft refer­

ence center is



r k l hN 3 + ezIlk + (k + Uk)cl k + VI12 k + wkn3 k + LXbNx k + CXcI(y k (15) 

" 
 The velocity of k may be established by well-known laws of kinematics



3 
Vk* vxu k (16) 

1=1i 

where 

V3k= kv h ± (Wk + c3k)k 2h - (Vk + c2k)kwjh + k + aek



V2k k v2 h + ( + clk" k h - (wk + ck)klh + i k + C2k
k 

V~k= kv h + (vk + c2k)kwlh - (uk + clk)kw2h + wkt + 3k 

kv I -[(k - hy)c ok- (C + h$,)s~ klFis - [(i 
Ey)s(k i­

+ Ct -hx)ckFiZ i = 1,2,3 (17) 

k~ih ---($Xc* - ISk)Fi1 + (4'XS~k + lr*)212 + a x- 1,2,3 

= + GF i = 1,2,3 (D 

2 c 1 * 1=1,3 
alk


k 6clk 
 = cik
c x k+ - k k+ DO =1,2,3k 8k 


k k k
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It is necessary to express the angular velocity of the kth blade in the


Nxk , Nyk , Nzk axis system



Wk= WhkNxk + m 2 kNyk + w3 kNzk (18) 

where



N


t-k = Gk k h + k k
3 C=kGi3I



J=1 
 ij ja3 ki +eki(19) 

kk k


i k 
 = kB12 - SO B13 = CG - SkC 6
 

2
T1 kk k'i k'1 ) 
Also, the velocity of the flexbeam tip J is needed. This is available



by inspection from equations (17) with cik = 0


i



VJ =1 JkvIk (20) 

where



kvIJ = kvIh + + wkk2h - vkkw3h



+kv2J = kv2h + k kk3h - wkklh (21) 

kV3J = kV 3h + + kk'hkk - ukk2h 

Finally, in developing the aerodynamics, the velocities of all points


along the blade NXk axis are needed. The blade is moving in space and, in


addition, there is an induced flow field assumed to remain along the 
 e3


axis. The magnitude of the induced inflow velocity is taken from momentum


theory (as in ref. 14); for simplicity, it is assumed to vary linearly with


the radius.



vi = Q(e + £ + u + x)4 0 < x < L (22) 

where



uk = u + uk(t) 

11
13141)ir, [l
= 6 + - ] sgn(03 /4) (23) 

03/4 = H23 
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When the induced inflow is superposed on the blade velocity the result is



3 

V k UIk k (24) 
1 = ~1 

where



U1k I h Uk XGil + (w k +XGl3) W2 h - (£Vk +XGl) kW3h= •Uhk++x k 
 k k -k

= kkkh kkh


2 k + xG12 + k + xG11) W3 - (kk + xG13) (i 

h
k = kh + k + xG + (Z% + xGkk)k ( + xG k hk 
-3 + +r 13±t9k 12) W1 - (92ilk +s 1 1 ) en2 

(25)


%Ih = -- h$y + viy)c~k (Y+ h$x -vx)s JFil



+ [X - hy + viy)sk + ( + h x - viDx) c~k]F2 

+ viF3 i = 1,2,3



k= 9 + uk + eF1 l 

Z7k = vk + eF 2 1 (26) 

+ eF31k k 

5 DERIVATION OF GENERALIZED ACTIVE FORCES



In this section, the generalized forces due to aerodynamics, gravity,



body springs, the flexbeam structure, and structural damping are derived



Some details are omitted for the sake of brevity.



5.1 Aerodynamic Loads



The aerodynamic loads are derived from a quasm-steady version of



Greenberg's equations (ref. 15) for lift and pitching moment. Also included



is a quasi-steady profile drag contribution The circulatory lift per unit


length is given by



LC= paVc [ + Ve + c (1 - 2Xa) (27) 

i0
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The noncirculatory lift per unit length is



LNC ac h + Vc + v + c (1- 4xa)C] (28)



The pitching moment per unit length is



- 2xa) + VT(l - ± hi - 4xa)pac' [2V (± a 

32 a) + e~pa - xa ) (



(c 2x + 4xa2),]+ PaVc2xa[ ( - 2xa)] (29) 

The air density is p and the free-stream velocity is V. The airfoil sec­

tion is pitched at the angle e with respect to the free-stream as shown in


figure 9. In accordance with small disturbance airfoil theory, we may set



Up - h - VP
 


The blade airfoil velocity components are UT and Up, expressed in the N k



and Nzk direction, respectively. Substitution of equations (30) into (2T)


to (29) yields



ILC pacU [up +c ( -2xa)j 

2 (31)
-4Xa)R[-Up +* (1LNC pac + I- xE 

pacxaJUP pac 3 [U (I ­
32 

8xa + 16xa2)
2 a



- Up(l - 4Xa) + -Xa + XaJa (32) 

Next, the total aerodynamic force per unit length on the blade airfoil



section is considered The noncirculatory lift is taken to act in the direc­

tion normal to the chord line as shown in figure 10. The circulatory lift is



taken normal to the resultant velocity U. An aerodynamic profile drag force


per unit length D, acting parallel to the velocity resultant, is included,


based on a constant profile drag coefficient cd0.



PCd CU
2



2 (33)



The force components and directions as shown in figure 10 give the following


expressions for S and T
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S =L C sin a - D cos a 
 (34)



T = LC cos + INCI D sin a 

where, from figure 9



Cos = U 
(35)


UP 
 
sin a = -T--

Substitution of equations (31), (33), and (35) into equations (34) yields



S = -- [U 2 _i (1 - 2a)Ui --- UUT 
2 [(36)



2 • Cdo 
T -

_2 

-U T + 
2 

(1 - 2x)UT 
aT 

- iU + 
C 

( - 4x)s 
- a) 

­ -­
a 

UU 

Since Cd /a is small with respect to unity and because the magnitude of 
the aerodynamic pitching moment is small, it is permissible to set U = UT in


S, T, and M. The aerodynamic force per unit length acting along the blade is



k= Skyk + Tkz (37) 
aero 

The aerodynamic pitching moment per unit length is



(k'aero = MkNxk (38) 

Now, for the kth blade 

U k2 k2] Sk pac Up -jc( i-2a)Uektl1=k ---- 1
 2 Ukk -guTJ
 

= aU -T ( 2X)UTlk I\



Tk -2-pac kU c k + 1 k + (1 - 4xa)IkJ



Xk 2 {x a c U Pk U T k  k4) [UT -~ 8xa +1x W _1- x pk (39)



8 -+3 a a 

where d = edo/a has been neglected with respect to unity, and has kbeen 
replaced with the component of angular velocity of the blade in the Nx 


k .
direction w1 The velocity components Upk and UTk are given by
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3
Up= S ulkck1 

i=1



k 
31 I2Ulk(;k
 (40) 

wh r th co pone ts t = 1=1veel cit 


where the velocity components Uzk
 are defined in equations (25). The aero­

dynamic force and moment resultants at the point J are given by



(Fk)aero :Sf 1fy:k+TfkSz (41) 

(Mk)aero = Mmkxk _ TmNyk + SmkNz 

where 

sfk= Sk dx Smk = f XSk dx 

o o 

Tfk= f Tk dx Tmk f XTk dx (42) 
0 0

IoL


Mk f MkC dx 

0 

The generalized forces due to aerodynamics now follow immediately from


equations (2) and (4)



(FUk)aero, (uk) 1eo-U



eere k


= (Fk)a 
 

(FVk)aero 
 

aer



(F k)ae M)aer o (ck 2 sklk 

ero
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b 

( x)aero T (Fk)aero * A 
k= i



b 

= aero
Y aero 
 

k=i



(F_ ( 	 z: F1 1I 
\ktaero (s(F) 2 ) 	 kk 

aero k=1


b(43 

+ [z~k(cok F31 - S4k)32) - £Wk(C* kF2 1 - skF22)]!ul 

+ [zTk( 4 ) 1! ­ S4k)12) - £iik(CV) F3 1 	 - s,k F32)] 2k(3 

+ [Pk(cpkF2 1  SkF22) - £Vk(Ck F1 1 - Spkl2)] }3k concluded 

+ (Mk)aero. NA)



b 	 3

> 	 {h (C) Fil - S4k )k)(F) 	 E (F r 
aero k== 

+ [CwkQkF21 + C4) F22) - Qvk(s k F31 + cokF3?)lnlk 

+ [zIk(s* kF3 1 + cpk 32) - £wqk(s$kF11 + c4k)12)1U2k 

+ [z4 k(s ) kF11 + c.*1F2) - £iik(s4)kF2 1 + c4k22)13} 

-NB)
+(Mk)aero 
 

Equations (43) define the contribution of aerodynamics to the generalized


forces.



5.2 Gravity



In this section the gravitational contribution to the generalized forces


is expressed. For a system of rigid bodies, gravity applies a force acting

through the mass center of each component. For the body
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(FB)g = Mfg e 3 (44) 

and similarly, for the kth blade



(Fk)g = mg e3 (45) 

The subscript g refers to gravity. The symbol g is the rotor thrust per


unit mass of the aircraft (.-/M) if the aircraft is airborne. When the air­

craft is in ground contact, the analysis must be slightly modified. This is


done at the end of section 5.3.



The generalized forces due to gravity follow immediately from equa­

tion (2): 3



mgejmg (Fr e -nk

(uk)g m(e Wk/g 3 a kI 
 

FVk)g = mg e, • k k



a
(FBk) mge 3 
 
e kgkg 

gFk~ i=31 0 

(Fkg = Mg e3 * NA 3= 
@k 30 Ik 

i1g k


(Fy)g = Mg e3 N B 
 

(4x) = (mgbh - mfgz)e 3 
1 B - mg e 3 • [ e+ c3k)(c F21 - sF 2 ) 


k= i k
g 


- (Vk + C czk Fs31 -S 4 k 13)]l+ 
 [(Zk+ clk)(c* F3 1 - s, kF32) (46) 

- (zvk+ c3k)(c kFl - k12)l + [(sk+ c2k)( k - 4k 1) 

- (Piik~cl k)(c F2 1 - S41 F.)]u 

(F = -(mgbh - mfgz)e3 •A + mg a • { k+csk)(skF +C1 kF)22 1 

g 

- (vk+c2k)(shF31+ckF 1 + k+clk)(skF31+ckF5
32)



- (wk +ck)(s1kF,1+ c*k F 2)1n2 + E(vk+ c2k)(s*kF,I +ckF12) 

- (uk+ clk) (s kj21 + 4*k1)] us) 
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Equations (46) define the generalized forces due to gravity when the air­


craft is airborne. If the aircraft is hovering at thrust = weight, g becomes



the acceleration of gravity g. When the aircraft is on the ground, the body


forces Fx and Fy- need slight modification.- This modifidation is closely



connected with the body spring forces treated in the next section.



5.3 Body Springs



When the aircraft is in ground contact, a system of springs is introduced


into the mathematical model to account for restraint of fuselage motion due to


the landing gear flexibility. These springs, shown in figure 2, are symmetric


about the aircraft reference center both in the longitudinal and lateral


directions In deriving the generalized forces, the analysis will be carried
 

out in only one plane, the el, e3 plane and the results extrapolated to the


total system.



Consider the two-dimensional system of figure 11. The velocities of


certain points are needed in order to derive the generalized forces. The


reference center velocity is



VC = kIA + NC (47) 

and the body angular velocity is



M= (48) 

The velocity of points A1 and A2 is, respectively,



V A 1 = (i + ky) + Z ; N 

( - 2 --sy)N C= (k + +Zt')NVA2 

The force applied by the springs at each of the attachment points is



2 -FA1 = -2Kx(ej + zy)e, - 2Kz(e 3 + i ty)e3 

9IX (50) 

FA2 - 2 Kx(e + £z4y)e, - 2Kz(e 3 - yD2- Y (0 

where el and e3 are the space-fixed deflections of the points A, and A2


along the e1 and e2 axes. The vertical degree of freedom is retained only to


aid in modifying the gravity terms in Fx and Fy for the ground contact case.


When the aircraft is on the ground, there is a steady vertical deflection of


the ground springs that varies with rotor thrust and gross weight. Thus, for


first order in X and 4y the thrust _V and weight Mg0 must be included


for this case. Each of these forces may be assumed to act at the reference


center for the purpose of calculating spring forces.
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FB, = -NC + Mg0 e 3 (51) 

From equation (2) 

Fx = -4Kx(e + £zy) + 4K. e3#y - Mg0oy 

Fz = -4K. e3 - -+ Mg0 (52) 

FIy= -(4Kxkz 2 + Kzx 2) y - 4Kxkz e1 

For the equilibrium of the coupled rotor-body system (all degrees of free­
dom = constant), Fz = 0. Therefore, 

4Kze 3 = Mg0 - - (53) 

Also, the deflections along el and e3 are identical to X and Z for infini­

tesimal 0 y* Thus, for X and 0y degrees of freedom



(Fx)spr = -4Kx(X + kziy) + (Mg0 - Y-)ty - Mg04'y



= -4Kx(X + tzoy) - 90y (54) 

(y)ly = -(4KLz9 2 + KzZx2)Oy - 4KxZzX 

spr 

Similarly, for Y and Ox degrees of freedom 

(Fy)spr = -4Ky(Y - kzox ) + 9-Ox 

2 ±K 2)p + 4 KykzY 
= -(4y
(F(D z
p2+z
Jspr 
 

Equations (54) and (55) express the generalized forces due to body


springs. The gravitational terms in and Fy are replaced by rotor thrust
Fx 
 
terms when the aircraft is in ground contact. This is equivalent to replacing


g in Fx and Fy with g* where



g* = (56)



when the aircraft is on the ground and replacing g in all other terms with



go­


5.4 Flexbeam Structure



The structural loads exerted by the flexbeam are represented symbolically


by the flexbeam stiffness matrix [K]. The matrix [K] is determined numeri­

cally by perturbing the equilibrium solution. This operation is described in
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section 7.2 below. With the stiffness matrix formulation, the generalized


forces are



6


qik -_ KI q 1 k k = Ukekk, kk' k = 1,2,...,b (57)



1=
flex 
 

The fact that all the b flexbeams are identical is reflected in the lack of


dependence of the [K] matrix on k.



When 2 = 0 and the flexbeam is undeformed, the matrix [K] is given by 

EA 0 0 0 0 0



12EIf -6Elf



[K] = 23 0 6E 0 (58) 

4 EIc


0 0



4EIf 
0 

where EA, EIc, Elf, and GJ are the flexbeam axial stiffness, chordwise bend­

ing stiffness, flapwise bending stiffness, and torsional stiffness, respec­


tively. When the rotor is at some general operating condition, the matrix [K]


fully couples the blade equations structurally.



5.5 Structural Damping



In the coupled rotor-body system only the blade lead-lag motion and some


body modes have small enough damping from aerodynamics to be significantly


affected by a small amount of structural damping. The non-zero generalized
 

forces due to structural damping are
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(Fdamp =-cJ



(F )damp = -Cxi



(Fy)damp = cyY (59) 

(F4) omp = -4x$x 

(F4Y)damp 
-c~y~y 

The explicit form of c , cx, Cy, Cox, Cy is derived in appendix D in



terms of damping ratios for both blade and body motion.



This concludes the development of the generalized active forces. In the


next section the analysis continues with the generalized inertia forces.



6. DERIVATION OF GENERALIZED INERTIA FORCES



In this section, the generalized inertia forces due to body motion and


blade motion are derived. As in the last section some details are omitted for


the sake of brevity.



6.1 Motion of the kth Blade



Generalized inertia forces that are associated with generalized coordi­

nates, as the blade degrees of freedom are, may be derived directly from the


kinetic energy. For the rotor system the kinetic energy may be expressed as



Vk * k *b * • * 1 3 b (0 

T z V~ r I
i 

m 
m 

(60)k +1 Idk2

2 k=1 2= k=1



Once this quantity has been expressed in the system degrees of freedom, the


generalized forces for the blade degrees of freedom are given by



k
F*k= T d T qr = U , , (61)
% q k --dt k)~k r k~kw'k k' 
rk , 2, ... ,b



This operation is straightforward and the details are not given here.
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6.2 Motion of the Body



Unfortunately, the generalized inertia forces associated with body motion


cannot be derived from equations (61). This rs beticuse the degrees of freedom


describing body motion are not generalized coordinates. They are, instead,


quasi-coordinates and require special considerations. The portions of body


generalized inertia forces that are linear in blade variables are already


known because of symmetry considerations and equations (61) Hence, only


terms linear in X, Y, tx, and $y and their time derivatives need to be


retained in this section.



The accelerations of B* and k* used in equation (4) to define the


inertia forces are needed. These may be derived from equations (5) to (17)


by standard laws of kinematics



B *

a = (X + Zty)NA + (Y - Zq~x)N B +...



a k *  I (h + dikF13 jY; NA+ Y + h + F dkFixNB 
(62)


3 

+ (syx + 2QNY) Fa djk(Filc + F3.+ 

i=1



where



dlk =ik 
+ clk



2 £Vk + c (63)
2 
 

+
d3k = £k c3k



Here, the dots refer to blade terms and nonlinear terms in X, Y, tx, and y


and their time derivatives. Also, in equation (3) the inertial moments must


be written. These may be expressed directly from Euler's dynamical relations


and the angular velocities in equations (6)



MB* = -IxtxNA - IytDNB + 

Nk* = [w2km3k(I2 - 13) - *kI ]Nxk 


232
3~i 
 ix(64) 

+ [m3kwl1k(13 - I) 
 -2 k12 ]Nyk



+ [wlkf 2k(11 - 12) - I3k]Nzk 0pPIGINA EP&GE-IS 

OF pOO QJAL'a20 



Now the body terms of the generalized inertia forces for X, Y, 4)x, and



$3y may be written from equations (3), (4), (62), and (64)



Fx B Fk*) +A 
 
k=i



b



F x z-NB°FB* + NA "1B + E kJ 
k=1



(65)



+ 	 b Rh + 3 d kF 1 )NB+ 3 dlk Sk + Fi2c*)N] Fk
F,~ NE" 3N + I (Fl kk
k



Fy ZNA FB* +B N* + 
 =I


y*ZA EB EBN + k)


d k
+ 	 ~ [(h+AdikFiNA + E 1 1cek -FFk


k= [( =1 diF3 
 = 1 ic k. 

Equations (65) are the body terms of the generalized inertia forces for the


body degrees of freedom. In the next section, the equations of motion are


written from equation (1).



7. FORMATION OF THE EQUATIONS OF MOTION



The equations of motion are to be written from equation (1) using all the


components of the generalized forces in sections 5 and 6. The ultimate pur­

pose of this analysis is to provide a means of assessing the linear stability


of small motions about equilibrium. In this section the equilibrium solution


is discussed separately before the final linearized perturbation equations are


written. Because from the outset the blade and flexbeam properties have been


assumed identical for all blades, the equilibrium values of uk, Vk, Wk, k,



8k, 6k are identical constants for all k. Thus, the blade degrees of free­

dom have steady and oscillatory components



+
uk = u + k(t) ; Ck = k(t)



= 	 +
vk = 	 v + k(t) ; k k(t) 	 (66)



0
wk = w + k(t) ; 2 k = + k(t) I 
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Fecall that the equilibrium values of X, Y, x, and 4y are zero so that



X = X(t) 

Y = Ytt) 

(67)
= x (t ) 4)x 
 

qy y (t)



The tilde refers to an infinitesimal perturbation motion. Collection of terms


from sections 5 and 6 yields a set of relations like the following



Fk + Fk= Fu - Fu (t) = 0 

F*
Fvk ++F F v 
 -Fv(t) 0
 

wk wk wk
w 
 

F + Fk F -Pk(t) 0


Fk 
 k 
 k



F k + t F - F k(t) 0



(68)
(t)=0 
Fe + F F -F 

k Ok 6 k



= - (t) =0+F*
Fx 
 

Fy + Fy* - b2Fy(t) = =00F~ *x = 2 9x(t)F


y y f y



F +4 =- 7 Fb (t) =0 

Here all perturbation quantities have been linearized in Uk, , Wk, Zk,


kk, R,X,, x, and y 
 and their first two time derivatives Below, the
 

rotor equilibrium solution is obtained by performing an iterative static


structural analysis for the flexbeam. The flexbeam structural stiffness


matrix is next obtained from a numerical perturbation of the flexbeam equilib­

rium position. The perturbation equations, although linearized in all the


perturbation degrees of freedom, contain terms with periodic coefficients



(Shk c*k). In order to most efficiently solve the system of linear, ordinary



differential equations, the system is transformed to fixed (nonrotating)


coordinates by the so-called multiblade coordinate transformation (ref. 16).



voO? 
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7.1 Equilibrium Solution for the Flexbeam



The equilibrium generalized forces Fu, Fv, Fw, F, FO, and Fe are,


physically, the components from aerodynamics, gravity, blade inertial loads,


and flexbeam structural loads, of force and moments acting at the tip of the


flexbeam. Explicit expressions for these generalized forces are known except


that expressions for the flexbeam structural loads are unknown. This means


that all loads external to the flexbeam are known explicitly in terms of the


deflections of the tip. When the details of the generalized forces are


carried out from sections 5 and 6, equations (43), (46), and (60), the flex­

beam tip external force Ft and moment M are given by
t 
 

Ft = Funi + F.vn 2 + FwPa 

3 

Mt = M3 
i=1



C S (9M = - F + s +SCC F (69)



M3 =F



The bars over Fu, Fv, Fw, F, FO, Fe indicate that these are-external forces


and moments, excluding the structural part. These quantities are listed below


in nondimensional form. Forces are nondimensionalized with respect to I00

2 /t


and moments by I02



= + - - h)] - mgZFl3 + i(Sf 0G2 1 +ITf 31) 

Fv = ;-21[ ; + C2 - E)] ­- F2 3 (J3 3 g!F2 3 + Z(Sf 0G22 + Tf0G32)



w=;2 + - F3 3 (J3 3 - h)] - i7F3 3 + I(Sf0G22 + Tf0G 32) (70)



3



+ -c -E ­

P = 2 i H 3 1 + ;Q2 [u + c 1) - + (V 2 ) 

i=I1


- 3E3 DJ33 aJ33 

+ (Zw + c3) (J03 3 -h)J - g-- +Gi3Mm -G23Tm0+G33Sm0 
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3r



= 	 2 D~~~~i-3 + -2 IU -j) + (- +- E

C)W T 2)U 
E 31 


= 1­
-

J33
3c3 J3 3 
 
+ 	 (2w + c3) - - 8 (J3 3 -	 0 + 2Tm 0- n S m0 

3 	 (70) 
con-~D 	 __ H3. mgE a 2 	 

=6 2Z + ;gK+-c + (v+_c) 3 2 	 cluded 

i=1 


- 3 3'33 ] 3J33 

+ (Zw+c 3) - 0 (J3ae -mg T+ BiiMm0- B21Tm +B31Sm0 

where



-
IL



Ci 
L 

(1
j 33	 =h_ K+KF 3 ~+cF 3 + 3 F 3 

=
J33 	 E[+ (T-u + Cl)FI3 	 + 	 (71)
( v + c2)F23 + (w+ c3)F33



g02L



S - [Vpo-dV2+3(U V dUT1 VT++12 dtT2) 
0oP T


- (1 ­ 2x)i O(VPO + 2UPj0)
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U 0UT-60 Y35 [PVT, +2 (up+ VT0 ± Vp 1 ) ± 3UpQUT1



- (1 - 2Xa)wjO1 0V + 2T )] 

= 6_0 poVT0 +2 o

MM - T0X6 [V VT + 4 1 UUV + Vp Uhr ) + 31P111J0 

YE2 01 + 2UT0)( - 8Xa + 16Xa 2 ) 

-Tm0 pOVTO+ + VpoUTT) + 2UP



- 2 (1- 2xa) 10(VT + 3T0)]3­

Sm+ [V8D - dV2 0 + (uPVP - dUTfVT) + 2(% 

2E 2XaVml0 + 3UpO

-T (1- 2Xa)lp (71)



con­
- pacL4 cluded 

I 

- C
L 

W1o = 13



UP= (- 2 3H3 1 + 3 + £ H33)


UT = (-j23H21 + j + -uH 23) 

Ve0 =p(H 3 3 - H2 3) O g C 5 ix 

VT0 = 23 
 H33 )



J13= (iF1I + iF2 1 + WF3 1)



= (5F12 + ;F2 2 + 7iF32)



Each of the force and moment components acting at the tip of the flexteam are


known functions of u, v, w, C, 0, and 0 which are unknown. 
 In order to


solve for u, v, w, C, 8, and 8 we assume a set of values 
 ut, vt, wt, Ct,



25





8t and Ot We can then calculate the forces and moments Ft and Mt based on


, . 
 

equations (69) and (70). The force FR and moment MR at the flexbeam root



are then determined from statics



= Ft
F R 
 

MR = Mt +rt X Ft 

(72) 

rt = (I + ut)ni + vtn2 + wtn 3 

MR = Mt + (vtFw - wtv)ni + [wtPu (l+ut)Fw]n 2 + [ (l+ut)Fv - VtFuns-

At any station s along the deformed flexbeam length, the force F and



moment M are



F = FR



M = MR- r X FR (73)



r = [s + ub(s)lnl + v(s)n2 + w(s)n 3 

where ub(s) is the geometric component of u(s) due to bending only. The 

bending moments in the principal axis system for the flexbeam cross section 

ul, u 2 , and u 3 are 

M • u2 = AK (74) 

M • = BA Ju 3 

where A and B are flap and chord flexbeam bending stiffnesses made dimen­

sionless by I02. The curvatures are K and X, made dimensionless by 1/9.


The torsion moment is, according to reference 17,



M • U + + (A + B)T]T (75)



where, from purely geometric considerations, it can be shown that curvatures


and slopes are related by the following­


ds= Kce + As6



d- Ks6 + Ac6 (76)
ds eC 
 

de= 
 T d--Sf


ds
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I 

and where



E 4(A 2 + B2) (for a rectangular cross section)
5DI 
 (77)



T = F • 

The torsion stiffness C is made dimensionless by IR02i and the axial



stiffness D is made dimensionless by I 0
2/Z. The longitudinal strain is



given by



2
du (dv\ fdw\ 1tdv l dw2 1 duf2 (78)
ds -- ds) ds) 2\ds) 22ds) 2 \ds/



which is equal to, according to reference 17,



T2
s =T + B (79) 

We define u(s) as being



u(s) = Ub(s) + us(s) (80)



where us is due to axial stretching and ub is a purely geometric deflec­


tion due to bending only. We then set the strain due to bending equal to



zero and obtain



dUs dUs 
(81)



In combination with equation (79), we have



d__ /I + B\ T2 (82)



Also, from purely geometric considerations (see the appendix of ref. 17)



dub



-ds-cc -cl



dv 
 (3

ds =c~s¢ (83)



dw


ds



Now, with initial conditions us = ub = v = w = = = 6 for s = 0



equations (76), (82), and (83) may be integrated numerically, using equa­


tions (73) to (75) and (77), from s = 0 to s = £ + us(s). This will yield
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a set of values for u, v, w, , $, and 8 at the tip of the flexbeam which



will be the same as the set of ut, vt, wt, Ct, 8t, and Ot assumed if and


only if the trail set is the correct set. Since the correct ut, vt, wt, t,


Ot, and Ot are unknown, the following function bay be minimized



min



utvt,wt, = (u-ut)2+ (v-vt) 2 + (w-wt) 2 + ( - t)2+ ( - )2+ (8-t)2 

Ct'st'ot (84)



using the modified Levenberg-Marquardt algorithm (ref. 18). The minimum


S-= 0 is the exact solution for the rotor equilibrium deflections.



7.2 Flexbeam Stiffness Coefficients



The external equilibrium generalized forces at the flexbeam tip Fu, Fv, 
Fw, F , F5, F8 = Q1, i = 1, 2, .. ., 6 may be used to obtain the flexibility 
coefficients for the flexbeam structure. The Q3 may be perturbed in succes­
sion, starting with Q1, by a small number s This will yield six different 
sets of the deflections u, v, W, , a, 0 = x1 , i = 1, 2, .. ., 6 only 
slightly different from the equilibrium values. Flexibility influence 
coefficients are simply 

xF(Q3 + e) - x (Q ) 
F - (85) 

The smaller value of e that is chosen, the closer the coefficients will be


to a pure linear perturbation. If the deflectiqns are calculated to N


significant digits, s should be chosen at 10-N/ 2 to minimize both nonlineari­

ties and truncation errors, simultaneously.



The stiffness matrix for the flexbeam is simply



[K] = [F- ] (86)



When = 0, the structural stiffness matrix is given by equation (58). The 
numerical scheme described above gives this stiffness matrix to five signifi­
cant figures when 5 = 0 and exhibits a fully coupled system structurally, 
for general flight conditions. 

7.3 Transformation to Fixed System Coordinates



-Although the perturbation equations are linearized in k, 6k, wk, Zk,


Sk, 8k, X, Y, Ox , y and their first two time derivatives, the equations have


periodic coefficients in the form of sin *k and cos 4k- These terms may be


eliminated with the multiblade coordinate transformation (ref. 16) when b 2 3.
 

It is necessary to retain only the rotor cyclic modes since the collective


modes couple only with vertical translation and yaw rotation, which are also


decoupled from the retained degrees of freedom in hover. The differential


collective modes and the warping modes (for b 2 5) are uncoupled from all
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other degrees of freedom in hover. This reduces the 6b rotor blade degrees



(two cyclic modes per blade degree of freedom); thus a
of freedom to only 12 
 
total of 16 degrees of freedom remain for the coupled rotor-body analysis.



The 12 rotor degrees of freedom, in the order that the matrices below are



written, are



b


b_ UkcoslCk
k
b k= 1 
 

b 
us b Uk sin lk 

b


= , k coslk 

b 
k= 1



Wc =b = Wkcos lk



2b



Ws= bL wk sin k 
k= 1



2 ECC = k Cos 

b 

C= -i;F k si *k
 

0k
2b 
 b
 

k= 1



b 

8s = b ' k sn *k
2 b



PAGE IB 
= ek cos kOc L 

k= OF POOR QUAIXf 

aes b L2b O_k sin k 
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The use of the variables in equations (87) will eliminate all terms with


periodic coefficients in the body equations. The transformation is carried


out on each kth blade equation in the following manner,



b



u 2=E Fuko 0 
k=1 

b



Fu =si2 u sin
s b E- FUk0



k=1



(88)



b 
=1Fc 22 ZekF~k cos 7Pk = 0 

k=1



b


2= =
sin hk 0



k=1



where FUc' Fus' ." F, Fpe , X' FY' Fpx and Fy become linear equations 

with constant coefficients in Uc, us, Vc, V5 , WC, Ws, c' s, 0 c, 41s , Y, 
Ox, $y and their first two time derivatives upon substitution of equa­
tions (87). The details of these operations are omitted and only the final 
results are given in the next section. 

7.4 Linearized Perturbation Equations of Motion



The linearized perturbation equations of motion for infinitesimal motions


about equilibrium are expressed in matrix form as



CA KS[MI + M]AXM + (GI + + cD]f} + [K I + + Kg + KA + KD]fx} = 0 (89) 

where 

[MI ]
I mass matrix due to inertial forces, symmetric



[MA] mass matrix due to aerodynamic forces



[GI ]
1 gyroscopic matrix due to inertial forces, antisymmetric 

[CAI damping matrix due to aerodynamic forces 
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[C ] damping matrix due to structural damping, diagonal 

[K ] stiffness matrix due to inertial forces, symmetric 

[KS stiffness matrix due to springs and structural forces, symmetric 

[Kg] H stiffness matrix due to gravitational forces, symmetric except as 
specified



[K ] 
 stiffness matrix due to structural damping, antisymmetric



Thus, M I is the c inertial term in the 6c equation The elements of


the above matrices are given below. Only nonzer6 elements are specified, for


matrices with symmetry or antisymmetry, only the terms on or above the diag­

onal are given.



Modifications to the above analysis for different pitch-control geome­

tries are described in appendices A to C.
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Recall from section 5 2 that when the aircraft is airborne the parameter



is given by Ng0 where



go


go = 02L



and N is the load factor = thrust/weight. When the aircraft is in "I-G" 
hovering flight or in simulated hovering flight on a gimballed model test stand, 
N = 1 and g = g0 " When the aircraft is in ground contact is given by 

g0 in all elements of [Kg] except



g - 2 -­

K13,16 -K14,15 b NMgo



where N 1.



All elements of [CD ] and [KD ] are zero except
 


CD CD c

7,= C8, 8 = 

D 2 D 2
C13,13 b -X ' 14,14 b -


D 2 . D 2



C1 5,1 5  b Cx 16,16 b Cy



The above structural damping terms are derived in detail in appendix D.



The structural terms are



KS S
K -,3_K212 = K3 , i,j = i, 2, • ., 6 
,22 1-1,2j-1 K2i,2j Kij i 

The following elements of [K ] are zero except when the aircraft is in contact 
with the ground: 

S 8 S 8


K 1 3 13 
 = K14,14 - ' 
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1 3 ,1 = b K 1 4 ,1 5 - Ky- z



K 15,15 = 2 (4R 5 Z2 + £zy2) 

KS =2 ( 4 .j2 + kz 2)16,16 b OZ + X 

DPI
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MA MA -ap2 
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1,3 2,4 32 
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1,7 2,8= =4 5 2 p -2 _ - 13 


T2PDP
Dpi
apI a 
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M2,15 1,16 

MA=_MA
M2,116 115 

Rows 3 and 4 of MA are identical to rows 1 and 2, respectively, except 
that PI is replaced by P2 ' 

Rows 5 and 6 of 11A are identical to rows 1 and 2, respectively, except 
that P, is replaced by P3" 

Rows 7 and 8 of it are identical to rows I and 2, respectively, except 
that P, is replaced by QCf/L. 

Rows 9 and 10 of MA are identical to rows 1 and 2, respectively, except 
that P1 is replaced by Qa/s. 

Rows 11 and 12 of Mt are identical to rows 1 and 2, respectively, except 
that P1 is replaced by Q6/i. 
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MA ap
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=MA 4 1  
 = MA,1 MA 1 5 
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14,12 13,11 

Rows 15 and 16 of MA are identical to rows 13 and 14, respectively, 
except that Px and Py are replaced by Qx and Qy, respectively. 
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A A A A
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A A A A
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A A 
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 1
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CA
Rows 3 and 4 of are identical to rows 1 and 2, respectively, except


that P1 is replaced by P2 "



CA
Rows 5 and 6 of are identical to rows 1 and 2, respectively, except


that P1 is replaced by P3*



CA
Rows 7 and 8 of are identical to rows 1 and 2, respectively, except


that P, is replaced by Q/.



CA
Rows 9 and 10 of are identical to rows 1 and 2, respectively, except


that PI is replaced by QO/I.
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Rows 11 and 12 of are identical to rows 1 and 2, respectively,
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Rows 3 and 4 of KA are identical to rows 1 and 2, respectively, except


that P, is replaced by P2 "



Rows 5 and 6 of KA are identical to rows I and 2, respectively, except


that P1 is replaced by P3.



Rows 7 and 8 of KA are identical to rows 1 and 2, respectively, except


that P, is replaced by QC/.



Rows 9 and 10 of 1+ are identical to rows I and 2, respectively, except


that P, is replaced by Q/.£.
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Rows 15 and 16 of K+ are identical to rows 13 and 14, respectively,


except that Px and Py are replaced by Qx and Qy, respectively, and the fol­

lowing terms are added to the elements indicated:
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The quantities appearing in the elements of the above matrices not defined 
elsewhere in the report are defined as follows: 

J12 = hF1 2 + (iv + E2)F31 - (z* + 63)F21 

ill = hFll - ( Z + E2)F2 + (i + 3)22 

J22 = hEF2 2 + (Cz + Z3)FII - (zu + EI)F31 

J21 = hF21 - (DW + c)F12 + (Lu + I)F32 

J32 = hE32 + (Lu + EI)F21- (Qv+ 2)FI1 

J3 1 =hF 31 - (ii + I)F22 + (ZT+ 2)F12 

M =hi + F6 
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APPENDIX A



FLEXIBLE TORQUE TUBE



The effect of a pitch-control system similar to that of the Boeing BMR


(ref. 9) can be easily incorporated into the analysis. This device has the


effect of placing an additional twisting moment at the tip of the flexbeam.


This moment is proportional to 8 - 80 where 6. is the control input (see


fig. 4). We assume that the torque tube is sufficiently flexible in bending


so that no bending moments are applied by the control system at the flexbeam


tip. With torsion stiffness K8 , the additional moment in the equilibrium


generalized force expression is



Fe = K(e(0 - 0+ . (Al) 

K8 
2
where = K6 /I 0 . By changing 80, any pitch angle that is desired can be



obtained from the iterative process described in the text. The stiffness


matrix is also modified so that



KS =KS



ii,1i 12,12 = K66 + K0 (A2) 

Equations (Al) and (A2) show the modifications necessary to account for a


flexible torque tube.
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APPENDIX B



CANTILEVER PITCH ARM WITH FLEXIBLE PITCH LINK



A pitch-control system with geometry similar to those of references 7


and 8 may be easily added to the analysis described in the text. In figure 5,


a schematic of this configuration is shown, and in figure 12 a more detailed


schematic of the pitch-link geometry is shown. Here the blade and flexbeam



= 
 are shown with f = Of = Of = u = v = w = C = a =Cb = 
 = b =Ob 0. The


parameters ul, v1 , w, define the position of the swashplate-end of the pitch


link S with respect to point 0 in the n , n2k , n3k snsyte (threar
k axis system (there are


no k's, indicating that the geometry is the same for all k). The parameters


x,, yl, and z, define the pitch-arm/pitch-link junc ion J with respect to


point 0 in the nxk, nyk, nzk axis system. Geometric constraints may be for­

mulated by writing the position vector of P in two different ways One way


is by the flexbeam tip through the pitch arm:



P/=(+Uk)11lk kkk



P / 0 
 r = (I + + Vkf2 k + Wkl3k + Xflx k + y1ny + zink (Bl)



Another way is by the point S and through the pitch link



r/0 k k k
rP/0 = Ulmlk + vln2 + wln 3 + (P0 + Pk)(si
n Pk sin 6k, k + cos k sin 6k2 k



6k3k ) 
+ cos 
 (B2)



Here, all lengths are made dimensionless by £ and the pitch-link length is


p0 (undeformed) + Pk (deformation) The angles Ik and 6k define the orien­

tation of the pitch link, shown in figure 13. These equations yield geometric


constraints as follows:



kkk k_ _= 


fx = 1 + uk + xT1 +y1 T21 + zT31 u1 - (P0 +pk)sin Pk sin 6k = 0 

k +xTk + k + Tk -v )cos uk sin 6 k = 0 (B3)


y k 1 12 Y1T2 2  1 32 PO+ k



k + k
k + X Tk + 


fz x 1T3 Y 1T2 3  z 1T -W - (P k 

where f k is obtained by taking the dot product of (Bl) and (B2) with n1 k;
fkis obtained by taking the dot product of (El) and (E2) with mk k

o ianed by taking the dot product of (El) and (B2) with n3k 2 fz is



These geometric constraints form relationships between the geometric vari­

ables and enable us to eliminate superfluous variables from the analysis.


Meirovitch (ref. 13) has shown that the generalized forces due to the con-

Straints are
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+
=A k + l~--k Zk k cLr = UkVk ,Sk k ,kP (B4)aqrk k afx k 3 fYk kfzk k


rqr 
 'r k'r
 


The xk , xyk zk are Lagrange multipliers and the aq k are the generalized

forces. Thus r



k 
= iaUk 

aVk =xyk 

zk
M.k = 

kxVx 12+y 2-x 2)+ ( 3 x32)


k Z +k j 
 k
 

\ k\kk k\()
k' kk 
 
-k- jT1 ~Tk ­ zTk)+ 

1 zekT2 1  y \'32 Z 2 2) I\33 1 23 

= x k
 

a xA (yITl + A A yTk zTk)(5
 

a"k (P0 + Pk
)sin 6k()Yk sin "k- Cos I = 0 

sinkoS + X kcos k Azk s = 0 

=pk-xk sin Pk sin 6k -A cos Pk sin k - Cos 6 k=Kpk



I0 2 

Here, a6k = a a - Pk 0 because the mass and inertia of the link are 

neglected. From ajk = ask = aPk - KpPk = 0, the Lagrange multipliers, which 

are the unknown reactions at the point P, are 

xk = -KpPk sin Uk sin 6k 

AYk = -KpPk cos Pk siln 6k (B6)



Azk = -pPk cos 6k
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The relations (B6) and (B3) are six relations between the twelve variables


k . 
 

k' 0k' ek, 1k' 6k, Pk, %Xk Xyk, and z Thus, the blade system
Uk, vk' w' 

retains its six degrees of freedom. The scheme for calculating the equilibrium


deflections needs to be modified slightly. Given qi-, vi-, w-, X-, y-'- zp, and


P0" and an estimate of u- V, w, C, , and 6 we can calculate v, 6, p equi­

librium components of Pk: 6k, Pk, respectively, from (B3) and then X k, Xyk



and Xz from (B6). Now the total generalized forces including au, cv' etc.,


from (B5), are known. Integration along the flexbeam will yield slopes and


deflections to be included in the minimization scheme, equation (84). The


iteration may include a variation in w , to achieve the desired pitch angle


or thrust as an extra independent variale in the minimization scheme.



The perturbation equations are obtained by expressing equations (B3)-(B6)


in perturbation from and eliminating Xe, IXs' AYe' Xys' Azc AZs ae, Us,



vc, Vs, Wc, and is. This operation yields



T T 	 T[RTR]{XI + [RTCR]{X} + [R KR + D]{X} = 0 	 (B7) 

where



[M] =-[MI + M] 

[C] = [GI + CA + CDI 

[K] 	 = [KI + KS + Kg + K + KD , 

X} = Lc's'c,&s, pc,Ps,cc,cs,oc,os,ac,es,XY, x,y]T 

R2 	 R1 0 (B8) 

[R]=0 	 16 0 

0 0 1 4 

[14] 	 = 4x4 identity matrix 

[161 	 = 6x6 identity matrix
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R11 0 R12 0 R13 0 

1 l 1 

0 0 R. 0 R3 

1 11 13 

R2 1  0 R22 0 R23 0 

[R a 1 1 = 1, 2 
0 1 R21 10 R22 10 R23 1 

R31 0 R32 0 R 33 0 


R R1 32 2 R0I
31 0 R32 0 


R1I = XlT + YT +ZT32 


R12 = c(xlTl3 + y1T2 3 + ZIT 3 3) 


R13 = ZlT21 - YlT31 


R11 = -(Xl + Y21 + zlT 3 1) 


R22 = s(x IT1 3 + YIT23 + z1T 3 3) (B8) 
con­

= tin-
R23 = zIT 2 2 - YlTued 

R31 = 0 

RI2 = -xlcs + s0 (Yls6 + ZlC0 ) 

Rl 3 = ZlIT23 - ylT33 

11 = (P0 + p)cos v sin 6 

R12 = (p0 + p)sln p cos 6 


R2 = sin V sin 6 

13 


R21 = -(P 0 + p)sin p sin 6 

22 (P0 + p)cos p cos6 

R23 cos V sin 6 
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R2= 0
31 

R 2 =-(P
32 (Po+pOsin6 

R = cos 6331 

[D]=l 
22 

DI 0 0 D3 0D 1 2  
 

0 U 0 U 
D1 2.1 

D12
10 
 D13



U 0 U 
0
D23
22[D 

Symmetric D22 0 D23


I 

D33 0



I 

D33 B8)



con-

D = (p0 + P)(Kpp + Az cos 6) 	 tin­

ued 

D = 0



1
DU = 0 

22= (Po +P 

U1 
 =0o


D23 0



D 33 = KP 

1D2 = -AxR1 +yR		 OX m11 x 21 y 11 	 uvAL PAG4i


12 A 2 + X RI ~i 	 QAJ

X 2 y 12 

U2 = -xRI +AXR 1 
13 X 23 y 13 

D22 = -(Xc + A s )R32 + X (c1R2+ s4 R 2z 1 22)
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-3 -(Axc + Ays33s z (cr$j t S0213) 

3= x(ylT 2 1 

xxk = X x + xk 

Xyk y=k y + yk 

+ z1T3 1) + Xy(T 2 2 + z1T 32) + Az(y1T2 3 t ziT 3 3) 

k x +xk 

b 
%Xc~s x c 

p8) 

'd 

As = 

b 
xxk sln k 
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APPENDIX C
 


SNUBBER AND PITCH ARM WITH FLEXIBLE PITCH LINK AND SNUBBER CONNECTION



For the case of a pitch arm and snubber as in the Sikorsky UTTAS tail


rotor (ref. 6), the geometry may be treated as two flexible pitch links with


two pitch arms and two different sets of geometric variables* ul, v1 , wl, x1 ,


Y1, Z1 , and p01; and u2, Y2, w2, x2, Y2, z2, and po2 . The two dimensionless


flexibilities are K, and K, and the deflections, analogous to appendix B,


are Plk, 6 1k, p1k and P2k, 52k, p2k. A typical configuration of this type is


shown in figure 6.



The mathematical development of the generalized forces and the iterative


equilibrium solution is identical with that of appendix B except that there


is a respective contribution from both pitch arms.



fk k k k k k k

fX =+uk ul+xlTi+ylT2 1 +z1 T3 1 - (p +P )sin p sin 61 = 0- 1 
 

k k k k k k k


x = +Uk-+ - )sin V2 sin 62 =
0
2 u2 +x 2T1 1 +y 2T2 1 +z 2T3 1 (p0 +P 2 
 

etc



X k k


auk 
 xl 
 X2



etc



z l iY T 3 1 - x
a k =Xl(xyTII- XxjTI2)+YI(XI T2 I- AxiT 2 2 ) + lT 32 )

=k k k z 1 X IT (C)



k k kk kk k k kk kk
+ X2(y2T1 1 - X2T 2 ) + 2 (y2T 2 1 - x2T 2 2 ) + z2T31 -xT )32 

etc


k =sn k kc k



XK -sin p sp = 1, 2 

etc.



Therefore, the equilibrium scheme is altered in a way similar to that of


appendix B except that both pitch arms contribute. One pitch link will, of


course, change the pitch angle where the other one remains fixed as a snubber.



The perturbation equations are given by



[M]{x} + [C]lf} + [K + Q]{x} = 0 (C2)
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where



[Q] 	 = Q1+Q2



0


00 

F> S+ aF 	 0 1 5S(
 
0 0 0 0 0 

ST
 

[Q 1] = [D2 ]i = 	 1, 2 

where the subscript i on the matrix [D2 ] refers to subscripting all the



parameters in [D2] sub i (xl, yl, zi, Axi, ' z., etc.) and similarly for



the following



[Sl] = -[Ri] l 	 = 1, 2 

[El] = [A1 
I 

1A ] = 1, 2 

(C4) 

[Al] = [R2] = 1, 21 
 

[C3] = [Di]ll,= 	 1, 2 

See appendix B for the definitions of the matrices on the right-hand side of



equation (C4).
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APPENDIX D
 


STRUCTURAL DAMPING COEFFICIENTS



In section 5.5, the blade and body structural damping coefficients are


used in the analysis. We first consider the rotor blade for £ = 0 in vacuo


It is desirable to specify a structural damping ratio isolated blade chordwise


motion. The single blade motion is given by



Fl2 Ti1 	 [lI2B 01Dl22+0 	 ++F -6B1 
Likxb W o cjjJL6B 4jj4=](l 

where cc is unknown. We wish to choose c so that the motion is critically


damped and then multiply by q., a dimensionless number given by the struc­

tural damping ratio. For critically damped motion we require that the eigen­

values of (Dl) be a pair of complex conjugates -a ± i and a pair of negative


real numbers -a, -a. The characteristic equation for such roots is



2 ) s4+ 2(a+a)s3+ 	 [(a+G)2+2aa+O2]s2+ 2[aa(a+c)+a2]s+a2(G2+ = 0 (D2) 

The characteristic equation for equation (Dl) is



3 2
S4 + P3cCsS + p2s + Plccs + P= 0 	 (D3) 

where



= PlBP0 
 

12B 

i 2
1 = (l - rnxb 2 )


P 2 =) p1 (1 + FalXb + 2 ) 	 D 

1 
= 1 ­

(nxb



When the coefficients of equations (D2) and (D) are equated, it can be shown


that



3a4 + P2a
2 - P 0 

cc = 2p 3 (D5)
C ~ 2a p3 
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2
where a is the single real, positive root of


/3PI~l \ /PlP lP2 
a 6 + a4 3 p + a 2 -~p3p) p (6 

(

P a 3 

-

It is difficult to achieve an accurate numerical solution, for small 2, to


equations (D5) and (DO). An asymptotic expansion, however, presents no prob­

lem numerically and yields a simple formula accurate to second order in 
 £ 

cC= rB + mZxb + ! (l 1 ixlhI2) + 0(a23)] (7 

which gives accuracy within 1% for £ < 0.27.



The structural damping value is thus



c= C + fZxb + -- (1 3 

where typically 0.005 < :50 03



For the body motion, we choose structural damping coefficients as if


X, Y, ox, and y motions were uncoupled



cx = 2 13,131MX 1 3
 


=n~ S I 
cy = 2% K1 5 14 ,1


c4
x = K5,15M15,15



KS
= 2m 4616 
Coy 2noy 16,16M16,16 

Here nX' fy, no., and roy 
 are the body structural damping coefficients,


typically 0.005 : nx, fy, flox, noy 0.05 
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Figure 11.-
 Longitudinal plane of body-spring configuration.



86





Y, (t +) 

(a) TOP VIEW 

wT+2 z (t +)


PITCH LINK, AXIAL STIFFNESS Kp


S 
(b) REAR VIEW 

Figure 12.- Detailed schematic pitch link configuration.



87tNAW PAGE M 

A' DOOR QTJALTX 

87





1k 
 P



Bk



n2n 

n

1



Figure 13.- Angles Pk and 6k describing pitch link orientation.
 


88





1 Report No 2 Government Accession No 3 Recipient's Catalog No 
NASA TM-78459



4 Title and Subtitle 6 Report Date


AEROMECHANICAL STABILITY OF HELICOPTERS WITH A 
BEARINGLESS MAIN ROTOR - PART I: EQUATIONS OF 6 Performing Organization Code 
MOTION



7 Author(s) 8 Performing Organization Report No 
Dewey H. Hodges A-7301 

10 Work Unit No


9 Performing Organization Name and Address


Ames Research Center, NASA, and Aeromechanics Q9-21-O1-9O-1


Laboratory, U.S. Army Aviation R&D Command, Ames 11 Contract or Grant No

Research Center, Moffett Field, Calif. 94035



13 Type of Report and Period Covered


12 Sponsoring Agency Name and Address National Aeronautics and


Space Administration, Washington, D.C. 20546, and Technical Memorandum



U.S. Army Aviation R&D Command, Ames Research 14 Sponsoring Agency Code 
Center, Moffett Field, Calif. 94035



15 Supplementary Notes 

16 Abstract 

Equations of motion for a coupled rotor-body system are derived for


the purpose of studying air and ground resonance characteristics of helicop­

ters that have bearingless main rotors. For the fuselage, only four rigid


body degrees of freedom are considered; longitudinal and lateral transla­

tions, pitch, and roll. The rotor is assumed to consist of three or more


rigid blades. Each blade is joined to the hub by means of a flexible beam


segment (flexbeam or strap). Pitch change is accomplished by twisting the


flexbeam with the pitch-control system, the characteristics of which are


variable. Thus, the analysis is capable of implicitly treating aeroelastmc


couplings generated by the flexbeam elastic deflections, the pitch-control


system, and the angular offsets of the blade and flexbeam. The linearized


equations are written in the nonrotating system retaining only the cyclic


rotor modes; thus they comprise a system of homogeneous ordinary differential


equations with constant coefficients. All contributions to the linearized


perturbation equations from inertia, gravity, quasi-steady aerodynamics, and


the flexbeam equilibrium deflections are retained exactly. Part II describes


a computer prograi based on these equations of motion.



17 Key Words (Suggested by Author(s)) 18 Distribution Statement 
Bearingless rotor, Helicopter rotor, Unlimited


Structural dynamics,


Beam (nonlinear bending torsion),


Aeroelasticity, STAR Category - 02


Air/ground resonance



19 Security Classif (ofthis report) 20 Security Classif (of this page) 21 No of Pages 22 Price* 

Unclassified Unclassified 
 104 $5.50



-For sale by the National Technical tnformation Service, Springfield Virginia 22161 

ORIGINAL PAGE IS 
OF POOR QIJALTY 


