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SYMBOLS

EIf

dimensionless flexbeam f£lapping stiffness, iﬁiig
0

rotor blade airfoal lift curve slope
acceleration of the bodvy mass center, m/sec2

acceleration of the kth blade mass center, m/Sec2
EI
c

dimensionless flexbeam chordwise stiffness, P
0

transformation matrix relating the blade-fixed axis system

ka, Nyk, Nzk to the flexbeam tip axis system n,™, nyk, n,

number of blades {(23)

GJ
10022

dimensionless flexbeam torsion stiffness,

damping matrix contribution from aerodynamics
damping matrix contribution from structural damping

rotor blade airfoil chord length, m

c
L

k

1+

steady component of ¢
components of the kth rotor blade mass center in the n k
direction, 1 = 1,2,3, from point J, equation (16), m

Y

k

.~ made dimensionless by L

steady component of ¢
damping coefficient for uncoupled X motion, N-sec/m

damping coefficient for uncoupled Y motion, N-sec/m

damping coefficient for uncoupled £ motion (blade lead-lag),
N-m-sec

damping coefficient for uncoupled ., motion, N-m-sec
damping coefficient for uncoupled @Y motion, N-m-sec

cos( )

rotor blade airfoil profile drag coefficient

v
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[F]

EAQ
damensionless flexbeam axial stiffmess, o
drag per unit length, N/m Q9

[
4y

a

-

components of the kth rotor blade mass center in the n Kk

direction, 2 = 1,2,3, from point 0, equation (58), m
flexbeam axial stiffness, N
flexbeam chordwise bending stiffness, N-n?
flexbeam flap bending stiffness, N-m?2

hub radius, m -

a

A

space-fixed axis system, figure 1
unit vectors parallel to e;, e,, eg

transformation matrix relating the flexbeam axis systﬁm
nlk,nzk,nak to the rotating coordinate system N;i™, Nzk, N

generalized active force for the rth degree of freedom,

r= Uks Vk’ W, s Ck: Bk’ ek’ X Y, ©X’ tI)y

generalized inertia force for the rth degree of freedom,
r = uks Vk’ W s Ck’ Bk’ ek: X, Y, @X’ (i)y

function to be minimized to produce rotor equilibrium solution
force acting on the body, N

inertia force acting on the body, N

force acting on the kth blade, N

inertia force acting on the kth blade, N

2

e

0

force at the flexbeam root, made dimensionless by 2
12,42

force at the flexbeam tip, made dimensionless by 7

components of external force in the direction of u,v,w,
regspectively, acting on the flexbeam tip

V1

; also, rotor blade

k



T3359132724
[K]

[KA]

components of external moments in the direction of I,8,8
rotations, respectively, acting on the flexbeam tip

[B] [T]
flexbeam torsional stiffness, N-m?

gyroscopic matrix contribution from inertia forces

(8] [T"]

rotor thrust per unit mass of total aireraft, m/sec?
g

2021

acceleration of gravity, m/sec?

gg .

202L

[c] [F]

(61 [F]

height of rotor-hub center above aircraft reference center, m
b
L

two—dimensicnal airfoil section plunge velocity, m/sec
rotor blade flapping inertia for point J; I = I, + mszb2

rotor blade mass moments of inertia for the blade mass center

for axes N N & Nzk, respectively

x y)

body mass moment of inertia for the body mass center for axes
Ny and Np respectively, kg-m?

oLy

I * I

geometric variables, equation (66)
flexbeam stiffness matrix

stiffness matrix contribution from aerodynamics
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Xy

stiffness matrix contribution from structural damping
stiffness matrix contribution from gravity

stiffness matrix contribution from inertia

stiffness matrix contribution from structural loads

landing gear stiffness for each of four landing gear springs in
the N, Nj, and N, directions, respectively, N/m

KILZ  KIL?  K,L?
2 3 2 ) 2
IR0% © IRy IR

blade length, m
two-damensional airfoi1l circulatory lift per unit length, N/m

two—-dimensional airfoil noncirculatory laft per unit length,
N/m

flexbeam length, m

X

L

longitudinal and lateral distances, respectively, from fromt to
rear and from left to raight landing gear, figure 7, m

vertical distance of aircraft reference center above the land-
ing gear, figure 7, m

L
* L

g 2y
L’ L

mass of aircraft; M = bm + mg, kg; also two-dimensional airfoil

pitching moment per unit length, N

ML2

I
mass matrix contribution from aerodynamics
moments exerted on the body, N-m

inertia moments exerted on the body, N-m
mass matrix contrlbut?on from inertia

moments exerted on the kth blade, N-m

ViliL.
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my

=1
Hh

N

NB’ c

A’
N, NN,
Ny, Ny LNy

wknkyk

inertia moments exerted on the kth blade, N-m

aerodynamic pitching moment per unit length on kth blade, N
JgJMk dy, N-m

moment at the flexbeam root, made dimensionless by I902
moment at the flexbeam tip, made dimensionless by IQOZ

mass of one rotor blade, kg

mL2

I

mass of the fuselage, kg

me2

I

body~fixed coordinate system, figure 1

N,, N

unit vectors parallel to W g’ Vo

A’
rotating coordinate system for kth blade, fagure 8

nE Nk nk

unit vectors parallel to LN, Ny

coordinate system fixed in the kth blade, figure 8

unit vectors parallel to ka,NYk,

k
N,
coordinate system fixed 1n the kth flexbeam root, figure 8
unit vectors parallel to nlk,n?_k,nsk
coordinate system fixed in the kth flexbeam tip, figure 8
unit vectors parallel to n k,n k,n k

x 7y Tz

dummy symbol used to refer to the blade degrees of freedom

rotor radius; R= e+ £ + L, m

position vector of point along flexbeam, made dimensionless
by 2

position vector of flexbeam tip, made dimensionless by £

component of aerodynamic force per unit length along the chord-
line 1n a two-dimensional airfoil section, N/m
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Uy

component of aerodynamic force per unit length along the chord-
line (Ny ax1s) of the rotor blade, N/m

j;‘ S dx, N

IOI' XSk dK, N_m

arc length of deformed flexbeam elastic axis made dimensionless
by 2

sin( )

component of aerodynamic force per unit length perpendicular to
the chordline 1n a two-dimensional airfoil section N/m: also
kinetic energy, kg—mz/secz, also tension in flexbeam, N

rotor thrust, N

steady part of [Tk}

component of aerodynamic force per unit length perpendicular to
the chordiine (along Nzk axas) of the rotor blade, N/m

transformatloﬁ matraix relating the flexbeam tip axis system
Ty Ty Ty to the flexheam root axis system n; L0, 0,

'fg‘ Ty dx, N

L
JL xTy, dx, N-m

total velocity of two-dimensional airrfoil section, m/sec

components of rotor blade velocity with respect to air in

n, axis system, m/sec

component of rotor blade velocity with respect to air in Nzk
direction, m/sec

component of rotor blade wveloecity with respect to air in Nyk
direction, m/sec

steady component of up, m

u -
1+'§:— eFy,

component of flexbeam axial deflection due to bending alone,
made dimensionless by ‘&
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b

2 -

b Uy cos wk, m
k=

axial deflection of the kth flexbeam tip, m

Ye L
1+T+eF11

unsteady component of up, m

component of flexbeam axial deflection due to stretching, made
dimensionless by 2

b

2 2 : -

5 u, sin wk’ m
k=1

assumed value for u 1n equilibrium deflection scheme, made
dimensionless by &

coordinate system along the deformed flexbeam praincipal axes
free-stream velocity of two-dimensional airfoil section, m/sec

rotor blade mass center velocity components in n axis

1
system, equation 16, m/sec

velocity of any poaint P

steady component of vy, m

y
L

b

_2_ ~

b vy cos wk, m
k=1

induced inflow velocity, m/sec

+ er1

chordwise deflection of kth £flexbeam tip, m

v
k
e + eFyy

unsteady component of v, m

X1



£l

sl

b

2 -

T E vy sin dJk, m
k=1

assumed value for v 1n equilibrium deflection scheme, made
dimensionless by &

steady component of wp, m

¥
L

b

2 § : -

5 W, cos wk’ m
k=1

flapwise deflection of kth flexbeam tip, m

+ eF31

Vi

LT

unsteady component of w, m

b
2 ~
N Wk sin wk’ m

T
-t

assumed value for w 1n equilibrium deflection-scheme, made
dimensionlegs by §

time integral of body velocity component in Ny direction, m
distance along ka axis from point J, m

chordwise distance from ka ax1s to aerodynamic center, made
dimensionless by ¢, positive when aerodynamic center is
ahead of N,* axis

axial distance from point J to blade mass center along

N,™ axis, made dimensionless by L
chordwise distance from Nkk ax1s to blade mass center made
dlﬂen51on1ess by ¢, positive when mass center is ahead of
Nx axis

time 1ntegral of body velocity component in Np direction, m

vertical distance from aircraft reference center to body mass

center, positive when body mass center is below reference
center, m
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]

[ I

two~dimensional airfoi1l anglé of attack, rad
steady component of By, rad

built-in coning angle of the blade with respect to the flex-
beam, positive tip up, rad

b

2 ~

5 E Bk cos ¢k, rad
k=1

built-in coning angle of the flexbeam with respect to the hub,
positive tip up, rad

elastic flap rotation of the kth flexbeam tip positive tip
up, rad

unsteady component of Bk’ rad

% E ék sin tpk, rad

k=1
assumed value for B in equilibrium deflection scheme, rad

pacL”

dimensionless airload parameter, T

pitch angle of two-dimensional airfoil section, rad; also,
perturbation of flexbeam tip loads; also, flexbeam middle
surface strain, equation (73)

Steady component of Ck’ rad

built-in sweep angle of the blade with respect to the flexbeam,
positive tip leading, rad
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k=1

built-in sweep angle of the flexbeam with respect to the hub,
positive tip leading, rad

elastic lead angle of the kth flexbeam tip, positive tip
leadang, rad
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unsteady component of ck’ rad

b

2 ~

5 E Ck sin ¢k, rad
k=1

assumed value for ¢ 1n equilibrium deflection scheme, rad
geometric parameter, equation (18)
isolated blade lead-lag structural damping ratio

fuselage damping ratio for uncoupled motion 1n the X, ¥, &,
and @Y direction, respectively

steady component of ek, rad

built-in pitch angle of the blade with respect to the flexbeam,
positive leading edge up, rad

b

2 "

3 E Gk cos wk’ rad
%=1

built-in pitch angle of the flexbeam with respect to the hub,
positive leading edge up, rad

elastic twist of the kth flexbeam tip, positive leading edge
up, rad

unsteady component of Bk, rad

b

2 -

B E Gk s1n ka, rad
k=1

assumed value for 6 1in equilibrium deflection scheme, rad
pitch angle at the blade 3/4-radius, rad
curvature 1n the local flexbeam flap direction, made dimension—

less by ‘%

curvature in the local flexbeam chordwise direction, made

dimensionless by -%

air demsity, kg/m?

Xx1iv



rotor solidity -%%

cvrvature 1n the local flexbeam torsional direction, made
1
dimensionless by T

time integral of angular velocity component 1n NA direction,
rad

time integral of angular velocity component in Np darectiom,
rad

inflow angle at the blade 3/4-radius from momentum theory,
equation (22), rad

azimuth angle of kth blade
rotor angular velocity, rad/sec

nominal rotor angular velocity, rad/sec

|b

b

&

0

angular velocity of the body, rad/sec

angular velocity of the kth blade, rad/sec

k

k
v ,Nz axis system,

components of angular velocity in ka,N
equation (18), rad/sec



AEROMECHANICAL STABILITY OF HELICOPTERS WITH A BEARINGLESS
MATN ROTOR — PART I. EQUATIONS OF MOTION
Dewey H. Hodges™

Ames Research Center
and
Aeromechanics Laboratory
U.S5. Army Aviation R&D Command

SUMMARY

Equations of motion for a coupled rotor—body system are derived for the
purpose of studying air and ground resonance characteristics of helicopters
that have bearingless main rotoxrs. For the fuselage, only four rigad body
degrees of freedom are comsidered; longitudinal and lateral translations,
pitch, and roll. The rotor i1s assumed to consist of three or more rigid
blades. Each blade i1s joined to the hub by means of a flexible beam segment
{flexbeam or strap). Pitch change 1s accomplished by twisting the flexbeam
with the pitch-contrel system, the characteristics of which are variable.
Thus, the analysis 1s capable of zmplicitly treating aeroelastic couplings
generated by the flexbeam elastic deflections, the pitch—-control system, and
the angular offsets of the blade and flexbeam. The linearized equations are
written 1n the nonrotating system retaining only the cyclic rotor modes; thus
they comprise a system of homogeneous ordinary differential equations with
constant cocefficients. All contributions to the linearized perturbation equa-
trons from inertia, gravity, quasi-steady aerodynamics, and the flexbeam
equilaibrium deflections are retained exactly. Part II describes a computer
program based on these equations of motion.

1. INTRODUCTION

The general problem of helicopter aeroelastic stability involves coupling
between the motion of the individual blades through control system dynamics
and the rotor wake, as well as coupling between the rotor and fuselage of the
helicopter The complexity of the problem poses a challenge to the analyst,
both 1n developing an analytical model and in understanding its physical
behavior. An important part of analyzing the general rotor-body dynamic sys—
tem 1nvolves the study of the dynamic behavior of riagid-body fuselage motions
coupled with the rotor motion. The well-known phenomena of air and ground
resonance occur im this way. The low-frequency rotor modes interact with the

*Research Scientist, Army Aeronautical Research Group, Aeromechanics
Laboratory.



rigid-body fuselage motions to produce instabilities both in the air and on
the ground (refs. 1-4).

Helicopter rotors without hinges to allow rigid-body flap and lead-lag
motions of the blades are commonly called hingeless rotors. Hingeless rotors
have distinct advantages over the more common hinged (articulated) rotors;
these include fewer moving parts, light weight, and more control--power. In
recent years there have been efforts to develop hingeless rotors without pitch
bearings to further reduce mechanical complexity and weight. These rotors,
called bearingless rotors, rely on a torsionally soft portion of the blade
called the flexbeam (or strap) that 1s twisted by the pitch-control system to
provade changes in pitch. There have been several totally different designs
proposed withain the helicopter industry (refs. 5-9). Of these designs, one
has a snubber (ref. 6); some have cantilevered pitch-arms without snubbers
(refs. 5, 7, 8); and one has a torsionally stiff torque tube that 1s very
flexible in bending and acts much like a speedometer cable (ref. 9). Both
hingeless and bearingless rotors have had some aeroelastic stability problems.
In fact, most production hingeless rotors still must rely on_an auxiliary
lead-lag damper to suppress ground and air resonance instabilities  One
reason for this i1s believed to be the lack of suitable analytical capability.

The analytical treatment of hingeless rotor air amd ground resonance has,
for the most part, been limited to an equivalent-hinge, spring-restrained
rigid blade model for the rotor blades (refs. 1-4). The need arises when
applying these analytaical models to somehow arrive at the proper orientations
for the spring-restrained hinges so as to give the proper values for the aero-
elastic couplings that arise due to blade elastic deflections, angular offsets
such as precone or sweep, and the pitch-control geometry. Even with this
apparent drawback, these relatively simple analytical models have been success-
ful, to some degree, in assessing the air and ground resonance characteristics
of some configurations. Bearingless rotors, however, have coupling parameters
that change significantly as a function of the operating condition. TFor
example, when the rotor 1s at high thrust the flexbeam may be highly twisted;
whereas, at low thrust 1t may be untwisted. An alternative to a rigid-blade
formulation 1s that of an elastic blade. Again, there is the need to do a
separate analysis, here to obtain the free vibration modeshapes. This can be
time consuming for a bearingless rotor because the coupled modeshapes will
change as a function of operating condatzon. Also, these analyses are much
more complicated than the rigid-blade approximations  Bielawa has developed
such an analysis for the bearangless rotor, but only for the hub-fixed case
{(ref. 10). Johnson has developed a rotorcraft aeroelastic stabilaty program
(ref. 11) that possibly could be adapted to treat bearingless rotors; however,
this modification has not been made to date An analysis that possesses the
samplaicity of the rigid blade model but integrates the treatment of aeroelastic
couplings would appear to be very useful. Such an analysis has been developed
and 1s the subject of this report.

In this report, equations of motion are derived that are suitable for use
in studying both air and ground resonance as well as the hub-fixed dynamic
behavior of helicopters with a bearingless main rotor. The blade 1s modeled
as rigid but connected to the hub with a structurally flexible appendage to
simulate the flexbeam porticon of a bearangless rotor blade. The analysis 1is

2
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restricted to rigid-body fuselage motions and all forces that would act along
the flexbeam are neglected. Only rotor cyclic modes and body patch, roll, and
horizontal translations are considered. Each blade has six degrees of freedom
in the rotating reference frame. This means a total of sixteen degrees of
freedom in the analytical model. The analysis 1s tailored to treat the con-
figurations mentioned in references 5-9 in an approximate way

In section 2, the physical model i1s described. In the text, the config-
uration described in reference 9 1s analyzed; modifications necessary to treat
other configurations are given in the appendizes. 1In section 3, Lagrange's
form of D'Alembert's principle 1s introduced as a means of deriving the equa-
tions of motion. The coordinate systems used in the derivation are defined in
section 4 and expressions for certain kimematical quantities are derived. The
generalized active and inertia forces are derived in sections 5 and 6. The
equations of motion are formed, linearized about eguirlibrium, and then written
in the fixed system in section 7. Particular attention 1s given to the flex-
beam structural representaticn in this analysis. In the appendixes are found
the details of including blade and body structural damping and the modifica-
tions to the analysis that are required to treat the different pitch-control
geometries.

An 1ndependent deravation of the equations of motion was performed by
Dr. Donald L. Kunz of the Aeromechanics Laboratory in order to check the pres-
ent derivation. His effort i1s gratefully ackmowledged.

2. PHYSICAL MODEL

In this section the physical model used to represent the helicopter is
described. Only those elements believed necessary to model air and ground
resonance phenomena are retained. The aircraft dynamical system 1s composed
of two parts: the fuselage and the rotor. The fuselage is assumed to be a
rigid body. When in contact with the ground, the fuselage 1s suspended by a
spring system to simulate the elastic restraint to fuselage motion in an
actual helicopter imposed by the landing gear system, When the aircraft is
airborne in hovering flight, 1t 1s unrestrained elastically. The rotor con-
sists of three or more rigid blades attached to the hub by means of slender
elastic beam segments. Both the fuselage and rotor are described in more
detail below.

A schematic of the fuselage/hub 1s shown in figure 1. The hub, mast, and
landing gear are all included in the mass and inertias of the fuselage. The
total fuselage mass 1s my and the moments of inertia for the mass center are
Iy and Iy, respectively, for the X and Y directions. The arrcraft reference
center, shown in figure 1, 1s a distance z above the body mass center and a
distance h below the hub center. In the study of air resonance (1in hover)
and ground resonance, vertical translation and yaw rotatilon of the body
uncouple from the other body motions and are, thus, not significant. The
other four body degrees of freedom X, Y, by, and & are included. These
quantities are time integrals of velocity and angular velocity compoments in
the body fixed axis system, described an more detail in sectzon 4. The
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landing gear provides stiffness restraining the body motion depending on the
landing gear geometry shown in figure 2,

The rotor blades are attached to 'thé hub with flexible beam segments
called flexbeams and rotate at constant angular velocity . A schematic of
one rotor blade 1s shown an figure 3; here, the details of the pitch control
system are not shown

The blade pitch angle may be changed by twisting the flexbeam with any of
three types of pitch control mechanisms or by using built—in pitch angles of
and 6. In this report four cases are considered. Case I 1s the simplest
case, with no pitch control system at all. This configuration corresponds to
an experimental rotor set up to operate only at discrete pitch angles or to an
operational rotor with a disabled control system The equations of motion are
developed for this case throughout the text. The modifications for Cases II
to IV are relatively simple and are given in appendixes A-C, respectively.
Cage IT, shown in figure 4, has only a flexible cable-like torque tube tor-
sionally stiff enough to twist the flexbeam. The cable 1s assumed to be
flexible enough in bending to put only a pure twisting moment on the tip of
the flexbeam. This configuration corresponds to that of reference 9 and also,
approximately, to the pinned-pinned torque tube of reference 5. Case ITI
shown in figure 5 corresponds to configurations with a pitech link and canti-
levered pitch arm described in references 6, 8, and 9 Pitch change is
accompanied by bending deflections and vice versa, giving sometimes large
aeroelastic couplings Case IV, shown in figure 6, 1s identical to Case III
except that a snubber, intended to reduce aeroelastic couplings, 1s added
The snubber 1s modeled as an additional monfunctioning pitch-Ilink/pitch-arm
assembly. The paitch link 18 connected to the rotating swashplate and the
snubber link to a point stationary in the rotating reference frame. All the
pitch mechanism and snubber mechanism flexibility should be lumped into the
pitch link and snubber link, respectively. The mass and inertia of these
components should be included with the blade. Parameters for each configura—
tion are discussed in the appendixes.

3. DESCRIPTION OF THE DERIVATION

The equations of motion are derived through an application of Lagrange's
form of D'Alembert's principle (ref. 12). Thais principle reduces to Lagrange's
equations when all the degrees of freedom are generalized coordinates. This
1s the case only for the blade degrees of freedom in this analysis. The body
degrees of freedom are based on components of velocity and angular velo&lty in
the body fixed axis system (fig. 1) and thus are not generalized coordinates.
They are "quasi-coordinates" and require special considerations, The analyst
may choose to use the special form of Lagrange's equations for quasi-—
coordinates (ref 13), Lagrange's form of D'Alembert's princaple (ref, 12) or
Newton's laws.

Kane (ref. 12) has summarized the laws of motion in the form of a single
equation



- =
F,+7*=0 =r=1,2,...,0n (1)

where Fp are the generalized forces associated with gravity, springs, con-—
tact forces, and aerodynamics. The Fp" are the generalized inertia forces

for the n degrees of freedom. The generalized forces F, are defined for
the above physical model as

B b §d
z : I 2 : dw _
Fr= Fk _-T_+MB.-3—('1_.+ Hk'acol r=1, 2, ..., 1
r k=1 r

The vectors Fp and Mp are the forces and moments acting on the body at a
cettain point P. The vectors Fy and M) are the forces and moments acting
on the kth blade at a certain point Q. The velocities V! and VK are
defined at the poznt, P and Qi in an 1nertial reference frame. The angular
velocities w” and w™ are wratten for the body and for the kth blade,
respectively, also with respect to an inertial reference frame. The degrees
of freedom q, are wup, Vg, Wy, Oks Bks O for k=1, 2, ..., b, and

X, Y, 0, %y.

Similarly the generalized inertia force Fr* is defined as

B* b Kk*
% _ % , 8V § : %, v x , W . (Il
Fr = FB '—a-a""" + Fk 35]_ + HB + Mk. o (3)
T - T
where the inertia forces are
&
FB* = —mfaB
. (4)
Fk* = —mak

% *

The accelerations are aP  of the body mass center and aF  of the kth

blade mass center. The inertia moments are given according,to Euler's dynami-
. B ‘k'k

cal equations, written in detail below. The velocities VP and V are for

the body and blade mass centers, respectively.

In section 5, the generalized active forces due to aerodynamics, gravity,
body springs, the flexbeam structure, and structural damping are derived. In
section 6, the generalized inertia forces are derived. Before proceeding with
the actual derivation, however, it 18 necessary to describe the coordinate
systems used in the report and to develop expressions for certain velocities

and angular velocities needed in the derivation. This 1s done 1n section 4
1mmediately following.
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4, COORDINATE SYSTEMS

As an inertial reference frame, the Space-fixed axes e, e,, and e
shown in figure 1 are chosen, e, being positive down. The velocity of the
aircraft reference center i1s defined to be

C_n -
v’ = XN, + YN, (5)

where the unit vectors HNp and Ng are parallel to the body-fixed axes Ny
and Np of the Np, N, Ng axis system also shown in figure 1. The angular
velocity of the body 1s defined to be

b = $.N, + Ny (6)
Note that X, Y, &y, and @ are not geometric distances and angles, they are,
instead, quasi-coordinates (ref. 13). 1In this report, the quantities X, Y,
o, and %y are assumed to be anfinitesimal Thus,

NA 1 0 -¢y el
Rpe=10 1 8, |4 e, (7)
N; o, -2 1 ]|e,

where e;, e,, and e; are unit vectors parallel to e, e,, and eg,
respectively.

The rotating axes le, Nzk, and N3k associated with the kth rotor
blade are also shown in figure 1. The angle ¥ = Qt + 2w(k — 1)/b. The
associated unit vectors are related by the following transformation

=

N -c s 0 N

N =] s ¢ 0NN (8)
2k b T B

N, 0 0 -1 Hb

The kth rotor blade 1s attached to the hub (at hub radius = e) by means
of an elastic beam segment., This flexbeam 1s built in at point 0 (cantai-
levered) along the nlk, n,<, nsk axes, shown i1n figure 7. The associated
unit vectors are related by the following transformation constructed from a
sequence of angular rotations ¢, Bg, and Of

k k k
n cp C Cp S s N N
1 Bf Cf Bf Z;]‘f Bf 1 1
0,5t = f-sy s, C, ~ Cg Sz Cq Cr_ ~ Sr_Sg S cg_se, | { M. ¢ = [FRN,"
. f Pg & £ °f f =f frf Vf £ °F
n -Cn Sp S + s 8 —8p € - 8. Sp C Cp C N k N k
3 OBty T Pty O Cp Ttp Bp O TBgog| LU 3

(9
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The flexbeam of the kth rotor blade 1s capable of all six beam deforma-
tions at the tip. The vector of tramslations 1s & = umy + vkpzk + wkp3k
There are also three angular rotations, Tk, Pk, and 6y, so that the flexbeam
ti 1 k k £ 7. Th iated unit

p 1s along the ny™, By, Ny axes shown in figure 7. e associa uni
vectors are related by the following transformation comstructed from a
sequence of angular rotations Lxs Byrs Oy

nxk CBkcEk chka S8, n.lk nlk
ngk b = R S P ST A L T W m, (= [T9m,"
nzk -cekssksck + Seksck —sekcck - SCkSBkcek CBszk_ n3k n3k

(10)

The kth blade is built in at point J along the axes Ngf, N,k wk
shown an fagure 7. The associated unit vectors are related by the following
transformation constructed from a sequence of angular rotations Iy, By,
and 6y

&} [ ] k k
% CBbCEb °g, Sty SBb n, n,,
Nyk = _sebssbcgb - cebsgb cebccb - Scbstseb cBbst n,yk = [B] nyk
Nzk {:Cebssbscb + Sebscb ~sebc€b - scbssbceb csbceb— nzk nzk
(11)

The Ng¥, Nyk, N,¥ axes are the blade-fixed axes. Note that all the blades,
flexbeams, and angular offsets are identical to each other. This 1s reflected
in the absence of the subscript (or superscript) k in the [F] and [B]
matrices. In the undeformed state [Tk] = [I], the identity matrix. The
following additional matrices are needed in the derzvation below

[6%1 = [B][T] )

[#%] = [6K][F]

[T]

]

[T%] (12)

Lk=Cs By =B, 8176 for k=1,2,...,b b
[BI[T]
[GI[F]

1G]
[H]

)
Extensive use will be made of these matrices in defining velocities and angu-
lar velocities needed 1n the derivation.

The velocities of several points 1n the system and the angular velocities
of the body and kth blade are now developed. The velocity of the aircraft
reference center 1s, by definition



C-. »
VY = XN, + YHy (5)

The angular velocaries of the body and kth blade are, respectavely,

o = d.N, + BN, (6)

wl

: . s R g k K} 4 bon K
BNy + BN Wy b Lngt - Bleg mpT - s m ) ¥ Oy (13

The sequence of blade angular rotations, Iy, By, and 8y, 1s shown in figure 8
from which " 15 determined by inspection. Thus, the wvelocity of the body
center of mass 1g

* - » - *
vB o= (x + 2 )N, + (¥ - 2, )Ny (14)

The positiocn vector of the kth blade center of mass from the aircraft refey—
ence cepter 1s

&
AR R AR CE RS L TR R VCE VP LR P R e L)

The velocity of k™ may be established by well-known laws of kinematics

3
E
v oY vk (16)
1=1

Vzk = k‘il'zh + (g + Clk)kf.ugh - (wy + cgk)kmlh + \'rk + 'czk

k h o . . - . » -
Vy' = o[& - hdy)ey, - (Y + hegdey TPy + LK - hég)sy

1
+ ¢+ heydey IFi, 2 =1,2,3 Bk
k_ h : : : ;
Wy = “(Qxc$k - stwk)Fll + (@xswk + ch¢k>F12 + OF; 5 1=1,2,3
cik = beG%i + cxchl i=1,2,3
. k acik . aclk . aclk .
.t o= g, ¥ —— B, + —— 8 1=1,2,3
i b, Tk BB, k 98, 'k J
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It 1s necessary to express the angular velocity of the kth blade in the

ka, Ny » N, axls system

o = mlkNXk + mzkﬂyk + wskﬂzk (18)

where

N
k _ kk h, s o k_ =
wi = G 0t T8y - Bn BBy
J=1 (19)
k _ k k
n, = cekBl2 - SekBIB = cckGiz SCkgll

Also, the velocity of the flexbeam tip, J 1s needed. Thas 1s available

by inspection from equations (17) with c;- =0
3
vl = 3 kv dnk (20)
1=1
where
ke J _ ke b . k. h k. h )
Vl = V1 + Uy + Wy ot — Vi g
ksz = kVZh + Yy F ukkmsh - wkkwlh > (21)
ke I _ kg h . k. h k h
Va = V3 + W + Vi W = U W, )

Finally, in developing the aerodynamics, the velocities of all points
along the blade Ny" axis are needed. The blade 1s moving in space and, 1in
additzon, there 1s an induced flow field assumed to remain along the e
axis. The magnitude of the induced inflow velocity is taken from momentum
theory (as im ref. 14); for simplicity, it 1s assumed to vary linearly with
the radaius.

z

vy = Qe+ 2+ u+ x)¢ 0<x<L (22)
where
U = u+ ﬁk(t)
1/2
o 12|65 /,] /
= eem—— ——— e — -]
¢ 5 1+ p 1 sgn(eslq) (23)
O3/ = Hpg
/




When the induced inflow 1s superposed on the blade velocity the result 1is

3
k k k - p
_ i DI A (24)
1=1
!
where
3
k h . k - k .k h - k .k h
U1 = kUI + uk+xG11 + (Ewk+xG13) Wy — (lek'i'XGlz) w3
k h . k - k.k h — .k h
U2 = kU2 + Ve + %Gy, + (,Q,uk + XGll) Wy - (ka + xG13) ®;
k h . k - k .k h - .k h
U" = 1{U3 + Vi + %G5 + (Evk + XGIZ) OIS (Ruk + xGll) Wy
Y, (25)
h _ . . _ . . ~
kUl = -»EX - h¢y + viéy)cwk (Y + ho, vléx)s¢k]Fll
+ [}X - h@y + leY)ka + (Y + h@x - vi@x)c¢k]F12
+ vlF13 1=1,2,3 J
3
8w, = v * eFyy . E— (26)
ﬂwk = Wk -+ e.F31 J

5 DERIVATION OF GENERALIZED ACTIVE FORCES

In thas section, the generalized forces due to aercdynamics, gravity,
body springs, the flexbeam structure, and structural damping are derived
Some details are omitted for the sake of brevity.

5.1 Aerodynamic Loads

The aerodynamic loads are derived from a quasi-steady version of
Greenberg's equations (ref. 15) for lift and pitching moment. Also included
is a quasi-steady profile drag contribution The circulatory 1lift per unit
length 1s given by

paVe

Lo = 55 [ﬁ +Ve +5 (1 - zxa)é] (27)

10



The noncirculatory lift per unit length s

Lyc = pac [h + Ve + V& + = (1 b )z—:] (28)

The pitching moment per unit length 1s

M= - pac [2v (1 - 2:,) + Vel - 4x,) + h(l - 4xy)
3 paVc X, r. c .
+ cg- 2x, + 4xa2)€] + [h + Ve + 5-(1 - 2xa)§] (29)

The air density is p and the free-stream velocity 1s V. The airfoil sec-
tion 1s pitched at the angle & with respect to the free-stream as shown in
figure 9. 1In accordance with small disturbance arrfoil theory, we may set

= ‘f 2 Y
U UT + UP v

_ (30)
- h - Vg

[l

UP
The blade airfoil velocity components are Urg and Up, expressed in the g
)

and N_K direction, respectively. Substitution of equations (30) anto (2
to (29) yields

9] .
Lo = pac [fUP +-E-(1 - 2xa)e]

2 2
pac? . c ' (31)
Ly = 23 [—UP 2@ - hxy) a]
paczxaUUP
M= - 5 -pac [U(1—8x+16x2)
. 16 32
- B - ex) + 3 (1 B+ Fx)e] 2

Next, the total aerodynamic force per unit length on the blade airfoil
section 1s considered  The noncairculatory lift 1s taken to act 1n the direc-
tion normal to the chord line as shown in figure 10. The cairculatory 1lift is
taken normal to the resultant wvelocity U. An aerodynamic profile drag force
per unit length D, acting parallel to the velocity resultant, 1s ancluded,
based on a constant profile drag coefficient cd,-

2
pcdocU
D= —2— (33)

The force components and directions as shown in figure 10 give the following
expressions for § and T
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where, from figure 9

S = LC gin o — D cos o
T = LC cos o + LNQ + D sin o )
Lo or
cos T
s1n o = - EE
1]

(34)

(35)

Substitution of equations (31), (33), and (35) into equations (34) yields

_. pac
5=73

_ pac
T=5

Saince

5, T, and M.

— c
d
c 0

UP2 =3 (1 - 2Xa)UPE': -5 UUT

=
p—

b

c
= 2 s oSy (Sf 4 —EE-UU
-—UPUT + 5 (1 - xa)UTE - Up % (1 - xa)E -2

A

L (36)

P
/

cg./a 21s small with respect to unity and because the magnitude of
the aerodynamic pitching moment 1s small, i1t 1s permissible to set U = Up an

dr

_k _ k k

((h{) = Skﬁy + TRNZ
aero

The aerodynamic pitching moment per unit length is

de .
dx = MKHX
aero

Now, for the kth blade

_ pac
_ pac
Tk =55
_ _ pac
My 5
+ 5 (
8
where d =

2 2
k2 ¢ k k _ .ok ]
[UP -5 (1 - 2x,)Up w, Uy

ky k _
[Foet

aﬂn

'Pk +-% (1L - 2x )UT wlk + ( ) {1 - 4xa)élk]

2 .
[x cupFug + (%) [UTk(l - 8x, + 16x,2)0, " - (1 - 4x )0 K

)
1 3 + X,

cq,/a has been neglected with respect to unity, and

€

The aerodynamic force per unit length acting along the blade is

(37)
(38)
)
¢ (39
J
has, been

replaced with the component of angular velocaty of the blade in the Ny

direction

wy - The velocity components Up~ and Up"™ are given by

12



c
wd
]

3
k .k
21 Ul G31

:‘L:

. (40)

[

3
k k~k
UT E Ul G21
1=1
/

where the velocity components Ulk are defined im equations (25). The aero-
dynamic force and moment resultants at the point J are given by

()
aero

k ko k
sfkny + TN

(41)
_ k k k
(uk) = M S - TS+ s,
aero
where
A
L " L
sfk=f S, dx S, = f %8y dx
0 0
L 1.
= [ Toax T = f *Ty dx b (42)
0 ¢
L
Mmk = f Mk dx
0
/
The generalized forces due to aerodynamics now follow immediately from
equations (2) and (&)
3
() ()
aero aero
n) ) e
k aero
aero
= . k
Fo B (Fk) B3
aero aero Lk =1, 2, «..s b (43)
= . n K
aero
aero
F =(H) . cnzk-—s nk
(Sk) g aero ( “k S !
aero
7, - (uk) - nk J ORIGINAL PAGE I
k ero aero OF POOR QUALITY
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b

() -2 (e

aero
aerc k=1

3
1 h E (Sv,b Fi, 0t Cy Flz)nlk'
A k k
1=

- - \ .k
+ {8, fc, F —SF)—EW(CF —sF)n
i k( Uy 81 b 82 k\®p, 21 b, 22)j™
(TR by I x 2]
r (43)
k conecluded

+ ..'Qﬁk CIJJkFZI - skazz) - R,x_rk ClbkFll - slkalz)_ n,

+ (Hk)aero "Ny

3

b
(Fq)Y) ) Z <(Fk)aero 1" Z (Clkall ) S‘kalz)nlk

aero k=1 1=1

- _ k

+ _?ak(%kaal + ckagz) - zﬁk(?kall + c¢kF12)]n2
+ _%Gk(ékall + cwkﬁlz) - luk(?ka21 + c¢kF2éI]n3

aero J

Equations (43) define the contribution of aerodynamics to the generalized
forces.

b

k

5.2 Gravity

In this section the gravitational contribution to the generalized forces
15 expressed. For a system of rigid bodies, gravity applies a force acting
through the mass center of each component. For the body

14



(FB) g =

and similarly, for the kth blade

The subscript g vrefers to gravity.
unit mass of the aircraft {F/M) if the aircraft i1s airborne.
craft 1s 1n ground contact, the analysis must be slightly modified.

done at

The

(Fy)

the end of section 5.3.

generalized forces due to gravity follow i1mmediately from equa-

tion (2):

(F“k )g B
(ka )g
(ka)g B

(F

Ge,) -

(),

= Mg e

mg eq * nlk

mg 63 . n2

mg es

-]
w

Mg ey * NA

=2
o]

g

meg eg

mg es

(44)

(45)

The symbol g a1s the rotor thrust per

(FCk)

3

.

i=1

Zac k
(F ) =mg e, * = n k
Bk 3 1
2 9B
Bcik Kk
(Fek) = mg ey E n,
g 26

b

k=1

(mgbh - negzle,; © Ny — mg e; 2 {[(E.Gk-i- (:.:,’k)(clka21 - skazz)

- {15 k _ k
(R.vk+ ¢y )(ckagl kaFsz) n,

= k k

_ s k YR
(Euk_+ ey )(ckazl - SlbkFZZ) nj

-+ [(R,ﬁk + clk) (cq}an - Stkasz)
}+ [(Q,Trk + czk) (c]kal 1- kaFlz)

b
. - k.
- (mgbh - mfgz)e3 Ny + mg ey g i[(wk+c3 )(sgbszl + ckazz)

- (Vk + czk) (slka3 1 + ckaw)- mn, + [(uk+ clk) (slka31 + c,‘bkF32) I

[

k m

—u+ck(sF + F)—
(k 1) b 21 Ctpkzz_

n2+

.

15

k
[(Vk+ C.2 )(kaFl 1 + Cd}kFlz)

k
= mg e, ° n,
g 8,

-, ou——

When the air-
This 1s

(46)



Equations (46) define the generalized forces due to gravity when the air-
eraft 1s ailrborne. If the aircraft is hovering at thrust = weight, g becomes
the acceleration of gravaity g. When the aircraft i1s on the ground, the body
forces Fx and Fy need slight modification.  This modifiéatioh is closely -~
connected with the bhody spring forces treated in the next sectiom.

5.3 Body Spraings

When the aircraft is ain ground contact, a system of springs is 1ntroduced
into the mathematical model to account for restraint of fuselage motion due to
the landing gear flexability. These springs, shown in figure 2, are symmetric
about the aireraft reference center both in the longitudinal and lateral
directions In deraving the generalized forces, the analysis will be carried
out in only one plane, the ej;, e; plane and the results extrapolated to the
total system.

Consider the two-dimensional system of figure 11. The velocities of
certain points are needed in order to derive the generalized forces. The
reference center velocity is

C . -
VY = XN, + N (47)
and the body angular velocity is

wP = éyuB (48)

The wvelocity of points A; and A, 1s, respectively,

vAl = (% + 2 b )N +(i+kti>)n
z y’ A 2 y/°C
vA2 = (& + 20 )N +(2~£’i&>)n )
y/TA 2 "y/C
The force applied by the springs at each of the attachment points is
‘Q'X
FAI = ~2Kx(e1 + QZQY)el - 2Kz(§3 +-7f-®§)e3
3 (50)

p-S
FAZ -218((31 + ‘Q’z@y)el - 2KZ (e3 -5 @Y)ea

where e; and e; are the space~-fixed deflections of the points A, and A,
along the e, and e axes. The vertical degree of freedom i1s retained only to
aid in modifying the gravity terms in ¥Fy and Fy for the ground contact case.
When the aircraft i1s on the ground, there i1s a steady vertical deflection of
the ground springs that varies with rotor thrust and gross weight. Thus, for
first order in X and 4, the thrust 4% and weight Mg, must be included
for this case. Each of these forces may be assumed to act at the reference
center for the purpose of calculating spring forces.
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From equatien (2)

Fy = —4K (ey + 2,8)) + 4K, egd, ~ Mg @y

F, = -4k, e, - J + Mg, (52)
= 2 2yp. -

Fq)y = - (4K 2,2 + K, 0,208y - 4Kyh, o)

For the equilibrium of the coupled rotor-bedy system (all degrees of free-
dom = constant), Fz = 0. Therefore,

4Kyey = Mgy - T (53)

]

Also, the deflections along e; and e; are identical te X and Z for infini-
tesimal ¢y. Thus, for X and oy degrees of freedom
3

(Fy) = —4K (X + Lo%y) + Mgy - f)qsy - Mgydy

SpT

o)

]

~4E (X + 8 00) - Toy (54)

1l

2 2
—(41%&2 + K 2 )@y - 4K %X

Spr J
Similarly, for Y and &, degrees of freedom
Fy) oy = ~4Ky (¥ = 2,0,) + Ty
) (55)
(F,I,X) = —(AKysaZZ + K 0,700, + 4Ky, Y
spr

Equations (54) and (55) express the generalized forces due to body
springs. The gravitational terms in Fy and Fy are replaced by rotor thrust
terms when the aircraft is in ground contact. "This is equivalent to replacing
g in Fy and Fy waith g% where

& = (56)

when the aircraft is on the ground and replacing g in all other terms with
gp-

5.4 TFlexbeam Structure
The structural loads exerted by the flexbeam are represented symbolically
by the flexbeam stiffness matrix [K]. The matrix [K] i1s determined numeri-

cally by perturbing the equilibrium solution. This operation 1s described in

17



section 7.2 below. With the stiffness matrix formulation, the generalized
forces are

6
= 3 k“ k = = . s e
(Fq. ) -~ X' q 0 = VP B8, BT L2 b (5T)
1 1=1

flex

The fact that all the b flexbeams are i1dentical is reflected in the lack of
dependence of the [K] matrix on K.

When £ = 0 and the flexbeam s undeformed, the matrix [K] 1s given by

EA 0 0 0 0 0
2
12ET, . -6EI, ) )
2.3 22
lZEIf "6EIf
K] = = 0 > 0 (58)
4LET
[l

- 0 0

4EI£
— o

GJ

2

where EA, EI., Elf, and GJ are the flexbeam axial stiffness, chordwise bend-
ing stiffness, flapwise bending stiffness, and torsional stiffness, respec-
tively. When the rotor i1s at some general operating condition, the matrix [K]
fully couples the blade equations structurally.

5.5 BStructural Damping
In the coupled rotor~body system only the blade lead-lag motion and some
body modes have small enough damping from aerodynamics to be sagnificantly

affected by a small amount of structural damping. The non-zero generalized
forces due to structural damping are
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. 3
F ) = g Qk_
( & damp °

(Fx)damp = -cgX

(Fy) damp = ~C¥¢ (59)
(F(I) ) = "C@ &)X
*/damp X
(F@ ) = —CQ &’Y
. J damp ¥ }

The exp11c1t form of Crs Cx> CY» c¢ , c¢ 1s deraved in appendix D in

terms of damplng ratios for both blade and body motion.

This concludes the development of the generalized active forces. In the
next section the analysis continues with the generalized inertia forces.

6. DERIVATION OF GENERALIZED INERTTIA FORCES

In this section, the generalized inertia forces due te body motion and
blade motion are derived., As in the last section some details are omatted for
the sake of brevity.

6.1 Motion of the kth Blade
Generalized inertia forees that are associated with generalized coordi-

nates, as the blade degrees of freedom are, may be derived directly from the
kinetic energy. For the rotor system the kinetic energy may be expressed as

K 1 2
T=f'23 v —Z—EE__: (60)

Once this quantity has been expressed in the system degrees of freedom, the
generalized forces for the blade degrees of freedom are given by

% - 9F _ d f 9T k _
quk % dt (ac'; ) q,. U5V oWy s Ty By By (61)
T

T k=1, 2, ..., b

This operation 1s straightforward and the details are not given here.
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6.2 Motion of the Body

Unfortunately, the generalized inertia forces associated with body motion
cannot be derived from equations (61). This 1s because the degFfeés of freedom
describing body motion are not generalized coordinates. They are, instead,
quasi-coordinates and require special considerations. The portions of body
generalized inertia forces that are linear in blade variables are already
known because of symmetry considerations and equations (61) Hence, only
terms linear in X, Y, &, and Qy and their time deravatives need to be
retained in this section.

The accelerations of B¥ and k¥ used 1n equation (4) to define the
inertia forces are needed. These may be derived from equations (5} to (17)
by standard laws of kinematics

x
aB’ = (x4 20N, + (¥ - 20 NG + ... ‘
. 3 3
a*" = |x - (h + 2 dlkFla)ti)y N, + [Y +{n+ 2 dlkFl?)cpx Np
1=1 1=1
(62)
3 >
: k
+[(¢x - 208.) 2 a, (Fllsw + Ty50, )
1=1 k k
3 -
: k
+ (o + 208,) g d, (Fllclpk - Flzswk) No + . .
1=1 ] I
where
)
dlk = Rﬁk + Clk
d,* = 25 + ek} (63)
4% = o5 + K
/

Here, the dots refer to blade terms and nonlinear terms in X, Y, $5, and @Y
and their time derivatives. Also, in equation (3) the inertial moments must
be written. These may be expressed directly from Euler's dynamical relatzions
and the angular velocities in equatzions (6)

Mp* = ~Io.N, - I,0Np + ... )
M* = KR, - I) - &1 K
(64)
+ [wgfe, 5(1; - 1) - i, T, IN K
+ [0 50,5 () - 1,) - sk Nk 1, PAGE S
RIGINA.
"o pooR QUALIF
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Now the body terms of the generalized inertia forces for X, ¥, &, and
¢, may be written from equations (3), (4), (62), and (64)

b
* . % %
F, N, (FB +1§1 Fk)+ .o

o
Sk
|

b
= * *
y HB-(FB+EFk)+ ..

k=1

b
AL o_m o m * . % %* =
Fo, Ny - Fg~ + Ny (HB + 2 Hk)

k=1
L (65)

b 3 3
k. k . %
+ 22 e+ 2 4, Fle)NB + 24, (E*lls,JJ + Fypcy, )NC Fp
k:l 1=1 1=1 k k

It

b
* * . * *
Fg 2N, - Fp* + Ny (MB + kz—:l nk)

b

3 3
k. k *
+ b+ X a ke N, + 20 q, (Fllclp - Fps, )“c . By
k=1 1=1 1=1 k 'k

J

Equations (65) are the body terms of the generalized znertia forces for the
body degrees of freedom. In the next section, the equations of meotion are
written from equation (1).

7. TFORMATION OF THE EQUATIONS OF MOTION

The equations of motion are to be written from equation (1) using all the
components of the generalized forces in sections 5 and 6. The ultimate pur—
pose of thais analysis is to provide a means of assessing the linear stabalaity
of small motions about equilibrium. In this section the equilibrium solution
1s discussed separately before the final linearized perturbation equatiomns are
written. Because from the outset the blade and flexbeam properties have been
assumed identical for all blades, the equilibrium values of wuy, Vi, Wk, Tk,
By, Br are ndentical comnstants for all k. Thus, the blade degrees of free—
dom have steady and oscillatory components

u = u + G (t) ; T = T+ Ip(t)
v = v+ v () ; B = B + Ek(t) (66)
W =W + T}k(t) ; Bk = § + ék(t)



Recall that the equilibrium values of X, Y, ¢y, and &y are zexo so that

X = X(t)
Y = ?(ti )
> (67)
o, = . (t)
oy = oy (t)

The tilde refers to an i1nfinitesimal perturbation motion. Collection of terms
from sections 5 and 6 yields a set of relations like the following

E = =

Fuk + Fuk = F, - Fuk(t) =0 }
* = =

ka + ka = Fy = ka(t) =0

F, +Ff =F -F (t)=0
k

o]
+
|
kol
]
=
|
e~}
~
rt
~
I
o

Fg + ng = Fg - Fg (£) =0
Fek+ng = Fy — Fp (£) =0 L (€8)
By +EF = -2 ) -0
B, b F* = - DR (6) =0
F¢X+F$X=—%‘F¢, (t) = 0
F¢y+1«*§§y=-1§-£~¢ (t) = 0
y s

.Here all perturbation quantities have been linearized in Uk, Vk, Wk, Tks
Bies Gk, X, ¥, by, and ©y and their first two time derivatives  Below, the
rotor equ111br1um solution 1s obtained by performing an 1terative static
structural analysis for the flexbeam. The flexbeam structural stiffness
matrix 1s next obtained from a2 numerical perturbation of the flexbeam equilib-
rium position. The perturbation equations, although linearized an all the
perturbation degrees of freedom, contain terms with periodic coefficients
(S¢k, cwk). In order to most efficiently solve the system of linear, ordinary

differential equations, the system 1s transformed to fixed (nonrotating)
coordinates by the so-called multiblade coordinate transformation (ref. 16).
pAGE B
22 cﬁiﬁ3(x) BJJHFI
oF ¥



7.1 Eguilibrium Solution for the Flexbeam

The equilibrium generalized forces TFy, Fy, Fys Fr, Fg, and Fg are,
physically, the components from aerodynamics, gravity, blade inertaial loads,
and flexbeam structural loads, of force and moments acting at the tip of the
flexbeam. Explicit expressitons for these generalized forces are known except
that expressions for the flexbeam structural loads are unknown. This means
that all loads external to the flexbeam are known explicitly in terms of the
deflections of the tip. When the details of the generalized forces are
carried out from sections 5 and 6, equations (43), (46), and (60), the flex-
beam tip external force Fi and moment M, are given by

*

- — _ 3
F. = Fa, + Fa, + Foa,
3
: M = 2 Mn
1=1
C.S c
__ B = =
My = - Fp e o T r (69)
B
S,.S s
- . _tBg 745 F
M, = o c, Fg + e Py
My = F,

/

The bars over Fy, By, Fy, Fr, Fg, ¥y andicate that these are-external forces
and moments, excluding the structural part. These quantities are listed below
in nondimensional form. Forces are nondimensionalized with respect to 1902/2
and moments by 1902.

o mmgmras . = T — -
Fy = m0%80%u + &) = Fi3Wg - B)] - mghFyg + R(Sg Gpy +T¢ Gyy)

F, = m0?2[0v + T, - Fy3(dg, - B)] - mglF,, + s‘a(sfoc.22 + Tg C32)
= mO27 [ 0 P I - N
By = m2[0v + e5 ~ Fyy(Tgq = W) - mgliyy + L(Sg Gy + Tg Gaa) 70)

I N VO N R )
FC = Q IiH:La —E- + m@< | (qu + Cl) ¥+ (tv + (‘.2) "'5"6“
1=1

o _ BE3 3333 _ _ 3J33
+ (fw + 03) W - '—'5"‘:—' (“T33_h) - mg —B—E—'I" G13M.m0—G23TmO+G335m0

L,
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3 \
BH ac dc
Fg = Q7 I,H 3+52(2+) 1+(sa,+)2
B 113 9B m u cl v C2
- 3=1
ac aJ aJ
—— 3 33 _ __ 933
tmTey) 55 g Usao h’] "™ g " ey ¥ MaTmg " s
3 > (70)
z : 9H ac Y con-
= - = 13 1 2
=
_ 3ty AT 3J
+(2,w+E)-———-—3-—3-(J - - FE > 4+ B,.M, -B,.T. +B S
37 26 36 33 & 3o 11%m) =~ P21tmy T P31°m
7
where
5 = mi? \
I
o= 529'
0
7%
t=1
_ Ci
&1
- h
h =7
* (71)

Jag = h+ Qu+ c))F 3 + (W0 + ¢,)F,, + (3w + ¢,)F,,

§=_S£_.

20°L
P -
T

Y ly2 o 2 2
S, = ¢ [VPO dVTD+3(UP Vp, = dUr Ve, + U3 - dUTO)

3c
- = (1 - 2x)w (v + 2U )
A a’%1,1"p P,
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ol

J13

Jos

Y 3
X 2 + Y + 3Up
6 [VPOVTO T2 ( Po' Ty POUTO) UreUT,

3c
- 5= (1~ 2x)w (Y + 20 )
A a’"1, TD T0
YExa 3
=T VPOVTO +'§' VTOUPU + vaUTO + 3UP0UT0

ve? 2
- W wlo (VTO + 2UT0)(1 - 8Xa + 16Xa )

Y 4
- § [VPUVTO + 3 (UP()VTO + VPOUTO) + ZUPOUTO

~ 30U
2c 0

Y 2 8 2 2 )
—{v2 - avs +2(u. v. - dU« Vv +2{vZ - au
° [PD Ty 3 ( Fo'Po To TO) (PU Ty

- 3u
2Zc Py

pacL”
I
£
L
QH; 4
Q(-JpgHgy + TygHy, + TudH,,)
Q(-T, 0y, + JyH,, + ZUGH,,) B
23721 13722 23 mPJJPP’GE \
- ORIGH o QU
G(¢Hy3 — Hyj) of pOOR

Q(9H,, + Hyy)
L@y, + VE,, + W)

L(GFy, + VF,y, + WFy,)

¢ (71)
con—-
cluded

)

Each of the force and moment components acting at the tip of the flexbeam are

known functions of u, v, w, T, B, and 6 which are unknown.

solve for

25

In order to
u, Vv, W, §, B, and © we assume a set of values uy, Vi, Wiy Lt



By, and 8.. We can then calculate the forces and moments F¢ and Mt based on
equations (69) and (70). The force Fg and moment Mg at the flexbeam root
are then determined from staties

FR=Ft

QF
!

=M, +r, XFy
> (72)

T, = (1 + ut)n1 + ven, + wing

JF
[

= M+ (v Fy - w Fmy + [wFy - (LHupFydn, + [(L+up)Fy - v Fylng J

At any station s along the deformed flexbeam length, the force ¥ and
moment M are

F = FR
M=M; -t XFy r (73)
r=[s+ ub(s)]nl + v(s)n2 + w(s)n3

/

where up(s) 1s the geometric component of wu(s) due to bending only. The
bendang moments i1n the principal axis system for the flexbeam cross section
u;, u,, and ug are

Ak

M--u
2
(74)

M - u, = BX

where A and B are flap and chord flexbeam bending stiffnesses made dimen-
sionless by IQOZQ. The curvatures are « and A, made dimensionless by 1/%.
The torsion moment 1s, according to reference 17,

a Et2 A+ B
M ul—[C-i-z-}'(D)T:IT (75)

where, from purely geometric considerations, 1t can be showm that curvatures
and slopes are related by the following-*

\
dB
‘ qs = "KCg + 1sg
dr Ksg + Ace
2 — 3 (76)
B
dae _ _ _ dg
dS—T (.:L‘.‘:SB J
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and where

o 4(A% + B?)

5D (for a rectangular cross section)

77)
T

F°u1

The torsion stiffness € 15 made dlmen51onless by 19022 and the axial
stiffness D 1s made dimensionless by 1IQ, 2/%. The longitudinal strain 1s

given by
2 2
- du dv dw L(av _l_
ey (@) (@) 3® ) 3R o

which 1s equal to, according to reference 17,

_T _ (A+BYzZ
€7D (D)Z (79)

We define u{s) as being

u(s) = ub(s) + ug(s) (80)

where ug 18 due to axial stretching and up 1s a purely geometric deflec-

taon due to bending only. We then set the strain due to bending equal to
zero and cbtain

du 2
._5s 1
€= ds 2 (ds ) (81)

In combination with equation (79), we have

‘/1——+(A';B)2 (82)

Also, from purely geometric consaderations (see the appendix of ref. 17)

du A
b
e _CBCC—l
dv _
95 = CBSC > (83)
dw _
ds B ]

Now, with anitial conditions ug=up=v=w=¢=8=808 for s=20
equations (76), (82), and (83) may be integrated numerically, using equa-—
tions (73) to (75) and (77), from s =0 to s = & + ug(s). This will yield

27
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a set of values for wu, v, w, £, B, and 6 at the tip of the flexbeam which
will be the same as the set of ug, Vg, Wg, Cg, By, and 8p assumed 1f and
only 1f the trail set is the correct set. Since the correct Uy, Vi, Wg, Tt,
B, and 6. are unknown, the following function may be minimized

min
Qs VpsWes  Z = (u-u)24 (- v )2+ (wow )2+ (C-g )2+ (B-B)2+ (8-6)2

CesBes0¢ (84)

using the modified Levenberg-Marquardt algorathm (ref. 18). The minimum
F = 0 18 the exact solution for the rotor equilibrium deflections.

7.2 PFlexbeam Stiffness Coefficients

a The external equilibrium generalized forces at the flexbeam tip Fus Fy
Fios fg, FB, Fg =Q, 0=1, 2, ..., 6 may be used to obtain the flexabilaty
coefficients for the flexbeam structure. The Q, may be perturbed in succes-
sion, starting with Q;, by a small number e This will yield six different
sets of the deflections u, v, w, %, 8, 6 =x,, 1 =1, 2, ..., 6 only
slightly different from the equilibrium values. Flexibilaty influence
coefficients are simply

x, @) + ) - % (Q))
= g (85)
1] £

The smaller value of & that 1s chosen, the closer the coefficients will be
to a pure linear perturbation. If the deflectlyns are calculated to N

-N/2 i -
significant drgits, € should be chosen at 10 to minimize both nonlinear:
ties and rruncation errors, simultaneously.

The stiffness matraix for the flexbeam 1s simply
[K] = [F71] (86)

When & = 0, the structural staiffness matrix is given by equation (58). The
numerical scheme described above gives this stiffness matrix to five signifi-

cant figures when & = 0 and exhibits a fully coupled system structurally,
for general flight conditions.

7.3 Transformation to Fixed System Ccordinates

_ _Although the perturbation equations are linearized in i, Gy, Wk, Lk
Bks B%, X, Y, 04, @Y and their first two time derivatives, the equations have
periodic coefficients in the form of sin Y and cos Py. These terms may be
eliminated wath the multiblade coordinate transformation (ref. 16) when b > 3.
It is necessary to retain only the rotor cyclic modes since the collective
modes couple only with vertical translarion and yaw rotation, which are also
decoupled from the retained degrees of freedom in hover. The differentzal

collective modes and the warping modes (for b 2 5) are uncoupled from all

28



other degrees of freedom in hover.

This reduces the

6b

rotor blade degrees

of freedom to only 12 (two cyclic modes per blade degree of freedom); thus a
total of 16 degrees of freedom remain for the coupled rotor-body analysis.
The 12 rotor degrees of freedom, in the oxder that the matrices below are

written,

are

2
b

o
i

oo
b
H

o'~
by
i}

onl N
o

oo
-
I

oo
=

oo
-
h

(el V)
i

o't
-
If

oo

Mo T

oo

T
u,

T4

-~

Yy

™Mo
ot
o

-
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<t
P

—

™Mo
-

Mo itMe
w =

i M o
™
o

=t

—

Mo
[ 4
.

—

Mo
Tt
p:

fanr

Mo
ot
.

-
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cos ¢k

sin wk

cos wk

sin ¢k

cos wk

s1in wk

cos wk

sin wk

cos wk

sin ¢k

cos wk

51n ¢k

(87)
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The use of the variables in equations (87) will eliminate all terms with
periodic coefficients an the body equations. The transformation is carried
out on each kth blade equation in the following manner*

b \
o, 5 2
F, =— F, cos iy =0
u, " b uy k
k=1
b
- 2 :E: -
Fy =+ F s1in = 0
uS b u Vi
k=1
' ( (88)
b
. gz.,
F = — F cos Py, = 0
6, b 0 k
k=1
b
- 2 . i
F, =— E Fyo sin ¢y, = 0
BS b By k J

i

1

where Fuc’ Fus’ e e ey ?ec, ng, FX’ Fys F¢x’ and FQY become linear equations

with constant coefficients 1n U¢, g, Ve, Vg, Wes Wgs Les Lss Bes Bgs X, Y,
ﬁx’ $ and their first two time derivatives upon substitution of equa-
tions (87). The details of these operations are omitted and only the final
results are given in the next section.

7.4 Linearized Perturbation Equations of Motion

The linearized perturbation equations of motion for infinitesimal motions
about equilibrium are expressed in matrix form as

[MI + MA]{X} + [GI + CA + CD]{}'(} + [KI + KS + k& + KA + KD]{X} = 0 (89)
where
[MI} Z mass matrix due to inertial forces, symmetric
[MA] S mass matrix due to aerodynamic forces
[GI] S gyroscopic matrix due to inertial forces, antisymmetric
[CA] = damping matrix due to aerodynamic forces

30



{C7] = damping matrix due to structural damping, dragonal

[K"] = stiffness matrix due to imertial forces, symmetric

—
~

IR
il

specified

I -
Thus, Ml,l is the U,
the above matrices are given below.

onal are given.

inertial term in the U, equation

stiffness matrix due to structural damping, antisymmetric

= stiffness matrix due to springs and structural forces, symmetric

= stiffness matrix due to gravitational forces, symmetric except as

The elements of
Only nonzerd elements are specified, for
matrices with symmetry or antisymmetry, only the terms on or above the diag-

Modifications to the above analysis for different pitch-control geome-
tries are described in appendices A to C.

I

mg2

3T,
K4
9T,
98
3¢,
)

me

ml

mf

~miF

miF; ,

miJ,,

miJ;,
i

My

31

I
My

T

My

I
My 13

mf ——

me ——

mi ——



mf ——
mg ——-
—mSLF31

mﬂJaz
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BGIJ BG:LJ
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1f1 1
3
_ 9T,
AR I
1=1
3 —
_ acl
m/ 58 a2
=]
3 3
_ ac, _
m g Jiz IinsHyy
1=1 1=1
3 3
m 38 J11 ~ SUPLPS
1=1 1=1
1
Mg,9
T
Mg 11
T
Mg 14
T
Mg 13
T
Mg 16
T
_M9,15
3 3 3
3E:L § —
m Yy + Il 1-
1=1 i=1 1=1
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I
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'Mla,ls

2 (Tx + ﬁfEZ)
b

3
+ GBw + 53)2]+ E I,1-1H
1=1
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2T 2T I 1
1y g x Gy .0 =G
Mie,16 = 5 * Mis 15 - 2,10 = 71,3
. - -l = ¢l )
G1,2 = 29M:1|:,1 G2,11 - G1,.12
1
T ~ I =@l
G1,3 = _Zng‘ZFsg G2,12 Gl,ll
I L T I
6] 5 = 20Wi%F, 2,15 = 61,16
- _ I I
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1

K?s,ls - gﬁg 5 Kie,13 = O

- K%n,is = 'Kfa,ls 3 K%s,1u =0 -
K%s,ls - "25(%J33 - ﬁﬁi)
K%G,IG = K?S,IS

Recall from section 5 2 that when the aircraft 1s airborne the parameter
g 1s given by NEO where

and N 1s the load factor = thrust/weight. When the aircraft is in "1-G"
hovering flight or in simulated hoveraing flight on a gimballed model test stand,
N=1 and E = E,- When the aircraft 1s in ground contact g 1§ given by

EO 1n all elements of [K8] except

g _ B -2
K13,16 = Kiy 15 b

where N £ 1.

All elements of [CD] and [KD] are zero except

D _ D _
Cy,7 = Cq,8 = %
p 2 D2
Ci3,13 =5 °x > Cuu,ie °1 %
D 2 D 2
C == . C = £
15,15 ~ b @, ° 16,16 b Qy

The above structural damping terms are derived in detail in appendix D.
The structural terms are

s R

21-1,23-1 K21,2J = Kij ) 1, =1, 2, ..., 6

The following elements of [KS] are zero except when the aireraft 1s 1in contact
with the ground:

S _ 8 = S _ 8 =
Kis,is " %0 R, =35 &
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that

that

that

that

3 and 4 of M
1s replaced by

5 and 6 of Mt
is replaced by

7 and 8 of MA
1s replaced by

9 and 10 of MA are 1dentical to rows 1 and 2, respectively, except

1s replaced by

are i1dentical to rows

P,.

are identical to rows

P3.

are 1dentical to rows

Qg/ﬁ.

0p/1.

»16 15 -

1 and 2, respectively, except

1 and 2, respectively, except

1 and 2, respectively, except

11 and 12 of MA are identical to rows 1 and 2, respectively, except

is replaced by

Qp/1.
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4,9

14,10
)
y

4,11

4,12

Rows 15 and 16

1}

It

i
s

3,9

212

3,11

M?u,la = "M?3,1u
M?u,ru = M?§;13
M?u,ls - "M?3,16
M?4,1s = MA13,15

of MA are identical to rows 13 and 14, respectively,

except that Py and Py are replaced by Qy and Qy, respectively.
3P 3P ap
A _ =9 1 1 572 L -
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ap 3P aP
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3y av.
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1,7 © 23 - R P S ; > .
» Bv., 3V, dorg oz P 9% av, 9T Bd,
A -
Cl,B - 29M?,7
5P 5P s, %Up_ap.  Vp gp 3H,. 3P
A - 1 1 1 0 0 71 = “T13 M
1,0 T M2yt s gy Y m g 58 a0 38 ov. " 3B g
p T Wy BUP BVP wy
A -
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02’3 - C?’7 c2,13 = C?,l#
- 02,9 = -G?,ro - ’Cé,lu = “C?’fg -
Cg,lo = C?’g Ci,ls = C?,IG
Ci,ll "C?,lz 02,16 = _C?,ls
ci,lz = ¢

Rows 3 and 4 of C are identical to rows 1 and 2, respectively, except
that P; 1s replaced by P

Rows 5 and 6 of CA are 1dentical to rows 1 and 2, respectively, except

that P, 1s replaced by P,.

Rows 7 and 8 of CA are 1dentical to rows 1 and 2, respectively, except

that P; 1s replaced by QC/E.

2

Rows 9 and 10 of CA are identical to rows 1 and 2, respectively, except
that P, 1s replaced by QB/Q.

Rows 11 and 12 of CA are identical to rows 1 and 2, respectively,
except that P, 1s replaced by Qg/%.

[ P o P 3P
A = X X — X = y
Cra,1 = HGan 3y ¥ Go1 5~ @ o5 (Fioflyy - FyHgy) + 2065 EE_]
| P T P P
i 5P 3P o 3P i
A - x y Y, =%y
C = 1{206,, — -Gy =+ & == (F,,Hy, - F,.H,)
13,2 31 31 21 12831 ~ FiqHgy
i : aU, 3V, o0, ]
s sl P . 3P, 9P, 3Py,
13,3 = *C32 Tt Gop T = 0 gam (Fpollyy - FyyHgy) + 2065, o=
s P T P P
[ P oP oP 9P i
A i x y Y. z°2y
Crg y = B|20G,, —=— - Gy, — - G,, —+ & —= (F, H,, - F,.H,,)
13,4 32 32 22 = (ool = Foplgy
> i BU? BUP BUT 3UP _
gl aP,  _ 3P _apy
13,5 7 F|0as gy * C2s gy @ 55;‘(F32H31 = F3Hgp) + 2065, a0,
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22 32 ' 12 L) 31 22 21
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1 P P
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A A A A

Cru,5 = Ci3,6 Ciy 11 = C13,12
C?q,s = —0?3’5 C?u,lz - '0?3,11
0?4,7 = C?a,s C?u,la B '0?3,11;
C?u,a = ‘8?3,7 0?4,14 = C?3,13
C?u,g = C1;3,,10 C?u,ls = '0?3,15
0?4,10 = 'C?3,9 C?h,ls = Cﬁlka,IS

1
Rows 15 and 16 of CA are 1dentical to rows 13 and 14, respectively,
except that P, end P, are replaced by Qyu and Qy.

y
A _— 3P, 3P, 2}
1,1 = W7 fom= (Fypllyy = FiqHgy) &+ = (Foly; = Fryllyy) + 065 —x
| °%p T P
[P P oP ,
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, 30 - NN PL S S LY
L°"p T P
5P 5P 9P
A _ == |71 1 = 1
Ky,g = 887 |50 (FooHyy = Fopllgy) + o= (Foplyy = FyyHyp) + 6y afJ]
L P T P
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1,4 BUP 32 3y 22 3l 22731 21734
s T P
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3u 3y 3u
- T P
A - 3P, 8P, )
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C aUP g BVP [ aml
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B au B Wy duy
au 3V
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Kg,e = K?,s Kg,ll = 'K?,lz
Kg,'/:‘Ki‘,s Ki,u =K§L,11
Kg,za:K?,? K2,15=K§‘,161
Kﬁ,g = "Kim Kg,ls = ~K‘i,15
Kg,lo = K?,g

Rows 3 and 4 of KA are 1dentical to rows 1 and 2, respectively, except
that P; 1s replaced by P,.

Rows 5 and 6 of KA are 1dentical to rows 1 and 2, respectively, except
that P, 1s replaced by Pj.

Rows 7 and 8 of KA are_identical to rows 1l and 2, respectively, except
that P; 1s replaced by QE/R.

Rows 9 and 10 of KA are identical to rows 1 and 2, respectively, except
that P; 1s replaced by QB/R.

Rows 11 and 12 of KA are identical to rows 1 and 2, respectavely,
except that P, 1s replaced by Qelﬂ
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P T P
oP 5P 3P
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K, o =K K, g, = K

15,9 = K310 14,12 13,11
_ A _ A

K?l},lo B K?a,s K14,15 13,16

14,11 13,12 14,16 13,15

Rows 15 and 16 of 1(A are identacal to rows 13 and 14, respectively,
except that Py and P are replaced by Q4 and Qy, respectively, and the fol-
lowing terms are added to the elements indicated:

—pO0g _po0 A
K‘;‘S,l PO0F, - PyOF . K KA

K?s,z POF) - PUFyg e K?s,z = ‘K?5,1
K?s,s =P, Fpp = BylFyy t .. K?s,3 = Ms,y
K?s,u = P00y - BOFyy k.. K?e,u = 'K?s,a
K?s,s = P, %Fgp - Pyl + . .. K%s,s = K?s,s
K?s,s = P, 0Fy - BByt L K?s,s = "Kl:s,s

The quantities appearing 1n the elements of the above matrices not defined
elsewhere in the report are defined as follows:

Jip = BF,, + (v + EZ)F31 - (aw + 63)13‘21

Joo = hF,, + (2w + EB)FII - (fu + EI)F31 ]

Jp1 = BFpy - (8% + TF,, + (1 + T)F,,
Jgp = EF32 + (24 + ¢)F,, - (a7 + g,)F
Tgy = EFal - (2T + TR, + (v + ¢,)F,,
M= bE + @ pAGE
oF ®00
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0 -
Py’ = SfOH21 + Tf0H31

0 - +
Py~ = Sgglay + Tg Hyp

0 -
B, = Sg Hyg + Ty Hy

Ames Research Center
Naticnal Aeronautics and Space Administration
and
Aeromechanics Laboratory
U.8. Army Aviation R & D Command
Ames Research Center, Moffett Field, Calaf. 94035, Jan. 1978
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APPENDIX A

FLEXTBLE TORQUE TUBE

-
1

The effect of a pitch-control system similar to that of the Boeing BMR
(ref. 9) can be easily incorporated into the analysis. This device has the
effect of placing an additional twisting moment at the tip of the flexbeam.
This moment is proportional to 6 - 8, where 6, is the control input (see
fig. 4). We assume that the torque tube 1s sufficiently flexible in bending
so that no bending moments are applied by the control system at the flexbeam
tip. With torsion stiffness Kg, the additrional moment in the equilibrium
generalized force expression is

fe=§e(e-eo)+ .. (A1)

where ﬁg = KelIﬂoz. By changing 8, any pitch angle that 1s desired can be
obtained from the iterative process described in the text. The stiffness
matrix 1s also modified so that

5 5

Ki1,11 = K212 = Keg T Ky (a2)
Equations (Al) and (A2) show the modifications necessary to account for a
flexible torque tube. -
ge 1B
AL BA
OB.IGTN()R QUMJlTY
OF PO
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APPENDIX B

CANTILEVER PITCH ARM WITH FLEXIBLE PITCH LINK

A pitch-control system with geometry similar to those of references 7
and 8 may be easily added to the analysis described in the text. In figure 5,
a schematic of this configuration 1s shown, and i1n figure 12 a more detailed
schematic of the pitech-link geometry s shown. Here the blade and flexbeam
are shown with g = Bg =g =u=v=w=7=8=0=1LCy =8Py, =86, =0. The
parameters u,, vy, w; define the position of the swashplate-end of the pitch
Iink S with respect to point 0 in the o, My, Tg ax1s system (there are
no k's, indicating that the geometry is the same for all k). The parameters
X1, ¥3» and z; define the pitch—arm/pitch-link junction J wath respect to
point 0 1n the ng"™, ny~, Ny axis system. Geometric comstraints may be for-
mulated by writing the position vector of P 1n two different ways One way
1s by the flexbeam tip through the pitch arm:

k k k k k

P/o k
T / = (1 + uk)nl + Vi + W, + xn, +-y1ny +zmn, (B1)

Another way 1s by the point 8 and through the pitch link

rP/O = ulnlk + vlnzk + W1n3k + (p0 + pk)(51n B, sin 6kn1k + cos My sin kazk

k
+ cos 5k93 ) (B82)

Here, all lengths are made dimensionless by £ and the pitch~link length 1s
Py (undeformed) + py (deformation) The angles uy and 6, define the orien-
tation of the pitch link, shown in figure 13. These equations yield geometric
constraints as follows:

k _ k k k 3
fy =14y + Ty + v, Ty + 2,75, - u, - (poi-pk)51n W, sin 6k =0

k k k k
fy = vy + x1T12 + lezz + le32 - v, - (p0 + pk)cos W, s1n 6k =0 r (B3)
£ k_ w, +x 'I‘k + vy Tk + z Tk ~w. — (p, +plcos §, =0

z k" *1t13 1723 1°33 17 W TPy k )

whﬁre ka 1s obtained by taking the dot product of (BL) and (B2) with nlk;
fg is obtained by taking the dot product of (B1) and (B2) with nzk, fzk 1s
obtained by taking the dot product of (BL) and (B2) with n,

These geometric constraints form relationships between the geometric vari-
ables and enable us to eliminate superfluous variables from the analysis.
Mexroviteh {(ref. 13) has shown that the generalized forces due to the con-
straints are
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k k k
k_, kO wk By k¥ ko _
aq, = Ay & v k z k 4 = uk’vk’ Vi b2
aqr Bqr 3qr
The Axk, Ayk, Ay k are Lagrange multipliers and the Cy k are the generalized
forces. Thus T
k
auk = Ay
k
= A
aVk v
_ 4 k
O['W'k - Az
_ k. k k k k
o, = xl(ly ¥ - T ) + yl()t TS, = A, Th ) (}\ ok
_ k k k i k
ot.Bk = -—(lx cck+ Ay sgk)(xlT13+Y1T23+le33
_ . k k Lk k k k k k
%, " Ax (leal - Z1Tz1) t Ay aTs2 - lezz) t A, (Y1T33
oy, = (p, + p, )sin ¢ (Aks:mu mlkcosuk)=0
Wy 0" Pk k\'y [
o = (p. + p, Yl—-cos & (k k sim f, + A k cos | ) + A k sin & ] =0
81 0 k k\'X k ¥y k z k
0, = —-A k sin 8§, - A k § A §
Py % Wy sin &y v cos u sin §; - A, cos §
2
Kp ) Kpﬁ
- 2
IQO
Here, aak = a”k = Pk - KPpk = ¢
neglected. From auk = aﬁk = apk - Kppye = 0, the Lagrange multipliers, which

B

k’ k’uk} k’pk (Bl“)

kk)

k
+ A X.Ch — 85 Y184 + 2.0 )
) Z [ 1 Sk Bk 1 ek 1 Bk.]

Kk (B5)

- Z.T

1723

0 because the mass and inertia of the link are

are the unknown reactions at the point P, are

—ﬁppk sin |y sin S

-Eppk cos Wy sin &

—Kppk cos Sk
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The relations (B6&) and (B3) are six relations between the twelve wvariables
Ups Vis W Gps Bk’ Bk, Uges 6k, Pis Axk, lyk, and Azk. Thus, the blade system
retains 1ts six degrees of freedom. The stheme for calculating the equilibrium
deflections needs to be modified slightly. Given uy, vy, Wy, X}s Vg Z7 a@nd -
Py and an estimate of u, V, w, ¢, B, and 8 we can caleculate W, 8§, p. equi-
librium components of 1ux, 6k, Pk, respectively, from (B3) and then A,W, AY )
and A, from (B6). Now the total generalized forces including o, Oy, ett.,
from (B5), are known. Integration along the flexbeam will yield slopes and
deflections to be included in the minimization scheme, equatzon (84). The
iteration may ineclude a variation in w., to achieve the desired pitch angle
or thrust as an extra independent varla%le 1n the minimization scheme.

The perturbation equations are obtained by expressing_equations (33)-(B6)

1n perturbation from and eliminating Axc, Axs’ AYC’ Ays, Ag s Azs’ Un, Ug,

e
Ves Vg» We, and Wg. This operation yields

[RTMR1{X} + [RTCRI{X} + [RTKR + D]{X} = 0 (B7)
where
() =+ 26 ‘
[cl = et +c® + P
(K] = [K* + K> + k& + & + k°]

T
{X} = !_]Jc’]'ls’sc)as’ pc’pS’Cc!Cs:BcjBssecsessstﬁ(bx!@yJ

R, R; O > (B8)
Rl=]l0 1, O

0 0 I,
[I,] = 4x4 identity matrix
[I;] = 6x6 1dentity matrix J
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-%%1 0 1R, 0 R, 0 ]

0 R; 0 R}, 0 Ry,

Ri‘l 0 R, 0 Ry O

. 1 =1, 2

0 Ry O Ry, 0 Ry,

Rjy O Ry 0 Ry O
|0 Ry 0 Ry, O R;‘i
Ty + 3Ty + 2175,
cg Ty + 9 Tp5 + 27T55)
21151 = N1Tg
—G Ty 3Ty + 2Ty
sg (T, 4 +v,T,, + z,T,.) 4 (B8)

con-—

21Ty9 = 7173, Eéﬁ"
0
—x;cg + sB(ylse + ZICB)
21Tp3 — 71133
(pg + p)cos v san &
(PO + p)sin u cos §
sin U sin 6
-(go + p)sin | sin 8
(PO + plcos p cos §
cos U sin § J
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[D,]

= —(p0 + p)sin §

= cos §
_ Dy 0
_0 Dy
[ 1
D11 0 Dy, 0
1 1
Dll 0 D12
1
) D22 0
Symmetric D;z
= (py + p)(ﬁpp + A, cos &)
=0
=0
= (py + PIK;p
=0
= - 1 1
AXRzl + Alel

- 1 1
Aszz + Alez

1 1
*lsza + Ales

= _ 1
= (J\xcC + Aysc)R32 + Az(cc

D, 0

0 D,

D, O

o D,

Dz O
D33
S

1 1
Ri, t+ SCRZZ)
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1
= ~(Agep + AysIREg + Az(cc¥{13 T S;F%*a)
s

A Tay +21Tg0) + Ay (0 Ty + 29T50) + 2,00 To5 1 21F54)
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APPENDIX C
SNUBBER AND PITCH ARM WITH FLEXIBLE PITCH LINK AND SNUBBER CONNECTION

For the case of a pitch arm and snubber as in the Sikorsky UTTAS tail
rotor {(ref., 6), the geometry may be treated as two flexible pitch links with
two pitch arms and two different sets of geometric variables: wuy, vy, wy, X,
Yis Z1» and pg.3 and Uy, Vo, Wp, X3, ¥, 29, and Po, The two dimensionless
flexibalities are K, and K2 and the deflections, analogous to appendix B,
are ulk, le, plk and uzk, sz, pzk. A typical configuration of this type 1s

shown in figure 6.

The mathematical development of the generalized forces and the iterative
equilibrium solution is identical with that of appendix B except that there
1s a respective contribution frem both piteh arms.

fil = lﬁ-uk-u14-xlT§14-le§14—zIT§1-(polﬁ-plk)51n ulk sin 51k =0 W
f%g I +X2T11{1 + y2lec1 + zlegl = (g, +p2k)sm u2k s sz -0
ete
0Luk = Agl + Aiz
ete L
o xl(h§1T¥1—-A§1T¥2)-PYI(A§IT51-l§1T32)4-zl(A§1T§1-ingz) (C1)
* % (Al;lelcl B }‘§le1{2) Ty, O‘I}EZlecl B "EZlecz) *2 (A§2T13c1 - }‘ilegz)
etc
hil = —sin ulk sin Slk Elplk 1 =1, 2
ete. J

Therefore, the equilibrium scheme 1s altered in a way similar teo that of
appendix B except that both pitch arms contribute. One pitch link will, of
course, change the pitch angle where the other one remains fixed as a snubber.

The perturbation equations are given by

[MI{x} + [c]{%} + [K + Q1{x} = © (C2)
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where

(x} = [ﬁcsﬁs’{'csﬁsaﬁc’ﬁs’5c’is’éc’és’éc’és’i’?’éx’??xﬁ
0 0] G ‘1
[l =j0 q,+Q, © |
0 0 0
. I 5 EII 0 g s, O | (€3
+ slT 52T ol o E3! ofjt s, Q0
0 o aoflo T
[Q.1 = [D,]4 1=1, 2

where the subscript 1 on the matrix [Dz] refers to subscripting all the
parameters in [D,] sub 1 (%3, ¥1, 23> Ag s A AZi, ete.) and similarly for

3

the following e

[s,] = -[R1, 1=1,2 |

[E.1=fAYcla] 1-=1,2

1 1 1 1 2
( (c4)
[A,] = [Ry], 1=1, 2 ,
[Cl] = [Dl]l 1:= 15 2 ) )

See appendix B for the definitzons of the matrices on the rlgﬁt—hand side of
equation (C4).
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APPENDIX D

STRUCTURAL DAMPING COEFFICIENTS

In section 5.5, the blade and body structural damping coefficients are
used 1n the analysis. We first consider the rotor blade for f = 0 1in vacuo
It 1s desirable to specaify a structural damping ratio i1solated blade chordwise

moticn. The single blade motion is given by

<

o o |{¥) |2z -eB
+ + =0 (D1)
0] Cc [ -0B 4B

<

—-2 -_—
mé msz

oy
1w
it

ﬁsz 1

where c¢ry 1s unknown. We wish to choose ¢y so that the motiom is critically
damped and then multiply by Ng, @ dimensionless number given by the struc-~
tural damping ratio. For critically damped motion we require that the eigen-—
values of (D1) be a pair of complex conjugates - * 1w and a pair of negative
real numbers -a, —a. The characteristic equation for such roots 1s

5“4-2(34—0)334-[(a4~0)24-2a04—m2]sz4-2[a0(a4-a)4-aw2]s4-a2(024-w2) =0 (D2)

The characteristic equation for equation (D1) 1s

st + PSCCSS + p232 + Pyc;S + Py = 0 (D3)
where
\
Pg T PIB
_ 128
pl—'_—
me2(1 - ﬁxbz)
= fig2 r (04)
P2 = pl 1 + mkxb +'j§—
b1

When the coefficients of equations (P2) and (D3) are equated, 1t can be shown
that

3at + pza2 - Py
¢, = 3 (b5)
2a Py
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where a® 1s the single real, positive root of

3p B, P PP
6 LY 22172 170
a° + a - + a -3 - =0 {D6)

It 1s difficult to achieve an accurate numerical solution, for small E, to
equations (D5) and (D6). An asymptotlc expansion, however, presents no pgob-
lem numeracally and yields a simple formula accurate to second order in &°

c, = Jﬁ[z + Wixy + E%i (1 - % ﬁxbz) + 0(13)] (®7)

which gives accuracy within 1% for 2 < 0.27.

The structural damping value 1s thus

-~ 2
N T o,
\/Ez+ﬁ2xb+93‘—-(1———)

€z = g 4 3

where typacally 0.005

HA

n;5003

For the body motion, we choose structural damping coefficients as if
% Y, &, and ¢y metions were uncoupled-

S L
x = 2'1;;1/1’(13,13}{13,13

0
|

S T
v - 2“yVK14,1uM14,14

!
|

S I
an;x Ki5,15M5,15

S I

Co. = 2Ms YKig 16Mi6,158

y y

H

Here ny, Ny n¢x, and n¢y are the body structural damping coefficients,

typieally 0.005 < ng, Ny> Ng_s Ng_ = 0.05
X Vi M
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Figure 1 - Rotorcraft fuselage model.
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{a} TOP VIEW
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(b} SIDE VIEW LATERALLY SYMMETRIC

Fagure 2 = Landing gear geometIy.

81



BLADE CENTER OF MASS
N“; A AERODYNAMIC CENTER AXIS

TWIST
X ¢ X.C AXIS

;*** L —— ¢ T /
vﬁh J v

T)v
<—xbt~>\ o iN:
/< L Io-
BLADE
FLEXBEAM

Figure 3.— Rotor blade configuration.
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Figure 4.- Flexible torque tube, Case II.
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= 3 FLEXBEAM
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Figure 5.~ Cantilever pitch arm, Case III.

FLEXBEAM

SNUBBER LINKAGE
SNUBBER ARM

BLADE
PITCH LINK

PITCH CONTROL
MOTION

PITCH ARM

Figure 6.- Cantilever pitch arm with snubber, Case IV.
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BLADE-FIXED
AXES

Figure 7.- Rotating rotor blade coordinate systems,

Figure 8.- Sequence of angles describing blade orientation.
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Figure 9.- Rotor blade airfoil section in general unsteady motion.

Figure 10.- Orientation of components of aerodynamic loadaing.
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Figure 11.- Longitudinal plane of body-spring configuration.
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Figure 12.- Detailed schematic pitch link configuration.

GINAL PAGE B
JE POOR QU

87



Figure 13.- Angles W, and §, describing piteh lank orientation.
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