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PREFACE-


The work described in this report was performed by the Earthand Space
 

Sciences, Systems, Telecommunications Science and Engineering, Control and
 

Energy Conversion, Applied Mechanics, and Information Systems Divisions of
 

the Jet Propulsion Laboratory for NASA Ames Research Center under NASA
 

OAST Program 790, "Space Systems Studies," Stanley R. Sadin, sponsor.
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ABSTRACT
 

A mntsion out of the planetary system, with launch about the year 2000,
 

could provide valuable scientific data as well as test some of the technology
 

for a later mission to another star. A mission to a star is not expected to
 

be practical around 2000 because the flight time with the technology then
 

available is expected to exceed 10,000 yr.
 

Primary scientific objectives for the precursor mission concern
 

characteristics of the heliopause, the interstellar medium, stellar distances
 

(by parallax measurements), low energy cosmic rays, interplanetary gas distri­

bution, and mass of the solar system. Secondary objectives include investiga­

tion of Pluto. Candidate science instruments are suggested.
 

The mission should extend to 500-1000 AU from the sun. A heliocentric
 

hyperbolic escape velocity of 50-100 km/s or more is needed to attain this
 

distance within a reasonable mission duration. The trajectory should be
 

toward the incoming interstellar wind. For a year 2000 launch, a Pluto encoun­

ter can be included. A second mission targeted parallel to the solar axis
 

would also be worthwhile.
 

The mission duration is 20 years, with an extended mission to a total
 

of 50 years. A system using 1 or 2 stages of nuclear electric propulsion was
 

selected as a possible baseline. The most promising alternatives are ultralight
 

solar sails or laser sailing, with the lasers in Earth orbit, for example.
 

The NEP baseline design allows the option of carrying a Pluto orbiter as a
 

daughter spacecraft.
 

Within the limited depth of this study, individual spacecraft systems
 

for the mission are considered, technology requirements and problem areas
 

noted, and a number of recommendations made for technology study and advanced
 

development. The most critical technology needs include attainment of 50-yr
 

spacecraft lifetime and development of a long-life NEP system.
 

iv
 



77-70
 

RECOMMENDATIONS FOR TECHNOLOGY DEVELOPMENT
 

FOR EXTRAPLANETARY MISSION
 

To permit an extraplanetary mission such as that described in this
 

report,to commence about the year 2000, efforts are recommended on the
 

following topics. In general, a study should be initiated first, followed
 

by development effort as indicated by the study.
 

First priority
 

Starting work on the following topics is considered of first priority,
 

in view of their importance to the mission and the time required for the
 

advance development.
 

1) Design and fabrication techniques that will provide 50-year space­

craft lifetime.
 

2) Nuclear electric propulsion with operating times of 10 years or more at
 

full power and able to operate at low power levels for attitude control and
 

spacecraft power to a total of 50 years.
 

3) Ultralight solar sails, including their impact upon spacecraft and
 

mission design.
 

4) Laser sailing systems, including their impact upon spacecraft and
 

mission design.
 

5) Detailing and application of spacecraft quality assurance and reli­

ability methods utilizing test times much shorter than the intended lifetime.
 

Second priority
 

Other topics that will require advance effort beyond that likely without
 

special attention include:
 

6) Spacecraft bearings and moving parts with 50-yr lifetime.
 
2
 

Neutral gas mass spectrometer for measuring concentrations of 10
­

7) 


0
-10- atom/cm3 , with 50-yr lifetime.
 

8) Techniques to predict long-time behavior of spacecraft materials from
 

short-time tests.
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9) Compatibility of science instruments with NEP.
 

10) Methods of calibrating science instruments for 50-yr lifetime.
 

11) Optical vs. microwave telecommunications with orbiting DSN.
 

12) Stellar parallax measurements in deep-space.
 

FOR STAR MISSION
 

For a star mission, topics which warrant early study include:
 

13) Antimatter propulsion.
 

14) Propulsion alternatives for a star mission.
 

15) Cryogenic spacecraft.
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INTRODUCTION
 

BACKGROUND
 

Even before the first earth satellites were launched in 1957, there
 

was popular interest in the possibility of spacecraft missions to other
 

stars and their planetary systems. As space exploration has progressed
 

to the outer planets of the solar system, it becomes appropriate to begin
 

to consider the scientific promise and engineering difficulties of mission
 

to the stars and, hopefully, their accompanying planets.
 

In a conference on "Missions Beyond the Solar System", organized by
 

L. D. Friedman and held at JPL in August 1976, the idea of a precursor
 

mission out beyond the planets, but not nearly to another star, was
 

suggested as a means of bringing out and solving the engineering pro­

blems that would be faced in a mission to a star. At the same time, it
 

was recognized that such a precursor mission, even though aimed primarily
 

at engineering objectives, should also have significant scientific objec­

tives.
 

Subsequently, in November 1976, this small study was initiated to
 

examine a precursor mission and identify long lead-time technology develop­

ment which should be initiated to permit such a mission. This study was
 

funded by the Study, Analysis, and Planning Office (Code RX) of the NASA
 

Office of Aeronautics and Space Technology.
 

STUDY OBJECTIVE
 

The objective of the study was to establish probable science goals,
 

mission concepts and technology requirements for a mission extending from
 

outer regions of the solar system to interstellar flight. An unmanned
 

mission was intended.
 

STUDY SCOPE
 

The study was intended to address science goals, mission concepts,
 

and technology requirements for the portion of the mission outward from
 

the outer portion of the planetary system.
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Because of the limited funding available for this study, it was
 

originally planned that the portion of the mission between the earth
 

and the outer portion of the planetary system would not be specifically
 

addressed; likewise, propulsion concepts and technology would not be
 

included. Problems encountered at speeds approaching that of light were
 

excluded for the same reason. In the course of the study, it became
 

clear that these constraints were not critical, and they were relaxed,
 

as indicated later in this report.
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STUDY APPROACH
 

The study effort consisted of two tasks. Task 1 concerned science
 

goals and mission concepts, Task 2 technology requirements.
 

TASK I
 

In Task 1, science goals for the mission were to be examined, and
 

the scientific measurements to be made. Possible relation of the mission
 

to the separate effort on Search for Extraterrestrial Intelligence was
 

also to be considered. Another possibility to be examined was that of
 

using the data, in reverse time sequence, to examine a star and its sur­

roundings (in this case, the solar system) as might be done from an
 

approaching spacecraft.
 

Possible trajectories would be evaluated with respect to the inter­

action of the direction of the outward asymptote and the speed with the
 

science goals. A very limited examination might be made of trajectories
 

within the solar system and accompanying propulsion concepts to assess
 

the feasibility of the outward velocities considered.
 

During the study, science goals and objectives were derived by series
 

of conversations and small meetings with a large number of scientists.
 

Most of these were from JPL, a few elsewhere. Appendix B gives their
 

names.
 

The trajectory information was obtained by examination of pertinent
 

work done in other studies and a small amount of computation carried out
 

specifically for this study.
 

TASK 2
 

In this task, technology requirements that appear to differ signi­

ficantly from those of missions within the solar system were to be identi­

fied. These would be compared with the projected state-of-the-art for
 

the year 2000 ± 15. It was originally planned that requirements associated
 

with propulsion would be addressed only insofar as they interact with power
 

or other systems.
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This task was carried out by bringing together study team partici­

pants from each of the technical divisions of the Laboratory. (Partici­

pants are listed in Appendix A-.) Overal-i concepts were developed and
 

discussed at study team meetings. Each participant obtained inputs from
 

other members of his division on projected capabilities and development
 

needed for individual subsystems. These were iterated at team meetings.
 

In particular, several iterations were needed between propulsion and tra­

jectory calculations.
 

STAR MISSION
 

Many of the contributors to this study, both scientific and engineer­

ing, felt an actual star mission should be considered. Preliminary exam­

ination indicated, however, that the hyperbolic velocity attainable for
 

solar system escape during the time period of interest (year 2000 ± 15)
 

was of the order of 102 km/s or 3 x 109 km/year. Since the nearest star
 
013
 

is at a distance of 4.3 light years or about 4 x 10 km, the mission dur­

ation would exceed 10,000 years. This did not seem worth considering for
 

two reasons.
 

First, attaining, and especially establishing, a spacecraft life­

time of 10,000 years by the year 2000 is not considered feasible. Secondly,
 

propulsion capability and hence hyperbolic velocity attainable is expected
 

to increase with time. Doubling the velocity should take not more than
 

another 25 years of work, and would reduce the mission duration to only
 

5000 years. Thus, a spacecraft launched later would be expected to arrive
 

earlier. Accordingly, launch to a star by 2000 ± 15 does not seem reasonable.
 

For this reason, a star mission is not considered further in the body
 

of this report. A few thoughts which arose during this study and pertain
 

to a star mission are recorded in Appendix C. It is recommended that a
 

subsequent study address the possibility of a star mission starting in
 

2025, 2050, or later, and the long lead-time technology developments that
 

,will be needed to permit this mission.
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SCIENTIFIC OBJECTIVES AND REQUIREMENTS
 

Preliminary examination of trajectory and propulsion possibilities
 

indicated that a mission extending to distances of some hundred or per­

haps a few thousand AU from the sun with a launch around the year 2000
 

was reasonable. The following science objectives and requirements are
 

considered appropriate for such a mission.
 

SCIENTIFIC OBJECTIVES
 

Primary Objectives
 

1) Determination of the characteristics of the heliopause, where the 

solar wind presumably terminates against the incoming interstellar 

medium. 

2) Determination of the characteristics of the interstellar medium. 

3) Determination of the stellar and galactic distance scale, through 

measurements of the distance to nearby stars. 

4) Determination of the characteristics of cosmic rays at energies 

excluded by the heliosphere. 

5) Determination of characteristics of the solar system as a whole, 

such as its interplanetary gas distribution and total mass. 

Secondary Objectives
 

i) 	 Determination of the characteristics of Pluto and its satellites
 

and rings, if any. If there had been a previous mission to Pluto,
 

this objective would be modified.
 

2) Determination of the characteristics of distant galactic and extra­

galactic objects.
 

3) Evaluation of problems of scientific observations of another solar
 

system from a spacecraft.
 

TRAJECTORY REQUIREMENTS
 

The primary science objectives necessitate passing through the helio­

pause, preferably in a relatively few years after launch to increase the
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reliability of data return. Most of the scientists interviewed preferred
 

a mission directed toward the incoming interstellar gaswhere the helio­

pause is expected to be closest and most well defined. The "upwind"
 

direction with respect to neutral interstellar gas is approximately R.A.
 

250', Decl - 160 (Weller and Meier, 1974; Ajello, 1977). (See Fig. 1.
 

The sun's motion with respect to interstellar charged particles and mag­

netic fields is not known.) Presumably any direction within, say, 400
 

of this would be satisfactory. A few scientists preferred a mission
 

parallel to the sun's axis (perpendicular to the ecliptic), believing
 

that interstellar magnetic field and perhaps particles may leak inward
 

further along this axis. Some planetary scientists would like the mis­

sion to include a flyby or orbiter of Pluto, depending on the extent to which
 

Pluto might have been explored by an earlier mission. Although a Pluto flyby
 

is incompatible with a direction perpendicular to the ecliptic, it happens
 

that in the period of interest (arrival around the year 2005) Pluto will
 

lie almost exactly in the "upwind" direction mentioned, so an "upwind"
 

trajectory could include a Pluto encounter.
 

The great majority of scientists consulted preferred a trajectory
 

that would take the spacecraft out as fast as possible. This would mini­

mize time to reach the heliopause and the interstellar medium. Also, it
 

would, at any time, provide maximum earth-S/C separation as a base for
 

optical measurements of stellar parallax. A few scientists would like
 

to have the S/C go out and then return to the solar system to permit
 

evaluating and testing methods of obtaining scientific data with a
 

future S/C encountering another solar system. Such a return would,
 

roughly, halve the duration of the outward portion of the flight for
 

any fixed mission duration. Also, since considerable propulsive energy
 

would be required to "stop and turn around", this approach would con­

siderably reduce the outward hyperbolic velocity attainable. These two
 

effects would greatly reduce the maximum distance that could be reached
 

for a given mission duration.
 

As a "strawman mission", it is recommended that a no-return trajec­

tory with an asymptote near R.A. 2500, Decl -15o and a flyby of Pluto be
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considered, with a hyperbolic excess velocity of 40-90 km/s or more.
 

Higher velocities should be used if practical. Propulsion should be
 

designed to avoid interference with scientific measurements and should
 

be off when mass measurements are to be made.
 

A number of scientific observations (discussed below) would be
 

considerably improved if two spacecraft, operating simultaneously, were
 

used, with asymptotic trajectories at approximately right angles to
 

each other. Thus, use of a second spacecraft, with an asymptotic tra3ec­

tory approximately parallel to the solar axis, is worthwhile scientifically.
 

SCIENTIFIC MEASUREMENTS
 

Heliopause and Interstellar Medium
 

Determination is needed of the characteristics of the solar wind
 

just inside the heliopause, of the heliopause itself, of the accompanying
 

shock (if one exists), and of the region between the heliopause and the
 

shock. The location of the heliopause is not known; estimates now tend
 

to center at about 100 AU from the sun. (As an indication of the uncer­

tainty, estimates a few years ago ran as low as 5 AU.)
 

Key measurements to be made include magnetic field, plasma proper­

ties (density, velocity, temperature, composition, plasma waves) and
 

electric field. Similar measurements, extending to low energy levels,
 

are needed in the interstellar medium, together with measurements of the
 

properties of the neutral gas (density, temperature, composition of atomic
 

and molecular species, velocity) and of the interstellar dust (particle
 

concentration, particle mass distribution, composition, velocity). The
 

radiation temperature should also be measured.
 

The magnetic, electric, and plasma measurements would require only
 

conventional instrumentation, but high sensitivity would be needed. Plasma
 

blobs could be detected by radio scintillation of small sources at a wave­

length near 1 m. Radiation temperature could be measured with a radiom­

eter at wavelengths of 1 cm to 1 m, using a detector cooled to a few
 

Kelvins. Both in-situ and remote measurements of gas and dust properties
 

are desirable. In-situ measurements of dust composition could be made
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by an updated version of an impact-ionization mass spectrometer. In-situ
 

measurements of ions could be made by a mass spectrometer and by a plasma
 

analyzer. In-situ measurements of neutral gas composition would probably
 

require development of a mass spectrometer with greater sensitivity and
 

signal/noise ratio than present instruments. Remote measurements of gas
 

composition could be made by absorption spectroscopy, looking back toward
 

the sun, Of particular interest in the gas measurements are the ratios
 
/1HH/H,Hele;tecnetofN,0adifpsbe+H/H2/H+ , and if possible ofD/i He/H, He3/He4; the contents of C, N,
, 


Li, Be, B; and the flow velocity. Dust within some size range could be
 

observed remotely by changes in the continuum intensity.
 

Stellar and Galactic Distance Scale
 

Present scales of stellar and galactic distance are probably uncer­

tain by 20%. This in turn leads to uncertainties of 40% in the absolute
 

luminosity (energy production), the quantity which serves as the funda­

mental input data for stellar model calculations. Uncertainties in galactic
 

distances make it difficult to provide good input data for cosmological
 

models.
 

The basic problem is that all longer-range scales depend ultimately
 

on the distances to Cepheid variables in nearby clusters, such as the
 

Hyades and Pleiades. Distances to these clusters are determined by sta­

tistical analysis of relative motions of stars within the clusters, and
 

the accuracy of this analysis is not good. With a baseline of a few
 

hundred AU between S/C and earth, triangulation would provide the dis­

tance to nearby Cepheids with high accuracy. This will require a camera
 

with resolution of a fraction of an arc second, implying an objective
 

diameter of 30 cm to 1 m. Star position angles need not be measured
 

relative to the sun or earth line, but only with respect to distant
 

stars in the same image frame. To reduce the communications load, only
 

the pixel coordinates of a few selected objects need be transmitted to
 

earth.
 

Cosmic Rays
 

Measurements should be made of low energy cosmic rays, which the
 

solar magnetic field excludes from the heliosphere. Properties to be
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measured include flux, spectrum, composition, and direction. Measurements
 

should be made at energies below 10 MeV and perhaps down to 10 keV or
 

lower. Conventional instrumentation should be satisfactory.
 

Solar System as a Whole
 

Determinations of the characteristics of the solar system as a
 

whole include measurements of neutral and ionized gas and of dust. Quan­

tities to be measured include spatial distribution and the other proper­

ties mentioned above.
 

Column densities of ionized material can be observed by low fre­

quency radio dispersion. Nature, distribution and velocity of neutral
 

gas components and some ions can be observed spectroscopically by fluores­

cence under solar radiation. To provide adequate sensitivity, a large
 

objective will be needed. Continuum observation should show the dust
 

distribution.
 

The total mass of the solar system should be measured. This could
 

be done through dual frequency radio doppler tracking.
 

Observations of Distant Objects
 

Observations of more distant objects should include radio astronomy
 

observations at frequencies below 1 kHz, below the plasma frequency of the
 

interplanetary medium. This will require a VLF receiver with a very long
 

dipole or monopole antenna.
 

Also, both radio and gamma-ray events should be observed and timed.
 

Comparison of event times on the S/C and at earth will indicate the direc­

tion of the source.
 

In addition, the galactic hydrogen distribution should be observed
 

by UV spectrophotometry, outside any local concentration due to the sun.
 

Pluto
 

If a Pluto flyby is contemplated, measurements should include optical
 

observations of the planet to determine its diameter, surface and atmos­

phere features, and an optical search for and observations of any satellites
 

or rings. Atmospheric density, temperature and composition should be measured,
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and nearby charged particles and magnetic fields. Surface temperature and
 

composition should also be observed. Suitable instruments include a TV
 

camera, infrared radiometer, ultraviolet/visible spectrometer, particles
 

and fields instruments, infrared spectrometer.
 

For atmospheric properties, UV observations during solar occultation
 

(especially for H and He) and radio observations of earth occultation should
 

be useful.
 

The mass of Pluto should be measured: radio tracking should provide
 

this.
 

If a Pluto orbiter is included in the mission, measurements should
 

also include surface composition, variable features, rotation axis, shape,
 

and gravity field. Additional instruments should include a gamma-ray
 

spectrometer and an altimeter.
 

Simulated Stellar Encounter
 

If return to the solar system is contemplated, as a simulation of a
 

stellar encounter, observations should be made, during approach, of the
 

existence of possible stellar companions and planets, and later of satel­

lites, asteroids, and comets, and of their characteristics. Observations
 

of neutral gas, dust, plasma, and energetic emissions associated with the
 

star should be made, and any emissions from planets and satellites. Choice(s)
 

should be made of a trajectory through the approaching solar system (recog-_
 

nizing the time-delays inherent in a real stellar mission), the choice(s)
 

should be implemented, and flyby measurements made.
 

The approach measurements could probably be made using instruments
 

aboard for other purposes. For flyby, it would probably be adequate to
 

use data recorded on earlier missions rather than carry additional instru­

ments.
 

An alternative considered was simulating a stellar encounter by
 

"looking backwards while leaving the solar system and later replaying
 

the data backwards". This was not looked on with favor by the scientists
 

contacted because the technique would not permit making the operational
 

decisions that would be key in encountering a "new" solar system: locating
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and flying by planets, for example. "Looking backwards" at the solar system
 

is desired to give solar system data per se, as mentioned above. Stellar
 

encounter operations are discussed briefly in Appendix C.
 

Gravity Waves
 

A spacecraft at a distance of several hundred AU offers an opportunity
 

for a sensitive technique for detecting gravity waves. All that is needed
 

is precision 2-way radio doppler measurements between S/C and earth.
 

Measurements Not Planned
 

Observations not contemplated include:
 

1) Detecting the Oort cloud of comets, if it exists. No method of
 

detecting a previously unknown comet far out from the sun is recog­

nized unless there is an accidental encounter. Finding a previously
 

seen comet when far out would be very difficult because the nrbits
 

of long-period comets are irregular and their aphelia are hard to
 

determine accurately; moreover, a flyby, far from the sun, would
 

tell little about the comet and nothing about the Oort cloud. The
 

mass of the entire Oort cloud might be detectable from outside, but
 

the mission is not expected to extend the estimated 50,000 AU out.
 

If Lyttleton's comet model is correct, a comet accidentally encoun­

tered would be revealed by the dust detector.
 

2) 	 VLBI using an earth-S/C baseline. This would require very high rates
 

of data transmission to earth, rates which do not appear reasonable.
 

Moreover, it is doubtful that sources of the size resolved with
 

this baseline are intense enough to be detected and that the re­

quired coherence would be maintained after passage through inhomo­

geneities in the intervening medium. Also, with only 2 widely
 

separated receivers and a time-varying baseline, there would be
 

serious ambiguity in the measured direction of each source.
 

Advantages of Using Two Spacecraft
 

Use of two spacecraft, with asymptotic trajectories at roughly right
 

angles to each other, would permit exploring two regions of the heliopause
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(upwind and parallel to the solar axis) and provide significantly greater
 

understanding of its character, including the phenomena occurring near the
 

magnetic pole direction of the sun. Observations of transient distant
 

radio and gamma-ray events from two spacecraft plus the earth would permit
 

location of the source with respect to two axes, instead of the one axis
 

determinable with a single S/C plus earth.
 

CANDIDATE SCIENCE PAYLOAD
 

1) Vector magnetometer
 

2) Plasma spectrometer
 

3) Ultraviolet/visible spectrometers
 

4) Dust impact detector and analyzer
 

5) Low energy cosmic ray analyzer
 

6) Dual-frequency radio tracking (including low frequency with high
 

frequency uplink)
 

7) Radio astronomy/plasma wave receiver (including VLF; long antenna)
 

8) 'Massspectrometer
 

9) Microwave radiometer
 

10) Electric field meter
 

11) Camera (aperture 30 cm to 1 m)
 

12) Gamma-ray transient detector
 

If Pluto flyby or orbiter is planned:
 

13) Infrared radiometer
 

14) Infrared spectrometer
 

If Pluto orbiter is planned:
 

15) Gamma-ray spectrometer
 

16) Altimeter
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TRAJECTORIES
 

UNITS AND COORDINATE SYSTEMS
 

Units
 

Some useful approximate relations in considering an extraplanetary
 

mission are:
 

1 AU = 1.5 x 108km
 

1 light year = 9.5 x 1012 km = 6.3 x 104 AU
 

1 parsec = 3.1 x 10 1km = 2.1 x 105 AU = 3.3 light years
 

1 year = 3.2 x 107
 

- 6
1 km/s = 0.21 AU/yr = 3.3 x 10 c
 

where c = velocity of light
 

Coordinate Systems
 

For objects out of the planetary system, the equatorial coordin­

ate system using right ascension (a) and declination (6) is often more
 

convenient than the ecliptic coordinates, celestial longitude (X)
 

and celestial latitude (8). Conversion relations are:
 

sin S = cos s sin 6- sin s cos 6 sin a
 

cos 8 sin X = sin c sin 6 +cos 6 cos & sin a
 

CoS Cos A = Cos & Cos a
 

where s = obliquity of ecliptic = 23.50
 

DIRECTIONS OF INTEREST
 

Extraplanetary
 

,Most recent data for the direction of the incoming interstellar
 

neutral gas are:
 

Weller & Meier (1974):
 

Right ascension a = 2520
 

Declination 6 = -15'
 

Ajello (1977):
 
°
 Right ascension a = 252
 

Declination 6 = -17*
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Thus, these 2 data sources are in excellent agreement.
 

At a = 2500 the ecliptic is about 200S of the equator, so the wind
 

comes in at celestial latitude of about 4'. Presumably, it is only
 

a coincidence that this direction lies close to the ecliptic plane.
 

The direction of the incoming gas is sometimes referred to as the
 

"apex of the sun's way", since it is the direction toward which the sun
 

is moving with respect to the interstellar gas. The term "apex", how­

ever, conventionally refers to the direction the sun is moving relative
 

to nearby stars, rather than relative to interstellar gas. These two
 

directions differ by about 450 in declination and about 200 in right
 

ascension. The direction of the solar motion with respect to nearby
 

stars, and some other directions of possible interest, are shown in
 

Fig. 1.
 

Pluto
 

Table 1 gives the position of Pluto for the years 1990 to 2030.
 

Note that, by coincidence, during 2000 to 2005 Pluto is within a few
 

degrees of the direction toward the incoming interstellar gas (see Fig. 1).
 

At the same time it is near its perihelion distance, only 30-31 AU
 

from the sun.
 

SOLAR SYSTEM ESCAPE TRAJECTORIES
 

As a step in studying trajectories for extraplanetary missions, a
 

series of listings giving distance and velocity vs. time for parabolic
 

and hyperbolic solar system escape trajectories has been generated. These
 

are given in Appendix D and a few pertinent values extracted in Table 2.
 

Note, for example, that with a hyperbolic heliocentric excess velocity
 

V = 50 km/s, a distance of 213 AU is reached in 20 years and a distance
 

of 529 AU in 50 years. With V = 100 km/s, these distances would be
 

doubled approximately.
 

LAUNCHABLE MASS
 

Solar system escape missions typically require high launch energies,
 

referred to as C3, to achieve either direct escape or high flyby velocity
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TABLE 1
 

Position of Pluto, 1990-2030 

Position on 1 January 

Distance Right Declination, 
from ascension, 
sun, 

Year AU 0 0 

1990 29.58 227.03 -1.37 
1995 29.72 238.51 -6.30 
2000 30.12 249.98 -10.89 
2005 
2010 

30.78 
31.64 

261.39 
272.61 

-14.92 
-18.20 

2015 32.67 283.53 -20.69 
2020 33.81 294.02 -22.37 
2025 35.04 304.00 -23.32 
2030 36.31 313.37 -23.63 
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TABLE 2
 

Summary of Solar System Ballistic Escape Trajectories
 

Initial Condition: Circular Orbit at 1 AU
 

V. Distance (RAD), AU, Velocity (VEL), la/s
 
for Time (T) = for Time (T) =
 

km/s 10 yrs. 20 yrs. 50 yrs. 10 yrs. 20 yrs. 50 yrs.
 

0 25.1 40.4 75.3 8.4 6.6 4.9
 
1 25.2 40.6 76.0 8.4 6.7 4.9
 
5 27.0 45.1 90.4 9.5 8.0 6.7
 

10 32.1 57.0 126. 12.5 11.4 10.7
 
20 47.7 91.2 220. 20.9 20.5 20.2
 
30 66.5 130. 321. 30.4 30.2 30.1
 
40 86.5 171. 424. 40.3 40.1 40.1
 
50 107. 213. 529. 50.2 50.1 50.0
 
60 128. 254. 634. 60.1 60.1 60.0
 

(See Appendix D for detail)
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at a gravity assist planet. Table 3 gives projected C3 capabilities
 

in (km/s)2 for the three versions of the Shuttle/Interim Upper Stage
 

assuming net payloads of 300, 400, and 500 kg. It can be seen that as
 

launched mass increases the maximum launch energy possible decreases.
 

Conceivably higher C3' are possible through the use of in-orbit
 

assembly of larger IUS versions, or development of more powerful upper
 

stages such as the Tug. The range of C3 values found here will be used
 

in the study of possible escape trajectories given below.
 

DIRECT LAUNCH FROM EARTH
 

Direct launch from the Earth to a ballistic solar system escape
 

trajectory requires a minimum launch energy of 152.2 (cm/s) 2 . Table 4
 

gives the maximum solar system V obtainable (in the ecliptic plane) and
 

maximum ecliptic latitude obtainable (for a parabolic escape trajectory)
 

for a range of possible C3 .
 

The relatively low V and inclination values obtainable with direct
 

launch make it an undesirable choice for launching of extra-solar
 

probes as compared with those techniques discussed below.
 

JUPITER ASSIST
 

Jupiter Gravity Assist
 

Of all the planets, Jupiter is by far the best to use for gravity
 

assisted solar system escape trajectories because of its intense gravity
 

field. The geometry of the Jupiter flyby is shown in Figure 2. Assume
 

that the planet is in a circular orbit about the Sun with orbital 

velocity VJh = 13.06 km/s. 

The spacecraft approaches the planet with some relative velocity, 

Vin directed at an angle 0 to VJh, and departs along Vout after having, 


been bent through an angle a. The total bend angle
 

2
 
a = 2 arcsin [1/(I + V. r /p)]
in p
 

where r is the closest approach radius to Jupiter and v= GMJ, the
 
P
 

gravitational mass of Jupiter. Note that VJh Vin and Vout need not all
, 
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TABLE 3
 

Capabilities of Shuttle with Interim Upper Stage
 

Launch energy C3, 

(km/s) 2 

for indicated 

payload (kg) 

Launch Vehicle 300 400 500 

Shuttle/2-stage IUS 95.5 91.9 88.2 

Shuttle/3-stage IUS 137.9 131.0 124.4 

Shuttle/4-stage IUS 178.4 161.5 148.2 
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TABLE 4
 

Sblar System Escape Using Direct Ballistic Launch from Earth
 

Launch 

energy, C3, 


(km/s)2 


152.2 


155. 


160. 


165. 


170. 


175. 


Maximum 

hyperbolic 

excess velocity, 

V , in ecliptic 

plane
 

(km/s) 


0.00 


3.11 


5.15 


6.57 


7.73 


8.72 


Maximum
 
ecliptic latitude,
 
?,Max' for parabolic
 
trajectory
 

(0) 

0.00
 

2.73
 

4.53
 

5.80
 

6.84
 

7.74
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Fig. 2 Geometry of Jupiter Flyby
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be in the same plane, so the spacecraft can approach Jupiter in the
 

ecliptic plane and be ejected on a high inclination orbit. The helio­

centric velocity of the spacecraft after the flyby, Vsh is given by the
, 


vector sum of VJh and Vou . If this velocity exceeds approximately
t
 

1.414 VJh shown by the &ashed circle in Figure 2, the spacecraft
 

achieves by hyperbolic orbit and will escape the solar system. The
 

hyperbolic excess velocity is given by V2sh - 2p/r where V here is GMs,
 

the gravitation mass for the Sun, and r is the distance from the Sun,
 

5.2 astronomical units. The maximum solar system escape velocity will
 

be obtained when the angle between V and Vout is zero. This will
 

necessarily result in a near-zero inclination for the outgoing orbit.
 

Around this vector will be a cone of possible outgoing escape trajec­

tories. As the angle from the central vector increases the hyperbolic
 

excess velocity relative to the Sun will decrease. The excess velocity
 

reaches zero (parabolic escape orbit) when the angle between VJh and 

Vsh is equal to arc cos [(3 - V2 in/V 2 Jh)/2 "2. This defines then the 

maximum inclination escape orbit that can be obtained for a given V.in 
at Jupiter. Table 5 gives the dependence of solar system hyperbolic
 

escape velocity on V. and the angle between V and Vs. The maximum
in Jh s 
angle possible for a given V. is also shown.in
 

For example, for a V. at Jupiter of 10. km/s the maximum inclina­in 
tion obtainable is 31.41', and the solar system escape speed will be
 

13.03 km/s for an inclination of 100, 10.45 km/s for an inclination of
 

20'. Note that for V. 's greater than 20 km/s it is possible to eject
in
 

along retrograde orbits. This is an undesirable waste of energy however.
 

It is preferable to wait for Jupiter to move 1800 around its orbit when
 

one could use a direct outgoing trajectory and achieve a higher escape
 

speed in the same direction.
 

To consider in more detail the opportunities possible with Jupiter
 

gravity assist, trajectories have been found assuming the Earth and
 

Jupiter in circular, co-planar orbits, for a range of possible launch
 

energy values. These results are summarized in Table 6. Note that the
 

orbits with C3 = 180 (km/s)
2 have negative semi-major axes indicating
 

that they are hyperbolic. With the spacecraft masses and launch vehicles
 

discussed above it is thus possible to get solar syst6m escape velocities
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TABLE 5
 

Solar System Escape Using Jupiter Gravity Assist
 

Approach velocity relative
 
to Jupiter,Vin (km/s): 6.0 10.0 15.0 20.0 25.0 30.0
 

Angle between outbound
 
heliocentric velocity
 
of S/C, Vsh, and
 
of Jupiter, Jsh Solar system hyperbolic excess velocity, V., (km/s),
 

(0) for above approach velocity
 

0.0 4.70 13.81 21.12 27.42 33.28 38.90
 
5.0 4.01 13.61 21.00 27.32 33.19 38.82
 

10.0 13.03 20.63 27.02 32.93 38.58
 
15.0 12.00 20.01 26.53 32.50 38.19
 
20.0 10.45 19.13 25.85 31.91 37.65
 
25.0 8.12 17.99 24.97 31.16 36.97
 
30.0 3.93 16.57 23.91 30.25 36.15
 
40.0 12.73 21.25 28.01 34.13
 
50.0 6.47 17.89 25.28 31.69
 
60.0 13.75 22.13 28.92
 
70.0 8.32 18.65 25.94
 
80.0 14.86 22.83
 

90.0 10.65 19.70
 

Maximum angle between outbound heliocentric velocity
 
of S/C, Vsh and of Jupiter, Vjh,(), for above
, 

approach velocity
 

9.58 31.41 53.53 76.60 103.57 143.56
 

Note: * indicates unobtainable combination of V. and angle.

in
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TABLE 6 

Jupiter Gravity Assist versus Launch Energy 

Launch 
Energy, 

C3 2 
(kn/s) 

Transfer 
orbit 
semi-
major 
axis, 

(AU) 

Approach 
velocity 
relative 
to 
Jupiter, 
Vin 
(km/s) 

Angle 
between 
approach 
velocity 
and 
Jupiter 
heliocentric 
velocity,a, 

((0) 

Maximum Maximum 
Maximum heliocentric inclination 
bend hyperbolic to ecliptic 
angle escape for parabolic 
relative to velocity, trajectory, 
Jupiter, a, Vw, for Xmax, for 

for flyby flyby at flyby at 
at 1.1 R 1.1 R 1.1 R 

(0) (0) 

0.0 
90.0 

100.0 
110.0 
120.0 
130.0 
140.0 
150.0 
160.0 
180.0 
200.0 

3.23 
3.82 
4.63 
5.82 
7.74 

11.38 
20.98 

117.43 
-33.64 
-9.63 
-5.71 

6.55 
9.08 

10.98 
12.54 
13.88 
15.07 
16.14 
17.12 
18.03 
19.67 
21.13 

148.96 
127.34 
119.53 
115.10 
112.13 
109.95 
108.27 
106.91 
105.78 
103.99 
102.61 

153.85 

144.10 
137.02 
131.35 
126.59 
122.48 
118.86 
115.61 
112.67 
107.52 
103.11 

6.59 

12.22 
15.38 
17.72 
19.61 
21.21 
22.61 
23.87 
25.01 
27.02 
28.77 

13.66 

27.17 
35.81 
42.69 
48.58 
53.82 
58.61 
63.05 
67.22 
74.99 
82.22 
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on the order of 25 km/s in the ecliptic plane and inclinations up to
 

about 670 above the ecliptic plane using simple ballistic flybys of
 

Jupiter. Thus a large fraction of the celestial sphere is available
 

to solar system escape trajectories using this method.
 

Jupiter Powered Flyby
 

One means of improving the performance of the Jupiter flyby is to
 

perform a maneuver as the spacecraft passes through periapsis at Jupi­

ter. The application of this AV deep in the planet's gravitational
 

potential well results in a substantial increase in the outgoing Vout
 

and thus the solar system hyperbolic excess velocity V.. This technique
 

is particularly useful in raising relatively low Vin values incoming
 

to high outgoing Vout's. Table 7 gives the outgoing Vou t values at
 

Jupiter obtainable as a function of V. and AV applied at periapsis.
in
 

A flyby at 1.1 R is assumed. The actual Vou t might be fractionally smaller
 

because of gravity losses and pointing errors but the table gives a
 

good idea of the degrees of performance improvement possible.
 

Carrying the necessary propulsion to perform the AV maneuver would
 

require an increase in launched payload and thus a decrease in maximum
 

launch energy and V. possible at Jupiter. Table 8 gives the required
in
 
launched mass for a net payload of 300 kg after the Jupiter flyby, using
 

a space storable propulsion system with I of 370 seconds, and the
 sp
 
maximum C3 possible with a Shuttle/4-stage IUS launch vehicle, as a
 

function of AV capability at Jupiter. These numbers may be combined
 

with the two previous tables to find the approximate V. at Jupiter and
 
In
 

the resulting Vout *
 

Launch Opportunities to Jupiter
 

Launch opportunities to Jupiter occur approximately every 13 months.
 

Precise calculations of such opportunities would be inappropriate at
 

this stage in a study of extra-solar probe possibilities. Because
 

Jupiter moves about 330 in ecliptic longitude in a 13 month period, and
 

because the cone of possible escape trajectories exceeds 300 in half­

width for V above about 10 km/s, it should be possible to launch
 
out 

to any ecliptic longitude over a 12 year period by properly choosing
 

the launch date and flyby date at Jupiter. With sufficient V the
 
out
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TABLE 7
 

Jupiter Powered Flyby
 

Approach
 
velocity
 
relative to
Jupaie to 
 Outbound velocity relative to Jupiter, Vo,
Jupiter, Vin (kn/s), for indicated AV (km/s) applied 

at periapsis of 1.1 R. 

.50 1.00 1.50 2.00 2.50
 

6.0 9.66 12.30 14.48 16.38 18.11
 
8.0 11.03 13.41 15.44 17.25 18.90
 

10.0 12.57 14.71 16.59 18.29 19.86
 
12.0 14.22 16.16 17.00 19.50 20.99
 
14.0 15.96 17.72 19.33 20.83 22.24
 

16.0 17.76 19.37 20.86 22.37 23.61
 
18.0 19.59 21.08 22.47 23.80 25.06
 
20.0 21.46 22.83 24.14 25.39 26.00
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TABLE 8
 

Launched Mass for 300 kg Net Payload
 

after Jupiter Powered Flyby
 

AV at Required launched mass 

Jupiter for S/C Is = 370 s 


p 


(km/s) (kg) 


.0 300. 


.5 428. 


1.0 506. 


1.5 602. 


2.0 720. 


2.5 869. 


Maximum launch energy, C3 ,
 
attainable with
 
shuttle/4-stage IUS
 

(km/s) 2 

178.4
 

157.4
 

147.4
 

137.0
 

127.2
 

114.9
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high ecliptic latitudes would be available as described in an earlier
 

section. Flight times to Jupiter will typically be 2 years or less.
 

Venus-Earth Gravity Assist
 

One means of enhancing payload to Jupiter is to launch by way of
 

a Venus-Earth Gravity Assist (VEGA) trajectory. These trajectories
 
2


launch at relatively low C3 's, 15 - 30 (km/s) , and incorporate gravity
 

assist and AV maneuvers at Venus and Earth to send large payloads to
 

the outer planets. The necessary maneuvers add about 2 years to the
 

total flight time before reaching Jupiter. The extra payload could
 

then be used as propulsion system mass to perform the powered flyby
 

at Jupiter. An alternate approach is that VEGA trajectories allow use
 

of a smaller launch vehicle to achieve the same mission as a direct
 

trajectory.
 

POWERED SOLAR FLYBY
 

The effect of an impulsive delta-V maneuver when the spacecraft is
 

close to the Sun has been calculated for an extra-solar spacecraft. The
 

calculations are done for a burn at the perihelion distance of 0.1 AU,
 

for orbits whose V value before the burn is 0, 5, and 10 lan/s respective­

ly. Results are shown in Table 9. It can be seen that the delta-V
 

maneuver deep in the Sun's potential well can result in a significant
 

increase in V after the burn, having its greatest effect when the pre­

burn V is small.
 

The only practical means to get 0.1 from the Sun (other than with a
 

"super sail", discussed below) is a Jupiter flyby at a V relative to
 

Jupiter of 12 km/s or greater. The flyby is used to remove angular
 

momentum from the spacecraft orbit, and "dump" it in towards the Sun.
 

The same flyby used to add energy to the orbit could achieve V of 17
 

km/s or more without any delta-V, and upwards of 21 km/s with 2.5 km/s
 

of delta-V at Jupiter. The choice between the two methods will require
 

considerably more study in the future.
 

LOW-THRUST TRAJECTORIES
 

A large number of propulsion techniques have been proposed that do
 

not depend upon utilization of chemical energy aboard the spacecraft.
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TABLE 9
 

Powered Solar Flyby
 

AV Heliocentric hyperbolic excess velocity, V., (km/s),
 
(km/s) after burn 0.1 AU from Sun and initial V as indicated (km/s)
 

0 5 10
 

.1 5.16 7,19 11.25
 

.3 8,94 10.25 13.42
 

.5 11.55 12.59 15.29
 

1.0 16,35 17.10 19.19
 

1.5 20.05 20.67 22.42
 

2.0 23.17 23.71 25.26
 

2.5 25.93 26.41 27.82
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Among the more recent reviews pertinent to this mission are those
 

by Forward (1976), Papailiou et al (1975), and James et al (1976). A
 

very useful bibliography is that of Mallove et al (1977).
 

Most of the techniques provide relative low thrust and involve long
 

periods of propulsion. The following paragraphs consider methods that
 

seem the more promising for an extraplanetary mission launched around
 

2000.
 

Solar Sailing
 

Solar sails operate by using solar radiation pressure to add or
 

subtract angular momentum from the spacecraft (Garwin, 1958). The
 

basic design considered in this study is a helio-gyro of twelve
 

6200-meter mylar strips, spin-stabilized.
 

According to Jerome Wright (private communication), the sail is
 

capable of achieving spacecraft solar system escape velocities of 15-20
 

km/s. This requires spiralling into a close orbit approximately 0.3 AU
 

from the sun and then accelerating rapidly outward. The spiral-in
 

maneuver requires approximately one year and the acceleration outward,
 

which involves approximately 1-1/2 - 2 revolutions about the sun,
 

takes about 1-1/2 - 2 years, at which time the sail/spacecraft is
 

crossing the orbit of Mars, 1.5 AU from the sun, on its way out.
 

The sail is capable of reaching any inclination and therefore any
 

point of the celestial sphere. This is accomplished by performing a
 

"cranking" maneuver when the sail is at 0.3 AU from the sun, before
 

the spiral outward begins. The cranking maneuver keeps the sail in a
 

circular orbit at 0.3 AU as the inclination is steadily raised. The
 

sail can reach 900 inclination in approximately one year's time.
 

Chauncey Uphoff (private communication) has discussed the possi­

bility of a super sail capable of going as close as 0.1 AU from the sun,
 

and capable of an acceleration outward equal to or greater than the
 

sun's gravitational attraction. Such a sail might permit escape V's
 

on the order of 100 km/s, possible up to 300 km/s. However, no such
 

design exists at present and the possibility of developing such a sail
 

has not been studied.
 

Laser Sailing
 

Rather et al (1976) have recently re-examined the proposal (For­

ward, 1962, Marx, 1966,Moeckle, 1972) of using high energy lasers, rather
 

than sunlight, to illuminate a sail. The lasers could be in orbit
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around the earth or moon and powered by solar collectors.
 

Rather et al found that the technique was not promising for star
 

missions but could be useful for outer planet missions. Based on their
 

assumptions , a heliocentric escape velocity of 60 Io/s could be reached
 

with a laser output power of about 30 kW, 100 km/s with about 1500 kW,
 

and 200 Im/s with 20 MW. Acceleration is about 0.35 g and thrusting
 

would continue until the S/C was some millions of kilometers from earth.
 

Solar Electric Propulsion
 

Solar electric propulsion uses ion engines, where mercury or
 

other atoms are ionized and then accelerated across a potential gap
 

to a very high exhaust velocity. The electricity for generating the
 

potential comes from a large solar cell array on the spacecraft.
 

Current designs call for a 100 kilowatt unit which is also proposed
 

for a future comet rendezvous mission. A possible improvement to the
 

current design is the use of mirror "concentrators" to focus additional
 

sunlight on the solar cells at large heliocentric distances.
 

According to Carl Sauer (private communication) the solar powered
 

ion drive is capable of escape V.'s on the order of 10-15 km/s in the
 

ecliptic plane. Going out of the ecliptic is more of a problem because
 

the solar cell arrays cannot be operated efficiently inside about 0.6 AU
 

from the sun. Thus the solar electric drive cannot be operated
 

close iiito the sun for a cranking maneuver as can the solar sail.
 

Modest inclinations can still be reached through slower cranking or the
 

initial inclination imparted by the launch vehicle.
 

Laser Electric Propulsion
 

An alternative to solar electric propulsion is laser electric:
 

lasers, perhaps in earth orbit, radiate power to the spacecraft, which is
 

collected and utilized in ion engines. The primary advantage is that
 

higher energy flux densities at the spacecraft are possible. This would
 

permit reducing the receiver area and so, hopefully, the spacecraft
 

weight. To take advantage of this possibility, receivers that can
 

operate at considerably higher temperatures than present solar cells will
 

be needed. A recent study by Forward (1975) suggests that a significant
 

performance gain, as compared to solar electric, may be feasible.
 

6 2* Rather et al assumed an allowable flux incident on the sail of 10 W/m 
laser wavelength 0.5 pm, and laser beam size twice-the diffraction 
limit. For this calculation, 10 km2 of sail area and 20,000 kg total
 
mass were assumed.
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Nuclear Electric Propulsion
 

Nuclear electric propulsion (NEP) may use ion engines like solar
 

electric, or, alternatively, magnetohydrodynamic drive. It obtains
 

electricity from a generator heated by a nuclear fission reactor.
 

Thus, NEP is not powertlimited by increasing solar distance.
 

Previous studies indicate that an operational S/C is possible
 

by the year 2000 with power levels up to a megawatt (electric) or more
 

(James et al, 1976).
 

Preliminary estimates were made based on previous calculations for
 

a Neptune mission. Those indicated that heliocentric escape velocity
 

of 50-60 km/s can be obtained.
 

Fusion
 

With a fusion energy source, thermal energy could be converted to
 

provide ion or MHD drive and charged particles produced by the nuclear
 

reaction can also be accelerated to produce thrust.
 

A look at one fusion concept gave a V of about 70 ku/s. The
 

spacecraft weight was 3 x 106 kg. Controlled fusion has still to be
 

attained.
 

Bussard (1960) has suggested that interstellar hydrogen could be
 

collected by a spacecraft and used to fuel a fusion reaction.
 

Antimatter
 

Morgan (1975, 1976), James et al, (1976), and Massier (1977a and b)
 

have recently examined the use of antimatter-matter annihilation to
 

obtain rocket thrust. A calculation based on Morgan's concepts suggests
 

that a V over 700 Ion/s could be obtained with a mass comparable to
 

NEP.
 

Low Thrust Plus Gravity Assist
 

A possible mix of techniques discussed would be to use a low­

thrust propulsion system to target a spacecraft for a Jupiter gravity
 

assist to achieve a very high V escape. If for example one accelera­

ted a spacecraft to a parabolic orbit as it crossed the orbit of
 

Jupiter, the V. at Jupiter would be about 17.2 km/s. One could use
in
 

gravity assist then to give a solar system escape V. of 24 ku/s in the
 

ecliptic plane, or inclinations up to about 63' above the plane.
 

Powered swingby at Jupiter could further enhance both V and inclination.
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A second possibility is to use a solar sail to crank the space­

craft into a retrograde (1800 inclination) orbit and then spiral out to
 

encounter Jupiter at a V. of over 26 km/s. This would result in
an
 
escape V 's on the order of 30 km/s and inclinations up to 900, thus
 

covering the entire celestial sphere. Again, powered swingby would
 

improve performance but less so, because of the high Vin already present.
 

This method is somewhat limited by the decreasing bend angle possible
 

at Jupiter as Vin increases. With still higher approach velocities
 

the possible performance increment from a Jupiter swingby continues
 

to decrease.
 

Solar Plus Nuclear Electric
 

One might combine solar electric with nuclear electric, using solar
 

first and then, when the solar distance becomes greater and the solar
 

distance becomes greater and the solar power falls off, switching to NEP.
 

Possibly the same thrusters could be used for both. Since operating
 

lifetime of the nuclear reactor can limit the impulse attainable with NEP,
 

this combination might provide higher V than either solar or nuclear
 

electric single-stage systems.
 

CHOICE OF PROPULSION
 

Of the various propulsion techniques outlined above, the only
 

ones that are likely to provide solar system escape velocities above
 

50 km/s utilize either sails or nuclear energy.
 

The sail technique could be used with two basic options: solar
 

sailing, going in to perhaps 0.1 AU from the sun, and laser sailing.
 

In either case, the requirements on the sail are formidable. Figure 3
 

shows solar sail performance attainable with various spacecraft light­

ness factors (ratios of solar radiation force on the S/C at normal in­

cidence to solar gravitational force on the SIC). The sail surface
 

mass/area ratios required to attain various V values are listed in
 

Table 10. For a year 2000 launch, it may be possible to attain a sail
 

surface mass/area of 0.3 g/m2 , if the perihelion distance is constrained
 

to 0.25 AU or more (W. Carroll, private communication). This ratio
 

corresponds to an aluminum film about 100 nm thick, which would probably
 

have to be fabricated in orbit. With such a sail, a V of about 120 km/s
 

might be obtained.
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Fig. 3 Solar System Escape with Ultralight Solar Sails. 
Lightness factor X = (solar radiation force on S/C at normal 

incidence)/(solar gravitational force on S/C). 
From C. Uphoff (private communication). 
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TABLE 10
 

PERFORMANCE OF ULTRALIGHT SOLAR SAILS
 

Initial Heliocentric Lightness Sail Sail
 
Perihelion Excess Factor Load/ Surface
 
Distance Velocity, X Efficiency Mass/Area
 

Vw aFT/1 a F 

g/m2 g/m2
 
AU km/s 


0.25 60 0.8 2.0 0.9
 

0.25 100 1.8 0.85 0.4 

0.25 200 5.5 0.3 0.12
 

0.1 100 0.6 2.7 1.2
 

0.1 200 2.2 0.7 0.3
 

0.1 300 5.0 0.3 0.14
 

Notes:
 

X = (solar radiation force on S/C at normal (incidence)/(solar 
gravitational force on S/C) 

aT = (total S/C mass)/(sail area)
 

p = sail efficiency
 

= includes sail film, coatings, and seams; excludes structural
oF 

and mechanical elements of sail and non-propulsive portions
 

of S/C. Assumed here: 'IF= 0.5 aT; P = 0.9. 

Initial orbit assumed: semi-major axis = 1 x 108 1cm. Sail angle
 
optimized for maximum rate of energy gain.
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If the perihelion distance is reduced to 0.1 AU the solar radia­

tion force increases but so does the temperature the sail must withstand.
 

With a reflectivity of 0.9 and an emissivity of 1.0 the sail temperature
 

would reach 470C (740 K), so high temperature material would have to
 

be used. Further, according to Carroll (ibid), it may never be possible
 

to obtain an emissivity of 1.0 with a film mass less than 1 g/m2 ,
 

because of the emitted wavelength/thickness ratio. For such films an
 

emissivity of 0.5 is probably attainable; this would increase the tempera­

ture to over 6000 C (870 K). Carbon films can be considered, but they
 

would need a smooth highly reflective surface. It is doubtful a sail
 

surface mass/area less than 1 g/m2 could be obtained for use at 6000 C.
 
This sail should permit reaching V of 110 km/s: no better than for the
 

0.25 AU design.
 

For laser sailing, higher reflectivity, perhaps 0.99, can be
 

attained because the monochromatic incident radiation permits effective
 

use of interference layers (Carroll, ibid). Incident energy flux
 

equivalent to 700 "suns" (at 1 AU) is proposed, however. The high 

reflectivity coating reduces the absorbed energy to about the level of 

that for a solar sail at 0.1 AU, with problems mentioned above. V.'s up 

to 200 km/s might be achieved if the necessary very high power lasers 

were available in orbit.
 

-Considering nuclear energy systems, a single NEP stage using
 

fission could provide perhaps 60 to 100 km/s V. NEP systems have
 

already been the subject of considerable study and some advanced develop­

ment. Confidence that the stated performance can be obtained is there­

fore higher than for any of the competing modes. Using 2 NEP stages or
 

a solar electric followed by NEP, higher V could be obtained: one
 

preliminary calculation for 2 NEP stages (requiring 3 shuttle launches
 

or the year 2000 equivalent) gave V = 150 km/s.
 

The calculation for a fusion propulsion system indicates 30%
 

spacecraft velocity improvement over fission, but at the expense of
 

orders of magnitude heavier vehicle. The cost would probably be pro­

hibitive. Moreover, controlled fusion has not yet been attained, and
 

development of an operational fusion propulsion system for a year 2000
 

launch is questionable. As to collection of hydrogen enroute to refuel
 

a fusion reactor, this is further in the future and serious question
 

exists as to whether it will ever be feasible (Martin, 1972, 1973).
 

An antimatter propulsion system is even more speculative than a
 

fusion system and certainly would not be expected by 2000. On the other
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hand, the very rough calculations indicate an order of magnitude velocity
 

improvement over fission NEP without increasing vehicle mass. Also,
 

the propulsion burn time is reduced by an order of magnitude.
 

On the basis of these considerations, a fission NEP system was
 

selected as baseline for the remainder of the study. The very light­

weight solar sail approach and the high temperature laser sail approach
 

may also be practical for a year 2000 mission and deserve further
 

study. The antimatter concept is the most "far out", but promises orders
 

of magnitude better performance than NEP. Thus, in future studies
 

addressed to star missions, antimatter propulsion should certainly be
 

considered, and a study of antimatter propulsion per se is also warranted.
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MISSION CONCEPT
 

The concept which evolved as outlined above is for a mission out­

ward to 500-1000 AU, directed toward the incoming interstellar gas.
 

Critical science measurements would be made when passing through the
 

heliopause region and at as great a range as possible thereafter. The
 

location of the heliopause is unknown but is estimated as 50-100 AU.
 

Measurements at Pluto are also desired. Launch will be nominally in
 

the year 2000.
 

The maximum spacecraft lifetime considered reasonable for a year
 

2000 launch is 50 years. (This is discussed further, below). To
 

attain 500-1000 AU in 50 years requires a heliocentric excess velocity
 

of 50-100 km/s. The propulsion technique selected as baseline is NEP
 

using a fission reactor. Either 1 or 2 NEP stages may be used. If 2 NEP
 

stages are chosen, the first takes the form of an NEP booster stage and the
 

second is the spacecraft itself. The spacecraft, with or without an NEP
 

booster stage, is placed in low earth orbit by some descendant of the
 

Shuttle. NEP is then turned on and used for spiral earth escape. Use of
 

boosters with lower exhaust velocity to go to high earth orbit or earth
 

escape is not economical. The spiral out from low earth orbit to earth
 

escape uses only a small fraction of the total NEP burn time and NEP pro­

pellant.
 

After earth escape, thrusting continues in heliocentric orbit. A
 

long burn time is needed to attain the required velocity: 5 to 10 years are
 

desirable for single stage NEP (see below), and more than 10 years if 
two
 

NEP stages are used. The corresponding burnout distance, depending on the
 

design, may be as great as 200 AU or even more. Thus, propulsion may be on
 

past Pluto (31 AU from the sun in 2005) and past the heliopause. To measure
 

the mass of Pluto, a coasting trajectory is needed; thrust would have to be
 

shut off temporarily during the Pluto encounter. The reactor would continue
 

operating at a low level during the encounter to furnish spacecraft power.
 

Attitude control would preferably be by momentum wheels to avoid any distur­

bance to the mass measurements. Scientific measurements, including imagery,
 

would be made during the fast flyby of Pluto.
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After the Pluto encounter, thrusting would resume and continue until
 

nominal thrust termination ("burnout") of the spacecraft. Enough propel­

lant is retained at spacecraft burnout to provide attitude control (unload­

ing the momentum wheels) for the 50 year duration of the extended mission.
 

At burnout the reactor power level is reduced and the reactor provides
 

power for the spacecraft, including the ion thrusters used for attitude control.
 

A very useful add-on would be a Pluto Orbiter. This daughter spacecraft
 

would be separated early in the mission, at approximately the time solar
 

escape is achieved. Its flight time to Pluto would be about 12 years and its
 

hyperbolic approach velocity at Pluto about 8 km/s.
 

The orbiter would be a full-up daughter spacecraft, with enough chemical
 

propulsion for midcourse, approach, and orbital injection. It would have a
 

full complement of science instruments (including imaging) and RTG power
 

sources, and would communicate directly to Earth.
 

Because the mass of a dry NEP propulsion system is much greater than
 

that required for the other spacecraft systems, the added mass of a daughter
 

S/C has relatively little effect on the total inert mass and therefore relatively
 

little effect on propulsive performance. The mother NEP spacecraft would fly by
 

Pluto 3 or 4 years after launch, so the flyby data will be obtained at least
 

5 years before the orbiter reaches Pluto. Accordingly, the flyby data can be
 

used in selecting the most suitable orbit for the daughter-spacecraft.
 

If a second spacecraft is to be flown out parallel to the solar axis,
 

it could be like the one going toward the incoming interstellar gas, but
 

obviously would not carry an orbiter. Since the desired heliocentric escape
 

direction is almost perpendicular to the ecliptic, somewhat more propulsive
 

energy will be required than for the S/C going upwind, if the same escape
 

velocity is to be obtained. A Jupiter swingby may be helpful. An NEP booster
 

stage would be especially advantageous for this mission.
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MASS DEFINITION AND PROPULSION
 

The NEP system considered is similar to those discussed by Pawlik and
 

Phillips (1977) and by Stearns (1977). As a first rule-of-thumb approximation
 

the dry NEP system should be approximately 30-35 percent of the spacecraft
 

mass. A balance is then required between the net spacecraft and propellant,
 

with mission energy and exhaust velocity being variable. For the very high
 

energy requirements of the extraplanetary mission, spacecraft propellant
 

expenditure of the order of 40-60 percent may be appropriate. A booster
 

stage, if required, may use a lower propellant fraction, perhaps 30 percent.
 

Power and propulsion system mass at 100-140 km/s exhaust velocity will
 

be approximately 17 kg/kWe. This is based on a 500 kWe system with 20% 
con­

version efficiency and ion thrusters. Per unit mass may decrease slightly
 

at higher power levels and higher exhaust velocity. Mercury propellant is
 

.
desired because of its high liquid density, - 13.6 g/cm3 or 13,600 kg/m3
 

Mercury is also a very effective gamma shield. If an NEP booster is to be
 

used, it is assumed to utilize two 500 We units.
 

The initial mass in low earth orbit (M ) is taken as 32,000 kg for
 

the spacecraft (including propulsion) and as 90,000 kg for the spacecraft
 

plus NEP booster. 32,000 kg is slightly heavier than the 1977 figure for
 

the capability of a single shuttle launch. The difference is considered
 

unimportant, because 1977 figures for launch capability will be only of
 

historical interest by 2000. 90,000"kg for the booster plus S/C would re­

quire the year 2000 equivalent of three 1977 Shuttle launches.
 

Figure 4 shows the estimated performance capabilities of the propulsion
 

system for a single NEP stage.
 

A net spacecraft mass of approximately 1200 kg is assumed and may be broken
 

out in many ways. Communication with Earth is a part of this and may trade off
 

with on-board automation, computation and data processing. Support structure for
 

launch of daughter spacecraft may be needed. Adaptive science capability is also
 

possible. The science instruments may be of the order of 200-300 kg (including
 

a large telescope) and utilize 200 kg of radiation shielding (discussed below)
 

and in excess of 100 W of power. Communications could require as much as 1 kW.
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17 kg/kWe.


Ratio (propulsion system dry mass less tankage)/(power input to thrust 
subsystem) = 


a= 

= 32,000 kg.


M O = initial mass (in 
low Earth orbit) 


Mps/c = mass of a Pluto S/C separated when heliocentric escape velocity 
is attained (kg).
 

Ve = exhaust velocity (km/s).
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One to two kWe of auxiliary power is a first order assumption.
 

The Pluto Orbiter mass is taken as 500 kg plus 1000 kg of chemical
 

propellant. This allows a total AV of approximately 3500 m/s and should
 

permit a good capture orbit at Pluto.
 

The reactor burnup is taken to be the equivalent of 200,000 hours at
 

full power. This will require providing reactor control capability beyond
 

that in existing NEP concepts. This could consist of reactivity poison
 

rods or other elements to be removed as fission products build up, together
 

with automated power system management to allow major improvement in adaptive
 

control for power and propulsion functions. The full power operating time
 

is, however, constrained to 70,000 h (approximately 8 yr). The remaining
 

burnup is on reduced power operation for S/C power and attitude control.
 

At 1/3 power, this could continue to the 50 yr mission duration.
 

Preliminary mass and performance estimates for the selected system are
 

given in Table 11. These are for a mission toward the incoming interstellar
 

wind. The Pluto orbiter, separated early in the mission, makes very little
 

difference in the overall performance. The NEP power level, propellant
 

loading, and booster specific impulse were not optimized in these estimates;
 

optimized performance would be somewhat better.
 

According to Table 11, the performance increment due to the NEP booster
 

is not great. Unless an optimized calculation shows a greater increment,
 

use of the booster is probably not worthwhile.
 

For a mission parallel to the solar axis, a Jupiter flyby would permit
 

deflection to the desired 830 angle to the ecliptic with a small loss in VW.
 

(The approach V. at Jupiter is estimated to be 23 km/s).
 

in
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TABLE 11
 

Mass and Performance Estimates for Baseline System
 

(Isp and propellant loading not yet optimized)
 

Allocation 	 Mass kg
 

Spacecraft 1200
 

Pluto orbiter (optional) 1500
 

NEP (500 kWe) 8500
 

Propellant: Earth spiral 2100
 

Heliocentric 18100
 

Tankage 600
 

Total for 1-stage (Mo, earth orbit) 	 32000
 

Booster 58000
 

Total for 2-stage (M , earth orbit) 90000
 

Performance 	 1 Stage 2 Stages 

Booster burnout: 	 Distance 8 AU
 

Hyperbolic velocity 25 km/s
 

Time - 4 yr
 

Spacecraft burnout: 	 Distance (total) 65 155 AU
 

Hyperbolic velocity 105 150 km/s
 

Time (total) 8 12 yr
 

Distance in: 20 yr 370 410 AU
 

50 yr 1030 1350 AU
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INFORMATION MANAGEMENT
 

DATA GENERATION
 

In cruise mode, the particles and fields instruments, if reading
 

continuously, will generate 1 to 2 kb/s of data. Engineering sensors
 

will provide less. Spectrometers may provide higher raw data rates
 

but only occasional spectrometric observations would be needed. Star
 

TV, if run at 10 frames/day (exposures would probably be several hours)
 

at 108 b/frame would provide about 10 kb/s on the average. A typical
 

TV frame might include 10 star images whose intensity need be known
 

only roughly for identification. Fifteen position bits on each axis
 

and 5 intensity bits would make 350 b/frame or 0.04 b/s of useful data.
 

Moreover, most of the other scientific quantities mentioned would be
 

expected to change very slowly, so that their information rate will be
 

considerably lower than their raw data rate. Occasional transients
 

may be encountered, and in the region of the heliopause and shock rapid
 

changes are expected.
 

During Pluto flyby, data accumulates rapidly. Perhaps 101 bits,
 

mostly TV, will be generated. These can be played back over a period
 

of weeks or months. If a Pluto orbiter is flown, it could generate
 

1010 b/day-or more: an average of over 100 kb/s.
 

INFORMATION MANAGEMENT SYSTEM
 

Among the functions of the information handling system will be
 

storage and processing of the above data. The system compresses the data,
 

removing the black sky that will constitute almost all of the raw bits
 

of the star pictures. It will remove the large fraction of bits that
 

need not be transmitted when a sensor gives a steady or almost-steady
 

reading. It will vary its processing and the output data stream to
 

accommodate transients during heliopause encounter and other unpredic­

table periods of high information content.
 

The spacecraft computers system will provide essential support
 

to the automatic control of the nuclear reactor. It will also support
 

control, monitoring, and maintenance of the ion thrusters, and of the
 

attitude control system, as well as antenna pointing and command process­

ing.
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According to James et al (1976),the following performance is pro­

jected for a S/C information management system for a year 2000 launch:
 

Processing rate: 109 instruction/s 

Data transfer rate: -i09 b/s 

Data storage: 'i014 b 

Power consumption: 10 - 100 W 

Mass: -30 kg 

This projection is based on current and foreseen state of the art
 

and ignores the possibility of major breakthroughs. Obviously, if
 

reliability requirements can be met, the onboard computer can provide
 

more capability than is required for the mission.
 

The processed data stream provided by the information management
 

system for transmission to earth is estimated to average 20-40 b/s during
 

cruise. Since continuous transmission is not expected (see below), the
 

output rate during transmission will be higher.
 

At heliosphere encounter, the average rate of processed data is
 

estimated at 1-2 kb/s.
 

From a Pluto encounter, processed data might be several times 1010
 

bits. If these are returned over a 6-month period, the average rate
 

over these months is about 2 kb/s. If the data are returned over a
 

4-day period, the average rate is about 100 kb/s.
 

OPERATIONS
 

For a mission lasting 20-50 years, with relatively little happen­

ing most of the time, it is unreasonable to expect continuous DSN
 

coverage. For the long periods of cruise, perhaps 8 h of coverage per
 

month, or 1% of the time ,would be reasonable.
 

When encounter with the heliopause is detected, it might be possible
 

to increase the coverage for a while; 8 h/day would be more than ample.
 

Since the time of heliosphere encounter is unpredictable, this possi­

bility would depend on the ability of the DSN to readjust its schedule
 

quickly in near-real time.
 

For Pluto flyby, presumably continuous coverage could be provided.
 

For Pluto orbiters, either 8 or 24 h/day of coverage could be provided
 

for some months.
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DATA TRANSMISSION RATE
 

On the basis outlined above, the cruise data, at 1% of the time,
 

would be transmitted at a rate of 2-4 kb/s.
 

If heliopause data is merely stored and transmitted the same 1% of
 

the time, the transmission rate rises to 100-200 kb/s. An alternative
 

would be to provide more DSN coverage once the heliosphere is found.
 

If 33% coverage can be obtained, the rate falls to 3-7 kb/s.
 

For Pluto flyby, transmitting continuously over a 6-month period,
 

the rate is 2 kb/s. At this relatively short range, a higher rate, say,
 

30-100 kb/s, would probably be more appropriate. This would return the
 

encounter data in 4 days.
 

The Pluto orbiter requires a transmission rate of 30-50 kb/s at 24 h/day
 

or 90-150 kb/s at 8 h/day.
 

TELEMETRY
 

The new and unique feature of establishing a reliable telecommunica­

tions link for an extraplanetary mission involves dealing with the
 

enormous distance between the spacecraft (S/C) and the receiving stations
 

on or near Earth. Current planetary missions involve distances between
 

the S/C and receiving stations of tens of astronomical units (AU) at
 

most. Since the extraplanetary mission could extend this distance
 

to 500 or 1000 AU, appropriate extrapolation of the current mission
 

telecommunication parameters must be made. Ideally, this extrapolation
 

should anticipate technological changes that will occur in the next
 

20-25 years and accordingly incorporate them into the telecommunica­

tions system design. In trying to achieve this ideal we have developed
 

a "baseline" design that represents reasonably low risk. Other options
 

which could be utilized around the year 2000 but which may require
 

technological advancement (e.g. development of solid state X-band or
 

Ku-band transmitters) or may depend upon NASA's committing substantial
 

funds for telemetry link reconfiguration (e.g., construction of a space­

borne deep space receiver) are examined to determine how they might
 

affect link capabilities.
 

In the following paragraphs, the basic model for the telecommunica­

tions link is developed. Through the range equation, transmitted and
 

received powers are related to wavelength, antenna dimensions, and
 

separation between antennas. A currently used form of coding is
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assumed while some tracking loop considerations are examined. A baseline
 

design is outlined. The contributions and effects of various components
 

to link performance is given in the form of a "dB" table breakdown.
 

Other options of greater technological or funding risk are treated.
 

Finally, we compare capability of the various telemetry options with
 

requirements for various phases of the mission and identify the tele­

metry - operations combinations that provide the needed performance.
 

THE TELECOMMUNICATION MODEL
 

Range Equation
 

We need to know how much transmitted power is picked up by
 

the receiving antenna. The received power Pr is given approximately by
 

2 
PPr = Ar/(R)r i 

where
 

= product of all pertinent efficiencies, i.e., transmitter
 

power conversion efficiency, antenna efficiencies, etc.
 

P = power to transmitter
 

At,A = areas of transmitter, receiver antennas respectively
r 


X = wavelength of transmitted radiation
 

R = range to spacecraft
 

This received signal is corrupted by noise whose effective power spectral
 

density will be denoted by NO.
 

Data Coding Considerations
 

We are assuming a Viterbi (1967) coding scheme with constraint
 

length K = 7 and rate v = 1/3. This system has demonstrated quite good 

performance producing a bit error rate (BER) of 10- 4 when the informa­

tion bLt SNR is pD - 3.2 dB (Layland, 1970). Of course, if more suitable
 

schemes are developed in the next 20-25 years, they should certainly be
 

used.
 

Tracking Loop Considerations
 

Because of the low received power levels that can be expected
 

in this mission, some question arises as to whether the communication
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system should be coherent or non-coherent. The short term stability
 

of the received carrier frequency and the desired data rate R roughly
 

determine which system is better. From the data coding considerations
 

we see that
 

PDIN0 DR 2 RD (2) 

where PD is the power allocated to the data. Standard phase-locked
 D 2
 

loop analysis (Lindsey, 1972) gives for the variance a of the phase
 

error in the loop
 

2 
NO BL/PL (3) 

where PL is the power allocated to phase determination and BL is the
 

2
closed loop bandwidth (one-sided). In practice, a < 10- 2 for accep­

table operation, so
 

eL N0 Z 100 BL (4)
 

The total received power Pr (eq. (1) ) is the sum of P L and PD. To
 

minimize Pr/N subject to the constraint eqs. (2) and (4), we see that
 

a fraction
 

2%D
 

(5)
100 BL + 2 


of the received power must go into the data. Since.coherent systems are
 

3 dB better than non-coherent systems for binary signal detection
 

(Wozencraft and Jacobs, 1965), coherent demodulation is more efficient
 

whenever
 

Z 50 BL (6) 
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Current deep space network (DSN) receivers have BL 1
10 Hz, so for data
 

rates roughly greater than 500 bits/s coherent detection is desirable.
 

However, the received carrier frequencies suffer variations from
 

Doppler rate, atmospheric (ionospheric) changes, oscillator drifts, etc.
 

If received carrier instabilities for the extraplanetary mission are
 

sufficiently small so that a tracking loop bandwidth of 1 Hz is ade­

quate, then data rates greater than 50 bits/s call for coherent
 

demodulation.
 

These remarks are summarized by the relation between PrIN and
 

data rate R:
 

2R, + 100 BL for R > 50 BL (coherent system) ) (7) 
PrINo 4RD for << 50 BL (non-coherent system) 

This relation is displayed in Figure 5 where PrIN is plotted vs R for
 

BL having values 1 Hz and 10 Hz. In practice for R > 50 BL the
 

approach of PrIN to its asymptotic value of 2 R% could be made slightly
 

faster by techniques employing suppressed carrier tracking loops which
 

utilize all the received power for both tracking and data demodulation.
 

However, for this study these curves are sufficiently accurate to
 

ascertain Pr IN levels necessary to achieve desired data rates.
 

BASELINE DESIGN
 

Parameters of the System
 

For a "baseline" design we have tried to put together a system
 

that has a good chance of being operational by the year 2000. Con­

sequently in certain areas we have not pushed current technology but
 

have relied on fairly well established systems. In other areas, we
 

have extrapolated from present trends, but hopefully not beyond develop­

ments that can be accomplished over 20-25 years. This baseline design
 

will be derived in sufficient detail so that the improvement afforded
 

by the "other options" discussed in the next section can be more
 

easily ascertained.
 

First, we assume that received carrier frequency stabilities
 

allow tracking with a loop bandwidth BL 1 Ez. This circumstance
 

is quite likely if an oscillator quite stable in the short term is carried
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on the S/C, if the propulsion systems are not operating during trans­

mission at 1000 AU (Doppler rate essentially zero), and if the receiver
 

is orbiting Earth (no ionospheric disturbance). Second, we assume
 

data rates RD of at least 100 bits/s at 1000 AU or 400 b/s at 50 AU
 

are desired. From the discussion preceding eq. (6) and Figure 5 we
 

see this implies a coherent demodulation system with Pr/N to exceed
 

25 dB.
 

As a baseline we are assuming an X-band system (X = 3.55 cm) with 

40 watts transmitter power. We assume the receiving antenna is on Earth 

(if this assumption makes BL 11 Hz unattainable, then the value of Pr IN 

for the non-coherent system only increases by 1 dB) so the system noise 

temperature reflects this accordingly. 

Decibel Table and Discussion 

In Table 12 we give the dB contributions from the various para­

meters of the range eq. (1), loop tracking, and data coding. By design
 

the parameters of this table give the narrowest performance margins.
 

If any of the "other options" of the next section can be realized, per­

formance margin and data rate should correspondingly increase.
 

The two antenna parameters that are assumed require some
 

explanation. A current mission (SEASAT-A) has an imaging radar antenna
 

that "unfurls" to a rectangular shape 10.75 m x 2 m, so a 15 m diameter
 

spaceborne antenna should pose no difficulty by the year 2000. A 100 m
 

diameter receiving antenna is assumed. Even though the largest DSN
 

antenna is currently 64 m, an antenna and an array both having effec­

tive area _> (100 m)2 will be available in West Germany and in this country
 

in the next five years. Consequently, a receiver of this collecting
 

area could be provided for the year 2000.
 

OPTIONS
 

More Power
 

The 40 watts transmitter power of the baseline should be 

currently realizable being only a factor of 2 above the Voyager value. 

This might be increased to 0.5 - 1 kW, increasing received signal power 

by almost 10-15 dB, allowing (after some increase in performance margin) 

a tenfold gain in data rate: 1 kb/s at 1000 AU, 4 kb/s at 500 AU. The 

problem of coupling this added energy into the transmission efficiently may 

cause some difficulty and should definitely be investigated. 
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Table 12. BASELINE TELEMETRY AT 1000 AU
 

No. 	 Parameter Nominal Value
 

1. 	 Total Transmitter power (dBm) (40 watts) 
 46
 

2. 	 Efficiency (dB) (electronics and antenna losses) 
 -9
 

3. 	 Transmitting antenna gain (dB) (diameter = 15 m) 62
 

4. 	 Space loss (dB) (A/47R)2 -334
 

X = 3.55 cm, R = 1000 AU
 

5. 	 Receiving antenna gain (dB) (diameter = 100m) 79
 

6. 	 Total received power (dBm) (P r) -156
 

7. 	 Receiver noise spectral density (dBm/Hz) (N0 )
 

kT with T = 25 K -185
 

Tracking (if BL = 1 H4z is achievable)
 

8. 	 Carrier power/total power 9dB) -5
 

(100 B L/(100BL + 2 R))
 

9. 	 Carrier power (dBm) (6,+ 8) -161
 

10. 	 Threshold SNR in 2 BL (dB) 20
 

11. 	 Loop noise bandwidth (dB) (BL) 0
 

12. 	 Threshold carrier power (dBm) (7 + 10 + 11) -165 

13. 	 Performance margin (dB) (9 - 12) 4
 

Data Channel
 

14. 	 Estimated loss (waveform distortion, bit sync,
 

etc.) (B) -2
 

15. 	 Data power/total power (dB)* -2
 

(2RD/(100BL+ 2RD ) ) 

16. 	 Data power (dBm) (6 + 14 + 15)* -160
 

17. 	 Threshold data power (dBm) (7 + 17a + 17b) -162
 

-
a. Threshold PrT/N0 (BER = 10 4 3 

b. Bit rate (dB BPS) 	 20
 

18. 	 Performance margin (dB) (16 - 17)* 
 2
 

*If a non-coherent system must be used each of these values are reduced by 

approximately 1 dB. 
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Larger Antennas and Lower Noise Spectral Density
 

If programs calling for orbiting DSN station are funded, then
 

larger antennas operating at lower noise spectral densitites should be­

come a reality. Because structural problems caused by gravity at the
 

Earth's surface are absent, antennas even as large as 300 m in diameter
 

have been considered. Furthermore, assuming problems associated with
 

cryogenic amplifiers in space can be overcome, current work indicates
 

X-band and Ku-band effective noise temperatures as low as 10 K and 14 K
 

respectively (R. C. Clauss, private communication). These advances
 

would increase Pr/N by approximately 12-13 dB making a link at data
 

rates of 2 kb/s at 1000 AU and 8 kb/s at 500 AU possible.
 

Higher Frequencies
 

Frequencies in the Ku-band could represent a gain in directed
 

power of 5-10 dB over the X-band baseline, but probably would exhibit
 

noise temperatures 1-2 dB worse (Clauss, ibid) for orbiting receivers.
 

Also, the efficiency of a Ku-band system would probably be somewhat less
 

than that of X-band. Without further study, it is not apparent that
 

dramatic gains could be realized with a Ku-band system.
 

Frequencies in the optical or infrared potentially offer tre­

mendous gains in directed power. However, the efficiency in coupling
 

the raw power into transmission is not very high, the noise spectral
 

density is much higher than that of X-band, and the sizes of practical
 

antennas are much smaller than those for microwave frequencies. To
 

present these factors more quantitatively, Table 13 gives parameter con­

tributions to Pr and N . We have drawn heavily on Potter et al (1969) and 

on M. S. Shumate and R. T. Menzies (private communication) to compile 

this table. We assume an orbiting receiver to eliminate atmospheric 

transmission losses. Also, we assume demodulation of the optical signal 

can be accomplished as efficiently as the microwave signal (which is 

not likely without some development). Even with these assumptions,
 

Pr/N for the optical system is about 8 dB worse than that for X-band
 

with a ground receiver.
 

Pointing problems also become much more severe for the highly
 

directed optical, infrared systems. Laser radiation at wavelength 10 Pm
 

6
from a 1 m antenna must be pointed to 5 x 10- radians accuracy.
 

The corresponding pointing accuracy of the baseline system is 10- 3 radians.
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Table 13. OPTICAL TELEMETRY AT 1000 AU 

Nominal 	Value
Parameter
No. 


46
1. 	 Total Transmitter power (dBm) (40 watts) 


2. 	 Efficiency (dB) (optical pumping, antenna losses, -16
 

and quantum detection)
 

3. 	 Transmitting antenna gain (dB) (diameter = 1 m) 110
 

Space loss (dB) (A/4r) 2
 
4. 


X =lO pm, r =1000 AU -405
 

5. 	 Receiving antenna gain (dB) (diameter = 3m) 119
 

6. 	 Total Received power (dBm) (P ) -146
 

7. 


-


Receiver noise spectral density (dBm/Hz) (N0) -167
 

(2 x 10	 2 0 watt/HZ)
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Higher Data Rates
 

This mission may have to accommodate video images from Pluto.
 

The Earth-Pluto separation at the time of the mission will be about 31
 

AU. The baseline system at 31 AU could handle approximately 105 b/s.
 

For rates in excess of this, one of the "other option" enhancements would
 

be necessary.
 

SELECTION OF TELEMETRY OPTION
 

Table 14 collects the performance capabilities of the various
 

telemetry options. Table 15 shows the proposed data rates in various
 

S/C systems for the different phases of the mission. In both tables
 
2


the last column lists the product, (data rate) x (range) , as an index
 

of the telemetry capability or requirements.
 

Looking first at the last column of Table 15 , it is apparent that
 

the limiting requirement is transmittal of heliopause data if DSN
 

coverage can be provided only 1% of the time. If DSN scheduling is
 

sufficiently flexible that 33% coverage can be cranked up within a
 

month or so after the heliosphere is detected, then the limiting
 

requirement is transmittal of cruise data (at 1% DSN coverage). For
 

these two limiting cases, the product (data rate) x (range)2 is, respec­
8 8 2

tively,2-40 x 10 and 5-10 x 10 (b/s) . AU 

Looking now at the last column of Table 14 , to cover the cruise
 

requirement some enhancement over the baseline option will be needed.
 

Either increasing transmitter power to 0.5-1 kW or going to orbiting DSN
 

stations will be adequate. No real difficulty is seen in providing the
 

increased transmitter power if the orbiting DSN is not available.
 

If, however, DSN coverage for transmittal of recorded data from
 

the unpredictable heliosphere encounter is constrained to 1% of the
 

time (8 h/month), then an orbital DSN station (300-m antenna) will be
 

needed for this phase of the mission, as well as either increased trans­

mitter power or use of K-band.
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TABLE 14 

TELEMETRY OPTIONS 

(Data Rate) 
Data Rate (b/s) x (Range) 

Improvement 
OPTIONS Over Baseline, 

dB 
At 

1000 AU 
At 

500 AU 
At 

150 AU 
At 
31 AU (b/s) • AU2 

Baseline (40 W, 100-m receiving 
antenna, X-band) ---- 1 x 102 4 x 102 4 x 103 1 x 105 1 x 108 

More power (0.5 ­ 1 kW) 10-15 1 x 103 4 x 103 4 x 104 1 x 106 1 x 109 

Orbiting DSN (300-m antenna) 
X-band (10 K noise temperature) 13 2 x 103 9 x 104 2 x 106 2 x 109 

K-band (14 K noise temperature) 17 5 x 103 2 x 10 2 x 10 5 x 10 5 x 109 
C) 

Both more power and orbiting DSN 

X-band 23-28 3 x 104 1.2 x 105 1 x 106 3 x 107 3 x 1010 



TABLE 15 

PROPOSED DATA RATES 

Tele-
Communi- Estimated Data Rate, b/s (Data 

cation Processed Fraction tate 
Misslon Range Raw Data, Transmitted of Time x (Range)2 

Phase AU Data Average Data Transmitting b/s .Au2 

Cruise 500 I 1.2-1.5 x 104 2-4 x 101 2-4 x 103 0.01 5-10 x 108 

Heliopause 50- 11.2-1.5 x 10 
31-2 

1-2 x 103 
x 105 0.01 2-40 x 108 

150 0.33 0.8-15 x 107 

l SI5 
x 105 0.33* 1 x 108 

Pluto Flyby -31 1-2 x 10 3-5 x 104 

1 11 
(10 total 

I bits) 

10 
(3 x 10 bits) 

3x101.00* 
x 10 

3 x10 

15 4 9-15 x 104 0.33 9-15 x 107 

Pluto Orbiter -31 11-2 x 10 3-5 x 104 3-5 x10 4 1.00 3-5 x 0 

*To return flyby data in 4 days. 
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RELATION OF THE MISSION TO
 

SEARCH FOR EXTRATERRESTRIAL INTELLIGENCE
 

The relation of this mission to the search for extraterrestrial
 

intelligence appears to lie only in its role in development and test
 

of technology for subsequent interstellar missions.
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TECHNOLOGY REQUIREMENTS AND PROBLEM AREAS
 

LIFETIME
 

A problem area common to all S/C systems for this mission is that of
 

lifetime. The design lifetime of many items of spacecraft equipment is now
 

approaching 7 years. To increase this lifetime to 50 years will be a very
 

difficult engineering task.
 

These consequences follow:
 

a) It is proposed that the design lifetime of the S/C for this mission
 

be limited to 20 years, with an extended mission contemplated to a total of
 

50 years.
 

b) Quality control and reliability methods, such as failure mode effects
 

and criticality analysis, must be detailed and applied to the elements that
 

may eventually be used in the spacecraft, so as to predict what the failure
 

profile will be for system operating times that are much longer than the test
 

time and extend out to 50 years. One approach is to prepare for design and
 

fabrication from highly controlled materials whose failure modes are
 

completely understood.
 

c) To the extent that environmental or functional stresses are conceived
 

to cause material migration or failure during a 50-year period, modeling and
 

accelerated testing of such modes will be needed to verify the 50-year scale.
 

Even the accelerated tests may require periods of many years.
 

d) A major engineering effort will be needed to develop devices, circuits,
 

components, and fabrication techniques which, with appropriate design, testing,
 

and quality assurance methods, will assure the lifetime needed.
 

PROPULSION AND POWER
 

The greatest need for subsystem development is clearly in propulsion.
 

Further advance development of NEP is required. Designs are needed to permit
 

higher uranium loadings and higher burnup. This in turn will require better
 

control systems to handle the increased reactivity, including perhaps throw-away
 

control rods. Redundancy must be increased to assure long life and moving
 

parts will need especial attention. Development should also be aimed at reducing
 

system size and mass, improving efficiency, and providing better and simpler
 

thermal control and heat dissipation. Simpler and lighter power conditioning
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is needed, as are ion thrusters with longer lifetime or self-repair capability.
 

Among the alternatives to fission NEP, ultralight solar sails and laser
 

sailing look most promising. A study should be undertaken of the feasibility
 

of developing ultra-ltght solar sails (sails sufficiently light so that the
 

solar radiation pressure on the sail and spacecraft system would be greater
 

than the solar gravitational pull) and of the implications such development
 

would have for spacecraft design and mission planning. Similarly, a study
 

should be made of the possibility of developing a high power orbiting laser
 

system together with high temperature spacecraft sails, and of the outer planet
 

and extraplanetary missions that could be carried out with such laser sails.
 

Looking toward applications further in the future, an antimatter propul­

sion system appears an exceptionally promising candidate for interstellar
 

missions and would be extremely useful for missions within the solar system.
 

This should not be dismissed as merely "blue sky": matter-antimatter reactions
 

are routinely carried out in particle physics laboratories. The engineering
 

difficulties of obtaining an antimatter propulsion system will be great; con­

taining the antimatter and producing it in quantity will obviously be problems.
 

A study of possible approaches would be worthwhile. (Chapline (1976) has suggested
 

that antimatter could be produced in quantity by the interaction of beams of
 

heavy ions with deuterium/tritium in a fusion reactor). Besides this, a more
 

general study of propulsion possibilities for interstellar flight (see Appendix
 

C) should also be considered.
 

PROPULSION/SCIENCE INTERFACE
 

Three kinds of interactions between the propulsion/attitude control
 

system and science measurements deserve attention. They are:
 

1) Interaction of thrust and attitude control with mass measurements. 

2) Interaction of electrical and magnetic fields, primarily from the 

thrust subsystem, with particles and fields measurements. 

3) Interactions of nuclear radiation, primarily from the power subsystem, 

with photon measurements. 
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Interaction of thrust with mass measurements
 

It is desired to measure the mass of Pluto and of the solar system as
 

a whole through radio tracking observations of the spacecraft accelerations.
 

In practice, this requires that thrust be off during the acceleration obser­

vations.
 

The requirement can be met by temporarily shutting off propulsive
 

thrusting during the Pluto encounter and, if desired, at intervals later on.
 

Since imbalance in attitude control thrusting can also affect the trajectory,
 

attitude control during these periods should preferably be by momentum wheels.
 

The wheels can afterwards be unloaded by attitude-control ion thrusters.
 

Interaction of thrust subsystem with particles and fields measurements
 

A variety of electrical and magnetic interference with particles and fields
 

measurements can be generated by the thrust subsystem. The power subsystem can
 

also generate some electrical and magnetic interference. Furthermore, materials
 

evolved from the thrusters can possibly deposit upon critical surfaces.
 

Thruster interferences have been examined by Sellen (1973), by Parker et al.
 

(1973), and by others. It appears that thruster interferences should be reduc­

ible to acceptable levels by proper design, but some advanced development will
 

be needed. Power system interferences are probably simpler to handle. Essen­

tially all the thruster effects disappear when the engines are turned off.
 

Interaction of power subsystem with photon measurements
 

Neutrons and gamma rays produced by the reactor can interfere with
 

photon measurements. A reactor that has operated for some time will be highly
 

radioactive even after it is shut down. Also, exposure to neutrons from the
 

reactor will induce radioactivity in other parts of the spacecraft. In the
 

suggested science payload the instruments most sensitive to reactor radiation
 

are the gamma-ray instruments, and, to a lesser degree, the ultraviolet
 

spectrometer.
 

A very preliminary analysis of reactor interferences has been done.
 

Direct neutron and gamma radiation from the reactor was considered and also
 

neutron-gamma interactions. The latter were found to be of little significance if
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the direct radiation is properly handled. Long-lived radioactivity is no problem
 

except possibly for structure or equipment that uses nickel. Expected
 

flux levels per gram of nickel are approximately 0.007 y/cm2-s.
 

The nuclear reactor design includes neutron and gamma shadow shielding
 

to fully protect electronic equipment from radiation damage. Requirements
 

are defined in terms of total integrated dose. Neutron dose is to be limited
 

to 1012 nvt and gamma dose to 106 rad. A primary mission time of 20 years is
 

assumed, yielding a LiH neutron shield thickness of 0.9 m and a mercury gamma
 

shield thickness of 2.75 cm (or 2 cm of tungsten). Mass of this shielding is
 

included in the 8500 kg estimate for the propulsion system.
 

For the science instruments, it is the flux that is important, not total
 

dose. The reactor shadow shield limits the flux level to 1.6 x 103 neutrons
 

or gammas/cm22 . This is apparently satisfactory for all science sensors except
 

the gamma-ray detectors. They require that flux levels be reduced to 10 neutrons/
22
 

cm -s and 0.1 gamma/cm -s. Such reduction is most economically accomplished by local
 

shielding. The gamma ray transient detector should have a shielded area of
 

2
possibly 1,200 cm (48 cm x 25 cm). Its shielding will include a tungsten
 

thickness of 8.7 cm and a lithium-hydride thickness of 33 cm. The weight of
 

this shielding is approximately 235 kg and is included in the spacecraft mass
 

estimate. It may also be noted that the gamma ray transient detector is prob­

ably the lowest-priority science instrument. An alternative to shielding it
 

would be to omit this instrument from the payload. (The gamma ray spectrometer
 

is proposed as an orbiter instrument and need not operate until the orbiter is
 

separated from the NEP mother spacecraft). A detailed Monte Carlo analysis
 

and shield development program will be needed to assure a satisfactory solution
 

of spacecraft interfaces.
 

TELECOMMUNICATIONS
 

Microwave vs. Optical Telemetry Systems
 

Eight years ago JPL made a study of weather-dependent data links in
 

which performance at six wavelengths ranging from S-band to the visible was
 

analyzed (Potter et al., 1969). A similar study for an orbiting DSN (weather­
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independent) should determine which wavelengths are the most advantageous.
 

The work of this report indicates X-band or K-band are prime candidates, but
 

a more thorough effort is required that investigates such areas as feasibility
 

of constructing large spaceborne optical antennas, efficiency of power conver­

sion, feasibility of implementing requisite pointing control, and overall costs.
 

Space Cryogenics
 

We have assumed cryogenic amplifiers for orbiting DSN stations in order
 

to reach 4-5 K amplifier noise contributions. Work is being done that indicates
 

such performance levels are attainable (R. C. Clauss, private communication;
 

D. A. Bathker, private communication) and certainly should be continued. At
 

the least, future studies for this mission should maintain awareness of this
 

work and probably should sponsor some of it.
 

Lifetime of Telecommunications Components
 

The telecommunications component most obviously vulnerable to extended
 

use is the microwave transmitter. Current traveling-wave-tube (TWT) assemblies
 

have demonstrated 11-12 year operating lifetimes (H. K. Detweiler, private
 

communication; also, James et al., 1976) and perhaps their performance over
 

20-50 year intervals could be simulated. However, the simple expedient
 

measure of carrying 4-5 replaceable TWT's on the missions might pose a
 

problem since shelf-lifetimes (primarily limited by outgasing) are not known
 

as well as the operating lifetimes. A more attractive solution is use of
 

solid-state transmitters. Projections indicate that by 1985 to 1990 power
 

transistors for X-band and Ku-band will deliver 5-10 watts/device and a few
 

watts/device respectively with lifetimes of 50-100 years (J. T. Boreham,
 

private communication). Furthermore, with array feed techniques, 30-100
 

elements qould be combined in a near-field Cassegrainian reflector for
 

signal transmission (Boreham, ibid). This means a Ku-band system could
 

probably operate at a power level of 50-200 watts and an X-band system
 

could likely utilize 0.2 - 1 kW.
 

Other solid state device components with suitable modular replacement
 

strategies should endure a 50 year mission.
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Baseline Enhancement vs. Non-Coherent Communication System
 

The coherent detection system proposed requires stable phase reference
 

tracking with a closed loop bandwidth of approximately 1 Hz. Of immediate
 

concern is whether tracking with this loop bandwidth will be stable. Moreover,
 

if the tracking is not stable, what work is necessary to implement a non-coherent
 

detection system?
 

The most obvious factors affecting phase stability are the accelerations
 

of the SIC, the local oscillator on the S/C, and the medium between transmitter
 

and receiver. If the propulsion system is not operating during transmission,
 

the first factor should be negligible. However, the feasibility of putting on
 

board a very stable (short term) local oscillator with a 20-50 year lifetime
 

needs to be studied. Also, the effect of the Earth's atmosphere and the
 

Planetary or extraplanetary media on received carrier stability must be
 

determined.
 

If stability cannot be maintained, then trade-off studies must be
 

performed between providing enhancements to increase PrIN and employing
 

non-coherent communication systems.
 

INFORMATION SYSTEMS
 

Continued development of the on-board information system capability
 

will be necessary to support control of the reactor, thrusters, and other
 

portions of the propulsion system, to handle the high rates of data acqui­

sition of a fast Pluto flyby, to perform on-board data filtering and compres­

sion, etc. Continued rapid development of information system capability to
 

very high levels is assumed, as mentioned above, and this is not considered
 

to be a problem.
 

THERMAL CONTROL
 

The new thermal control technology requirement for a mission beyond the
 

solar system launched about 2000 A.D. involve significant advancements in ther­

mal isolation techniques, in heat transfer capability and in lifetime extension.
 

Extraplanetary space is a natural cryogenic region (_3 K). Advantage may be taken
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of it for passive cooling of detectors in scientific instruments and also
 

for the operation of cryogenic computers. If cryogenic computer systems
 

and instruments can be developed, the gains in reliability, lifetime, and
 

performance can be considered. However, a higher degree of isolation will
 

be required to keep certain components (electronics, fluids) warm in extra­

planetary space and to protect the cryogenic experiments after launch near
 

Earth. This latter is especially true if any early near-solar swingby is
 

used to assist escape in the mission. A navigational interest in a 0.1 AU
 

solar swingby would mean a solar input of 100 suns which is beyond any
 

anticipated nearterm capability.
 

More efficient heat transfer capability from warm sources (e.g., RTG's)
 

to electronics,such as advanced heat pipes or active fluid loops, will be
 

necessary along with long life (20-50 years). The early mission phase also
 

will require high heat rejection capability, especially for the cryogenic
 

experiments and/or a near solar swingby.
 

NEP imposes new technology requirements such as long-term active heat
 

rejection (heat pipes, noncontaminated radiators), and thermal isolation.
 

NEP also might be used as a heat source for the S/C electronics.
 

Beyond this, the possibility of an all-cryogenic spacecraft has been
 

suggested by Whitney and Mason (see Appendix C). This may be more appro­

priate to missions after 2000 but warrants study. Again, there would be a
 

transition necessary from Earth environment (one g plus launch, near solar)
 

to extraplanetary environment (zero g, cryogenic). The extremely low power
 

(-1 W)requirement for superconducting electronics and the possibility of
 

further miniaturation of the S/C (or packing in more electronics with low
 

heat dissipation requirements) is very attractive. Also looking ahead, the
 

antimatter propulsion system mentioned above would require cryogenic storage
 

of both solid hydrogen and solid antihydrogen using superconducting (cryo)
 

magnets and electrostatic suspension.
 

Table 16 summarizes the unusual thermal control features of an extra­

planetary mission.
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TABLE 16
 

T-HERMAL CONTROL CHARACTERISTICS OF EXTRAPLANETARY MISSIONS
 

Baseline Mission
 

1. 	Natural environment will be cryogenic
 

a) Good for cryogenic experiments - can use passive thermal control.
 
b) Need for transitien from near Earth environment to extraplanetary
 

space. •
 
i. 	Can equipment take slow cooling?
 

ii. Well insolated near sun.*t
 
iii. Cryogenic control needed near Earth?*t
 

2. 'NEP
 

a) Active thermal control - heat pipes - lifetime problems.*
 
b) Heat source has advantages & disadvantages for S/C design.
 

Not 	Part of Baseline Mission
 

3. 	Radioisotope thermal electric generator (RTG) power source provides hot
 
environment to cold S/C
 

a) Requires high isolation.*
 
b) Could be used as source of heat for warm S/C.
 

i. 	Fluid loop - active devices will wear - lifetime problem.*
 

ii. Heat pipes.
 
c) Must provide means of cooling RTG's.
 

4. 	Close Solar Swingby - 0.1 AU*
 

a) 100 "suns" is very high thermal input - must isolate better.*
 
b) Contrasts with later extraplanetary environment: almost no sun.
 
c) Solar Sail requirements 0.3 AU (11 suns), Super Sail 0.1 AU.*
 

* Significant technology advancement required. 

* Not part of baseline mission.
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COMPONENTS AND MATERIALS
 

By far the most important problem in this area is prediction of long-term
 

materials properties from short-term tests. This task encompasses most of the
 

other problems noted. Sufficient time does not exist to generate the required
 

material properties in real time. However, if in the time remaining we can
 

establish the scaling parameters, the required data could be generated in a
 

few years. Hence development of suitable techniques should be initiated.
 

Another critical problem is obtaining bearings and other moving parts with
 

50 years lifetime. Effort on this should be started.
 

Less critical but also desirable are electronic devices that are inherently
 

radiation-resistant and have high life expectancy. DOE has an effort under­

way on this looking both at semiconductor devices, utilizing amorphous semi­

conductors and other approaches that do not depend on minority carriers, and
 

at non-semiconductor devices, such as integrated thermonic circuits.
 

Other special requirements are listed in Table 17.
 

SCIENCE INSTRUMENTS
 

Both the problem of radiation compatibility of science instruments with NEP
 

propulsion and the problem of attaining 50-year lifetime have been noted above.
 

Many of the proposed instruments have sensors whose lifetime for even current
 

missions is of concern and whose performance for this mission is at best uncer­

tain. Instruments in this category, such as the spectrometers and radiometers,
 

should have additional detector work performed to insure reasorvable-performance.
 

Calibration of scientific instruments will be very difficult for a 20-50 year
 

mission. Even relatively short term missions like Viking and Voyager pose
 

serious problems in the area of instrument stability and calibration verifica­

tion. Assuming that "reliable" 50-year instruments could be built, some means
 

of verifying the various instrument transfer functions are needed. Calibration
 

is probably the most serious problem for making quantitative measurements on a
 

50-year mission.
 

The major problems in the development of individual science instruments
 

are listed below. These are problems beyond those likely to be encountered
 

and resolved in the normal course of development between now and, say, 1995
 

or 2000.
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TABLE 17
 

TECHNOLOGY REQUIREMENTS FOR COMPONENTS & MATERIALS
 

1. Diffusion Phenomena
 
1.1 Fuses
 
1.2 Heaters
 
1.3 Thrusters
 
1.4 Plume Shields
 
1.5 RTG's
 
1.6 Shunt Radiator
 

2. Sublimation and Erosion Phenomena
 
2.1 Fuses ­
2.2 Heater
 
2.3 Thrusters
 
2.4 Plume Shields
 
2.5 RTG's
 
2.6 Polymers
 
2.7 Temperature Control Coatings
 
2.8 Shunt Radiator
 

3. Radiation Effects
 
3.1 Electronic components
 
3.2 Polymers
 
3.3 Temperature Control Coatings
 
3.4 NEP and RTG Degradation
 

4. Materials Compatibility
 
4.1 Thrusters
 
4.2 Heat Pipes
 
4.3 Polymeric Diaphragms & Bladders
 
4.4 Propulsion Feed System
 

5. Wear and Lubrication
 
5.5 Bearings
 

6. Hermetic Sealing and Leak Testing
 
6.1 Permeation Rates
 
6.2 Pressure Vessels
 

7. Long-Term Material Property Prediction from Short-Term Tests
 
7.1 Diffusion
 
7.2 Sublimation
 
7.3 Wear and Lubrication
 
7.4 Radiation Effects
 
7.5 Compatibility
 
7.6 Thermal Effects
 

8. Size Scale-Up
 
8.1 Antennae
 
8.2 Shunt Radiator
 
8.3 Pressure Vessels
 

9. Thermal Effects on Material Properties
 
9.1 Strength
 
9.2 Creep and Stress Rupture
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Neutral Gas Mass Spectrometer
 

Designing a mass spectrometer to measure the concentration of light gas
 

species in the interstellar medium poses difficult questions of sensitivity.
 

Current estimates of H concentration in the interstellar medium near the
 

solar system are 10 --10 atom/cm and of He contraction about 10 atom/cm
 

(Bertaux and Blamont, 1971; Thomas and Krassna, 1974; Weller and Meier 1974;
 

Freeman et al., 1977; R. Carlson, private communication; Fahr et al., 1977;
 

Ajello, 1977; Thomas, 1978). On the basis of current estimates of cosmic
 

relative abundances the corresponding concentration of C, N, 0 is 10 to
 

- 4
10 atom/cm3 and of Li, Be, B about 10-10 atom/cm3 .
 

These concentrations are a long way beyond mass spectrometer present
 

capabilities, and it is not clear that adequate capabilities can be attained
 

2
by 2000. Even measuring H and He at 10- to H- 1 atom/cm 3 will require a con­

siderable development effort. Included in the effort should be:
 

a) 	Collection: Means of collecting incoming gas over a substantial
 

frontal area and possibly of storing it to increase the input rate
 

and so the S/N ratio during each period of analysis.
 

b) Source: Development of ionization sources of high efficiency
 

and satisfying the other requirements.
 

c) Lifetime: Attaining a 50-year lifetime will be a major problem,
 

especially for the source.
 

d) S/N: Attaining a satisfactory S/N ratio will be a difficult
 

problem in design of the whole instrument.
 

Thus, if a mass spectrometer suitable for the mission is to be provided,
 

considerable advanced development work-will be needed.
 

Camera Field of View vs. Resolution
 

Stellar parallax measurements present a problem in camera design because
 

of the limited number of pixels/frame in conventional and planned spacecraft
 

cameras. For example, one would like to utilize the diffraction-limited reso­

lution of the objective. For a 1-m objective, this is 0.'12. To find the
 

center of the circle of confusion accurately, one would like about 6 measure­

ments across it, or, for a 1-m objective, a pizel size of about 0'02 or 0.1 vrad.
 

(Note that this also implies fine-pointing stability similar to that for earth­
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orbiting telescopes). But according to James et al. (1976) the number of
 

elements per frame expected in solid state cameras by the 
year 2000 is 106
 

for a single chip and 107 for a mosaic. With 107 elements, or 3000 x 3000,
 

the field of view for the case mentioned would be 30O0 x 0.02 = 1 minute of
 

arc. At least five or six stars need to be in the field for a parallax
 

measurement. Thus, a density of 5 stars per square minute or 18,000 stars
 

per square degree is needed. To obtain this probably requires detecting
 

stars to about magnitude 26 near the galactic poles and to magnitude 23
 

. 
near galactic latitude 45' This would be very difficult with a 1-m telescope.
 

A number of approaches could be considered, among them:
 

a) Limit parallax observations to those portions of the sky having
 

high local stellar densities.
 

b) Use film.
 

c) Find and develop some other technique for providing for more
 

pixels per frame than CCD's and vidicons.
 

d) 	Sense the total irradiation over the field and develop a masking
 

technique to detect relative star positions. An example would be
 

the method proposed for the Space Telescope Astrometric Multiplexing
 

Area Scanner (Wissinger and McCarthy, 1976).
 

e) 	Use individual highly accurate single-star sensors, like the Fine
 

Guiding Sensors to be used in Space Telescope astrometry (Wissinger,
 

1976).
 

Other possibilities doubtless exist. A study will be needed to determine
 

which approaches are most promising and development effort may be needed to
 

bring them to the stage needed for project initiation.
 

The problems of imaging Pluto, it may be noted, are rather different than
 

those of star imagery. For a fast flyby, the very low light intensity at Pluto
 

plus the high angular rate make a smear a problem. Different optical trains
 

may be needed for stellar parallax, for which resolution must be emphasized,
 

and for Pluto flyby, for which image brightness will be critical. Besides this,
 

image motion compensation may be necessary at Pluto; it may be possible to provide
 

this electronically with CCD's. It is expected that these needs can be met by
 

the normal process of development between now and 1995.
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APPENDIX C
 

THOUGHTS FOR A STAR MISSION STUDY
 

The primary problem in a mission to another star is still propulsion:
 

obtaining enough velocity to bring the mission duration down enough to be
 

of much interest. The heliocentric escape velocity of about 100 km/s
 

believed feasible for a year 2000 launch, as described in this study, is
 

too low by two orders of magnitude.
 

PROPULSION
 

A most interesting approach, discussed recently in Papailou in James
 

et al. (1976) and by Morgan (1975, 1976) is an antimatter propulsion system.
 

The antimatter is solid (frozen antihydrogen), suspended electrostatically
 

or electromagnetically. Antimatter is today produced in small quantities
 

in particle physics laboratories. Chapline (1976) has suggested that much
 

larger quantities could be produced in fusion reactors utilizing heavy-ion
 

beams. For spacecraft propulsion, antimatter-matter reactions have the great
 

advantage over fission and fusion that no critical mass, temperature, or reac­

tion containment time is required; the propellants react spontaneously. (They
 

are "hypergolic"). To store the antimatter (antihydrogen) it would be frozen
 

and suspended electrostatically or electromagnetically. Attainable velocities
 

are estimated at least an order of magnitude greater than for fission NEP.
 

Spencer and Jaffe (1962) showed that multistage fission or fusion systems
 

can theoretically attain a good fraction of the speed of light. To do this,
 

the products of the nuclear reaction should be used as the propellants and
 

the burnup fraction must be high. The latter requirement may imply that
 

fuel reprocessing must be done aboard the vehicle.
 

The mass of fusion propulsion systems, according to James et al. (1976)
 

is expected to be much greater than that of fission systems. As this study
 

shows, the spacecraft velocity attainable with fusion, for moderate payloads,
 

is likely to be only a little greater than for fission.
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CRYOGENIC SPACECRAFT
 

P. V. Mason (private communication, 1975) has discussed the advantages
 

for 	extraplanetary or interstellar flight of a cryogenic spacecraft. The
 

following is extracted from his memorandum:
 

"If one is to justify the cost of providing a cryogenic environment, one
 
must perform a number of functions. The logical extension of this is to
 
do all functions cryogenically. Recently William Whitney suggested that an
 
ideal mission for such a spacecraft would be an ultraplanetary or interstellar
 
voyager. Since the background of space is at about 3 Kelvin, the spacecraft
 
would approach this temperature at great distances from the Sun using only
 
passive radiation (this assumes that heat sources aboard are kept at a very
 
low level). Therefore, I suggest that we make the most optimistic assumptions
 
about low temperature phenomena in the year 2000, and try to come up with a
 
spacecraft which will be far out in design, as well as in mission. Make
 
the following assumptions:
 

1. 	The mission objective will be to make measurements in ultraplanetary
 
space for a period of 10 years.
 

2. 	The spacecraft can be kept at a temperature not greater than 20 Kelvin
 
merely by passive radiation.
 

3. 	Superconductors with critical temperatures above 20 Kelvin will be
 
available. All known superconducting phenomena will be exhibited
 
by these superconductors (e.g., persistent current, Josephson effect,
 
quantization of flux, etc.).
 

4. 	All functions aboard the spacecraft are to be performed at 20 Kelvin or
 
below.
 

I have been able to think of the following functions:
 

I. 	SENSING
 

A. 	Magnetic Field
 

Magnetic fields in interstellar space are estimated to be about
 
10-6 Gauss. The Josephson-Junction magnetometer will be ideal for
 
measuring the absolute value and fluctuations in this field.
 

B. 	High Energy Particles
 

Superconducting thin films have been used as alpha-particle detectors.
 
We assume that by 2000 A.D. superconducting devices will be able to
 
measure a wide variety of energetic particles. Superconducting magnets
 
will be used to analyze particle energies.
 

C. 	Microwave and Infrared Radiation
 

It is probable that by 2000 A.D. Josephson Junction detectors will
 
be superior to any other device in the microwave and infrared regions.
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II. SPACECRAFT ANGULAR POSITION DETECTION
 

We will navigate by the visible radiation from the fixed stars, especially
 
our Sun. We assume that a useful optical sensor will be feasible using
 
superconductive phenomena. Alternatively, a Josephson Junction array of
 
narrow beam width, tuned to an Earth-based microwave beacon could provide
 
pointing information.
 

III. DATA PROCESSING AND OTHER ELECTRONICS
 

Josephson Junction computers are already being built. It takes very
 
little imagination to assume that all electronic and data processing,
 
sensor excitation and amplification and housekeeping functions aboard
 
our spacecraft will be done this way.
 

IV. DATA TRANSMISSION
 

Here we have to take a big leap. Josephson Junction devices can now
 
radiate about one-billionth of a watt each. Since we need at least
 
one watt to transmit data back to Earth, we must assume that we can form
 
an array of 10+9 elements which will radiate coherently. We will also
 
assume that these will be arranged to give a very narrow beam width.
 
Perhaps it could even be the same array used for pointing information,
 
operating in a time-shared mode.
 

V. SPACECRAFT POINTING
 

We can carry no consumables to point the spacecraft--or can we? If we
 
can't, the only source of torque available is the interstellar magnetic
 
field. We will point the spacecraft by superconducting coils interacting
 
with the field. This means that all other field sources will have to be
 
shielded with superconducting shields.
 

It may be that the disturbance torques in interstellar space are so small
 
that a very modest ration of consumables would provide sufficient torque
 
for a reasonable lifetime, say 100 years.
 

Can anyone suggest a way of emitting equal numbers of positive and negative
 
charged jarticles at high speed, given that we are to consume little power,
 
-and are to operate under 20 Kelvin? These could be used for both attitude
 
control and propulsion.
 

VI. POWER
 

We must have a watt to radiate back to Earth. All other functions can
 
9
be assumed to consume the same amount. Where are we to get our power


First try--we assume that we can store our energy in the magnetic field of
 
a superconducting coil. Fields of one mega-Gauss will certainly be feasible
 
by this time. Assuming a volume of one cubic meter, we can store 4 x 109 joules.
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This will be enough for a lifetime of 60 years.
 

If this is unsatisfactory, the only alternate I can think of is a
 
Radio Isotope Thermal Generator. Unfortunately, this violates our
 
ground rule of no operation above 20 Kelvin and gives us thermal power
 
of 20 watts to radiate. If this is not to warm the rest of the space­
craft unduly, it will have to be placed at a distance of (TBD) meters
 
away. (No doubt we will allow it to unreel itself on a tape rule
 
extension after achieving our interstellar trajectory.) We will also
 
use panels of TBD square meters to radiate the power at a temperature
 
of TBD."
 

LOCATING PLANETS ORBITING ANOTHER STAR
 

Probably the most important scientific objective for a mission to
 

another star here would be the discovery of planets orbiting it. What
 

might we expect of a spacecraft under such circumstances?
 

1) As soon as the vehicle is close enough to permit optical detection
 

techniques to function, a search must begin for planets. Remember,
 

at this point we don't even know the orientation of the ecliptic planet
 

for the system in question. The vehicle must search the region around
 

the primary for objects that
 

a) exhibit large motion terms with respect to the background stars and
 

b) have spectral properties that are characteristic of reflecting
 

bodies rather than self luminous ones. When one considers that
 
several thousand bright points (mostly background stars) will be
 

visable in the field of view and that at most only about a dozen of
 

these can be reasonably expected to be planets, the magnitude of
 

the problem becomes apparent.
 

Some means of keeping track of all these candidate planets or some
 

technique for comprehensive spectral analysis is in order. Probably a
 

combination of these methods will prove to be the most effective.
 

Consider the following scenario. When the vehicle is about 50 AU from
 

the star, a region of space about 10 or 15 AU in radius is observed. Here
 

the radius referred to is centered at the target star. This corresponds
 

to a total field of interest that is about 10 to 15 degrees in solid angle.
 

Each point of light (star, maybe planet) must be investigated by spectro­

graphic analysis and the positions of each candidate object recorded for future
 

use. As the vehicle plunges deeper into the system, parallax produced by its
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own motion and motion of the planets in their orbits will change their
 

apparent position relative to the background stars. By an iterative
 

process, this technique should locate several of the planets in the system.
 

Once their positions are known then the onboard computer must compute the
 

orbital parameters for the objects that have been located. This will result
 

in, among other things, the identification of the ecliptic plane. This plane
 

can now be searched for additional planets.
 

Now that we know where all of the planets in the system may be found, a
 

gross assumption, we can settle down to a search for bodies that might harbor
 

life.
 

If we know the total thermal output of the star, and for Barnard we do, we
 

can compute the range of distances where black body equilibrium temperature
 

ranges between 00 C and 1000C. This is where the search for life begins.
 

If one or more of our planets falls between these boundaries of fire and
 

ice, we might expect the vehicle to compute a trajectory that would permit
 

either a flyby or even an orbital encounter with the planet. Beyond obser­

vation of the planet from this orbit,anything that can be discussed from this
 

point on moves rapidly out of the range of science and into science fiction and
 

as such is outside the scope of this report.
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APPENDIX D
 

SOLAR SYSTEM BALLISTIC ESCAPE TRAJECTORIES
 

The listings which follow give distance (RAD) in astronomical
 

units and velocity (VEL) in km/s for ballistic escape trajectories
 

with perihelia (Q) of 0.1, 0.3, 0.5, 1.0, 2.0, and 5.2 AU, and hyper­

bolic excess velocities (V) of 0., 1., 5., 10., 20., 30., 40., 50.,
 

and 60. km/s. For each V output is given at 0.2 year intervals for
 

time (T) less than 10 years after perihelion, and one year intervals
 

for time between 10 and 60 years after perihelion.
 

For higher V and long times, the distance (RAD) can be scaled as
 

proportional to V. and the velocity VEL V.
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0.3270 
Q,*4np 
Q.I7A 
0.17779 
Q.0nnn 
RA.Q91I 
AR.599 
8.7893 
R.7141 

131.A7R 
14.966A 
14.7001 
1.128 
t!.';t 
ij.0607 
1 .. 38v1 
16.7Q,9 
17.1Q?7 
17.rqAl 
17.00rP 
If.38n3 
1A.7777 
0.163 
1Q.5461 
1o.093 
P0.1014 
20.674' 
21,0441 
21.4114 
21.77r.7 
PP.137' 
P2.496e 

117.9144 1?.nl'" 
11.3p76 1patO 
11.1';19lp.nnp6 
In.Qn6 13i.a" 
1n.89QA 1-.q6t 
in.6Q1 1i.n .9 
i.uaO 14.'lj 
i0.46' 1±.AQ1A 
I.9790 1s;.n!Rfs 
1f.1q'2 '.4398 
i.fl0q 15.ann1 
q."06 16.16r9 
0.8*po 16.Pf 
o.7lnr t6..ao0 
06991 17.1>477 
q.5p7r 17.6041* 
0.4164 17.0-Af 
Q.34146 18.'112 
0.?6A30 18.6616 
.Ini lo.nnn 

0.1030 1Q.3'56$ 
0.0966 10.7000o 
R.029r 9fl.nl44 
8.R888 Pa. APl1 

11>01109 . 

ji.flq 
I.'7', 
r'.6n C 
1 1.'vAq 
!leg" 
1'. 118 
lo.q0A3 
O.8l' 
.l."I9 
jn.9nAq 
"f.41A5 
nA 

f.*ao6 
In.I14 
iA.lnp2 
o.nfol, 
0.8ij 

0.'Cfl7 
0.6fnq 

074f 

0.U4'0 
o.btnA9 
0.1"A 

9.20 
9.40 
9.60 
9.80 

10.00 

24.5822 
24.9386 
25.2925 
25.6440 
25.9931 

8.4957 
8.4347 
8.3755 
8.3179 
8.2619 

2'4.385c;
24.74lq 
25.0957 
25.4471 
25.7962 

A.599 
8.4692 
8.4083 
8.3500 
8.2934 

24.1021 
24.9484 
24.90n2 
25.2934 
25.6024 

A.q630
8.0n1 
8.4400 
8.3A20 
8.3247 

21;7P34 
*4.0791 
24.U326 
24.7A35 
25.1320 

81.61*8 
8.583q 
.P16 

R.4611 
8.40P2 

22.AS?'A 
23.P064 
23.t570 
P3,9fl7fl 
24,253A 

8.8113 
A.7430 
A.6784 
8.614 
8.30 

po p
71.090A 
pj.1qf 
,2I.MP'4 
P2.0680 

',s0e 
'o.In7 
O.InA5 
Q.,f 4 
A.462 



2 PRW** 
 nAT! 0I3077 PArF 


V-INFINITY .0 KM/s 

0 = .1 AU G = .3 AU q = .9 AU (4 1=. AU 0 = P.0 All n = 9.2 AU 
T - YRS RAD VEL RAD VEL PArl VEL PAn VEL PAD VEL PAn Vr I 

10.00 
11.00 

25.Q931 
27.7048 

8.2619 
AoOn26 

25.796P 
27.5077 

8.2q34 
8.0312 

25.6024 
P7.3139 

8.3P47 
A.0qq7 

PS.1120 
p6.A41P 

8.4022 
8.2303 

24.P51P 
pq.q5j 

R.5930 
A.P67Q 

Pp.n6n 
p3.6031 

m.6f.p 
*.At36 

12.00 29.3653 7.7730 29.16R1 1.79q3 PP.Q?36 7.8p54 IA4QQ7 7,Rqnp 27.A06 A.0169 Psi IPAAA P.Wi 

: 

13.00 
14.00 
15.00 
16.00 
17.00 

30,Q803 
32.9544 
34.0914 
35.5946 
37.0667 

7.5677 
7.3825,
7.2142 
7.0602 
6.9186 

30.7820 
3P.3568 
33.8937 
35.3g68
36.8680 

7.9o20 
7.4no0 
7.2352 
7.07qQ
A.937j 

30.5ARt 
10.1619 
31.6989 
39.2 4 
36.6733 

7.6161 
7.4P74 
7?261 
7.0oq9
6.9556 

10.11pq 
11.6893 
33.P2n9 
3T.7P22 
36.103Q 

7.67I 
7.4A31l 
7.3Al 
7.14A3 
7,0019 

pq.P14* 
3fl.7M 9 
3P.31PO 
33.pl9
3.P77q 

7.70,1 
7.9021t 
7.4101 
7.P441 
7.ft018 

P6,4A 
PR.'6'11 
2q.p6n0 
31.'p'
32.7603 

0*ItQQ 
'.ftqA
7.7fA4 
7.5001 
'.303 

18.00 38.5103 6.7877 38.3124 6.805P 38.1166 6.8p2A 37.6364 6A.660 36.7171 6.Ql4 34.17n '.'97 
19.00 39.q274 6.6661 3q.7294 6.69P7 3q9.9134 6.6n09 ".09P9 6.74n4 3A.Iln4 6.*214 19.96nn '.0636 
20.00 41.3199 6.5528 41.1?17 6.5686 4n.QP96 6,SP.3 40.4441 6.6P14 Q0.910o 6.7009 36.0*6, A.01 7 

't 21.00 42.6892 6.446Q 42.4911 6.4619 49*q4A 6.4769 41.8I17 ,.St4jr0,419' 6.5o76 3.1712P *l 
22.00 
23.00 

44.0370 
45.3645 

6.3475 
6.2519 

43.8388 
45.166 

6.1618 
6.2676 

41.6425 
411.960Q 

6.3761 
6.2813 

43.1 "R 
44.4R66 

6.4116 
631C3 

4P.?01 
41q94n 

6.4818 
A.3n2r 

3O.nin 
4n.Q0l7 

s.eo'q 
6.CnAI 

24.00 
25.00 

46.6730 
47.9633 

6.1696 
6.0821 

46.474*7 
47.7690 

6.1797 
6.0947 

4A.PA1 
47.9684s 

6.2I1 
A.n73 

49.7n44 
47.n842 

6.PP49 
6. I;6 

44A.6n7 
6.124r6 

A.IQAO 
6.Pn09 

-4p.101i 
41.t690 

9.1147 
6.900 

26.00 49.2366 6.0029 4q.38? 6.0191 4A.AR19 6.0P72 48.3970 6.0r73 47.4q17 6.1169 44.729 6o.*n6 
27.00 50.4937 9.9277 50.?993 ,0304 90.0OA4 r.~Q.l 4q.6139 RO l 48.67a6 A.i7r 45.0641 6.O19 
28.00 
2c)O0 

51.7353 
52.9622 

5.8962 
5.7880 

51.r36S 
52.7637 

9.8674 
9.79A8 

91.314a 
qP.9A6A 

9.8787 
9.8007 

5O.P947 
92.fl 11 

9.9q67 
*.83A7 

4q0141 
t.133q 

r.qAp1 
9.*ofl 

47, 3I 
4A.4046 

o.i 17 
A.nr43 

0 
30.00 
31.00 

54.1751 
59.3746 

9.7p2a
9.6605 

53.Q766 
55.1761 

r,.7V3 
9.6706 

53.77q6
91.0790 

9;.749 
5.60nA0 

S3.?Q36 
r4.4Q7 

'.7e6q
r.706t 

S.As0 
93.94RI 

s.Ra>17 
S.796P 

4q.6007 
r n' 

.qpr6 
913 

32.00 56.5613 5.6008 56.1627 9.6206 56.1656 9.69n 59.6740 *.6490 54.7134 5.6nl3 91.0671 s.Rfq1 -

33.00 
34.00 

57.7357 
58.8983 

5.5435 
5.48A8 

57.9371 
58.6996 

5.5531 
9.4q7 

57.1 QQ 
9n.5,03 

r.5626 
;.5n71 

96'A.30 
98.019p 

5.90A64 
9.532 

q5.qn6e 
9r7.0674 

r.635 
9.9790 

r9.13nA 
94.*R' 

p.77 8 
0 .i1 

35.00 60.0495 5.4397 59.8508 9.4447 5q.6935 9.4c37 90.1661 9.4761 9A.P173 .9on0 r5.4246 .6c79 
36.00 
37.00 

61.1898 
62.3196 

5.3848 
5.3398 

60.q9ll 
6P.1209 

9.3Q36 
9.3443 

60.7q37 
61.q959 

9.4023 
*.392A 

60.3061 
61.4356 

5.424 
r.1740 

5q.3561 
60.484Q 

9.4671 
r.4161 

9.9s96 
57.676R 

.6n1 
',.t44 

38.00 
34.00 

63.4393 
64.5491 

5.28A5 
r.2428 

63.0409 
64.1504 

9.296A 
r.2509 

63 .0431 
64.1929 

9.3052 
9.2990 

69.9590 
63.6646 

9,3p7 
9.97Pj 

61.6014 
Ap. 7 1pi 

9i.ls66, 
5.110o 

9A.7817 
q.A8Q9 

q,4fl97 
9.44l0 

40.00 
41.00 
42.00 

65.6496 
66.7409 
67.A233 

5.1987 
5.1560 
5.1147 

69.4508 
66.9421 
67.6245 

5.2066 
9.1617 
9.122 

65.2q3? 
66.344q 
67.4269 

9.2144 
9.1714 
9.IpW7 

64.7648 
69.8958 
66.0381 

9.P141 
9.1oo 
9.14R4 

61.8115 
64.OIA 
6.q39 

5.2730 
5.ppA9 
5.19i9 

60.09p* 
6p.n661 
63.1419 

C* fn3q 
g.'a6 
9.Im0q 

43.00 68.8973 5.0747 68.6984 r.O8O 6A.9o0 5.0893 68.0118 9.2n76 67.0562 9.143% 64.2086 .*r67 
44.00 
45.00 

6q.9629 
71.0204 

5.0359 
4.9982 

69.7640 
70.A216 

9.0430 
9.0052 

60.5661 
70.6238 

5.0902 
9.0122 

6Q.0771 
70.1345 

9.06A1 
;*nn7 

6P.l0O 
6q.1776 

9.In35 
5.n644 

69.>617 
66.X1P 

,'i'q 
C.1794 

46.00 
47.00 
48.00 

72.0702 
73.1124 
74.1472 

4.9617 
4.9262 
4.8917 

71.8713 
72.Q135 
73.9483 

4.9686 
4.932q 
4.8983 

7t.6736 
7P.7157 
73.7905 

4*q.54 
4.9396 
4.9049 

71.I41 
72.P?61 
71.2607 

4.QQ?5 
4.Q963 
4.021P 

70.P2e9 
71.P67q 
72.3fll 

9.;064 
4.qQ98 
4.qWi7 

67.1697 
6A.000 
69.4p" 

9. A* 
C*.103 1 
g.09 9, 

49.00 
50.00 

75.1749 
76.1956 

4.8582 
4.8255 

74.9760 
75.P966 

4.8646 
4.A318 

74.77R1 
7q.7087 

4.8710 
408381 

74.8RP 
79.30N7 

4.8871 
4.8R548 

73.3288 
74.34A8 

4.0lg 
4.8R91 

7n..494 
71.e60 

.n 04 
4.qnA6 

51.00 77.2095 4.7937 77.0105 4.790q 76.8126 4.8N61 76.32P4 4.8219 79.3620 4.A891 7P.4747 4.047A 
52.00 78.2168 4.7628 78.017A 4.768 77.81Qq 4.774q 77.3209 467Q00 76.3686 4.*800 7A.477P b.014n 
53.00 79.2177 4.73P6 79.0187 4.735 78.8P07 4.7449 78*.303 4*71O3 77.3688 4.7A88 74.4711 6A*810 
54.00 
55.00 

80.2123 
81.2007 

4.7031 
4.6744 

80.0133 
81.0017 

4.700 
4.6802 

79.8153 
80.8037 

4.7148 
4.6P85 

7q.3P47 
80.3130 

4*7PO4 
4.7n02 

78.162A 
79.3906 

4.793 
4.7*06 

7r.463 
76.44'3 

a.014q 
O.0176 

56.0n 
57.00 
58.00 
59.00 

82.1832 
83.1599 
84.1309 
85.0963 

4.6464 
4.6190 
4.5923 
4.5662 

81.84P 
82.0609 
83.q318 
84.9972 

4.6520 
4.6246 
£.5077 
4.5715 

81.7A62 
SP.7628 
S3.7137 
84.6092 

4.6977 
4.6'01 
4.6032 
4.5760 

qt1.qS4 
82.7tq 
93.2427 
A4.0080 

4.6717 
4.643q 
4.6167 
4.9Q02 

80.133 
81.3n6 
P2.P7q0 
38143 

4.6q6 
4.61'3 
4.6437 
4.61A7 

77.4P9 
7R*39fnl 
7q.164.0 
80j32I4 

U.707(0 
.Tg72 
.7'R2 

O.6098 
60.00 86,0562 4.5406 85.8572 4.'5499 85.6590 4.591P 85.1678 4.643 84.2033 4.50l3 81.2826 4.671 



3 PRW** n rlp njiN77 rArr 

V-INFINITY : 1.0 KM/S
 

q = -1 AU 0 = .3 AU 0 = .5 Alt n = t.n Alf n = 2,0 All! A = SP Atl 
T - YRS PAD VEL PAD VEL P~n VFL_ PAn VFL PAn Vrl mAr) Vrl 

,00 .1000 111.2090 ,30nn 76,9tn3 . , nnn 90.577A J~nnoln up.11AR P~nnnn PO.Anic t;,prnn ln.nq7 
.20 1.8283 11.1677 1 .674 ' "9661 1.. ;,7 1.902A 1.96in 13.7p n 2.11 61 PA.cn6P S.paPI " ,.U47t 
.4 0 2.056;) 24,51119 2.784R 2-;.263 P.6439 P9.QO6P 2.41IP P6.0712 2,64rp Pr.01Al .Tlnrt ln.PnAp 

1-00 9.926q 17.9450 9.3417 1A.25P9 .17pp lAar4PI 4.APIA lompnliq 4.u7AA 1q.*.>o r,.?mA711 

1.40 6.q42t 1A.0181 6.7530 IA.P3AO r,.V)TAn IA.4q3 6.IA100;,1 11 -. 711711 17.A~ng .30 
1.6n 7.59&1 15.3138 7.4nRp 1-i.5041 7.PXnP 1,.6064 6'.314 16.IIQA 6.,;nnc 16.A1nA 6.,.ibq I .*,7 
1.60 
2.0n 

A.P273 
SA357 

14.719IP 
IIt.2074t 

A.037P 
A.64;Pq 

14.11919 
14.36P6 

7.A974 
A.0IlF17 

19.OAII 
11,. 91 4A 

7.4q6p 
P.03n" 

Io 
ip 1.A767 

6.A7ar 
7. 111411n 

16.Mqn3 
I .47n r 

7.noP7 
7.44i 

1=.Af7 
I M.400 

P.2n 0.4202 11.760"1 g.?ppn 110,ql 0.1146S |4.niinp R.A.APO 14.171A 7.nnrn f4.00AA 7.AOn6 19.1mro 
2.40 qsq95 11.3647 Q.7979 17,4naP n. Al1;1 I1,6nIA n.1044 1X~qp7' . r,360; 1.UqIIa1 A Ipit; la,Km 
2.60 10.5429 11.0111 10.1506 ji%1jn7 in.t661 11.2489 Q.74,, j1 .t;1 n.nian 14.0 1- A.rAla l(.I, nl 
2.80 11,0929 11,6Q?3 1OS89A JP.904 ln. IfI7 lp.q15n ln.?7(n 11.177r 0. -;p,? .6fiII tnr ". I I tlt 
3.00 11.6095 JP.4029 11.4169 1 -.5065 ll.Pin7 iP.6nRp tn.7003 IP.1156 ln.nAq7 1I.POA4 q."1 11.0117 

3.40 12.6297 lI.S94;6 12.43AP 11.9A62 IP.P~qP 11.11767 I1.ft"I jp.pnA6 11.11771 IP.6094 ln.11lo .a 
3.60) 13.1249 11.66Q7 12.0310 11.79(2 1P.7436i 11-RUIA ip.3nao IP.n4 o n 1. 1P.4,nn o IT .nI43 
3.8n 13.6109 11.4610 13.416n 11.543n II.P qn 71.6P41 1;7n7? II.AP17 12.n'S16 IP.IA47 ip.qQAR 0.9nmlz 
4.00 I4.nA86 11.2666 13.8944 11.344 11.7ns0t1 1.4;1; t1'067P? 1I.AnC6 lP.UQ77 t1.o001171 11.q99 
4.20 14.9584 11.0S47 14.3641) 11.1spa 14.1 R 11.p'tP3 1%?;.Pai 11.411A 1P.q960 11.7U46 11.A7An 
4.40 15.0209 10.-914? 14.A263 in.qs5n 14.6173 11.0991 l4.jAQR 11.?PP6 jj.an~oA 11.qU61 ip.nfqu 1q6r7 

4.80 
5.00 

15.9255 
IL6.5684 

In.6023 
10.45Q2 

15.7306 
16.1734 

1n.6672 
10.9pIr 

lq;.t;Lnq 
19.QA34 

in.711f; 
In.rA 3 

l .nqn4 
15.r-1t 

in.Anop 
1n.7149R 

14.P960 
1.71pi 

11.l[PWI 
11.010A 

1P.P17A 1. Oq 
ii..,74g 

l 

5.2o 16.11059 10.3216 16.61nl ln.3nq 16.4pni I I. 14142 15.0660 1 n.,;P 1-,.1610 in.AA17 il.roii 11.4rl' 
5.4o 17.P370 1n.1947 17.n4 17 In.29?4 16.Ar13 In.3n97 16.3Qq9 1n.4rnP 19.9866 In.7iqO 11.014PA l4.'nQA 
5.60 17.6633 10.07P2 17.467n jn.l?7A 17. 777P 1n.IA3n 16.AP17 jn1llPIA 16.n('67 fn.V797 14.i6na 11.1r,13 
5.8n 11.0846 q.9993 17.88qtI n.OO0O 17.6npp In.062i 17.P416 In.I143 16.4Ppn 111.44P 14.71(,n ji.nipt 
6.00 18.5011 9.8438 1A.3099 q.Sq97 1S.1144 o,9? 7P 17.696AR ln,074A 16.R3Pn 10. 11q tr.inaa 1A.A14 
6.20 IA.9131 0.7371 18l.7174 0.7Ft73 18."P61 Q.A 7P IA.n679 Q.qno 17.P3QsA 1n.1n40 it;.UO? ln. C;1 
6.40 19.3206 Q.614q I .121to 0.6p'6 1A.q133 Q.7,A1a 18.4710a .o. no 17.0;45) In.n~p 19. A4A 1n.A174 
6.60 19.7240 Q.5370 19.92sp q.5A4P 39.3165 Q.6'tn 1A.A76P Q.74A-; JA.n nA C.QAT5 1A.9 oAa ln.rn~r 
6.80 
7.00 

20.1234 
20.518l9 

9.4429 
9.39?5 

lcl.027q 
20.122C) 

q.RA 7 
n.597n 

19.719f; 
Pn.I Rn 

q.9 4P 
0.441; 

19.P74q 
Io.f660n 

Q.64Ai 
Q.,;-n; 

IR, 197 
1s.A26Q 

a.g ti 
Q.79Q1 

16,q817 
16.o444 

1m.qn14 
In.9016 

7.20 
7.40 

20.9107 
21.P989 

0.26r5 
9.11116 

20.714A 
21.10?vt 

O.'.AnR7 
Q.2217 

pn.9pps 
21101I05 

q.5qt7 
O.p655 

pO.ntqo 
20.4472 

o.477 
00 647 

10.Pl47 
lq.%qn O 

0.6A10 
0.0;f%7 

17. !)n 
17.0261; 

a1 
jn.nll! 

7.6t0 21.6q37 0.1008 21.487q Q.141A pI.pn50 q.lpI 2211.11 o.Ppl0 Iq).O61 0.47r"; 1A.fOlQ- O.MA() 
7.80 
S.00 

22.0651 
22.4434 

9.02P7 
A.9473 

21.1688 
22.P470 

0.06:>7 
A.9862 

P3.6763 
Pp. 541 

q.10P'k 
qOIP4Q 

P10117 
pi.qsot 

Q.Pnn,3 
Q.tpnc; 

pn.lrpn 
pn,?3po 

Q.1RQn 
o.In7 

1P.1741 
111.70A7 

O.R77'5 
0.,pri 

8.20 22.8185 A.8744 22.6221 A.91P4 PP.4p9l R.9MI'1 P1.Q639 Q.04'I3 Pl.lfn4A lop1,71 O.An 6i 
8l.40 23.1906 9.8038 27.Q941 A.FtOq pp.801P A.A777 22.3140 R406 A pi.473A q.1446 Qoa.Ano2 
0.60 23.5598 R.7395 23.3633 A.777 23,170p Fl,8077 ?2.7134 AAQ66 pi.A~on O.n$;96 1q°.7n 0.9 M 
8.80 23.9262 8.6692 23.7296 13.7046 P1.9164 A.7't9A 2-I.oflql R.AP67 2P.POq FI.qo4Q Pn.1AIof' .444 
9.00 24.289P 9.6050 24.093P A.6399 23.11099 8.6739 23.43PI A.7rot 22.56all A.qP3F, pO.u.;o9 O.,tO 
9.20 
q.40 

24.6508 
25.0092 

n.5426 
9.4820 

24.4941 
24.8125 

Ft.5764 
P.5191 

24. P609 
29.61q1 

A.6100 
8.5480 

23.7q24 
24'1tin3 

8.69'42 
A.6P94 

22.02PR 
2I.P'A6 

A.Ftr49 
A.7%;74 

P0,p0nn 
21.i3on 

G,*AOA 
0.911Mq 

9.60 25.3651 8.4231 29.1684 A.4s55 P4.974A A.4077 24.9056 A.9675 23.6321 8.7?3 21.476I 0.14,91 
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A.0n646 ps.-RaIA At.lS1tIN
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f.n0o' 
36.'P71 
9pen307 

0*n.qp 
P.Ar 5 
A.,3nq 
P.g '1 
A.i1t$ 

19.0n 44.2430 8.0686 44.f450 9.0797 43.991A8 A.OOR 43.37Q1 8.116O 4P.4AA 8.17n6 4n.15 8.90n4 

20.00 
21.00 
2,.200 
23.00 
24.00 

45.9341 
47.6066 
49.2616 
50.Q00 
52.5242 

7.9766 
7.8911 
7.8113 
7.7368 
7.6668 

45.7370 
47.4q094 
49.0644 
50.703P 
52.326Q 

7.9870 
7.90fq 
7.8206 
7.7495 
7.6791 

49.94p7 
4P.14q 
48.8690 
rn.9086 
9P.1321 

7.0974 
7. noe 
7.8248 
7.7r4p 
7.6833 

45.n64 
46.7411 
49.I9K0 
0. fl37 

q1.6561 

8.02pq 
7.03147 
7.0P9 
7.7797 
7.7n17 

44.175 
4.98491 
47.497l 
4q.I335 
S0.79,47 

8.nP4 
7.q413 
7.8065 
7.A173 
7.710 

41.v81t 
43.4110 
45.n69 
46.6865 
4p8.' f 

*.'IA7 
0.1 rs 
ft.nol 
7.oT75 
'.Dq's 

25.00 
26.00 

54.1337 
55.7297 

7.6010 
7.5390 

53.9363 
55.5322 

-1.6089 
'.5465 

91.7414 
5.1373 

7.6167 
7.95c40 

93*2697 
4 ,6t 

7.6361j 
7.57P4 

99.361Q 
53.0991 

'.6'36 
7.608 

4o.fl857 
91.46?65 

7.7804 
'.nq 

27.0n 57.3130 7.11Aos 57.1195 7.4076 96.9"09 7.4047 56.444n 7. r 1> Sq.5370 7.9,463 93.A3w7 T.Aui5 

0 

28.00 
29.00 
30.00 
31.00 
32.00 

58.8844 
60.4444 
61.9936 
63.5326 
65.0618 

7.4250 
7.3725 
7.32P6 
7.2751 
7.2298 

58.6868 
60.046A 
61.796Q 
63.3350 
64.864P 

7.4319 
7.37q0 
7.3p88 
7.211 
7.2196 

9A.4ql 
6n.017 
61.6n0 
63.1397 
64.668 

7.43A6 
7.385 
7.3ilg 
7.P87 
7.24t3 

9A.0149 
iq.,i744 
61.P133 
62.661q
64.10n7 

7.4954 
7.4019 
7353 
7.3017 
7.?5r4 

57.1064 
98.6647 
6n.t1 p 
61.74q6
61.077N 

7.4879 
7.4376 
7.Afnl 
7.3903 
7.PAPA 

54 .tq97 
96.141' 
R7.677 
59.9066 
6o.'?P4 

7.Cn58 
'.1 " 
7,.1A73 
7.4t4 
I.9S93 

33.00 66.5816 7.1866 66.3841 7.192P 66.1887 7.1076 65.7103 7.P1t2 64.799 70176 62.2. 7.' 0O 
34.00 68.0928 7.1454 67.8951 7.1507 67.6007 7.1560 67.2210 7.1600 66.30ss 7.I44 63.'37n F.*rAq 
35.00 
36.00 
37.OC 

69.9954 
71.0898 
72.9765 

7.1059q 
7.0681 
7.0319 

69.1977 
70.8g21 
72.3787 

7.1110 
7.07'0 
7.0'66 

6Q.r)02 
7f.606-
72.1 A1 

7.1161 
7.f)770 
7.0411 

68.7233 
70.174 
71.7n03 

7.1296 
7.nqn9 
7.0530 

67.R06A 
6Qinni 
70.795v 

7.Is't 
7.1139 
7.07 7 

69.p30n 
66.716A 
6g.199, 

7.V'04q 
7.1a9 q 

7.296 
38.00 74.0556 6.9970 73.8578 7.0016 73.66?p 7.On62 73.1R7 7.0174 72.P616 7.fl994 AQ.6666 .1n41 
39.00 75.9276 6.9636 75.3298 6.96R0 79.1341 6.9724 74.6544 6.QR8 73.7349 7.0049 71.1311 '.fA71 

c c 
V 

40.00 
41.00 
42.00 

76.9927 
78.4512 
7Q,9032 

6.9314 
6.9004 
6.8706 

76.7944 
7A.2533 
7Q.7053 

6.q397 
6.9046 
6.9746 

76.509P 
7P.n76 
79.S9nqs 

6.90Aq 
6.Qn87 
6.876 

76.110 
77.9774 
7q.flP 

6.Qr5 
6.q189 
6.88811 

75.1986 
76.6560 
7A.1072 

6.q'fl 
6.937 
6.6477 

7p.r5o3 
7T.n410 
75.4A66 

7.0't5 
A.Q0'4 
6nr, 9 

0 43.00 81.3491 6.8418 81.151P 6.8497 0.Q9r4 6.8496 Ag.474q 6.8501 7Q.r5?1 6.8777 76.oPe3 6.0'08 

• 

44.00 
.4500 

46.00 

82.7890 
84.2232 
85.6518 

6.8I40 
6.7872 
6.7613 

82.9911 
84.025P 
89.4538 

6.817A 
6.7909 
6.7648 

82.3Q09 
83.8P94 
R'.257q 

6.8215 
6.7049 
6.7683 

81.q146
83.3486 
84.7770 

6.R3fl8 
6.A0vS 
6.7771 

gn.09tp 
82.4245 
83.A5p4 

6.A480 
6.,1>n 
6.7Q04 

7A.3603 
79.76m7 
81.P211 

g.93 
A.A"9 
6.tjU 

.0 47.00 
48.00 
49.0O 

87,0750 
88.4931 
89.9061 

6.736a 
6.7119 
6.6884 

86.R77 
88.2951 
89.7081 

C6.7306 
6.7153 
6.6016 

86.611 
RR.fQqP 
s9.9121 

6.7431 
6.7186 
6.6q49 

6.ao0 
R7.6179 
R9.008 

(.7515 
6.7p68 
6.702o 

9A.971 
a6.'q5p 
88.1045 

6.7681 
6.74P9 
6.718A 

RP.Apaq 
R4.nP 
85.4q0 

6.oil7 
A.'f 
6.764q 

. 50.00 91.3143 6.6696 91.1163 6.668 90.99o0 6.6710 o0.4988 6.6707 89.8110 6.694 86.A54A 6.vt.lf 
51.00 92.7177 6.6435 92.5107 6.6466 9?.9D36 6.6496 ql.R4PO 6.6572 90.qt47 6.6'20 88.0932 6.7160 
52.00 
53.00 
54.00 

94.1166 
99.5110 
96.9010 

6.6221 
6.6012 
6.5810 

93.9189 
95.312q 
96.7030 

6.6251 
6.6042 
6.5899 

93.7?2 
Q9.1168 
06.9069 

6.6780 
6.6n72 
6.9S67 

q3.P407 
Q4.6190 
q6.024q 

6.614 
6.6143 
6,5-07 

92.31p4 
Q3.7n6' 
Q5.0%6 

6.6tq4R 
6.6983 
6.6074 

9.46 
fl.lAI7 
9P.4?17 

es,'6 
6.670 
6.A491 

59.00 
56.00 

98.2860 
99.6687 

6.5614 
6.5423 

98.0880 
9Q.4707 

6.5642 
6.5490 

97.8q27 
qQ.?749 

6.5669 
6.5477 

97.4107 
qR.7923 

6.7I8 
A.943 

06.48t5 
q7.A6p7 

6.5871 
6.5671 

q3.n055 
Q.1R35 

AA$.*f, 
FlV°n6l 

57.00 101.0466 6.5P37 100.1485 6.5264 100.6523 6.29n 100.700 e.rs9s qo.p4ng 6.94R? 6.557A 9.5860 
58.00 102.420 6.5056 102.2224 6.508? I02.096P 6.5i08 n.543* 6.5171 100.6134 6.909 07.027Q 6.5064 
59.00 103.7908 6.4880 103.59P7 6.405 103.3064 6.4031 1oP.9140 6.4002 iOi.q6li 6.5i13 nq.PQ46 A.%u4 
60.00 105.1573 6.4709 104.0592 6.4733 104.7630 6.4798 104.28n4 6.4818 10.14Q ' 6.4037 10n.6977 A6oAq 



7 
PRW** 
 nATP 033077 PArr 


V-INFINITY = 10.0 KM/S
 

0 .1Al) .3 A(I4 .5 AU n0 1.0 Al) n =2.0Al A' = 90p Au
 
T - YRS PAD VEL PAD VFL PAn VF[ PAt VFL VrFL^n
D~n VAY
 

.00 .1n0 133.5761 .300n 77.5;12 .tnnn 6n0.4npq 1.lonnr 
 1.PP7 2.o0n 11.4R16 .9nfln Pt.0fn4
 

.20 1.n606 iP.3AAP 1.71A 11.6,17 1.6P14 '4.qrA7 - 1.61PA P0?8 .9,4A1 pn.nE44
14.6AIP 2Q.0941


.40 3.0591 p6.0767 2.8909 P6.7196 P.7q4 P7.p780 p.q66Q pP.12p5 p.76q' 2".2j7 5.'81 70,70?


.60 4.078q ?3.1207 3.903P ?1.54qp N.7528A P23.0'po 3T.09o~ P4.6q09 3.'s4p± 94.7A04 %,.CnoP p".tin
.80 5.0056 21.3170 4.826? P1.6248 4.A67A P1.011, 4.IA71 99.807 4.17nn 5.P6
9.093 pn.n'4

1.00 9.870PI 20.0594 5.68A~n ?0.20'&8 C;.r;P85 20.5208A r.1 Q,3 P1.flfln 4.;00It p1.1sO74 6.93116A IO.A14?
1.2n 6.6912 19.1oq2 6.5076 l*.3lfl .1A 
 q.Ant 9.qO67 IQ.1AQ 5.A233 pf.ln1*3 6.A9l* 10.11A6
1.40 7.4771 1A.3695 7.pq p 18.5P26 7.1pp6 18.6A41 6.76%6 
 1Q.np8 6.1371 1.o4011 7.n,3 0.7An
1.60 8.P354 17.76n7 8.0498 17.gfl2 7.P77P !8.0330 7.in6 1A.1567 7.AfoN 18.7690 7.F1A 10.131P

1.80 A.9709 17.2q63 8.7814P 17.3777 8.6708n f$7.4041 A.P'94 1.7607 .7PQ7 18.193 7.o°$. 11Ot1
2.00 9.6871 16.8273 q.4997 t1°.343 0.3pqfl 
 17.'q73 A.04PO 17.P747 8.4000 17.6350 8*.U1IA 17.2'1*72.20 10.3868 16.4966 10.j1aQ IA.5; 1 q .nP38 16.6430 Oo.6315 16.8Aq6 o.n77P 17.jpr, o.nfl; '.9 Om
 
2.40 11.07PI 16.1321 
 10n837 36.217c 10.7n68 IA.3n07 I0.3141 IA.401 0.7jAn IA.7on4 Q.RPAA 6.01*6
2.60 11.7447 IS.89452 IIq55 
 1q.QP8 11.178P 19.qofn In.A16 i6.I77n 10.3IA 16.4RA5 lo.nI0tn A.65'f
2.80 12,4060 15.5800 12.0160 1.6%Qn 12.0nn4 2.7PR4 11.6A8P 8.A0n7 10)2n 16.I10 lo.=' A.19 9
3.00 13.0573 15.3585 12.8678 15.42 9 1.687 s.'s6A t2.pn8 
 I8.6v;o 11.66p 5.87Aq 11.19 9 A.Inl
3.20 13.6994 19.14Q7 
 13.006 15.2nQ6 11.1gog IR.P677 12.OP37 i*.ufl 12.P2o0 1r.AX6 f1.66qo €,n77

3.40 14.3332 14.05o5 14.143P 
 15.0150 I.0630 9.06A8 j3.q94p 18.1084 jp.0orn 19.1tno9 jp,9no7 Ig.66A31
3.60 14.Q595 14.7853 
 14.76P 14.836q 14.qPp t4.SP60 14.177- 1q.luQ I1.52P8 9.Pnr54 Ip.s7ni 18.a46
3.80 15.5787 14.6290 1-.38A? 14.6731 t9.Pn71 14.710* t4.70n 14.n8n01 ju.13on 19.87 A.30017 t.no,

4.00 16.1916 14.4768 16.000q 14.9pl R.Alql 4.569?A 19.4n44 U.66Q0 
 4.73' 14.A*167 13ofl'7 1 go7 1
4.2n 16,7984 14.33 5 16.6076 14.3817 16.497 34.4?28 16.0lo 0 14.5 0q 
 5.'Inn 4.6p7A 14.'Rnl 1ft.n~
4.40 17.3998 14.2116 17.P0R8 1.0914 
 17.n68 lflfl0o 16.6n83 14.3816 1%.nplq 14.54' 14.0PI1 l'.'-n i4.60 17.9960 14.09O3 17.F048 14.PQR 17.?? 1466 4.2927 16.5110 4.4033 15.4653 Aj*3

4.8D 18.873 13.9805 18.3960 14.0160 1802132 14.n8fl 17.7QPI 14.19'3 
 17.0088 14.2793 16.0nMA 70 I.n9 4
5.00 19.1742 13.8756 18.0827 I109p 18.70o6 13.qu1 t.3771 4.01a( 
 17.67.A ia.is 16.c4A4 0.3n4 0
5.20 19.7568 1t.7770 lQ.9652 11.8018 IQ.1pla 1R.S9a A.qqP3 l1.01,46 1A.25p20 l44,41t 17.nA8O Ii..r'4
5.40 20.3354 13.6839 20.1437 11.714P 1o.q6n1 13.7437 70.*838 11.14'1 8.RP4A 13.Q074 17.621n 1t. 6R
 

20.9102 1.5960 20.7184 13.6240 Pn.9146
5.60 1.6q3n pO.1080 11.710n 10.101o 11.0117A In.16a 1.nn5
5.80 21.4A14 13.5128 
 21.P895 11.54n3 21.1059 13.q671 ;0.67AQ 1 nn5.6900 11.741A 1'.nln6
IQ.05on 1R.6QAg

6.00 2p.n492 11.4338 21.857P 13.461 P1.6730 21.4n7 P1.2459 11.q467 n.52pA 13.654A q.Ofn7 1.0688
6.20 22.6138 13.35A9 22.421P 11.3R4Q PP.P174 13.40AR 21.80o0 3.466A p!.08pn 13.q'n4 19.7637 1.7'c8
 
6.40 23.1754 13.2875 22.083p 
 11.3116 2P.7087 1j.35 P2.1609 o3.3a0o p1.63o0 13.4o 4 P0.pq05 1'.6o0
6.60 23.7340 13.2195 23.5418 
 13.2426 P3.3571 13.2651 pP.Q171 11.11l7 PP.1Q44 13.414p *n.ppco 1'.6006
6.80 24.289Q 13.1547 24.n976 13.1768 23.9127 13.]08 23.4Aln 1.P40 pp. 464 11.3k17 P1j.5i9 N.Rin

7.00 24.8431 13.0q27 24.6507 11.114O 24.4A657 33.1'47 
 P40n14 1.1042 p3*509 3..7pPA Pj.oARo 1'.II66
7.20 25.3937 13.0334 25.2011 13.0939 P2.0161 13.f73p 24.5P41 9.1PI4 p13*84on 1A.p66 pp.4008 
 13.1096
7.40 25.9420 IP.9766 25.74q4 
 1P.qQ63 ?9.964P 13.015 P9.1315 11.nA14 P4.3A87 13.113 Pp.a3un '.'i77
7.60 26.4879 12.9222 26.?953 12.941P 26.100q 1P.09q7 
 19.6766 13.0030 2.03n 1.0n1 P3°a±5q j'oq'6
7.80 27.0316 12.8700 26.8380 12.9883 26.6934 12.of61 P6.2PQ1 lp.04A7 p. 4 711 13.f0l9 P3.0R1n 11.4013

8.00 27.5731 12.8108 27.3804 IP.8375 P7.147 1P.PR47 P6.7603 1P.80gq 26.0007 tp.QAoq 94*.9039 I.l'nI

8.20 28.1125 12.7716 27.lq 12.78R6 27.734n 12.p85p 27.P2l 
 1P.R4N P6.516U 12.fl165 95*0.2Pun 1'.lol
8.40 28.6500 IP.7251 28.457P 
 1P.7416 PR.P713 IP.7577 p7.8350 ip.7061 27.n819 1p.8A63 PS.I43 ji.ni77
8.60 29.2856 12.6804 
 28.9927 1P.6063 P2.R867 1P.7110 P2.3708 1p.7400 P7.619 1.l161, 6.0618 '.a46
8.80 29.7193 12.6373 2q.9P64 1.65P7 Pq.3403 12.6677 PA.QO0q 12.7A07 p8.148± 1P.76R7 P6.'7AS 9.4t04
9.00 30.2513 12.5957 30.09R3 1P.6106 PO.8721 tP.6PSP pO4153 1p.6600 pR.67qn 1p.p30 27.nQ44 
 9.16±1
 
9.20 30.7815 12.55q5 30.5885 1P.5700 30.40p lp.5 41 29.4651 P.617q PQ.p030 1p.6700 P7.A009 f.n5AJA
9.40 31.3101 12.5167 31.1170 1P.5307 30.3O17 1P.5444 30.'403 P.5772 po.7P24 P.6365 28.1231 29.7706
9.60 31.8371 12.4792 31.6439 1P.4928 31.4575 1.5061 31.01QS ip.5i7 30.254P 1P.95r4 2p.RSSR P.7963
9.80 32.3625 12.4428 32.1693 12.4561 31.9128 1P.461O 31.5444 p*4§oq 30.777f 12.9958 pq.147fi lp.An1s
10.00 32.8864 12.4077 32.6932 12.4205 32.5067 12.4331 32.0678 12.4631 31.2q46 IP.5174 P.*5 9.Aa1
 



OATw 01307' OArr a
PRW** 


V-INFINITY = 10.0 KM/S 

Q = .1 AU G = .3 AU 0 = .5 At 0 = 10 RU G = F.0 Atl n r.2 AU 

T - YRS RAD VEL RAI) VEL PAD VFL RAD VFL PAD VFP RAn VFI 

10.00 
11.00 
12.00 
13.00 
1M.00 
15.00 
16.00 
17.00 
18.00 
19.00 
20.00 

32.8864 
3t4n5P 
38.f527 
40.5930 
43.1094 
4r.6047 
48.0810 
50.9403 
52.9842 
55.4140 
57.8311 

12.4077 
IP.p474 
2P.10A9 
11.9878 
11.8810 
1.7P58 
11.7005 
11.6235 
11.5936 
I1.48qq 
11.4315 

32.693P 
39.0918 
37.859P 
40.39q3 
42.q157 
45.4108 
47.8070 
50.3463 
52.7901 
55.2198 
57.6368 

1P.4pn 
1109.6 
IP.1IIR 
11.9q66 
11.88RR 
11.7928 
11.706q 
11.6p93 
ti.5990 
11.404R 
11.4361 

3P.507 
3lQq 
17.671q 
'0.P11 
42.7p79 
4.?P2 
47.6089 
90.1580 
52.6n17 
%.f 1 
97.448P 

1P.4131 
lPP698 
12.128' 
1p.0O51 
11.8064 
11.7097 
11.7131 
11.6,5% 
11.964P 
11.4096 
11.4409 

lpn67A 
14,6644 
37. 0'O 
39.7687 
42.P83n 
44.777s 
47.Pr3n 
4q.7113 
5P.1943 
4.' 31 
56.QOq6 

10.4611 
2.pO7 
I.114 
P.0pr6 
II.Q147 
11.8162 
11.7PA 
11.64A7 
11.9767 
jI.1II1 j. 
11.4911 

31.pg26 
JARAfn 
A6.44o 
3A.083I 
41.4941 
43.ql44 
46.4561 
4A.0116 
51.390 
y.77 
r6.1q9 7 

lP.0174 
10. lip 
l9.tflf 
ip.062p 
11.04AP 
1t.8464 
11.79t 
11.677 
11.006 
I p.5 
11.47n06 

*Q.AR3 
lp3,IQ7A 
'4."'If 
37.91R 
iq.Aq06 
42.19 R 
44.ROO 
47.n311 
49.a56 

6 

%4.601 

1%.An01 
10.4941 
22.tA7 
I.tIR4 
1p.n09 
l.n.'02 
jl.ft00q 
11.7196 
I1.rq96 
II AW.4 
j1.10I9 

21.00 60.2363 11.3778 60.042n ii.3R'o 59.833 11.3A61 59.4nP 11.3A09 CfR,9qq 11.414n 6.A47A 11.4909 

22.00 
23.00 
24.00 
25.00 
26.00 

62.6307 
65.0151 
67.3901 
6q.7565 
72.114 

11.3PS2 
11.2B?3 
11f.V96 
11.1998 
11.1626 

62.4364 
64.R?0' 
67.1957 
69.5621 
71.9201 

11.3,Nt 
11.28%q 
11 0 
11.?030 
11.1696 

6.P2475 
64.631 
67.0067 
69.37?9 
71.7111 

11.1ra 
1P.p2q8 
11.0463 
11.61 
11o168 

61.7qAO 
64.181A 
66.9=6 
68.0 p2 

71.PI1 

1l.14 
1j°PQ*0 
11.?42P 
1.115 

11.17'9 

6f.o0Q71 
63.A6F04 
6.742p 
6.fl6A 

70.463' 

11.10 
l1!.I6 
1l.pisq 
11.097, 

1i.lnq4 

Ro.n2 
41.09R7 

61.971 
6.11"' 

6°4 74 

1 1.0043 
1l.ArN4 
1."'o6l 
11.', 

11.1i 

27.00 74.46559 11.1277 74.P710 il.1lfl5 74.0817 11.1;3,1 71.6103 i1.1"99 7P.PI23 li.1i,0 7n.7Q79 il.1n31 
28.00 
29.00 
30.00 
31.00 

76.0ql 
79.1461 
81.4767 
83.8014 

11.0950 
11.0642 
11.0352 
11.0078 

76.6146 
78.Q519l 
81.0821 
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97.P707 
ql92.r.5 
q9.qq9 
I00.P224 
104.5113 
108.R367 
11.1337 
117.4574 
912.733A 
6.f79 

130.318ti 
134.6n73 
1.930tARi 
141.1789 
147.4611 
16 .74Pn 
156.0211 
160.Pq8' 
164.5747 
168.R492 
173.1P?4 
177.3Q43 
1P1.664Q
1P85 344 

PO.9027 
20.8289 
Pf.765A 
70.712n 
Pfl.6f654 
p0.6246 
20.5P88 
20.sq65 
Pq.9M7 
P0.9npo 
P0.4786 
20.4R73 
p.4378 
P0.41CQQ 
20.403q 
p0.3A83 
2n.374? 
20.5611 
P0.34R80 
p0.337% 
P0.P6q 
?0.116A 
p0.374 
Pn.PO86 
20.P009 
P0.2A23 
20.2748 
2n.P677 
20.2610 
Pn.P46 
p0.pusra 
.pn.P4P7
20.2172 

47<.6qlO 
92.0901 
56.4736 
60.8460 
65.2082 
69;9614 
73.0068 
78.PW.1 
RP.6;772 
s6.Qn7 
q1.PP51 
Q5.9418 
qO.8544 
104.1630 
108.46A2 
112.7700 
117.0685 
121.164A 
125.661 
IP9.q4"O 
134.2376 
138R.9241 
1P4.p*8 
147.0910 
151.1717 
155.6508 
159.029P 
164.P041 
168.47P6 
17P.7517 
177.oPs 
1o1.2Q40
195q634 

po.q0q4 
pO.894P 
po.77fl6 
p0.7162 
P0.66qn 
,n.epR 
pn.9q14 
'n.qol 
70.0;301 
9f.i0.I1 
pn.4805 
pn.4qqo 
pn.4104 
?0.4PI4 
,OS&0h8 
Po.8q"5 
90.1754 
n.W36p 
?n.3419 
pn,33S5 
pf.l977 
P29.3177 
po.3nAP 
pn.Q03 
Pn.2qnq 
2(.P830 
p0.97%5 
?0.P683 
p0.P616 
pn*?55j 
Pn.2490 
P2n.43P 
Pn.276 

47.1419 
5t.63sp 
5s.9q16q 
60.0851 
64.644A 
ia.aQ57 
73.1331 
77.675f 
82.nn61 
56.3311 
Qne.195j 
q4.06a7 
qq.p7p' 
fl3.50q 

'1O7.R9O2 
11p.1fl1 
116.4nn 
12n.7843 
jp.n770 
I2.167' 
133.653 
117.Q411 
l P2.22 
146.9071 
lt(.7R74 
?qq.n66. 
169.340 
163.61s9 
167.09A 
172.1663 
176.4'6 
1n.707n 
1A4.Q761 

Pn.qlqA 6.ppa 

P0.f42q 50.rql 
pn.771 5400 
pn.'FY7 sq.0QA7 
p.6748 63.A6n4 
pn.expq 607.0794 
pfl50qq 7p.flO0 
P.5631 76.P0) 

.6338 An.t 4P7 
p0.9074 81,9610 

po.4RI9 AQ.979 
Pf.467 q3.89A6 
p0.4't) 08.1867 
PA.4*37 10p.4A7' 
p0.407n 106.7867 
p0.3o1 1l1.nain 
Pn.377 11.7A 
p0.,3Alq ltQ.A641 
pn.31% l23.09"V 
P2.3nfl 128.23' 
P0.310 12.=9p 

pn.3190n 116.%k066c 
n.l05 Q.14i.0A

4Q 

pn.3005 14r.36'6 
pn.pof 14o6A4fl 
Pn.pnR4 1S3.aAl. 
p0.2765 5pnpp.cl 
po.PQ93 16p.4 A' 6 

20.2P25 166.136* 
20.2q60 171.nO6 
P02409 1'.527R 

Po.2P*4 17o.F4P0 
pfl.p'A4 1I3.An0 

I.QA5 
pn .A.zA3 
pn.7*1q6
pn.vq165 
2A.68 
pn.lp 
>A.n43 
pO.t6M'7 

6t6 
pn.q''6 
P.4 o 
pf.t At0 
pf .4tL 4 

pn."11AP 
20.1?? 
pn.10164 
pn.onq 
9A.I A6' 
pn.WU7 
?n. n 
pOn* 90 
pnt." A 

*n.'10 

-n.'R l 
pn.0943 0 
pflRAI 
p(.9709 
pn.*712 
20.P A 43 
pn.577 
pn. * ' 9 
pn.9065 
pl.PlfQ 

' 
43.00 
44.00 
45.00 
46.0n 
47.00 
48.00 
49.00 

190.5546 
194.821g 
199.0881 
203.3533 
207.6179 
211.8809 
216.1434 

20.2314 
20.2264 
20.2216 
P0.2169 
20.2125 
20.2083 
?0.2042 

190.3714 
194.6387 
1Q8.Q44 
203.1701 
207.4343 
211.6977 
215.9601 

20.2317 
20.PP66 
20.2218 
20.2271 
2n.2197 
20.2084 
P0.2n43 

1Qo.P027 
104.4690 
1()P.7361 
P3.0013 
207.P65% 
221.580 
215.7Q13 

20.21q 
p0.?P6p 
p0.2220 
P0.0171 
20.212n 
20.2(86 
20.Pn4 

18q.8316 
1q4.qS7 
108.'.64q 
2nP.6300 
706.8q94 
211.tr74 
215.42Q 

P0.2313 
po.2p'2 
pn.Po914 
pn.P177 
pn.P133 
,o.?Oqn 
Pn.Pn4 

89.244n 
IQ.So0q 
197.7767 
p0.0416 
P06.30n55 
P10.5686 
P14.307 

pN.p30 
pn.po7q 
Mp.293 
Pn.2jR3 
pi.9l9 
Pn.?noq 
po.Pn4 

1Rg.n76 
9P,°4AM 
296.6060 
2n.MAP6 
pf.51306 
rq.'.O30 
213.6596 

p0.9345 
9.990" 
P0.9'44 
pn.'106 
p>9rl 
pn.9,W7 
20.'fl6 

0 50.00 
51.00 
52.00 
53.00 
54.O0 
55.00 
56.00 
57.00 

220.4050 
224.6658 
228.9258 
P33,1851 
237.4436 
241.7015 
?49.9587 
250.2152 

pn.2002 
P0.1965 
20.1928 
20.1R93 
?0.1859 
p.1827 
pO.17q5 
20.1765 

220.021A 
224.4826 
228.7426 
233.0010 
237.2604 
241.6183 
245.7754 
250.0319 

20.2004 
20.1966 
20.1930 
2o.1;q5 
p.1P61 
20.1828 
2n.17)7 
2n.1766 

220.0520 
224.3137 
PP8.5737 
232.8"3 
237.0015 
?41.3493 
245.6069 
P4Q.8630 

20.?06 
p0.106A 
2.1031 
20.1806 
p0.186P 
2(.1APQ 
P0.179A 
20.1767 

219.6814 
223.Q421 
2P8.P0(1 
235.4613 
236.7107 
P40.q775 
245. 346 
P2q.4I t 

On.pnn 
p0.1971 
P0.1934 
)n.jgQq 
20.IRA 
2f.1A"2 
p0.ISn1 
20.1770 

plq.0qpi 
223.359A 
PP7.61P3 
231.A714 
P36.1297 
40.387 
P44.644* 
P24.qoq 

20.01n4 
20.1076 
P0.lo3q 
pqj.o4 
n.l 7fl 

p0.tA37 
pn.inqo 
pn.t'74 

17.nI9 
?PP.1716 
226.4301 
?3.6878 
234.Q4A 
P3q.OflIA 
2'&.a'7n 
?47.71P 

Pn.nO 
?0.1087 
pfl.loOQ 
P2.n14 
pfl.1i9 
p0.I046 
Pn.104 
p0.17A3 

58.00 
59.00 

254.4711 
258.7264 

20.1736 
70.1707 

P94.2878 
258.5431 

20.1717 
20.1708 

?94.1189 
298.1742 

20.173A 
2n.'t70Q 

253.7469 
258.0022 

pn.1740 
0.1712 

23.156P 
297.4111 

pn.7?45 
P0.1716 

PSi.n6fA 
PS6"*pna 

pm.17r3 
Pn.j9 4 

60.00 262.9811 20.1680 262.7978 20.1681 262.6288 p2.168P 262.2q6 9.164 961.66q57 0.68A. P60.4741 9n.IA6 
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V-!NFINITY = 30.0 KM/S
 

4 .11U0 . AU 0 5AU 0=1.0 AU 0=2.0 AU 5;.2 All 
T - YRS PAD VEL PAD VFL PAn VFL pn VrL otn Vrr ovn Vr) 

.00 .1000 116.5378 .3nn0 AP.5491 .s;n 66.607P 1flOnnn RI.7 IP p.nnnn UP.P244 C;onnn Pa.pfn7 

.20 2.1796 41.40fl7 2.0477 4P.O?"3 1*0734 4P.415f8 r.ORq a?.3It54 p*rp 9 Iin.flh6 r.~n *"~nA 

.40 3.8036 36.9657 3.6966 37.2106 3.rrp1 37.4090 3.4340 17.6 .6P0Qr 17.2A72 5.nPS3 All.AA13 

.60 5.3147 35.1260 5.16P 39.2663 9.0l63 11.3770 4.P70n I.9e7Q 4."n08 At.vIpq 6.8A3 i3a. 104 

.80 6.769q 34.0803 6S.6142 14l.1797 6.49?9 14.Pr31' A.PunR9 14'317q 6.2117 14.4107 7..;61Rl IN.Anu3 
1.00 Ft.t00 31.4 19,1 8.033 331L47Q3 7.0070O 51 7.6n73 tI.62'n 7.r7l II.6n R~n7 II.I'p 
1.20 9.9886 12.9309 9.42P97 3?.qp~? '3.3n17 33.nr65 qCln707 q3*00l7 R.Q10A I.159o q.7flAn 19.on7 
1.40 10.9694 32.5844 jO.AO04 3P.6212 1Sn.A77 3P.Aq17 10.4403 3gp7f77 n.*40 3P.7q'> 1n.0ArC 3.An02 

1.6n IP.337P 3P.3081 12.176c 3P.3,;79 1P.0453 IP.3W0 t1.8085 jp.4f76 1I.5R5A 3P.4192 Ip.n1 I9.1506 
1.8n 13,6947 'V.0867 13.9334 3p.1108 1A3.4n1 3p.100 13.1903 lp.1688 1P.0170 .4p.:n1 13.P7'S 3t1r57 
2.00 19.043q 31.909P 14.A821 31.9p9P 14.74R 11.0021 14.rni0 o1.074n 14.'4"A .nnA 4.5n1 3I.n16 
2.20 16.3862 11.7534 16.224n 31.77n4 18.0oq 11.714A 5.A4n7 1.A1A 1 .7pn 31.1844 15.7nn I.A 91 
2.40 
2.60 

17.7226 
19.0541 

51.6P46 
133.5138 

17.9601 
18.8QtA 

31.63.2 
11.92A9 

17.14P94 
1A76 

31.6 lq 
31.53I72 

17.1714 
R."150 

31.67M 
qt;~7A 

16.8%9 31.7n2 
IP23j(,6F 31.9~1fI 

17.n? 31.0n1I 
3 ,isrl9A111." 

2.80 20.1813 31.4174 20.218P 31.48r6 p0.nqp 1.41PQ 1q*pgqo I .iAp n.q3n' 11.4777 1n.906 I1.if,7 
3.00 21.7047 1.3328 21.9414 31.34?7 21.4092 I1.3 11 P1.1469 1.367?p Pf.449 31.3866 Pn.pnnnl 3I.Ian0 

3.2) 23.0247 31.257q 22.161P 31.2668 PP.7P47 1.074P 9P.IA47 AI.2886 p9 .15 6c 11.3n6o 9P.07TA 3Y.'Ill 
1.40 24.341A 31.1912 24.178P 3l.l0 t P4.0411 31.2098 pl.770Q 11.71A8 P3.4669 31.pI(7 23.471 3.9IIfnq 

3.60 25.6563 31.1313 29.49PS 31.13114 25.355(1 31.1t4st Pq.fQ97 Tj.1A, p4.7749 11.1708 74.AP4 11.111A 
3.80 26.q684 31.0772 26.8044 31.0836 26.667n I.08ol P6.4n3p t1.rlA 26.n80 31.113' i.nnoI 31.l7*07 
4.01 28.2783 31.0PA1 28.114P 1.0340 P7.0766 31.0390 P7.71y7 31.nellqt p7.'PRA ;1.nr1n 97.101' v1.nAnQ 
4.20 20.5863 30.9834 29.4221 i0.pP8 2C.fA4P 3f.0033 20.01854 I1.0n3 pA.6RAO 11.0136 01.461P .,16 
4.40 30.A924 10.94P4 30.7281 30*9474 '0.9001 3n.016 30.3P24 If.0R90 pqofQl7 f.07fl 90.74 4 n1."73 l 
4.6n 32.197n 310.9048 32.0326 IA*0QO04 Mj.A041 A0.0133 31.6,60 in0A209 11.pQ1,q 3fl*03fl? Jj.fl9O0 I0.09 -l 

4.80 33.5000 i0.87n1 3.3355 3n.8743 33.197t 3n.f770 32.QP28 i0.Aqn 3p.r%0f7 n.804n lp.An 3rkan8 -j1 

5.00 34.8016 30.83A0 34.6370 in.8419 34.4qA5 3n.R493 ;4.PPQ6 30.AqIA 33.A8qn O.Afn2 31.q6 n.,;70 CD 
5.20 36.1019 30.80R2 35.0373 n.A110 9.T7ff 30.pirn 19.qPot m0.ApII 3s.1860 3n.Aon 14.0S'0 30.03*4 

5.40 
5.60 

37.4010 
38.6900 

10.78n5 
30.7546 

37.236' 
38.534P 

3.7835 
30.7578 

37.n075 
38.3q93 

3n.7A6p 
10.760 

36.AP74 
38.1246 

flx7oo 
30.7659 

36.1$A84 
37.7777 

3f.70o0 

'0.77p8 
16.1400 
17.a0qn 

IV.AnM7 
30."7 o 

5.80 3q.0959 30.7305 39.8311 3n.7334 30.6920 30.7160 30.u2A0 '0.7410 Ko.07p, 3ff.747r 3A.1141 qn.7quA 
6.00 41.2919 30.7078 41.127n 30.71M06 40.0878 A.7130 40.7162 in.7j77 4f.3A9A 30.7piq 3q000;1 9f.mni 
6.20 42.9869 30.6A69 42.422n 3n.6802 4P.PA27 10.6014 4P.0107 30.609R ut.A5A6 'o.7o16 4 1.9 1 1 In.inoo 
6.40 43.R811 10.6669 43.7161 3n.6600 41.9767 3n.6711 43.3043 *0.67R3 4P.09n7 3n.6qnn 4?.m6ni 3.8080 
6.60 45.1744 30.64176 45.0094 3n.6500 44.A600 n0.6R20 44.9' 71 In.e6q9 44.?4pt 30.6811 43.410 At.8A71 

6.80 46.4670 3n.6298 46.301Q 30.63P0 4A.16P4 In.6'3Q 45;88P i0.o676 49.932 '0.6496 45.12". 10..1103 
7.00 47.7589 30.6129 47.-937 3n.6150 47.4941 10.616A 47.10r, In.6203 46.823n n.8o99 36.4np.86 
7.20 
7.40 

40.0500 
50.340 

90.5069 
10.5818 

48.8848 
50.1751 

0.lqRg 
3n.5837 

4A.7451 
50.03n 

A.6n6 
3n.5891 

4A.4713 
4q.7613 

3n.6040 
in.q5A5 

4R.11P8 
40.401r 

IO.?nOS 
An.op7 

147.r887 
4A.068n 

In,.1IR 
jm. n00 

7.60 51.6304 30.5674 51.465P 30.5692 52.393 3n.97n7 91.0 0A fn.738 *8.rA0Q 3n.577 9q*.4Q1 n.S00R 
7.80 52.9197 10.5537 52.7544 3n.5994 qP.6149 3n.r60 5P.3307 n.5 O to.077R n.3c8,6 -I.q,;ni 3n.m0q 
R.O 54.2084 3n.5406 54.0431 3n.5423 93.0n31 3n.5437 53.A81 3n.54A4 53.p69p 3n.55n rp.Illn 3t'.qM$ 
8.20 
8.40 

55.4066 
56.7843 

3n.528 
30.5163 

55.3313 
56.619n 

3n.5pq8 
30.5178 

99.1013 
5A.478 

3n.9311 
3M.91C01 

r4.016n 
56.p033 

3n.q337 
'n.5916 

94.52P1 
99.8388 

'0.9373 
30,50s 

94.0017 
9.17*" 

30.SulR 
3f. 04 

8.60 
8.80 

58.0715 
5q.3583 

30.5050 
30.4q41 

57.0061 
59.1q28 

30.5064 
30.4Q95 

57.7660 
f.fl26 

30.507A 
31.4066 

97.4qnp 
98.7766 

Tn.q1nn 
if.490f 

97.0P47 
;P.41n, 

30.i33 
3f.90nl 

%6.9P6 
57.0132 

3 n.9q"5 
30.nAp 

Q.00 60.6446 30.4837 60.4791 3n.4050 6n.388 f.l.tA6t 60°0826 in.4AA4 9q96q" 30.UQ "Q.PtPf 30.4n 
9.20 61.9304 30.4737 61.764q 30.N4750 61.6P46 '0.4761 61.3UR2 3,.4712 6n.q6n4 I0.R1I 6n.40p7 3".11q8 
9.40 
9.60 
9.80 

63.2159 
64.9009 
65.7856 

3n.4642 
30.4550 
30.4462 

63.0504 
64.3394 
65.6200 

30.4654 
30.4562 
30.4471 

62.OIOO 
64.1q50 
65.4796 

30.4664 
30.4972 
30.4483 

6P.6334 
63.Q1P 
60.2026 

n0.46R5 
10.4liql 
ft.4501 

62.2640 
63.4n 
64.8 3PA 

30.47 
30.4818 
30.4-27 

61.17P4 
63.091Q 
64.11I 

n.41q 
3n.4054 
1A.ne6p 

10.00 67.0699 30.4377 66.9043 30.4388 66.7639 30.I497 66.4867 A0.4415 66.116P I0.4440 65.616 3n.474 
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0 = .1 AU : .3 AU 0 t vjAU 0 =1I) 0 = 2.nOAP All RU 

T - YRS RAO VEL RAD VEL RAn VFL RAD VFL PAn VEt *An Vrl 

10.00 
11.0n 
12.0n 

67.0699 
73.41165 
79997 

90.4377 

30.39q7 
30.3619 

66.90q3 
73.320A 
79.7300 

30.4398 
30.406 
I0.3696 

66.763 
73.1101 
7c%.589A2 

3fl.419q7 
I0.4014 
I0.3,649 

66.4867 
7?.Q0pp 
7Q.1fl 

Ift.44195 
A,46q 
'fl.'1fl 

66.1162 
7?.9PRQ 
78.cflSn 

10.4140 
mn.4nnn 
In.,%'pl 

6R.A1nfA 
?2.nou 
78.3941-

Af.474 
r.ft'n~q 

I".140 

13.00 
14.00 
15.00 
16.00 
17.00 

86.298R 
92.6965 
99.0897 
105.4788 
1lL.864 

30.3407 
10.3173 
90.2970 
30.2791 
30.263? 

86.132c 
92.5306 
98.9237 

105.3128 
111.6984 

30.3414 
3n.317q 
30.2Q79 
30.27q5 
30.2636 

P5.Q0?O 
Q.1896 
q.7826 
10.1716 
111.9971 

10.3410 
30.3184 
I0.27Q 
A0.27qQ 
30.269q 

85.7Pq 
q?.!100 
qq.RnP6 
104.913 
111.2764 

3l.l4fll 
An.I10 3 
9N.?qR7 
'n.fnn6 
30n.646 

89. X 
ql.79l7 
QoI.I 
104.900Q 
1j00939 

'0.144q 
3on.N7 
Ifl.poo 
30.Pq16 
3065 

84.7l 
01.16r6 
q7.-4A7 
103.0259 
110.o16 

30.'4A6 
Ift.N,*5 
1.0,16 
90.p29 
In.'#q 

18.00 
1q.00 

11R.2468 
124.6264 

30.24q0
30.2363 

118.080 
124.4604 

3O.244 
3n.2367 

117.qq4 
124.3t10 

30.P4o7 
30.p?6Q 

117.6585 
12.0377 

30.P03 
in.PI75 

117.0741 
123.69PA 

30,211 
3n.pipp 

1l6.A 7' 
1'3.nQ' 

I. 
n9Ifl*9' 

20.00 
21.00 

131.0035 
137.3783 

30.224q 
30.2145 

130.8374 
137.212P 

3n.225' 
30.2147 

130.6q5 
137.0706 

n.?p254 
90.2150 

130.4145 
116.7AQ0 

30n22pq 
I0.' 54 

13fl.flR 
116.4n5' 

n.2566 
in.2160 

190.4191 
135,70 

30.96 
30.91l 

22.00 141.7510 30.2050 143.594A 30.2oS2 143.41933 30.205t 1413.1614 A3oPn5q 14p.7740 An.o64 1'J°.l5l 3n.*07 

23.00 
24.00 

150.1218 
156.4908 

90.Iq63 
n.1884 

149.q556 
156.3246 

3.1066 
3N.A8n6 

149.9t40 
156.lnpq 

30.1o67 
3n.1887 

14Q.5320 
15%.a0A 

30.1071 
in.IACl 

14Q.1410 
isS.lPl 

10.1n76 
'An.In06 

14.F10A 
14.A4P 

%n.lnA4 
in.n10n 

Un 

25.-00 
26.00 
27.00 
2.00 
29.00 
30.00 
t.00 

162.A589 
169.2241 
175.9887 
181 .Q519 
18.3140 
194.6750 
P01.0349 

10.1811f 
30.174 
I0.167) 
30.1621 
30.1566 
30.1515 
30.1467 

162.60,0 
16n.057q 
175.4224 
181.7857 
188.1477 
194.q087 
200.A0A6 

I0.lpp l 16.9sol 
3n.1744 16P.Q16P 
In.1681 l7q.P07 
30.1622 181.6439 
30.I68 1oAR.00Q 
30.1516 194.3669 
9n.146Q Pn.7P67 

I0.I124 
I0.174A 
In.1682 
'0.!624 
'o.is6q 
30.191A 
An.1470 

16'.P2600 
16A.637 
I74.nn61 
181.361P 
1n7.7PI3 
194nAICQ 
P00.4437 

In.1817 
In.1748 
ln.1695 
in.1626 
No.lq7' 
in0I,.f 
In.147' 

i6i.87AA 
16A.P441 
174.'6nn 
1Pn.q7n7 
IP7.A3 
10.6P7 
P00.5pl 

I0.102I1l6l.P4'fl 
n.l'r3 167.An0" 
o.16Wn 179.n7np 

30,1630 l8N.'301 
3n.1q74 1A6.A0n 
9n.19p3 l'qj.n4 7 

'n.1475 Ia."10i 

Ift~ 0S 
0* ?nt0 

3n. 6"5 
30.1635 
30.1~0 
30n'.hI A 
0.it 17q 

32.00 
33.00 

p07.3939 
P13.7518 

n0.1422 
30.13n0 

207.2279 
213.5855 

n.1424 
3n.1381 

207.0n57 
P13.437 

In.145 
0.j8 

P06.806 
213.16A5 

in.14'7 
' n,0 13 4 

206,41n6 
912.765 

0.1*p 
9n.liP7 

2n.76n 
P12.lA0 

I 1fh414 
9n.I"1 0 

34.00 
35.00 

220.1090 
226.4654 

30.1340 
A0.1303 

219.0427 
226.2990 

I0.1341 
30.1304 

Plq.Rfl0R 
P26.1571 

30.1'4P 
If0.13l 

219.5175 
229.8738 

in.1944 
30.1306 

210.12c5 
225.4810 

n.1146 
30.tinq 

Pla.A709 
P4.21 

3fl.13 
90. 

36.00 232.8209 30.1267 232.6546 '0.1268 232.5127 30.1260 ?P2'2PqI 3N.12P1 I3IR36'90.1573 P11.17061; n. '6 

37.00 
38.00 
39.00 

239.1758 
245.5300 
251.8835 

30.1234 
3n.1202 
3n.1172 

23q.00q4 
245.3636 
251.7171 

30.1235 
30.1P03 
30.1172 

P19.8675 
?4'.P2?16 
P91.5751 

in.1p2q 
10.1203 
I0.1173 

28.840 
P44.qI31 
251*2n15 

30.1297 
i0.1905 
90.1174 

P38.1008 
P44.S446 
P0.8q7A 

90.'l39 
'n.ln7 
3n.1176 

P37.5315 
P3.D030 
P2O.5'q6 

In.lo4p 
nn. sl0 
30.1t' q 

40.00 259.2364 30.1143 ?8.0700 30.1144 257.0200 30.1144 257.6443 30.1146 257.2504 I0.1147 ?56.986R in.110 

41.00 264.5886 30.1116 264.4223 3n.1116 264.2803 I0.1117 263.Q965 30.1110 P63.6P4 90.1120 p6p.037 30.1153 

42.00 
43.00 
44.00 

270.q404 
277.2916 
283.642? 

30.1089 
30.1065 
30.1041 

270.7740 
277.12)2 
283.4758 

30,1fl0 
3n.1069 
30.1041 

27n.692n 
7,6.q9j1 
283.333R 

90.1OQI 
I0.1066 
10.104P 

P70.342 
276,9Q03 
PA3.04qq 

In.l0QP 
In.1067 
3n.1043 

PAQ.QF30 
916.90n4 
P2A.655' 

l0.1no3 
un.tceR 
I0.1044 

26Q.?9877 
975 .g975 
Pl.0A06 

'.1o06 
In.107i 
9n.l047 

45.00 
46.00 

289.c924 
296.342? 

30.1018 
30.09q6 

289.8260 
296.1757 

30.1flQ 
30.oqo7 

28q.6840 
P6.ni37 

i0.jO11 
9n30.097 

Po.40o01 
P5.7407 

i0.1000 
In.OqR 

PA8.0059 
9O5.394A 

30.i021 
no.lno 

gAn.33R7 
PQ4.6819l 

3n.tnI4 
Nn.lfnp 

47.00 
48.00 
49.00 
50.00 
51.00 

302.6914 
309.0403 
315.3887 
321.7367 
328.0844 

30.0975 
30.0q55 
30.0q36 
30.0918 
30.0900 

302.5290 
308.873A 
315.P223 
321.9703 
327.Q179 

30.0q76 
30.0956 
30.0937 
30.0q18 
3n.0on 

IO.A829 
308.7328 
315.0o0P 
321.42P 
327.7'98 

90.0076 
30.056 
ln.037 
30.Ooq 
In.0c0I 

3gp. qAa 
308.4477 
14.7961 
3P1.1441 
397.4Q17 

n.Oa7 
in.nq07 
'0.0q9' 
90.0lq 
i0.0nP 

301.7n3n 
908l.n5p5 
1j'.unon 
3p0.74AA 
9P7.n96n 

90079l 
9n.no5 
3n.0a9 

300.lot 
3n.90n9 

3010.n12P 
9n.T7Q 

913.7p79 
99fl*740 
996.09n 

9f.nnnl 
Rnn6 
98.nn t 
38.0QP9 
3f.ntn 

52.00 
53.00 

334.4317 
340.7786 

30.0183 
30.0866 

334.2652 
340.6121 

In.O83 
30.0867 

334.1231 
940.4700 

30.0084 
10.0867 

393*0'Aq 
340.1~qR 

f.00nA4 
30.0A86 

13.4439 
I9Q.?7qQ 

30.flAS 
9.mA6q 

992.7671 
A99.1131 

n.nn7 
90.n*71 

54.00 
55.00 

347.1252 
353.4714 

'0.0851 
30.0815 

346.q07 
353.3090 

30.0i51 
30.0636 

346.0166 
I91.162q 

90.0851 
30.0A36 

946.324 
352.8716 

m0.0852 146.13611 
90.037 91P.4PR 

i0.0n 3 
n.nAA 

3q4.490q 
351.A0ll9 

0n.nqRS 
Ifn.el q 

56.00 350.8174 30.0821 359.650q 30.08219n5.l088 n.0n21 359.P49 0.009 358g.289 9n.0493 'R8.140A 30,0095 

57.00 366.1630 30.0807 365.9966 30.080' 365.8R44 An.OQn7 36a.q7ni In.0A08 165.173 90.00q 164.4Q41 A0.nflo 

58.00 
59.00 

372.5084 
37A.8534 

30.0793 
30.070 

372.3419 
378.6970 

3n.0793 
30.0790 

372.lq*q 
37P.5448 

30.0719 
90.0?70 

371.I914 
318.P604 

3fl.0704 
.f7pi 

971.5190 9fl.m7ns 

l3?.77 jq639 '0.0789 
370tIN 6 ift.0906 
177,1859 Rf%.nR'i 

60.00 385.198? 30.0767 385.0318 30.0767 984.0896 10.0767 384.609P .90.07F 984.086 '0.076Q 983,5jP 30.n77(l 
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V-INFINITY 40.0 KM/S
 

0 .1 AU 0 . AJ f = .5 AU 0 = 1.0 Atl 0 = P.0 All m T go Ai 

T - YRS RAD VEL RAD VFL PAn VFL PAn VrL oA VFl. otn Vrl 

.00 .1000 134.0775 .30nn s6.6844 .rnnn 71.7Z11 1.0000 98.08AN 2.nnnn 4Q.8711 s.onOn ha.ncnl 

20 2.4236 48.2917 2.305n 4A.67qq t.2(41 4A.p041 P.26ro (4.8l26 P.7%'i 47.371P 9.a 111 4"'.*" I 
.40 4.3647 44.7040 4.P320 44.939n 4.1469 9.0121 4.16t7 ar.13,1! 4.P467 (440laq 6. 'Ql t1.1atp 

.60 6.2188 43.4201 6.0821 43,430 r. 69 43.5474 9R619 a16. AICIO 9.1o 44.iofl 7,4fnol0 10AA 

.:80 8.0316 42.6721 7.8q92 4>.7177 7.7qP0 42.7q16 7.646n UP.R2p9 7.A2nq 4P.8111 8.724 4.49'0 

1.00 
1.20 

9.8201 
11.9922 

42.1981 
41.8695 

q.6793 
11.4504 

4P.22Q2 
41.8021 

9.579A 
11.440 

4P.Pq?6 
41.nnQ 

0.416Q 
ii.i7'1 

UP.PP06 
uj.0173 

a.347 
jt1171n 

p.1n6q 
1.Q1 

to.P'4'A 
II."nn 

4.1111 
41ntoIA 

1.40 
1.60 
1.80 

13.3527 
15.1049 
16.8493 

41.6278 
41.4423 
41.2093 

13.P101 
14.061P 
16.7056 

41.64"1 
4j.4qqQ 
41.3063 

1'.103 
14.8931 
16.9065 

.841.691P 
41.4663 
41.3147 

12.0on0 
14.6741 
16.41AI 

II.6A0 
1.aAQ 

41..01 

ip.POtA 
14.920, 
I e.540 

41.6065 
41.4nA4 
"1."411 

13.'4' 
14.'Af 
16.6nl1 

1*.6o7 
4 .g=4 
41f.tlt 

2.00 18.9886 41.1758 18.4449 41.1840 18.1148 41.101Q 19.111a ol.po 17.?n1.91 g.2910lft9Ij07 
2.20 
2.4n 

20.3234 
22.nr44 

41.0768 
40.9933 

20.1790 
21.QOQ7 

4l.0O04 
4n.9QQA 

2n.nA6 
p1.TnRq 

u(1.00 
41.O04A 

10.8A80 
PI.AA 

41.1nnq 
i1 .I115 

1 .7nn 
P1.42P2 

u1.tin3 
11.00p3 

lo.nlI* 
vj.70a 

u1.oonA 
1.0"11 o 

2.60 23.7822 40.9219 23.617P 4n*9p79 23.qp60 4n.0110 P1.1'16 4n.0109 2'. 401 40.0470 99.*>q'6 U0.nf06 

2.80 
3.00 

25.5072 
27.2298 

40.8602 
40.8064 

25.3620 
27.085 

40.8651 
48.81n6 

Pq.P904 
26.0729 

4n.8AAA 
40.8l4n 

29.nq64 
P6.777p 

0.A7 
uo.glnP 

P4.Pr7" 
p6.1;31 

40.nqpq 
40.OA1 

*4.M 
P6.01114 

a.0­
un."fi 

3.2n 28.,502 40.7580 28.804 4n.76P7 PA.6026 0n.7656 p.4Q06 4n.77n pA.P76 4n.7769 'P.pac (*."AP 

3.40 
3.60 

30.668A 
32.3898 

40.7167 
40.6740 

30.9230 
3.P40n 

4n.72n1 
40.6R 1 

3n.4105 
3P.IP7 

4f.7P25 
40.6n4q 

10.PI12 
31.QPAR 

40.77 
4n.6Ap7 

30.ngn 
31.7139 

4n.7115 
i,.6nv3 

po.nA 
31.67ql 

40.'t00 

M.rt601 

3.80 34.1012 40.6452 33.09( 40.6u79 31.AP45 40.6901 '3.6431 4.699q 39.4244 n.6gol 33.395 4O.rAt 
4.00 35.8151 40.6145 35.6693 40.617n 39.9163 40.61 0 35.361 un.6194 35,13Q7 ;;.66.nr7 no.So'7 
4.20 37.5281 40.5867 37.3821 4n.5S'9 37.2680 40."007 17.n6n on.9q3 v6.0441 n.9075 36.740* L4.qnnn 
4.40 39.23Q8 40.5613 30.0937 41.5613 3A.0"04 *4f.9$. 38.7780 an.967I 1A(n0.9'1 I 14. 1fA Ulfl.t928 
4.60 40*0506 40.53110 40.A044 4n.9109 40.6000 1*.5414 u0.4888 on.9441 40.P6n06 ao.5t71 4n. 3ql up RatqpP -

4.80 42.6603 40.5169 42.5141 4n.5183 4P.4ffl 4n.5197 42.1070 fl01.?'2 4J.0671 anonfl 41 9APni ftn4. 7 
5.00 
5.20 

44.3692 
46.0774 

40.4q68 
40.4789 

44.223n 
45.0310 

40.4q84 
4.4800 

4°.102 
4r.A171 

40.49q7 
Uf.4A1P 

43.qn6l 
45.6136 

ao.5np0 
4.483 

43.6741 
498flIn 

4s.Srn46 
In.4095 

41.3*F2 
45,.I11 

4n.flA=n 
bIeA.I oW 

5.40 
5.60 

47.7847 
49.4914 

(0.4619 
40.4496 

47.6383 
49.3450 

4O.46PQ 
4n.4470 

47.5944 
un.plOq 

40.4640 
40.41180 

47.3pn4 
40.0266 

(0.4660 
Uo.44 A 

47.0093 
48.70n1 

n.aAAN 
1n.49p0 

46.01PO 
4p.Ann 

40.o*00 
40.4917 

5.80 51.I75 40.4300 9t.0510 4n.4321 9n."361 40.4331 50.7NPI On.4"Rh 50.404' (n.41AR 5n.0O2 £n.'14 8 

6..0n 5P.902q 40.4171 52.7564 4n.4182 SP.61?2 4n.4191 5p.437y 4.L.4pn7 9;P7I00j 40.L9P7 a,nt3 
6.20 54.6078 40.40n4 54.461P 40.4052 91.1460 1*0.41*60 94. 141c 41.b611,001f79;,3flltl 93'6nn08 4*'fsI0 
6.40 56.3121 40.391q 56.1699 40.3qP0 96.0911 4n.3037 59.*499 4f.'Qr2 5.601*2 4n.3060 9R.IAOP 4n.1o04 
6.60 58.0160 40.3A05 57.8603 4n.38t4 17.7R49 40.3AP 97.9400 un.3839. 97.06' 40.1n9v 97.nA7 4n.0AA 
6.80 
7.00 
7.20 

5.7194 
61.4223 
63.1240 

40.3697 
40.3505 
40.3498 

50.5727 
61.2756 
62.0781 

40.3706 
40.3605 
4n.19n6 

99.49AP 
61.1611 
rP.OA!5 

40.3711 
40.361n 
4n.tq11 

9q.p9tp 
60.4146 
62.656A 

aon.376 
4.16P2 
u.10.;94 

rn.nfn 
60.71oq 
6?."1iA 

4n.141 
40.3637 
4n*0.1q 

R.'09t 
An.4757 
Ap.111 

4 0199 
4n.itn1 

M.N992 
7.40 64.8270 40.3407 64.680P 4n.3414 64.9695 40.342n ;4.39A6 Un.1411 64.112n hn.3a44 63.n666 fn.1u98 

7.60 
7.80 
8.00 

66.5288 
68.2302 
60.9312 

40.3320 
40.3237 
40.3159 

66.1810 
6.08.33 
69.7844 

40.3327 
40.3p44 
40.3166 

66.267P 
67.9686 
6Q.6606 

41.3133 
4n.3290 
4n.1171 

6.n601 
67.7612 
6q.4620 

1n.1141 
40.3260 
4nl.3180 

6 5.n10 
67.514n 
69.2141 

40.l396 
ii.07P 
4n.i10o 

65.qA2n 
A7.*974 
61.095q 

tj.Ok,3q 
4A.3o84 
gn.RAL4 

8.20 71.6320 40.3084 71.4851 40.3091 71.3702 40.3096 71.16P5 (40.3109 70.013Q on.3119 7n.64nt 40.10v7 

8.40 73,3324 40.3013 73.1859 4n.3019 73.0706 40.30124 7.8627 40.303 72.61I3 40.3043 72%4 tfl.3l,4 

8.60 75.0326 40.245 74.8856 40.2Qr1 74.7707 4 .2455 74.96P7 40.PQ63 74.31P8 4fl.071 74.n3Ps uf4.Otnb 

8.80 
9.00 

76.7324 
78.4320 

4n.2880 
40.2818 

76.5859 
78.2890 

40.2885 
4n.2823 

76.4705 
78.1700 

4OPpgo 
40.2127 

76.P63 
77.0617 

40.AC8 
40.2839 

76.0110 
77.71nP 

uO.Pon7 
un.PnU4 

75.136 
77.4P87 

4Af.Ifl 
4".0094 

9.20 80.1314 40.2758 79.9844 40.2763 79.AAQ3 40.P767 79.6608 it0n.774 7q.403Q 40.0783 7q.1717 4AfIP.73 

9.40 81.8305 40.2701 81.6834 0.2706 1.5684 40.2710 A1.3Ro7 4n.2717 81.1078 4n.2728 80.A1fl7 40.P'3 
9.60 83.5293 40.2646 83.3823 40.2651 83.P672 40.2655 83.0884 40.P661 82.8090 40.266 R.q1A6 41.26'Q 
9.80 85.2279 40.254 85.0809 40.2598 84.0658 40.2602 84.7569 *0.2608 S4.5030 40.2616 84.204 40.2695 
10.00 86.9264 40.2543 86.7793 40.2548 86.6642 40.2551 86.4551 40.2597 6.'fPO a 4n265 85.009 4.P9I73 
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V-INFINTTY = 40.0 KM/S 

0 = .1 AU 0 = .3 AU 0 = .5 AU 0 = 1.0 AU 0 0.0 At) (3 252 AU 
T - YRS RAO VEL RAD VEL RAO VEL PAO VEL PAD VE PAO VFPI 

10.00 86.9264 40.2543 86.7793 40.2948 86.6642 40.2951 86.4951 40l.2'M7 86,P018 40.p6s Rs.*03* afl..q3 

11.00 
12.00 
13.00 
14.00 
15.00 
16.00 
17.00 
18.00 

95.4159 
103.003 
112.3814 
120.8593 
t29.3346 
137.8075 
146.2784 
154.7474 

40.2318 
40.2129 
40.1969 
40.1831 
40.1711 
40.1606 
40.1513 
40.1431 

95.P684 
103.7531 
11.2341 
120.7121 
129.1873 
137.660P 
146.1310 
194.6000 

40.2321 
40.2132 
40.1*71 
40,133 
4n.1713 
4A.160R 
40.1515 
40.1432 

q9.153l 
101.6377 
112.11A6 
lP.rQf59 
120.0717 
137.9449 
146.0153 
194.494P 

40.2924 
40.2134 
40.Q173 
40.13q 
40.171= 
40.160Q 
40.1916 
40.1433 

94*q.45 
103.4P76 
111.0002 
120o.I57 
128.R606 
137.313p 
149.8037 
154.P724 

40.P29 
40.219q 
4l*077 
41,100 
U0.1717 
40.1612 
4n.1.18 
40.1435 

q4.6RA1 
1fl.1706 
111.649q 
1pO.!P6 
1PR.6000 
137.0716 
l4,q44 
194.00q 

40.p39 
40.P144 
40*10AI 
40.t4? 
40.17P2 
40.1619 
40.1521 
40.1417 

Q4.1794 
102.94'1 
It1.,16, 
19.947 
19A.1911 
116.7167 
14r5.10q 
193.A41q 

41109%4 
4Ptq91 
*n~l.47 
40.1047 
40.1I76 
40.1IIQ 
4P.91' 
4ft.I441 

19.00 
20.00 
21.00 

163.2147 
171.6806 
I00.1451 

40.1357 
40.1290 
40.1229 

163.0671 
171.5331 
179.9976 

40.13ql 
40.12 1 
40.1210 

162. 154 
171.4173 
17q.817 

40.1159 
40.pq? 
40.1*31 

162.7309 
171;pnsp 
179.6695 

40.1360 
00.2 q2 
4n. I1PP 

162.4758 
170.9nAn0 
70.447 

40.1163 
40.125 
40.t14 

l6p.in0g 
70.56n 
17Q.0p7* 

40.1'66 
4f.1 oR 
4n.1117 

22.00 
23.00 
24.00 

188.6084 
107.0706 
205.5318 

40.1174 
40.1124 
40.1078 

188.460q 
196.0231 
?05.3843 

4n.1175 
4n.1125 
4f.107 

1AP.1490 
Is.Rn7i 
P9,0.683 

40.1 76 
40.112s 
40.070 

188.13P6 
2q*.9q47 
P05.0557 

4n.1177 
un.I1P7 
4f.n0l0 

187.%7' 
IQA.IPR9 
PA4.78q6 

4n.1179 
fl.1jq 

4fl.nRP 

287.UR66 
lq.*4Ki 
P04.ilnl0 

4n.1101 
4f.110 
40.InA4 

25.00 
26.00 
27.00 

213.q920 
222.4514 
230.Q100 

4n.1035 
4n.0906 
40.0959 

213.8449 
222,3039 
230.7624 

40.1036 
40.Oqq6 
40.0960 

P13.70P5 
PPP.170 
P23.6464 

40.1036 
40.0q7 
40.0Q60 

211.9158 
Pt.q790 
P30.4335 

Un0.1037 
40.nqnn 
uo.0Q61 

Pj3.P?43 
Ppl.7 04' 
P0.1664 

4f.lInO 
40.09o 
40.06l9 

Plp.M60 
P-".19A4 
Po.'758 

4A.onUT 
in.lnnl 
4n.n004 

28.00 
29.00 

239.3678 
247.A250 

40.M025 
40.0894 

23q.2201 
247.6774 

40.00q6 
40.08Q4 

239.104? 
P47.9613 

40.0926 
40.8O9S 

238.8q91 
247. 4 3 

4nlOQ*7 
40.08q6 

P38,6P9 
?47.0n06 

4n.0oa" 
40.oqQ7 

2IR.9PRO 
P46.6 1 

4n.lnn 
40.00o0 

30.00 
31.00 
32.00 
33.00 
34.00 
35.00 
36.00 

P56.2815 
264.7374 
273.1928 
281.6476 
P9o.3Og 
?98.5558 
307.0092 

40.0864 
40.0837 
40.0811 
40.0787 
40.0764 
40.0742 
40.0722 

256.133q 
264.5898 
273.049P 
281.5000 
289.0543 
298,408P 
306.8616 

40.0865 
40.0817 
40.0P11 
40.0797 
40.07A4 
40.0743 
4n.07?? 

256.0178 
P64.437 
272.qPqo 
281.3P3A 
P8.9A8t 
2Qq.220 
306.7454 

40.O6q 
40083P 
40.081P 
40.0'87 
4n.0764 
400743 
40.0722 

255,.F047 
P64.2605 
27?.7rn 
291.1709 
Pq.6PA 
2qR.0786 
3n6.51lq 

40.0866 
4n.flPn8 
40. W1P 
4O.07nR 
40.076q 
4f.0743 
u0.07PI 

255.361 40.0867 P9.11'6 
963.Qql 4o.0nQq P63.c0IQ 

.747414fl.fAlj P7P.nqo 
p0n.Qi Q 40fl.0789 po.aoo1 
PSQ.'6fl 4 A.0766PR.Q0 
Po7,AfQA, 4A.0744 2q7.40' 
?06.2627 4n.0M74 30s.Oqri 

4f.nAR 
40nno4j­
uo.nnl4 
4fn."00 0 
afn.nA7 
40t.0kc 
&An7'4 

37.00 315.4622 40.0702 315.3146 4n.0703 319.193 40.0703 314.qn4n 40n.079 114.719R 40.0704 914.'067 4.n'n 
38.00 
39.00 

323.9148 
132.3670 

40.0684 
40.0667 

323.7671 
332.?q14 

40.0614 
40.0667 

3P3.650Q 
'"?.1031 

40.068r 
40.0667 

3p3.4 74 
331.8806 

40.0689 
40.n668 

IP3.1670 
'31,6109 

40.06P6 
4n.0668 

"2.50f 
3311.000 

4ft.n87 
4n.nA 

440.00 340.8189 4f.0690 340.6719 40.0650 340.5550 40.069! 14n.314 410.0651 94fl07 5 '.O65i ' .65"6 4n.nAg 

M 41.00 
42.0n 
43.00 

3149.2704 
557.7216 
366.1725 

40.0634 
40.0620 
40.0605 

34q.1227 
357.573n 
366.024A 

40.0635 
40.06P0 
40.0609 

349.0065 
397.45,77 
365.Q86 

40.063q 
40.0620 
40.0606 

348.7928 
397.p440 
365.6948 

n.0695 
4n.06P0 
40.06n6 

14R.92p0 
'56.q79'n 
965.4P46 

4n.0696 348.l1(I 
40.n06219'6A9609 
4n.n606 169.noi 

4n.nA7 
4ft.nA*9 
4n.nn7 

44.00 
45.O0 
46.00 

374.6231 
383.0734 
391.5234 

40.05q2 
40.0579 
40.0566 

374.4754 
382.q257 
391.3758 

40.059q 
40.0570 
40.0566 

374.391 
382.8094 
3o1.P799 

40.05Q9 
4f.fl70 
40.0966 

374.1454 
3AP.597 
391.047 

un.nr59p 
4fln07Q 
an.O767 

171.R751 
382.'292 
l9.7751 

Un.0503 
4n.0580 
4A.nse6 

371.4907 
9N0.On 
03l.'ap 

4n.ng l 
4n.nFno 
40.0W68 

' 

P> 
47.00 
48.00 
49.00 

39q.q732 
408.4228 
416.8721 

40.0554 
40.0543 
40.0532 

39q.8256 
408.2751 
416.7244 

40.0554 
40.0S43 
44.0512 

300Q.793 
408.1588 
416.6081 

40.0n54 
40.0O43 
40.053P 

39Q40r5 
407.q44q 
416.34P 

400999 
40.0543 
Lo.nl5*2 

IQQ.PP4 
407.674P 
416.121*4 

4".0"59 
40.0q44 
4nnl.0l 

93A.A0 9 
4q7.Pq5q 
415,.'44 

4ft.flR6 
4n.n44 
4f.nq;3 

50.00 425.3212 40.0521 425.1739 40.05P1 425.0972 40.0921 424.8432 4n.09P2 424.5773 40.fl?9 4D4.15 R 4fn091 
51.00 433.7700 40.0511 433.6229 4n.0511 433.9060 #0.0911 413.021 40.0912 433.0211 40.01' 432.6nq 4n.0512 
52.00 
53.00 

442.2187 
450.6671 

40.0501 
40.0492 

442.0710 
450.5194 

40.0501 
4n.049P 

041.q947 
450.4031 

40.0502 
40.n4gP 

441.7U07 
450.11 

40.fn2 
ao.0402 

441.4606 
44q.017Q 

40.050* 
40.qhiQ3 

44j.A40Q 
449.406A 

4f.0t09 
40."fi93 

54.00 459.1154 40.0483 458.0677 40.04A3 45.A14 40.0481 498.6173 iflf.nl3 *ssO.9661 40.04*4 4-7.044N 4".W4 

55.00 
56.00 

467.5635 
476.0114 

40.0474 
40.0466 

467.4158 
475.8636 

4n.0474 
40.0466 

467.pqq4 
47q.7471 

40.0474 
40.0466 

467.0854 
479.911? 

40.0479 
40n.466 

466.814n 
475.6 8 

4n.0479 
40.*466 

466.917 
4748.90 

4n.nilS 
4n.*.A7 

57.00 484.4591 40.0458 484.3114 40.0495 4A4.1Q5f 40.0458 4R3.qnog 4n.N48 4A3.704 40.049q 4A8.9861 4fl.ngQ 

58.00 492.9066 40.0490 492.7580 40.0490 49P.6425 4.049n 4Q2.4284 oI0.0n40 492.1569 4n.n4; 4I,7111 4n.nrsI1 
59.00 501.3540 40.04'2 501.2063 4n.0442 901nq9 40.0?44 500.5758 4n.N443 500.6049 40.n443 900.1800 4n.0443 
60.00 509.8012 40.0435 50q.6535 4n.0435 53Q,9$71 4n.0439 509.3230 4o.nu495 s4q.o1 04.(1415 508.6A7 4n.n416 
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V-!NFINITY 50.0 KM/S 

T - YRS 
0 

RAO 
.1 AU 

VEL 
0 = 

PAD 
.3 AU 

VEL 
0 = 

PAn 
*5 All 

VFI. 
A 
PAn 

1.n AUl 
VEL 

0 = 
pAf 

2.0 All 
VEt RAO 

0.2 AU 
Vrl 

.00 

.20 
.1000 

2.7095 
14P.2764 
96.1678 

o300n 
2.604A 

qo7po 
RA.U417 

.non 
P. V5R 

77.772P 
t6.5173 

1.n000 
p.qn5R 

"i.177A 
96.4461 

.nn0nn 
i.0poi 

r.n0n 
Ss.qno4 

r,9nnn 
,.A-

qo. n0o 
o.n 16 

.40 

.60 

.an 
1.00 

S.0041 
7.2315 
9.4283 
11.6073 

3.4281 
'2.35Q61 
151.8477 
'1.5059 

4.11870 
7.1111 
0cs0A0 
11.4816 

9A.n6q 
5P.43S7 
91.8716 
51.5?10 

4.A176 
7.n'133 
9.P941 

11.100 

93.9q64 
5P.46Pn 
r1.AP70 
S .93 

4.7q77 
6.n408k 
0.1147 
11'.?706 

FJ.Q0a6 
qp.44 
-9t.clfl1 
;1.*'Of 

4q314 
7.0014 
0.114Sp 
1.jP4PP 

9.477n 
9;P.471n 
51.010. 
'51.55R41 

6.7An 
R.94117 

ln1o.9m9 
lp.nPnq 

90.rlt 
9~t.fnA 
9. 
rl.4ft 

1.20 13.7746 91.2710 13.6500 qt.2 8V3 13.641 51.201U jt14173 rt.fl'4 137.374r 5.3n004 t3.Af0t C5i.9=06 

1.60 18.0864 'f0.971R .607 5n.9781 17787P7 g it 17.7'71 fl.005 - 17.641n Sflafi 1P.O49o 9nft," 
1.80 
2.00 
2.20 
2.40 
2.60 

20.P344 
22.3786 
24.51C7 
26.6581 
28.7943 

5fl.8603 
50.7866 
1)0.7194 
90.661P 
50.6124 

20.10AI 
22.252? 
24.303n 
26.531P 
28.6671 

9118747 
9n.7011 
qf.7221 
5n.6643 
5n.61r1 

Pn.OIQ6 
pp.1A20 
P4.3o3 
26.4411 
PQc.76A 

g7.F8 
5n.704p 
q0.7P48 
g0.6666 
5n.6171 

tg.8ln 
?PP.APIQ 
v14.1603 
P6.P0AU 
PA.41fl7 

n.R8'S 
n.70fj 
9n.7p0 1 
Pr.mAn 
50.6209 

1Q.775f 
P1.0071 
p4.n3Ao 
Pfl2,.1684 
8.p2q.7A 

q0.A8AO 
r0.ArnA4 
tn.7*i7 
cn.6'i1 
5.6931 

Pn.i11 
VP.17n 
4P.UI 
P614P9 
IR.*JAfn 

q0.p-v90 
9n.A7nlq 
9n.>l 
rn.66A01 
5.A,,Al 

2.80 
3.00 
3.20 
3.40 
3.60 
3.80 

30.0287 
33.01614 
35.1926 
37.3226 
39.4514 
41.57)3 

$i0.57q4 
5n.5338 
50.5016 
50.4731 
50.4477 
qn.4249 

50.8019; 
32.9340 
35.0651 
37.1950 
39.323 
41at5l 

5fl*57P7 
qn.5359 
n.5s35 

90.4748 
5n.44q2 
5n.4p62 

1fl.7ff7 
1.Rln 
t.q770 
37.1036 
Ao.p3?9 
41.r5qA 

RO.9744 
5fl.5;,7i 
0.R048 
90.4790 
'n.4511P 
qn.q4pp 

In.9614 
32.6047 
34,AP47 
36.0519 
3n.0814 
41.pnS4 

mn.577P 
t50.'5AQ8 
0.5n6q 
rn.477A 
Ao.419q 
s(,42A7 

30.429An 
3p.'5SVA 
34,670n 
36.A058 
38.031in 
41.0556 

90.5"q5 
In.5asp1 
no0.qno 
g T.4708 
gn.4c37 
9n.4in3 

3n.=119 
lp.Alft9 
14.7171 
301A."49 
3.0401 
41,n ?n 

9M.91V7 
;n.%nn 
nl.=qn2 

qnn3 
90.495 
A.t4inA 

4.0f) 
4.20 

43.7062 
49.8323 

50.4045 
5.3856 

43.5784 
45.7044 

5n.4095 
c0.3867 

43.4A69 
49.6124 

9n.464 
'5fl.3t7 

43034 
4;.40qq 

gn.4f7R 
eo.3P8A 

4,1706 
41 .in,11 

90.4? 
50.nn0l 

4A,.lf,16F 
4R.P79A 

Ff*ftlf4 
;f.vnw4 

4.40 
4.60 
4.80 
5.00 
5.20 

47,9577 
50.0824 
52.2064 
54.3?99 
56.4528 

90.36A6 
q0.3530 
50.3387 
50.525 
90.3113 

47.8297 
4Q.9941 
5.0783 
54.P018 
56.3p47 

-50.3606 
'n,339 
qn.33q5 
'0n.3263 
9n.31n 

47.7376 
4qA.621 
93.9n6n 
'4.5In4 
'6.93pp 

qn.3703 
rn.3546 
rn.f 1 0  
ofl.3?6A 
r0.314c5 

47.R'4A 
40.70A6 
'51.8'P2 
53,0"1 
r6.f776 

tn.715 
Cfl*3;, 7 
rn.11t 1 
n.3lp7l 

C0.14 

47.4P6n 
40.949c 
'1.67nq 
93.'1 

q5al3 

gn.17p7 
5fn.36A 

'n.398 
Rn.316o 

47.IA64 mn,t'3n 
40.1107r mnl.5p 
Ro.aAAMIA0j fl.rgf6 
9%"21' 9 a2 0 
5Ffl3A5 qn.'iAA 

9.40 
5.60 
5.80 
6.00 

58.5753 
60.6973 
62.188 
64.0400 

rn.3?Oo 
i0.2q15 
90.2816 
50.27P5 

58.4471 
60.9690 
62.6009 
64.8117 

5n.3097 
90.2)21 
50.2Ap2 
5n.2730 

r8.lq45 
60.4764 
62.078 
64.71A9 

0.0ft3 
50.202q 
5n.21P6 
c'l.P734 

58.1006 
60.3911 
62.44PI 
64.5631 

Mft.no 
0.2l, 3 
9f0.2P3 
n.P71t 

9AS.n141 
611.194A 
6p.P74T 
64.011 

n.3n4 
I;6n.Pi,4no1 
n.?Wot 

9n.2-4 

57.04o1f 
6 0 
6p.1791 
64A9.A' 

;nfl.nl3 
0. n046 
5n.1006 
'n5f.*Iqp 

6.20 
6.40 
6.60 
6.80 
7.00 
7.20 
7.40 
7.60 

67.0608 
69.1812 
71.3013 
73.4211 
75.5406 
77.6599 
79,7788 
81.8975 

50.2635 
50.2558 
50.24A2 
50.2411 
50.2343 
50.2279 
90.2219 
50.2162 

66.032u 
69.0529 
71.1720 
73.2q27 
75.4129 
77.5314 
79.650A 
81.76911 

51.2644 
90.2963 
511.2497 
5n.2415 
50.2347 
50.2283 
5f.2p23 
50.216S 

66. r'6 
6A.q600 
71.0n00 
73.1007 
75.1lat 
77.41 3 
70.597P 
PI.$7Q 

qn.2A47 
50.2966 
rin.pilq 
50.p2418 
c0.25fn 
Rf.22R6 
qf.2?25 
C0.21A 

66.636A 
An.n37 
70.0215 
71.0431 
75.16P3 
77.PP13 
7*40flO0 
R1.9185 

n.965 
=0.PR72 
on.040 
=f.943 
-n.9"q9 
5O.Pol 
F2.2pl0 
rn.P172 

66, n, 
68.63q 
70.79P6 
7p.S714 
7?.oRQO 
77.1083 
70.2?6U 
gl.'44' 

5.26rI 
Ifn.Pq78 
9.pns 
0.1420 
Kn.p560 
50.2006 
r0.2,3 
Fn.Pi76 

A6.10", 
68.r191 
7n.Ap'27 
7p.-301 
74.qr'n 
76.oeD$, 
70.n80 

.1iOU4 

o00.9t 
Cl.9sfl3 
5n.P9n6 
q"5.111 
50.91n 
snt.*n0 
5n.9I9 
5nA Pfl 

7.80 
8.00 
8.20 

84.0160 
86.1343 
88.2523 

50.2107 
50.2056 
50.2006 

83.8975 
86.0057 
88.123A 

50.2111 
511.2059 
5f.2000 

83.704 
P9.Q12*; 
A9.0305 

c0.2113 
rn.2061 
K0.2011 

83.616rR 
RT.75,4q 
87.87P7 

50.2117 
n.?fl5 
qO.P015 

89.u690 
AR.57q6 
s7.6Q6o 

Kno1p9 
n.2n6q 
So.2Iq 

83.nRnfl 
A9.4918cP. 
A7.53K7 

100n.19 
qnfl 
9n.0no3 

8.40 
8.60 
8.80 
9.00 

90.3702 
92.487c 
94.6053 
96.7226 

50.1a5q 
90.t1i5 
50.172 
50.1831 

90.2416 
92.359P 
94.4767 
96.9941 

50.1962 
50.1ot7 
50.11 7 4 
50.1P33 

Q00.2I4 
OP.265q 
94.3834 
(6.9f006 

50.1064 
;0.1c1 
'50.1876 
50.135 

8Q.qqP4 
02.107q 
04.22nP 
96.34P3 

50.I16 
q0.1093 
Knf.ln7q 
fO.IAIA 

Rq.141 
ot01311 
n4.n0480 
96.1647 

n.17P 
n.10P6 
R.1p03 
'oI 44P 

9.649 
Ql.611 
q3,A771 
95*qonq 

80l.10 5 
5fl. 0 
10,10A6 
9f.1our, 

9.20 
9.40 
9.60 

98.8397 
100.0567 
103.0735 

90.1792 
50.1754 
50.1718 

98.7111 
100.8210 
102.9448 

50.17q4 
t0.1797 
50.1721 

9A.6177 
100.7146 
112.1514 

50.176 
0.17158 

50.1722 

09.45Q3 
100.5761 
102,6928 

If.17n9 
sn.1761 
9f0.17P5 

Q8.2"11 
100 .347 7  
102.5140 

q0.I102 
90.1764 
n.172P 

08.1046 
100.p1' 
102.313' 

;".Ifvs 
;A.177 
5A.11 

9.80 
10.00 

105.1902 
107.3067 

50.1684 
50.1651 

105.0619 
107.1780 

50.1686 
50.1653 

104.9680 
107.0845 

50.1687 
50.1694 

104.8093 
106.9257 

90.1600 
so.16q7 

104.630P 
106.7461 

*0.1603 
90.1699 

1f4.b4g; 
106.9504 

qf.IKa6 
If.1A62 
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V-INFINITY = 50.0 KM/S
 

Q = .1 AU 0 = .3 AU 0 ± .5 AU 0 = 1.0 AU 0 = 2.0 All n = S.2 AU 

T - YRS RAD VEL PAD VEL RAn VEL PAD VFL PAD VFL PAD Vri 

ID.O0 
11.00 
12.00 
13.00 
14.00 
15.00 
16.00 
17.00 
18.00 

107.3067 
117.8874 
128.4652 
L39.0406 
149.6140 
160.1856 
170.7556 
181.3243 
191.8918 

90.1651 
50.1503 
q0.1379 
50.1274 
50.1184 
90.1106 
90.1038 
90.0978 
90.0924 

107.17R 
117.7586 
128.3364 
138.9117 
149.4851 
160.0566 
170.6267 
181.1954 
191.7628 

50,1653 
5n.1504 
S0.1381 
9n.1276 
50.1186 
5fl.1107 
51.1039 
sn.0o7n 
500Q24 

107.0n45 
117.6650 
128.2427 
13R.Rt0 
149.3911 
150.0628 
170.912A 
181.0t14 
141.6680 

rO0.26% 
50.1506 
S.158P 
Sf.1P7S 
50.1186 
s9.1108 
50.103Q 
50.8e70 
5n.0029 

106.0q57 
117.5058 
IP8.08911 
13.6982 
14q.P312 
159.An25 
170*3723 
10.0407 
lq.9OA 

rnfl69t7 
S fllflA 
f.13I 
;0.127 
g1.Iflg 
qo.Ilq 
q0.1040 

n.Iq08 
gs.0QP6 

106,7461 
17.2qo 
1p7,qOn 
13P 474C 
149.n47n 
19q.617qs 
170,186$A 
10.'54g 
101.321P 

90 .nt6Aqlft6 ,rt 4 
sn,1s10 917.12T4 
Sl.1'AS P7.6046 
nI.,1R0 11s8.e61 
Sn.ItRg 14Po.2A7 
n.1110 l5g.qQ17 

50.1nI4 16q.o5q 
0.OfqRl lAn*." lOt 
gn.ip7 Iq0.nRp9 

9fl1,;Ap 
.n,q71 
50.1%88 
gn.1oAp 
sf.!1i1 
5n.1112 
cfl.ln43 
gn. n o0 
5fn.nlo 

19.00 
20.00 
21.00 
22.00 
23.00 

202.4583 
213.0237 
223.5883 
234.1521 
244.7152 

50.0876 
90.0832 
r0.07Q3 
50.0757 
r0.0725 

202.32Q9 
212.0947 
221.4593 
234.0231 
244.586? 

5f0R76 
5f.0833 
gn.07q3 
9O.07q8 
90.07'5 

PO0.P353 
21?.8007 
PP3.3659 
233.q2gO 
P44.4021 

50.0877 
gflOfP3 
I9.0-q4 

.079P 
0.fl7? 

P22.0743 
212.636 
2P2.2040 
P93.7677 
?44.1 07 

sn.A77 
FO.0R14 
F.0l74 
K0.f7RI 
r0.n726 

P01807n 
212. 5gI 
Pi.n15" 
,9*57Q9 
244.1418 

50.88A7A 
qf.fA14 
K°.f70 
g0.0'50 
Ko.0"A 

201.A446 
7IP.fl4 
pp.777 
P13.pat 
741.AAR 7 

5n.n'q 
nf%.nn 

°nf.n'6 
sf.n'6A 
9n.n'7 

h. 

24.00 
29.00 
26.00 
27.00 
28.00 
29.00 
30.00 
31.00 
32.00 
33.00 
34.00 
35.00 
36.00 
37.00 
38.00 
39.00 
40.00 
41.00 
42.00 
43.00 
44.00 
45.00 
46.00 
47.00 
48.00 
49.00 
50.00 

?55.?777 
269.8395 
P76.4008 
286.9619 
297.218 
508.6816 
318.6410 
32q.20o0 
339.7587 
350.3170 
360.8750 
371.4327 
381.c901 
392.5472 
403.1041 
413.6607 
424.2171 
434,7733 
445.3293 
455.8851 
466.4406 
476.9961 
467.5513 
4Q8.1063 
508.6613 
519.2160 
5i29.7706 

rs1.0695 
90.0667 
5fl.0642 
50.0618 
90.05Q6 
5n.0576 
90.0557 
9n.0539 
q0.0922 
50.0506 
50.0401 
50.0477 
50.0464 
990.0492 
50.0440 
90.0429 
90.0418 
q0.0408 
9n.0398 
50.0389 
50.0380 
9n.0372 
50.0364 
90.0356 
50.0349 
90.0342 
50.0335 

2S5.14A8 
265.7104 
27602717 
286.8324 
297.3n27 
307.0525 
318.9119 
329.0700 
339.6296 
350.187q 
360.7498 
371.3035 
381.860q 
392.4181 
402.q74) 
413.9316 
424.0880 
434.6441 
445.2001 
455.759q 
466.3115 
476.866) 
487.4221 
497.9772 
508.5321 
519.0868 
529.6414 

50o0095 
50.0667 
5n.064? 
90.0618 
90.056 
qn.0576 
5g0l957 
50.093q 
50.0522 
50.0596 
5n.0492 
5.07 
50.04646 
50.0492 
50.044n0 
5004 q 
5.0a418 
50.0408 
50,l038 
5,OAR9 
50.0380 
50.037? 
90.0364 
50.n056 
50.01;49 
5n.034P 
5n.0335 

Prt*.'cs. 
P69.6161 
?74.1779 
P86.7982 
247.PO25 
t07.8RB 
318.4177 
3P2.9767 
x30.5353 
390.fl36 
1%6n.6516 
371.2003 
R1.7667 
370PP38 
402.06 
413.4173 
4P3.q37 
434,5.4q 
445.1098 
459.6616 
466.2171 
476.7725 
87.327A 

447.8828 
50P.4377 
5g.qQ2p5 
9P?.5471 

S*n.rAqq 
q0.0668 
90.064P 
0.f1618 
5n.0q6 
'n.fl76 
50.0 597 
90.0l q 
50.0522 
q0.0907 
90.049P 
g0.0478 
50.0465 
Sf.O0Sp 
51.044n 
9n.042q 
90.041A 
50.408 
50.019R 
50.0980 
0.0980 

90.017P 
50.0364 
509(.056
50.O340 
50.0342 
50.033-5i 

P94.AQIn 
P69.4947 
276.0150 
286.5766 
?47.167 
3l17.6q69 
S1Al2558 
3PR.814R 
31q.37.4
34f.9316 
360.48F6 
371.047p 
381.6049 
q02.1616 
402.7185 
413.P79n 
4p3.R1 
434.I876 
444.0435 
495.4C)P 
466.n'F34 
476.6102 
4A7.16'4 
4q,7P04 
508.2793 
918.83n0 
fi.3846 

50.nQ6 554.7090 
g0.0668 96.P6s9 
FO.64? ?79.?6 
rn.061q PR6.9O66 
Rn5,0507 P,6.046, 
rn.nrl76 n7.906i 
50.n57 9iR.n65t 
50.nn9q '2P.6P4n 
r(.nfln3 i5q.1Sp5
nn907 3q.74n6 
n.fln4 f60.qA4 
8.0479 370.P 
n.0469 381.4111 
O.n459 lq1.07nn 
qn.N440 40P.5P67 
5ffnlpq 13.0890 
50.04l18 4P3.A30n 
qN.°4fl8 434.1455 
fnln09Q0 444.7914 
5;n.0 ) 455, 070 
sq.f3R3 465.0628 
f.n07P7 476.417' 
5n0.Oa4 4g6.0nThP 
q0.nl~'6 407.5278 
fn.94q n.np6 
5n.142 518.6373 
s5lq3 ?O.tqiP 

'(.06A6 PS4.nu4A 
rn.n668 p6q.nnl 

.fl64' 75.567' 
qn.0A1Q PR6.1Pra 
sn.noQ7 P06.AR'a' 
gn.fl77 3n7.0144 

n.nq58 317.non 
90fl4fl O8.A5.7? 
s(.0523 llp.3 9 nA 
9(1.fMt5' '4.4710 

5(.0it4p 360.o207 
.7 8.A '7 0.5 9 

r0.0465 381.1414 
5l.f45 1I.A0.S075 
n.n441 U02."3'4 

'i0n:,OQ 412,Pn0nl 
qnfl.4lq 4P9.646 
50.04A18 43.Q OQ 
5e.fl0Qg 444.47-0 
5n(.Oxq 4gR.nmn 
qn.nAt 465.caq4 
0.07 U76.1'M6 
5n.n64 46.Aq4i1 
50.nx56 075A4n5 
n°.fl'49 c7.nP 
n.O34P 91P.197n 
50.n395 9PR.lln 

sr.ns$7 
rn.nA6q 
qnlnu9 
5n.nO 
gnoncnA 
qnnR7 
90.n0.n­
R".nsfnt 
go n"9 
Onnrnfl7 0 

g0*nn03 
sn.on'I 

q 

fn.niAg 
on.nu53 

qn.nil6 
0,n0itl 

5fnlnrlq 
5n0,14nq 
tfl*030 q 

5n~nfO 
5n.nl 
50.0'2? 
sn.nje's 
5fnln07 
rn.n14q 
50M.04P 
50.n839 

. 51.00 
52.00 

540.3251 
550.8794 

50.0328 
50.0322 

540.1959 
550.7502 

90.03P8 
90.0322 

540.I015 S0.01PR 
R50.6r5P 90.0322 

53q.q0 
550.4933 

qn.0i9g 
n.n0pn 

K9q.7469 
530O 

50n.nxpQ 
90.0322 

59.464q 
550.n187 

'3.n9 
5n.n39 

53.00 
54.00 

561.4336 
571.9877 

50.0316 
90.0310 

561.3044 
571.8589 

50.0316 
50.0310 

561.2100 
571.7641 

r0,0316 
50.0310 

r61.0479 
571.6016 

g50n.16 
n.n2n 

W0.R549 
r71.4n85 

5n.0316 
qn.OxAl1 

q6n07l4 
571.1PAn 

5n.n116 
Fn.n 11 

55.00 
56.00 
57.00 
58.00 
5).00 
60.00 

582.9416 
593.0955 
603.6492 
614.P028 
624.7563 
635.3098 

rn.0304 
50.029 
50.02q4 
50.028q 
50.0284 
50.0279 

582.4124 
592.0663 
603.5200 
614.0736 
624.6271 
635.1805 

90.035 
5n.0?p9 
09.0?q4 
50.0289 
5n.024 
50.0270 

rA .9lA1 
59P.8720 
6n0i.4Pqi 
613.979P 
64,.9p7 
635.0861 

50.0305 
g0.olqQo 
Rn.Oq4 
50,0280 
50OP4 
90.027Q 

2,1555 
0p.?flo 
S8.26in 
6138166 
6,4.9701 
614.q239 

50.0309 581.q624 
Kn.n2gQqp. AP 
R),1PQ04 ,03l6qR 
qo.nPq 613.6234 
50.P24 624.176R 
qn.n07q 694.73nP 

50.Minr 
50.02OQ 
50n.nq4 
5O.0Aq 
50.n094 
qon507Q 

;R1.67n4 
qOp. ,Ip 
6nP.7A1 
61I.39i' 
6P3.8994 
6340U4q4 

5n.nxnK 
sr'.n Q 
gn.09Q4 
50.0n0q 
nn,f04 

gn.non 



PRW** fl*'r 03W77 nArr 7
 

V-INFINITY = 60.0 KM/S
 

T - YRS 
0= 

RAn 
.1AU 

VEL 
q = 

RAr) 
.3 AU 

VEL 
n = 

PAn 
.5 AU 

Vft. 
n = 1.0 

PA) 
Atl 

VFL 
a = 
PAn 

2.0 MI 
VEL PAMn 

5.p fU 
VVl 

00 .1000 146.oQfo .300f 07.54n7 .rnnn51 4.r4A 1.nonn 71.3o0q 0.nnnn 6A.anAn s.Pnrn F9t,-no 
-20 3.0269 64.7005 2.9354 64.8417 2.A~4 64.004t pfln 04.486 3.13u1 F4.Pn R S.Pnol AI.o.4 
.4nl 
.60 

5.6979 
8.3199 

6P.5413 
61.7524 

5.5061 
8.110l 

69.5863 
61.7714 A.1477 

A,6124.6324q76 
A1.7P00 8.07 o 0 

APA17 
AI..nO 

F,56o 
A.14l1 

6p.ov7q 
61.7AAe 

7.r 
Qt11171, 

61nnpQ 
61.5RA7 

.80 
1.00 

10.910( 
13.4926 

61.340l 
61.0860 

10.A043 
13.3R4q 

61.3R'2 
61.0047 

lo.7177 
1s.t3e1 

61.361 
%1.1flnn 

tO.Agqo 
1.502c 

A1.P'o n.67or 
.61.1AI3.94061,1non 

e1.37n i1,*55 
13 .flW s 

Al.Aq0 
Ai.nIft, 

1.20 
1.40 

16.0656 
18.6325 

60.9134 
60.7884 

15.057P 
18.5236 

60.q2'n5
60.7Q30 

1S.8872 
jA.lrp7 

60.0op'g
0.7aA0 

15.7O014 
IP.I1r7 

6fl.Q;'O 
00.8113 

J-.1N 
IR.infn 

#,n.031 
6n0.S6 

Ie.rl 
14"Ut 

6mnn 
An.7017 

1.60 
1.80 

21.1940 
23.7538 

60.6q36 
6n.6103 

21.0895 
23.6441 

6n.6072 
6n.6p?2 

Pjn130 
PA.5710 

6n.60q5 
6n.6940 

?r,.nnoo 
P3.4654 

A.7'nn 
O9.Apt 

20.A467 
p 43,Q30 

A.7nq1 
60.6"P7 

'1,1fn 
P%,An I 

AnSnSn 
An.Afl' 

2.00 26.3099 60.5594 26.1990 60.9617 P6.173 o.5r.W 9A.nn8 An.c66 pr.03A 60.56' P6°10PI An.crtQ 
2.20 
2.40 

28.A637 
31.4157 

60.5101 
60.4688 

28.753f 
31.305 

6n.510 
60.47n,5 

P.6n05 61.9131 
11.93I6fl.4' 

28.97n0 
i, 6 

6.5103 
An.31.1206 

p.4tr5 
n-ins; 

6n.9168 
An.4746 

5nptS
n A 

-tpo; 
An.q1 n 
AA0.471 

2.60 33.9660 60.4337 33.8559 6n.413r 31.751iq A0.461 33.6604 6n.t'95 -4, 7 An.14'8 3.9 5R An.-4,Ao 
2.80 
3.00 
3.2n 
3.40 

36.5150 
3Q.0628 
41.6096 
44.1554 

6n.4036 
60.3773 
6n.3543 
60.3330 

36.4044 
38.9521 
41.407 
44.0445 

6n.4048 
60.3784 
60.3592 
61.3348 

36.3031 
38.8780 
41.P4t5 

UI.Q0f 

6n.4nti f; 
61.370 
6n.3590 

An.315A 

38.76A7 
414j31n 
43.q41U 

A1u1AOtq 
Ae.'n? 
60n.'60 
A1."A62 

IAJ6.1o 
R8.66P4 

u1.pnrq 
u3.7T 4 a 

6n.4n8 
6fl1I 
6n.°9? 
A.'370 

16.,un 
3A.'611 
41,I-Afln 

41.in1 

An.flnAA 
An.,fnlp 
sMIn 71 
6n.3A' 

3.60 46.7005 60.3158 46.580 6n.3165 4A.5151 60.3170 4fA.37qA7 6rfjl.1A A6.Pqnc An.32A 4A.Tl
7 n A,'.'a 

3.80 49.2448 6n.2095 49.133A 60.3002 'gf.nql 60.30A6 4RA04p3 n1.13 4A.P9p* fAn.Inn 4n 9n An.1 1 
4.00 51.7885 60.2848 91.6774 6n.2Rq4 510An27 A6.2n8n 51.4A94 A0.PA5 t.37v An.2871 5I* o An,.9? 
4.20 54.3316 6n.2719 54.2204 60.27P1 911.11456 6n.272Z; 94.0979 An. P7?'0 r%3.044 611.P716 ri3. npi An.r7%6 
4.40 
4.60 
4.80 

56.8742 
59.4162 
61.9579 

60.2594 
60.24A3 
60.2382 

56.762P 
5P.3o5 
61.8466 

6n.29q 
6n.2408 
6n.2386 

56.6p8f 
9inf 
°1.7719 

611.2603 
6fn.2qj
6n.2'980 

96.6qq 
50.11j9
61.6P7 

An.p6np 
6".P406 
An.PQI 

R6.45n 
58.o'53 
e1.35i 

An.2613 

6.9Rn.9109 

R6."5hn 
q.no
A,=IA 

6fn,9613 
An.nl 
,6m Q 

o 5.00 
5.20 

64.4991 
67.039q 

60.2P88 
61 .22Nt 

64.3R77 
66.q0R2 

e0.P2QP 
6n.22n9 

64.1126 
66.A533 

A6.p295 
61.29oA 

64.1035 
66.73140 

A6.2paq 
An.P1 

64°nr 
66.6145 

61.2311 
6n.pois 

Aq.nq4n 
6e.gna 

An.1 
An1 7 

-J 
0 

5.40 69.r804 60.2121 6. 4 60 0  6n.Pi29 6303417 Sn.pypV 6q.'hl An.931 Aq,1537 A1.P1I4 6o.119n 6- 191A 
5.60 
5.8n 

72.1206 
74.6605 

60.207 
60.1)77 

72.0092 
74.9412 

60.2050 
6O.10O 

71.031R 
74.4736 

6n.pn0p 
60.1ORP 

71.140 
74.3S35 

60.n15 
Anlpq 

71.64P7 
74.P31" 

A.9nq 
69.t1A0 

71.6455 
74. 17I 

6n."n6n 
6n.lno 

6.00 77.2001 60.IQ12 77.0885 6n.1915 77.n31 60.1017 76.gP8 An.0 76.7600 An.10o 76.711R APOM1 
6.20 
6.40 

70.7394 
82.2784 

60.1851 
60.1704 

79.627A 
82.166q 

60.1A54 
6n.17q7 

70.5p4 
n2.024 

61n.186 
61.1708 

7q.4 
p,07fl7 

n 6I0.t85q 
Anln01 

70.368' 
l.P46" 

60.1n61 
A.1n14 

7q.P4k7 
ct.77! 

61.18nl 
60.inn 

6.60 
6.80 

84.173 
87.3559 

60.1741 
60.16q0 

84.7057 
87.2441 

6n.1743 
6n.1692 

A4.Ao 
Av.iAv 

6n.1745 
60.16qu 

A4.9n 
87.0477 

Af.1747 
An.1A06 

A4.314U 
pA.QP99 

sn.styn 
60.1AO 

A4.lll 
86.R451 

An.19i 
6 .17n0 

7.00 59.8Q43 60.1643 8.7827 6P.1645 80.7071 6.IA46 A0.q8Q A0.16Aa 80.4500 68.160A 09.17A7 6n.1Aqp 
7.20 92.4325 60.1597 92.3200 6n.15sQ9 Op.452 no.1601 P,12P4 An.lAn3 q *q07# An*.A19 01.015 6".1An6 
7.40 
7.60 

94.9706 
97.500.4 

60.1559 
60.1514 

94.8580 
97.096A 

60.197 
60.1516 

9u.79*83 
Q7.3plO 

60.1558 
An.l.Ir17 

04.6618 
07.1)09 

6n1.1560 
An. 191 a 

4.5147 
07071n 

6n.lq6 
6.11spl 

040MA4*A,6.158 
Q68nn finICD3 

7.)30 100.0461 60.1476 99.9344 60.1478 Qq.8597 6fn.1470 0q,737 60.14I1 oq.AOqo 60.14A qqRQ 611.1140 
8.00 102.5837 60.1440 102.4720 61.1441 10P.3%62 6f8.144P 102.P744 A0.1444 lp.146ln A0.1446 102.047 Aflfta7 
8.20 
8.40 

105.1210 
107.6583 

60.1405 
60.1372 

105.0091 
107.5466 

6n.1406 
6n.1373 

ln4.335 
107.4707 

6n.ln7 
0n.1374 

104.8116 
107.3487 

n.14nq tnu.ARPn 
An.1W76, 107.?105 

An.1411 
61.1177 

104.81c7 
I07.1157 

Af.1012 
Aflt.1A 

8.60 
8.80 

110.1954 
112.7324 

60.1340 
60.1310 

110.0837 
112.6206 

60.1342 
60.1311 

130.007A 
11P.q447 

60.1141 
6.131P 

10.857 
112.4PP5 

6n.1144 
6n.1314 

loq.7961
ll2,2q2A 

60.1146 
6n.1 tq 

IQ.A4*A 
112.1838 

An.1%4 
en.i'I7 

9.00 
9.20 

115.2692 
117.8060 

60.12R1 
60.1254 

115.1579 
117.694P 

60.12R3 
60.1255 

115.0A81 
117.6183 

60.128p3 
6n.1256 

1j4,q* 3 
117.49qq 

6n.IP9 
60.1,57 

11,P n 
117.3653 

6.IPA6 
60.158 

114.7176 
117P9916 

An,1 4 
60.19 0 

9.40 
9.60 

120.3426 
122.8791 

60.1227 
60.1202 

120.2308 
122.7673 

60.1228 
60.1203 

120.19;q 
12P.6013 

60.1P20 
60.lpo4 

120.03P4 
122.i60 

60.1231 
An6p125 

xo.001 
12p.4376 

60.1039 
6n.1006 

11Q.T899 
1P2.1t5 

6n,1943 
61n,l9 

9.80 125.4155 60.1178 125.3037 60.1179 125.2277 6001180 125.1051 A0f11 1 124,0736 60.11R2 124.0519 60.1183 
10.00 127,9518 60.1154 127.8400 60.1155 127.7640 0.1156 127.6413 60.1157 1p7.,0q6 60.11RA 127,181 An1O 



PRW** DATF 011077 PArr Is 

V-TNFINITY =60.0 KM/S
 

S=.1 AU Q = .3 AU Q - .5 AU 0 = 1.0 AU 0 = 2.0 AU a 5.2 AU
 
T - YRS RAD VEL RAO VEL RAD VEL RAO VFL An VEL Olin VL
 

10,00 127.9518 60.1154 127,8400 6n.11SS IP7.7640 68.11S6 IP7.6411 A0e11S7 1P7.580 6n.,II di IP7.A87A fin*116O 
11.00 140.6320 6n.1050 140.9201 14n.4441 140.PI0 14WA. 6n. t nf4 f,. I
6n.10 I fip.10nP fin.tftv 8 	 140,MS71 ot$
 
12.00 153.3102 60.0964 153.1483 6n.0964 193.IP21 600%K6 1920"s~q Afl.0n ll;P.864n 60.00fi6 I~SPOMA An.nOA?
 
13.00 165.Q866 6n.0890 165.8747 6n.0891 169.7999 60.0891 169.6790 6in.ARQ2 165.5400 60.08ql 16w,.Aq n 600A61
 
14.00 178.6617 6n.08P7 178.5497 6n.08PA 17A.4739 fin.OAPA 17A.349A 60.048 179.214P 6n.0npq 178.n64A 6f).OAN
 
15.00 191.3355 60.0772 191.P?3S 6n.0773 101.147P 6n.077?? la1.0P33 Afl.0774 10O.A871 An.M774 tOO0.T11 Aftoft ?
 
16.00 204.0082 60.0724 203.896P 6n.07P9 Pn3.9199 60.0?pq Pnl.6Q$4 Aq.n7P9 P03. 5I 6n.176 P01.4011 fin.nv"o
 
17.00 P16.6800 60.0682 216.568n 6n.0692 P1fi.4417 6n.0683 P16.1679 A"003 P16.?0P 60.0693 P16.06A? 6AnAA4R
 
19.00 229.3510 60.0644 229.P389 6n.0645 Ppq.16?6 60°064 P?4,fnl83 An.0649 PPS.9nn6 6n.0646 PPA.79Qq 60nOA8
 
19.00 242.0212 60.0611 241.90q1 60.0611 P41.8127 60o061t] P41,?0pl A6006 1 .I*7?P 60,ft6lP P t.4007 6n*.n
 
20o00 254.6907 60.0980 254.';786 6n.0qRl ?94.rQPP 60.0981 294.1777 60.09A| P 4.I$ QI 6n.n-;R1 P9400 6n.nq p
 
21.00 267.3596 60.0553 267.2479 6n.0953 P67.1711 6n0,93 P67.fl46r, An.,n5l P66.q077 6n*0Aqq P66.73c ls 6n ,0 -q
 
22.00 280.0280 60.0528 279.915Q 6nl.O9PA 27Q.6394 6n0,0PR 78 .T147 An.nqps P79o57q? 6nl.09Pg P~q.4011 An.nql
 

24.00 305.3632 60.0484 305.2911 6n.0484 30n9,1746 6n.0484 l0fin4QA AiN.n44 304.010- An.nPS 104.710 ' Aft.W
 
29.00 318.0302 60.0469 317.q1ni 6n.0469 117.9416 6P.046i5 317.7167 60.fn465 317.%76q 6n.oM469 17.Nqvl 6n.AlA6
 
26.00 330.6969 60.0447 330.9846 6n.0447 lln n] 6n.044? 33n.183? Ann447 l30,0441, 6n,0 44 Al0,.W'l 6A.M44
 
27.00 343.3630 6n.0410 343o?5nA 6n.0411 A41.1743 6n.0431 143.04ql 6n.04ll X4P.qnqi 6n-n"Aol 14P.IP67 6M.nl
 
28.00 356.0289 60.0419 355.9167 6n.0419 19.940P 6n.nulq 359.7191 An.n416 iq-;,q74A 6n.fn416 i"s.19in An.nh16
 
2c).00 368.6944 60.0401 368.5821 6n.04n1 36A.rin97 6An4nl 368.l06 An.n0n01 6A.P4ni 6n.n4ni1 69.n9RP 6n.naop
 
30-00 381.3597 60.0388 381.2476 60.0i g IR1.1710 6n.nARP 3st.n4'!0 Anl.03PA '3Po.qOiP. 6fl.0ARq An ."I01 6 n R ­
31.00 394.n247 60.0175 393.q126 6n.0379 391.8136n Afl.037 3Q3.7108 An.n3759 .T0 6.7 in3.,tqqo A n?6 ­
32.00 406.6895 6n.0363 406.5773 6n.0i64 406.9n07 6n.0164 4n6.3799 6n.n364 406.P34A 6n.nIA4 406.m4Aq An.nMmA 4
 
33.00 41g.3940 6 00192 419.2ulP 6n.0353 41q.1652 6n.0193 419.n4no 6n-nlq3 418.PqAQ 60.nlql 4I8.71 n fio.n l C>
 
34.00 432.0183 6n.0342 431.Q061 60.0147 411. 95 6n.0142 411.7n4l 60,034P u31.9611 6n.Mlu 411.17A 6ft.nl l
 
35.00 444.6824 6n.0332 444.9i70 60.0332 44.Q36 60.0133 444.16A3 6n.0lll 444.PP7 6in.nil 4.01A 6n.nl l
 
36.00 457.3462 60.0323 457.2341 6n.0123 457.t975 6n.0121 4-i7.0321 fi.0n03 49fi.Ago 6noiP4 4r6.AQQA 6m.qI0
 
37.00 470.0099 6n.0314 469.R97A 6n.0115 46Q9211 An.0319; 46g.fi9Rf An.nII 469.9ri41 6n.O"19 4fq.NAOI0 Aft*t 15
 
38.00 482.6739 6n.0106 482.9613 6n.0306 USP.4A46 6n.0 0O6 482.lqg3 An.0WM6 UAP0.177 An.0IO7 4AP.nPUq 6n.nmn7
 
39.00 495.3368 60.0298 499.2246 6n.0298 4q9.1480 A0.07qq4 Q90226 An.04g Uq4.PRnn 6n.n0Q 404.AR74 finnoaq
 
40.00 508.0000 60.0291 507.887A 6n.0291 n7.811p 60.0?91 507.6857 An.0p t qn?.943n 60.n'Qt q07.1400 An.nio1
 
41.00 520.6630 60.0284 920.950A 6n.0P84 ;Pn.474P An.0P94 5PO.14R7 60.nPA4 9pn.PO0 6n.nI84 900.nlll An.n A4
 
42.00 533.3259 60.0277 533.2137 60.0p77 911.1371 6n.0777 513.nI16 60$0P77 ';3P.A6Q6 An.fti77 ql?.A744 Fn.ni 8
 
43.00 545.9886 60.0P71 545.8769, 6n.0271 9;49.7998 6n.nP71 945.6743 6n.0p71 r4;.91PI 60.n>71 qKlArfi.nK n°oV 1
 
44.00 558.6513 60.0269 598.5391 6n.0269 9qA.4624 60.DP6r Sr,31An 60.0PA5 q58.194A An.O61K qq7.QqA- 6n.nAc;
 
4S.00 571.3138 60.0P59 571.P016 6n.0299 r71.IP4q 60.0?59 870.Q04 O60.n~qq $7.A577 6n.n ,q -i7n.f6nu 6in*.n-Q
 
46.00 583.9761 6n.0P53 583.863q 6n.0293 qA3.7871 60.0P"3 53.6617 f0.npqi qRj.9Iqf 6n.0,9 9P.IPPI 6n.n o~
 
47.04 596.6364 60.0248 59)6. 1262 60.024a 5Q6.44995 6n.nP4S 950.3P30 An.np p qO6.IRIA An.0>4A qQ9.nA4A An.A 4A
 
48.0o 609.3005 60.0243 609.1881 6n.0243 6n9.1116 6n.nP43 608.9A6n An.nP4q3 6nA.";37 66.nP4 6na.4R6 6n.no4N
 
49.00 .621,9625 60.0238 621.R501 6n.n238 6pi.7717 60.nP3P 6pt.6461 6lO.nplA Apl.qnq 6n.no x8 API. 071 Aft.nOle
 
50.00 634.6245 60.0233 634.5121 6n.0213 614.4'$6 60.0P31 614.310O 600P11 614.167R 6n.noll Al3.n6AA fitn0ll
 
5t.00 647.2863 60.02P8 647.1741 6n.0228 647.nq74 60.0P2A 646.o71A fi0.0PPS f46.8?Ql 60.0*PQ A46.Aino 6"00g
 

S 52.00 659.9481 60.0224 699.8358 6n.02P4 6rQ.7591l 60.0?24 69q.6339 6n.nPP4 Ati..40na 6n.oP04 fi9Q.9011 An.n*4
 
530 7.07 6.?0672.4979 6n.0P20 672.4P08 60.npp0 672.PQ91 6n.nP 0 67P.lr? 6n0nln0 671.n l~ Aft°ni9
 
54.00 685.2713 60.0216 68q.159n 6n.02t6 6A9.n824 60.0?16 694.q567 A0.0P16 6A4.914n 6n.n0>16 6n4.At" An.n 16
 
55.00 697.9327 60.023P 697.820r, 6n.02t2 607.743A 60.0pip 6Q7.6181 6n.nP12 -6q7.475i4 6n.0O>IP 607.p74A 6n..plp


2 	 56.00 710.5941 60.0208 710.4819 6n.0208 71g.409P 6n.o n8 71n.P709 An.fnPnA 71n.136A 6n.npnR 7nQ.0j9A 6ft.noAR 
4 " - 57.00 723.2555 6n.0204 723.143P 6n.0?n4 7P3.066t; 6n.0p04 7p2. QnA 60.npn4 7PP7Q n 60.flp05 7.r 6A.nln';
 

Ir 58.00 735.9167 60.0201 735.8049 6fl.0?01 71q.7P7A 60.0701 735.6021 6n.npni 719.49q> 6n.Mint 19.9r,Pf? 6n.q,>A

08
2 	 59.00 748.5779 6n.0197 748.4656 6n.0ign 748.3A89 fin.nlqA 749.263P fin.0nI R 749.1201 6n.o|a 747.0|A 6n~nlqn 

S 60.00 761.2390 6n.0194 761.1267 60.0104 76|.A900 6n.0194 760.OP43 A0.njQ4 76n.7814 fi0.n1o4 76n.971), An.nin4 

http:qKlArfi.nK
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