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PROGRAM DESCRIPTION GUIDE
 

A. IDENTIFICATION
 

Program Name -	 Ordinary Differential Equation Solver - HMS 

Author 	 H. Sloate, G.E. Co., Electronics Laboratory
 
Syracuse, N. Y.
 

Source Reference 	 An Implicit Formula for the Integration of
 
Stiff Network Equations, TIS No. R7OELS-2,

January 1970. 

Programmer Contact -	 V. J. Marks, GE/MSC, Houston 

Date of Issue -	 May 1, 1973 

B. GENERAL DESCRIPTION
 

The program is designed to provide numerical solution to systems of
 
linear and nonlinear first-order ordinary differential equations.
 
The program contains a nei integration algorithm for the solution
 
of initial value problems and is particularly efficient for solving
 
differential equations having a wide range of eigenvalues. For the
 
classical methods, the integration step size is limited more by
 
stability considerations than by accuracy. The new implicit fourth
order linear multistep method based on Gear's formula utilized in
 
this program does not become numerically unstable as the time step
 
siz6 becomes large. Since the integration formula is a multistep
 
method, it must be started by some other means. Gill's fourth-order
 
Runge Kutta method is used to calculate the three points in addition
 
to the initial conditions needed to start the multistep process.
 
After the starting procedure is carried out and an acceptable time
 
step size found, the step size is still'kept small enough for accuracy.
 
If it is too large, it is halved. If it is too small, it can cause
 
excessive running times and an appropriate test is performed to detect
 
this event and the step size is doubled.
 

C. USAGE AND RESTRICTIONS
 

Machine and Compiler Required - UNIVAC ll08 and FORTRAN
 

Peripheral Equipment Required - Card Reader; Line Printer
 

Approximate Amount of Memory - 6,027
 
0Required 
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D. PARTICULAR DESCRIPTION 

Consider the system of first-order differential equations given in (1): 

Y = f (Z t), y(0) -yo (1) 

The function: may be a non-linear, time-varying function ofZ and hence 
it may be difficult or impossible to find an analytic solution to eq. (1) if a solu
tion exists. If one does exist, the above system of equations may be integrated 
point by point in time to obtain an approximation to the solution of eq. (1), ,(t). 

There are many formulas used for the integration of ordinary differential 
equations. Some are designed to integrate differential equations of high order 1 

while others are used for k system of first-order differential equations such 
as (1). 

The form given in eq. (1) is general because differential equations of any 
order can be rewritten as systems of first-order equations. Thus it is of 
interest to examine integration formulas which can be used to solve eq. (1). 

Classical integration techniques include the linear multi-step methods, 
the predictor-corrector methods, 2 and the Runge Kutta methods. 3 One might 
ask why new methods are being invented when we have such a repertoire of 
existing methods at our disposal. The following discussion will point out the 
shortcoming common to all classical methods. 

1. STIFF DIFFERENTIAL EQUATIONS 

A stiff set of linear ordinary differential equations is defined as one which 
has very large and very small eigenvalues. The term stiff probably comes 
from structural engineering where stiff members gave rise to large eigenvalues 
in the differential equation formulation. 

When numerically integrating stiff differential equations, one encounters 
two conflicting requirements: a) the time step size must be large to reduce the 
number of steps taken and consequently the labor required to obtain the solu
tionjand b) the time step must be small to prevent the integration algorithm 
from becoming numerically unstable. Stiff differential equations aggravate 
the above conflict because the maximum allowable time step for numerical 
stability is inversely proportional to the largest eigenvalue. Many time steps 
must be taken to display the solution associated with the small eigenvalues of 
the system. The combination of small step size and long running time causes 
the solution to be calculated at a great many points. 

To see how a numerical integration formula can become unstable let us
 
use Euler's forward integration lormula given in eq. (2)'to solve the linear
 
first-order differential equation in eq. (3).
 

n+l Yn 'hn (2) 
Yn A ) O 
y-- -Ay, y(0) -- Yn (3) 
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Substituting eq. (3) into (2) and solving we obtain the recursion relationship: 

Ynl = (1 - ' h)y n 	 (4) 

The solution to eq. (4) is 
=Yi, (I - Xh) n yC 	 (5) 

For the sequence [Yn ] to be bounded it follows that: 

1i - XhI SI
 
0-SXh < 2
 

0_5hS 2(6) 

That is, if the numerical solution is to have the same property as the actual 
solution to eq. (3) (i. e., boundedness) then there is an upper limit on h which 
is inversely proportional to the largest eigenvalue in the system of equations 
being integrated. This is generally true of all classical integration formulas. 

2. IMPLICIT INTEGRATION FORMULAS 

Much research has been done in recent years to circumvent the numerical
 
instability problem. One approach is to examine the equations being integrated
 
and to modify them to delete the troublesome eigenvalues. 4, 5 However, this
 

may 	be time consuming and not completely general. Another approach is to use 
a non-linear integration formula which uses exponentials rather than polynomials 
to fit the functions being integrated. 6 This type of formula has excellent stabi
lity properties and is exact for linear systems (no truncation error). However, 
the Jacobian of the system of differential equations must be calculated and the 
exponential matrix generated. Here we have solved thin numerical instability 
problem but have replaced it with a great deal of comritation per time step. 
A tradeoff between stability and computation per time .step can be made by 
using the convergence properties of the exponential power series as is done in 
the CIRCus 7 network analysis program. 

Lacking a complete solution to the problenilet us lurn our attention to linear 
multi-step integration formulas of the form: 

k-1 k-i 

Yn+l aYn + h iyn 	 ()
i=O i=-1 

The a's and ,3's may be determined by requiring that the formula be exact 
up to a certain order, p, if the function, y(t), being integrated is a polynomial 
in time of order p or less. If there are more a's and 13's than necessary to 
make the formula exact up to and including order p,then the remaining arbi
trary a's and 3I's may be chosen to optimize other properties of the integration 
formula. 2 

If 3 I / 0 the integration formula is said to be an implicit formula because 
the unknown, v 1 , appears on both sides of the equation. These equations 
have the same inrm as the corrector formulas in the predictor-corrector 
method. If.1 -1. z 0 the integration forinub is an explicit formula, similar to 
the predictor formulas in the predictor-corrector method. 



The implicit equations can have numerical stability for the time step size, 
h, arbitrarily large, as the following example shows. Consider Cuter's back
ward formula which is an implicit formula of order one and step number k = 1. 

=Yn+l Yn + hYn~l (8) 

If we use eq. (8) to solve eq. (3) we obtain the difference equation: 

-Yn+l = (l +Ah) Yn (9) 

The solution to eq. (9) is 

Yn = (1 + Xn) YO (10) 

If Re[ X ]'- 0, then jy ] is a bounded sequence for all h O. Thus there is no 
upper limit on time spep size due to numerical instability problems. Here is 
one formula, at least, which has the desired numerical stability properties. 

The question arises as to whether there are more formulas with the above 
stability properties. Before answering this question let us present the concept 
of A-stability. 9 A k stop method is called A-stable if all solutions of eq. (7) 
tend to zero, as n-*o, when the method is applied with fixed positive h to eq. (3) 
where A is a complex constant with positive real part. A-stability requires 
that if the solution to the differential equation is stable then the corresponding 
solution to the difference equation be stable also. The example given in eq. (8) 
is an A-shable method. Unfortunately there are not too many more of them. 
Dahlquist proved two theorems important to our discussion: 

Th. 1, An explicit linear multistep method cannot be A-stable. 

Th. 2. The order, p, of an A-stable linear multistep method cannot
 
exceed 2.
 

Theorem 2 indicates that if we require A-stability we will be able to use only 
formulas of low order and hence limited accuracy. If the restriction of A-staibility 
is removed, we can find high-order formulas with acceptable numerical stability 
properties. 

In Appendix I it is shown that if we want an integration formula which remains 
stable as h-cc, we must use an implicit formula and its maximum order cannot 
exceed its step number k. Such an integration formula will not be A-stable, how
ever, if p>2. 

3. INTEGRATION FORMULA SELECTION 

As h -*o it would be good to have the roots of the integration formula tend 
to zero so that the unimportant large eigenvalue modes of a system of differential 
equations would rapidly die out as the time step size is increased. This is the 
approach taken by Gear 1 0 in obtaining implicit integration formulas of order 2 
through 6. In eq. (7) there are 2k+l arbitrary constants. If a kth order fit is 

k 
required. k+1 of the constants are fixed. If the k roots of i C = 0 are 

all to be zero, the remaining k constants of eq. (7) are fixed an2 the integration 
formula is unique. The formulas of order 2 through 6 are given in Appendix II. 
Generally speaking it is desirable to use as high an order formula as possible 
to achieve greater accuracy. The higher order formulas have the disadvantage 
ili IhtLlo re )Ist valuivsnust te stored and more manipulation is required when 



5 

the step size is halved or doubled. A fourth-order formula was chosen for 
integrating the systems of differential equations as a compromise between 
accuracy and complexity. It is different from Gear's fourth-order formula 
in that its coefficients were selected to achieve a compromise between trunca
tion error and roots close to zero as h --p o. This wasydoye by minimizing a 
performance index usingthe Fletcher Powell method. ' The performance 
index was a weighted suri of the truncation error given in eq. (12) and the square 
of the sum of the squares of the roots of eq. (7) as h-+. o. 

4. TRUNCATION ERROR 

The truncation error of the integration formula in eq. (7) is due to the fact 
that the formula has only a finite number of terms. This error would be present 
even if there were no roundoff errors in the computer due to using numbers with 
a finite number of bits. n expression for the truncation error can be obtained 
by integration by parts. 1 '(See Appendix II.) It is given by 

(n+l)h 

T= (kl(N) f G(s)ds (11) 
(n-k+l)h 

where G(s) is called the influence function and is of the same sign over the 
interval from (n+l-k)h to (n+l)h. The k+1 th derivative is evaluated at N which 
is somewhere in the interval from (n-k+l)h to (n+l)h. If G(s) changes sign over 
the interval, the First Mean Value Theorem 1 2 which was used in obtaining eq. (11) 
does not apply and an estimate of the error can be obtained from: 

T=Iy(k+1) (N)!f (n-il)h I s s(12) 

(n-k+l)h 

Equations (11) and (12) were used to obtain the truncation error of the inte
gration formulas studied.
 

If G(s) is of the same sign over the interval and eq. (11) applies, an alternate 
shorter method can be used to compute Tn . Assume the error is given by 

Ek hk+l y(k+1) (N) (la)
T -- N)(la
n 


Assume Y(t) = tk+1 and substitute into eq. (7). Since eq. (11a) is the error in
 
eq. (7) Ek can be evaluated. This is the standard way to find error terms in
 
quadrature formulas. Note, however, that it is valid only if G(s) is of the same
 
sign over the interval covered by the integration formula. (See Appendix III
 
for an example of the procedure for calculating Ek.)
 

5. STABILITY BOUNDARIES 

Let y = qy. The roots of the difference equation given in eq. (7) are the
 
zeros of
 

k-1
 

(a 1 qhii) -0, a -1 
i -1 



Solving for qh gives 

k-I 
-V a.!
 

qh= (14) 

v k-l-i 
Lj

i = -1 

If there is some value of qh which causes ( to have unit magnitude, then 
we can let C m. e0 ( This will map the correspondingO and let 0 vary from 0 to 71. 

stability boundary in the qh plane. If the stability' boundary lies wholly in the 
plane RtE qh] ?0, then the integration formula being considered will be A-stable. 
If not, then there are some values of qh in the plane Re[qh]1<0 for which the 
roots are not less than one in magnitude and by definition the method is not 
A-stable. 

6. COMPARISON OF TWO FOURTH-ORDER FORMULAS 

Gear's fourth-order formula has a truncation error given by: 

JTn = 2. 3 04 h5 Iy(5)(I7) (15) 

The truncation error of the optimized fourth-order formula given in 
Appendix II is: 

Tn=1"32 (16)nh5y()( 

These expressions can be obtained by integrating .he influence functions shown 
in Figure 1. See Appendix III. 

The stability boundaries in the qh plane of are shoy in Figures 2 and 3. 
Both methods are A(a ) stable in the sense of Widlund. Gear's method has 
an a = 72 degrees. The optimized method has an a =63 degrees. It can be 
seen that there is a trade-off between truncation error and the size of the 
stability sector in the qh plane. The optimized formula is more accurate than 
Gear's method but its stability sector is smaller. 

7. SOLUTION OF THE IMPLICIT EQUATION 

The integration formula given in eq. (7) is implicit if 0. Since the 
unknown, y +1' appears on both sides of the equal sign, the equation will have 
to be solvecPiteratively. One approach which is used in the predictor-corrector 
methods is the method of successive substitution (Picard's Method). The kth 
estimate of y , is used on the right side of eq. (7) to evaluate Yn+l, and this is 
used to evalua ethe k+l th estimate of r 

k-i 
y(k-l)nil -l (k)h n-)

I n4l 
" 

i' 
(a.

1 
y . +hP. yn.)
n-i+ i n-i (17) 

i. 0 
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TIME 

(n-3) h (n-2) h (n-I)h nh 

G(s) 
-1.0 

OPTIMIZED 
FORMULA 

GEAR'S 
-1.5 FORMULA 

-2.0 

Figure 1. Influence Function for Two Fourth 
Order Formulas 
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Figure 2. Stability Region for Gear's Formula 

(n+I)h 
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0 1.584 

- 1.017a I 

S2 - 0.529 

0.09678 UNSTABLE*3 


4- )-i 0.4539
 

43 0. 235 

13 1 0. 0568 

213 	 0.00567 . 

0.000201 
. 2 

3 
a =630 

-2 	 2 4 6 8 10 12 14 16 

OPTIMIZED FORMULA STABILITY REGION 
IN QH PLANE IJG(s) dsj1 1.932 h 

-6 -	 _ __ _ - __ _ _ _ -

-8----	 __ __ __ 

Figure 3. Stability Region for Optimized Formula 

To 	see if this can be of use let us examine the linear case y = qy. Letting 

k-1
 
K a. y .'hj3i yK-' i Yn-i lYn-i 
i=0
 

because K does not change during the iteration, we find that eq. (17) is of the 
form: 

y(k+l) (k) K(18) 
n- -- h--lq Y 1 _-K 



--

if" (0) is the initial guess for yn±I' the solution to eq. (18) is: 

y(k) k yy (o) + -(qh)k
 

n+l (qh) nI + T -q(1
 

This is a divergent sequence if jqh >1. This is the same restriction we 
were trying to avoid by using implicit methods in the first place. It can be 
shown that this restriction holds for systems of equations and nonlinear equa
tions as Well.' 8 

The Newtpn Raphson method can be used to solve implicit equations such as 
eq. (7). It does not limit the size of qh. If eq. (7) is applied to systems of equa
tions such as: 

(Yn+i1, 2 n+l - -I h n+l1


k-I
 

(aiyn-i + h [i3Y .) (20) 

i= 0 

it can be seen that (y ) will be zero at the solution. If 2 is expanded in 
a Taylor series and only tne first term is kept, we have 

(k) _~l = Q (Yn+I + J"'-AYn+IQSt ,n+i + (k) 4Xl)n
Qy(k) +(Ak) 

Solving eq. (21) for 6y gives 

AYn+I _j- Q Yn+l)A- y (k), (22) 

where J is the Jacobian of 2. The Jacobian can be fo md from eq. (20) and is 

(23)J .= - 1 hA 

where A is given by 

Yfi 

P'Tfl1 Y2 ff2
 

Yn =fn
 

If the differential equations being integrated are linear, the matrix A does 
not change during the problem and needs to be calculated only once. For very 
nonlinear equations A may change rapidly and a new Jacobian may have to be 
calculated at each time step. In practice, however, a new Jacobian is not cal
culated this often. If the number of iterations required for the Newton method 
to converge exceeds a certain number, the Jacobian is recalculated using differ
ence techniques, it is inverted, and a new Ayn+ 1 is found. If the number of 
iterations per step does not exceed the limit, the inverse Jacobian from the 
previous step is used. In this manner considerable time is saved which would 
be used inevaluating the derivatives Mi 1
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If after calculating a new Jacobian the Newton method still fails to converge,
the step size'h is halved and eq. (7) is applied once more. If after b has been 
halved a certain number of times there is still no convergence, the simulation is 
terminated and an error message printed out. 

If the system of differential equations being integrated is very stiff and the 
transient has died out, qh>>l for all the eigenvalues of the system. 

[I- L- h'A] h A-1 (24) 

Equation (24) shows that inverting the Jacobian- is almost the same as inverting 
A which has extreme ranges in eigenvalues. Due to roundoff in the computer, 
A seems nearly singular and gives very inaccurate results when it is inverted. 
An iterative scheme to correct the- elements of the inverse matrix has been used 
to overcome the problem. 14 It greatly reduces the number of iterations used 
for convergence of Newton's method in some cases. 

8. SIMULATION PROGRAM ORGANIZATION AND LOGIC 

a, Starting Procedure 

Since the integration formula in eq. (7) is a multistep method it must 
be started by some other means. Gill's 15 fourth-order Runge Kutta method was 
chosen to calculate the three points in addition to the initial conditions needed 
to start the multistep method. Two more points are calculated using the multi
step method and these six points are used to approximate the fifth derivative of 
y(t) by difference techniques. From this the truncation error is calculated and 
the accuracy test is made to determine if the time step size is too large. If it 
is, the step size is reduced by a factor of ten and the starting procedure is re
initialized. The error test is: 

ITn < (1 + I Ynj*+ELIM (25) 

If this inequality is satisfied, the time step size is acceptable. ELIM 
is data input by the user. If y(t) is an extremely large number, roundoff error 
in the computer will keep Tn from being less than ELIM. The yn+4 term is 
included to prevent the occurrence of this situation. 

b. Time Step Size Control 

After the starting procedure has been successfully carried out and an 
acceptable time step size, h, found, eq. (25) is still used to keep h small enough 
for accuracy. If it is too large, it is halved. If it is too small, it can cause 
excessive running times. Hence the test in eq. (26) is made. 

IT I< (1 + I yn+iI ) * ELIM/40. (26) 

If this inequality is satisfiedthe step size is goubled. The factor of 
40. was chosen because the erxor is proportional to h . Doubling h multiplies
the truncation error by 32 if y(n) remains coistant. The factor of 40 was chosen 
so that eq. (25) would still be satisfied after h was doubled. 



Since six points are necessary to calculate the fifth derivative, it is 
necessary to have five accurate past points before Yn+l is calculated. Before 
doubling height past values of y(t) are required so that there will be five past 
values of y(t) when Yn+l is calculated on the next step. (See Figure 4. ) The 
step-size doubling is inhibited until eight past points have been calculated. 

If Yn+l is calculated and the truncation error is too large, the step size 
is halved. (See Figure 4. ) Yn-i and Yn-3 are found by interpolation. Yn-j and 
Yn-J3are calculated from these values using the state equations. The old yn-1, 
n-i are placed in Y,-2 Yn-2. The old Yn-2, Yn-2 are placed in Yn-4,. Yn-4. 

A new Yn+l is calculated from the integration formula. If the truncation error 
is still too large,the step size is halved again and the process repeated. 

n-4 n-3 n-2 n-I n n+l 
X X X X X X next stepf double step size 

X X X K X X X X X
 

n-7 n-6 n-5 n-4 n-3 n-2 n-i n n+1
 

DOUBLING THE STEP SIZE 

n-4 n-3 n-2 n-i n n+l 
X X X X X X inaccurate 

point 

halve step size 

X 9 X X X 
n-4 n-3 n-2 n-i n 

HALVING THE STEP SIZE 

Figure 4. Logic for Changing Step Size 

c. The Newton Iteration 

The Newton Raphqg method is used to drive Q to zero. An initial 
estimate of the solution, Yn+I, is calculated by extrapolation using the five 
previous points which have been stored. Using this estimate 9(o is calculated 
and Ayn+] is calculated. 

(k+l) (k) T (27) 
Yn41 -,Ynl 6TI +1 



12 

The au f(1) .Q 1 
The new value 6f.Vn+ 1 is cormputed using eq.(27) with TI = 1. Q is 

evaluated and if 3(1)T Q()-< 1(o)T (o), a new An+liS calculated and the process 

is repeated. If not, Tfls decreasedby a factor of 10 and eq. (27) is applied again 
with the same AvnI1. This process is repeated up to NDEX times. If there is 
still no success, a new Jacobian-is calculated and a new AYn+l is used in eq. (27). 
If there is no success even, then, h is halved and the whole procedure is tried 
again. h can be halved up to NHLIM times. If no success is obtained, an error 
message is printed and the program terminated. 

New A2n+l values are checked in the inequality 

IAYI< (SC + yj) * XNLIM (28) 

If eq. (28) is satisfied for all the state variables, the iteration has been 
completed successfully and the last estimate of yn+l is taken to be the solution 
of the implicit integration formula. SC is usually set to 1. and XNLIM is usually 
set to 0. 1 * ELIM. 

Each time a Ayn+1 step has been successfully carried out, the estimate 
of the inverse Jacobian is updated using Broyden's scheme. 16 This updating 
keeps the estimate of the inverse Jacobian current and lessens the need for 
calculating new Jacobians. 

F. DESCRIPTION OF INPUT 

The differential equation solver is a stand-alone program. Flow charts of 
the program are shown in Appendix IV. It needs two sets of input from the user. 
The first is input data which is read in on three cards. 

The first card has a format (2F8. 1, 15) and reads the variables TF, PT, 
NV. TF is the final time for the problem. When the solution time reaches this 
value, execution will terminate. PT is the number of points in time the user 
wants printed out. For example, if TF = 10. and PT = 5., the state variables 
would be printed out at t = 2., 4., 6., 8., and 10. seconds. NV is the number 
of state variables. 

The second data card has a format (10F8. 2). The initial values of the state 
variables (up to 10) are input here. If there are less than 10 state variables, 
leave the unused columns blank. 

The third card has a format (4E7. 1) and reads the variables YLIM, ELIM, 
-
XNLIM, SC. YLIM is usually set at about 10 5 and governs how the state varia

bles are perturbed to calculate the elements in the Jacobian matrix. The program 
uses YLIM as follows: 

-4 
_.

Iynj < YLIM, perturb yn by 10 

IflynI < YLIM, perturb Yn by 10-3 *yn 

ELIM controls the truncation error of the integration formula. See eqs. (25) 
-3
and (26). It is usually set at about 10 . If a more accurate solution is required, 

it can be set smaller. However, a smaller ELIM requires more time steps to 
complete a simulation. XNLIM controls the convergence requirements for the 
Newton iteration. See eq.(28). It is usually set to 0. 1 * ELIM. 
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The other input required of the user is a subroutine in FORTRAN which 
describes the system of equations being integrated. An example is shown 
below. The maximum number of state variables is 10. The state variables 
are contained in the array X. The first derivatives of X are stored in the array D. 
The variable NUM is used to count how many times the state equations have been 
evaluated during a simulation. 

1 CSTATE
 
2 SUPROUTINE STATE(X,D)
 
3 COMMON YO.IYn',.DH.T,H,NV,NUM
 
4 DOU8LE PRECISION YO(C1),DYf(10,lbc(1n)
 
5 DOUHLE PRECISION X(t),D(l)
 
6 f](2)=x( ).x(?)
 
7 i)(1)=-lflfln (X(1) + P(?,)
 
a NLM = NUM+i.
 
9 RETURN
 

10 ENI) 

F. DESCRIPTION OF OUTPUT 

Since the integration formula is a variable step method, the variables 
may not be calculated at the valuey 7of time at which printout is desired. Hence, 
it is necessary to use Lagrangian interpolation to find the values of the state 
variables at the desired time. See Appendix B for Sample.Output. 

G. INTERNAL CHECKS AND EXITS 

None. 

H. INDEPENDENT SUBROUTINES 

None 

1. SYSTEM SUBROUTINES 

No special subroutine. 

J. COMPLETION OR FINAL CHECKOUT DATE 

April 25, 1973 

Source listing and sample cases are given in Appendix B. 
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MATHEMATICAL PROOFS 

DEFINITION - A linear multistep method is said to be consistent if it is of
 

af least order one.
 

k i 
If a linear multistep method is consistent, E a. C has a simple root at 

i=0
 

.- 1. Let y - K, a constant. .'. y = 0. Sustituting this into 

k k 
4 GYn+l - 13i y n+i (1) 

i=0 i=0 

results in 
k 

(2)i- 1 =0 

If there are two roots at C= 1, the solution of the difference equation is 
n k 

yn= K1 
+ K2 n +K 3 +...+kC (3) 

where the K's are determined by initial conditions. The sequence [y 3is not 
convergent as n -o because of the term containing n. Hence the mefkod will 

k i 
not be convergent if ' a C has more than one zero at C = 1. (See Henrici, P. 

i=0 ' 

Discrete Variable Methods in Ordinary Differential Equations, Wiley, New York, 
1962, pp. 217-218.) 

k 
We will now show that consistency requires that Z Pi / 0. Let y = 1, 

i=0 

y(o) = 0. The solution to the differential equation is y(t) = t. Euuation (1) becomes 
k k 

a.i- 3Zio=0 (4)
i=0 i=O 

Since 0 because = I is a simple root, it follows from 

k
 
eq. (4)that . , / 0.
 

i0 1 



L(nmma 1. If the following three hypotheses are true: 
z
.
1) 1 ix0ia Z 

--	_ 

ft Zi a Z
Ii= 


2) bO = 1, bi>0 i= 1,2'.. 
0 2 

>
3) bn +1 bn1 - bn 0 

thena o I and anda.<0 1 1,2... 
1 

Proof: 

cccc 
if Z has a non-zero radius of convergence, then , a Z does also. 

1=0 1 

(See Knopp, K. Infinite Sequences and Series, Dover, 1956, p. 116.) 

From cc cc 
V b. Z. a. Zi = 1
 
1=0 i=O
 

we obtain the following: 

b a -a =1 
00 0 

b1 + a =0 

b 2b Iaba +a2 0 

bn +bn-I a1 +... +b1 an-I 0an 


Solving for b : 
n
 

n
 

b =- b a. 	 (5) 
jI n-] J 

In a similar manner 

n 
b _a 	 (6)-

j=I n+l-j - n+ 

Multiplying eq. (6) by bn and eq. (5) by bn+1 and subtracting gives 

n 
b antl (bn bn 1 bn-li l b ) a. (7)

nnIt 1 nj i +1j1 
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Since by hypothesis bn+ 1 bn_ - b n>0 

b b1 b2b. b 
° b b2 bb o> >.. >n-i .b.>'> bn 
1 3 n+l-j bn4l 

b b - b b > 0 and this shows the term in paren

thesis in eq.'(7) is-always positive. Equation (7) will now be used to show by 
induction that a <0, i - 1, 2,... 

a 0 ' 11 

a I - -bl1< 0 

from eq. (7) 

b a 2 - (bob 2 - b1 
2

) a<0 

a2 <0 

Assume a1 , a 2,... an 0. From eq. (7) 

n 

an+= b (bn-j, bn+1 - b j bnnn+l-a 
n j=l 

Since all the terms in parentheses are positive, bn is positive, and the a. 's 
are negative; an+! must be negative. This completes the induction. 

Theorem: No explicit linear multistep method remains stable as h becomes 
arbitrarily large. p k is the highest order possible for an implicit linear 
multistep method which remains stable as h becomes arbitrarily large. 

Proof: let y = qh (8) 

The linear multistep method used to solve eq. (8) can be written as: 
k k 

= a Yni hi ni (hP+') (9) 
1=0 i=0 

Substituting the solution y = eqt of eq. (8) into eq. (9):k Ia n+i I(qn+ 

i=V i (e q h) -qhj (h )n+= O(h p +1) (10) 

Let us use the transformation eq h which maps the LHP of qh into the
 
unit circle in the Cplane. Dividing eq. (10) by qh and substituting - eeqh and
 
qh Ind: k V,i--( IZ k
k
 

"'1--'v"
 

+Z-I-0
In -( 
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The ( 's may be viewed as the roots of eq. (9). For stability they must 

remain in the unit circle. The transformation Z = - maps the interior of the 
(+ 1 

unit circle into the LHP of the Z plane. The inverse relationship is 

1 +'Z (12) 

Substituting eq. (12) into eq. (11)
 

k 1 +Z
 
X" a i 1-Z' k I+Z k 1+Z P. 

=i=O" .+Z -=Z 0. (T--) 0O,([In ( _--"-)] ) (13) 

In i-1+z ki-- I-- k 

As h--0O 1, and Z--v0. Therefore multiplying eq. (13) by 2 _) and 

simplifying: 

0 (Zp )-r (Z) SoZ (14) 

where
 
k kr ,+,i k Z
 

- 'r(Z) 1- (, -+ :-) -- (15)
2 i=0  i=0 

1(-z_)k k I+ _)i k Z 
S (Z) 2 ] /3, - E b. (Z) 

i=O i-O 

If eq. (1"4) is to be of order p then the coefficients on the left side of eq. (14)k 

Zpmust cancIel up to the term. r(Z) has a zero at Z = Obecause a.i~ has a 

k i=0 1 
root at =1. Since eq. (9) is stable for h = 0 all the roots of Z a, must be 

on or within the unit circle and hence a. 0 in eq. (15). i=0If we desire that all 

the roots of eq. (9) be on or within the Iuit circle as h--co then bi _ 0 also. Let 
+ C z 2 + C 4 Z 4 +I(Z =C (17) 

b=14- Z 
1-Z 

mustcanclhe u to zeo a a as)erm.r(Z)hasa Z =Obecuse7 
Due'to Lemma 1:
 

C iz>0C v, a 1 2,) ...
 

bi0 aZ1 = 

k (18) 



21 

b 2v -- c0 2v-l +cc2a2L'-1a + "' +c 2vala 

b2v+l = c0 a2v+ 2 + c2 a 2 +... + c2v a2 

Since S(Z) is a polynomial of kth order bn 0, n > k. The same applies 
for a 0, n > k.n 

Assume k is odd. 

+ c
 b 2 v+lb = c0 ak+l +c 2 ak-l + k a 2 

Since ak l - 0, the coefficient matching in eq. (14) requites that b < 0. But by 
Descarte's Rule of Signs this means that S(Z) has roots in the righf half of the 
Z plane and hence I i> I as h-, co.The conclusion is that we can only require 
coefficient matching in eq. (14) up to the k - 1 th term. Hence p = k. The same 
reasoning holds if k is even. 

If eq. (9) is explicit, then 93k = 0. From eq. (16) S(1) = 0 = Z b., Since 
i=Q 

bia 0, i = 0 ... , k if all the roots are to be within the unit circle as h-- o, 
kk 

all the bi's must be zero, including b 0. But b0 =( Z Pi from eq. (16). 
i =0 

From the consistency condition 
k
 

S30
-i=0 

Hence if 8k = 0 and if we require stability as h --* , we find the consistency 
condition is violated. The conclusion is that no explicit linear multistep method 
can be stable as h --co. 
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GEAR'S FORMULA 

)
k2Y+1 	 :T
4 

-
1 
Y- Ih (i Yn+1

9 2 +hk=3 	 18 
=
3n+l --1YnYn-1 IT Yn-2 11 n+1) 

48 36 16k=4 Yn+l = 2s Yn - 2-Yn-1 + T5 Yn-2 

.3 12-r5yn_3 + h (- Yn+1) 

= 5 	 200k 	 Yn+l = 3001'3"7 Yn - 30013- Yn- 1 +-"-7Yn-2 

75 12 	 60 
13 Yn-3 + -7 + h 	 ( Yn+l ) 

k=6 	 360 450 400 
147Yn 1-47Yn-1 + T-4"7Yn-2 

-225 72 10 
f47 Yn-3 + 1-7 Yn-4 147 Yn-5 

" h(60

+ h Yn+l ) 

Coefficients of Optimized Formula (k= 4): 

= 0.453 9a0 1.584 0-1 = 

a1 = -1.017 00 = 0.235 

a2 = 0.529 01 = 0.0568 

a 3 =-0.0968 	 02 = 0.00567 

/33 =0.000201 
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TRUNCATION ERROR 

An error term for a Taylor series expansion of y(t) about a point in time 
at nh can be obtained from the integral 

(n-i)h 
fI (n-i] h-s)r y(r+l) (s) dsr!nh
 

If this is integrated by parts,
I (n-i)h Inihs 

we obtain 
r')()d (') (n-i)h 

+1 (n-i)h 

r!.nTQ-ihs S nh 

+ 1 	 f n-i)h (Ini]h s)r-1 y(r) (s) ds 

(n-i)h 

S- (;h)r y(r) (nh) + 1 f ( n-iIh-s)r-1 y(r)(s ) ds 
r. Fr--I T nh 

If integration by parts is carried out r times and the terms rearranged: 
y(I n-iIh) =y(nh) - ih y(1) (nh) + *2 h Y(2) (nh)

+ 1)rirhr (r) (n-i)h r (r-U) 
+ Yr(nh) + F.fnh ([ n-i] h-s) y( s) ds (1) 

A Taylor series expansion with error term can be obtained in the same 
manner for the first derivative of y(t) about a point nh. 

y ( 	n-il h) = y(1)(nh) - ih y(2)(nh) + ..... 

+ 	(-l)r-lir-lhr-i (r)(nh) + 1 (n-i)h n-ij h-s)r-l (r+l)(s)ds (2) 
(r-l)! y (h T-II fnh Q 

Equations (1)and (2) can be substituted into the integration formula in eq. (3.) 
and an expression for T can be obtained. 

n 

k-i k-i 
=Yn+l 	 -- a i Yn-i + h V fi 3n-i + n() 

\1 aY +h V' +T+3 (3) 

Since 	eq. (3) is exact up to and includingorder p we obtain for T: n 
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1 (n+1)h n4 1h-s)P - ph3- 1 (F lh-s) 

k-l (4)r-1 ( +,()d 
+ k - i n-i h-s)P+ Ph ([fn-ijh-s)]}Y )(s)ds 

where 

I n- i Ih '5s_5 nh i - I, 

([n-i] h-s) [ni]h-s i

0 otherwise 

Equation (4) can be written 

T(s) y(p+l)(s) ds (5) 
n (n+l-k)h 

If G(s) is of the same sign over the interval [(n+ I-k)h, (n+ 1)h] then 
fG(s) ds is a monotonic function. If yP+i(s) is continuous over the interval, 

then the First Mean Value Theorem applies. 12 The ,stimate for the truncation 
error can be written: 

(n+l)h 

n - yp+l(71) G(s) ds (6) 

(n+l-k)h 

where v E [ (n+l-k)h, (n+l)h] 

Example 

Let k = p = 4 

+Yn+ = &0yn + alYn- 1 + a2Yn-2 3Yn-3 

(7) 
+ h f3 lYn+ 1 + loYn +-lYn-1 + 32Yn-2 + 133yn3 + T n 

The influence function is obtained from eq. (4). 

+G (s) = G1 (s) a 3 (I n-3 h-s) 4 4h/33 ( h-31 h-s) 

for I n-3Ih_<s SIn-2Jh 
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s) G2 (s) G I(s) + a2( n-2 1h-s)4 t/12l n-2 Ih-s)3 

for In-2]h< s's<n-l1h 

G (s) - G3 (s) G2 (s) + al ([n-1]h-s) 4 + 4hj31 ([n-1]h-s) 3 

for [n-l]h_!s <nh 

- 4hO3l ([n+l]h-s) 3 
G (s) = ([n+l Ih-s) 

for nh!5 s S [n+1]h 

For Gear's Method 

48 36 16 3 12 

o13 = = 3 = 0 

The influence function is shown in Figure 1. Since the influence function 
is of the same -sign over the interval ([n-3 ] h, [ n+1 ],h), the error is 

T E4 h' 

5To find E 4 assume y(t) = t . Substituting this into the integration formula: 

h5 -a 1 h 5 
2 h5 

3 h 5= -32a -243a + 5h5 (3_ 1 + 131 + 16032 + 81033) 

h5 
+ E 

.4
 

Solving for E4:
 

-E4 = 1 +a 1 + 32o2 + 243a 3 5 (9_ I + 01 + 1632 + 81133)
 

Using the values of the a's and 13's for Gear's Method gives
 

E 4 -11.52 T n = 04 h5
 

This shows that
 

(n+)h
 

wb e)d G (s) ds M0
n r2. 

whichi can be verified by integrating the influence function directly. 
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APPENDIX B 

SOURCE LISTING 

FLOW CHART OF PROGRAM
 

SAMPLE PROBLEM 
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A~in9h1, UNSW 

'Nil -0 

yo'G ) ,"I t 

N4~Uin 

Y' F N - xI rj 

0 00 

Gill's ethodrgnc 

m 6-

~ sinTr4ncatiot 

STOPefndiita 

t~-

Ye'Ye 

R estore 

NHraoll.0o ) -

Yes 

212EnugFF-Fl 

>0N o et . 

ucti No Convergence 

C a cu at =-

5 .e CanweH Y=. s 

Yes N 

PrintP 

doube H7 

fins 

Shirtm =. II 

'PointsO 
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NN' = I 

Nl - 1 
Assign 85 
io NHEX 

good
G Save last good 

No~ 

Yes Ioiti es mt 

ind y' 

tlr nce'negec 

Cae- t
e 




__ 

_ _ 

,I " C,MA I N 

3 4 - I DY4-,TPR,DTNDEXJACiQrGNS 

,' DOUBLE PRECIS-ION YO(IO),DYO(Io)iDB(Io),Ytlo),Y'lIOllY2(I,lly3C101 
...- - -k-..---------. L-- --. L0--OS--3d-t--. -I-a-y-O-4,ILO-LGI-4444-O--YS:LIa-vL---Il.Q4I OyA l11.0 )-.O4D-2 


-


7* 2 -Y5IIO)Y,6(IO)y(IOI),yS(iOIOY6(Io),DY7(1O)
 
.......
8-'-.......... -OOUBL.-pRE-C1-S-ON-X-? aHkx -SE-T---, 
9* DATA LIM/9/,HMIN/I*OE-jS/ 

II C INIITIALIZE - NF COUNTS STARTING FAILURES 

13' C N6 COUNTS S-TEPS SINCE-LAST HALVING OR DOUBLING 
- - -- --- . -............ . . --... .... - - F-L--A45-C-o#4V E-R4-E-NGE---4N.-F-PW)--- - -

J-.50 C. LIM-IS THE STARTING FAILURE LIMIT
 

170' C 	 NUM COUNTS EVALUATIONS OF STATE EQUATIONS

- -. -. " PR' T- 3' . . .... .... .. .......
 

-
19"* 3 FORMAT(Z1H-I- INITIAL CONDITIONS)
 
....2 Q*--- ----- AS-5-----9--*F-*------


Zj. 	 NM 0 

23. JAC a-0 

-2- - NUN- -0. .. . . .. .
_-. 


_=_.-_...
 

25' 	 READ ST,T FPTiNV
 
-- "2-6" - ..... -S--FOftM -(j2F --l-i---} -......	 _ _ 


27! NEQ3 z- MAXO{NV*3,7)
 

29* 6T =TF/PT
 

31' H = TF *Oool
 
- __32S'.. .. .... ME-JAO&_,-4y01 I-)----- L----------. -- _ _ 	 _ 

.3.3 6 FORMAT(IOE8.2),
 

35. 	 q FORMAT(Ix,8E'I .)7

,--------------R E- --I--ry-I---L-x %4 * u 
 &-t

371 jot' FORWAT('E7y 1
 
.....--3 -- R--N4--
39 t00 FORMAT(9Ho LIMITS)
 

- , 	 * ELIM * SC4l ELIM 


$2*- EDUB i M-4 . . . .
 
-43. 
 CALL- STATE IOIDY3)
 

45-' 26-I -Y3(;)-Z6-)= 


'47* C USE GILL'S METHOD TO .START
 
.. 
-- 8 a -- -'-- T-"--O-- ------ ------- _ _ 

49-	 N4C= '3 
' - ,O 

I
. -.. ----...--N- - -- ..... ... ... . .. .. --- ,--

.--t 	 C-ALL GILL 

-- 3a DYZ111) DYOCI)-	 - - -  -.... - ---- - - -D -- 2h3-I-N=-- - - - - - - - - -  - -- j 	 2 -B4*2 

'55. 	 CALL GILL
 

- 70 	 DYI(l) a DYO(I 

5.9 	 , CALL GILL
 
....60-.-- - -... --...... -- ~- ---- - .-.. ... .. . ...... 

http:L---Il.Q4


61 C INITIALLY, THE q POINT SCHEME IS USED
 

63* 110 Y(I) * 4,,(YO(I) + Y2(l))-6, YI(!)-Y3(1
 
- 6'' .. ... . - -- --- T-+-H ........ ... _ 
---- __ 

650 C 
. -6e- -....... -
C---------CA-L.4-U4-A--E-I-N4-1-A-L--4-CB-l-AN 

67. CAL STATE (Y,DY)
 

. .-. . C-A LL--Q-X 
69* DO 13 tijNV

70 * X a Y ( j).. . . ... . . .. . . . . . 

71 DIP a DABS(X) - YLIM
 
72* IF (DIF) 16,16,r -5 .......
 
-73' 16 Y() - X + l"OD~q
 

---qI...... . .. S T-- a--1--D. ...... ........ _ __ __ _ 

7 roGO TO 1B 

-76' - - 15 Yo-i ) s X . Do- ..
 
77' SET a ioao.IX
 
78* . .8 CA ,-LSTA-TE (Y- y)-..... . .. ... ........ .. ........
 
79* CALL OXtQQMAX)
 

81 14 G(Jl) a (Q(J)-DB(J))*SET
 
.8z ..1-3 -Y-( I )-.*-. ..
 

83# CALL MATINV (NVG)
 
- 4 .... -JAC- -a--JAC- +- -....... ...
 

as* GO TO 107
 

87. C TO HERE WHEN H IS TO BE DOUBLED
 
- .- 222 H- .i H-wH- - ,v-......
 

i" 
39 N6 = 9
 
9- -"- - C - . -. . . .........
 

91* C SHIFT Y95 - Yj IS ALREADY IN POSITION
 
- .- - - .. . . . M-O-4O--I$ __ - __ _ 

93# DYO(I) * DY( ). 

-9wq - - - - - - D4Y2-( --- D-Y-3-4-I-) 
95* DY3{I) - DYSMI) 

.-,96.' _ . ,P.Y_ t.I __ _DY.2A U_............. __

97* YOI) a Y(I)
 
-9 .- -Y.'A-1
1 _-2.LTi-. 

99* Y3(J) x Y5(1)
 

1QO' .- . I-- -- Y -l .- _ Y-7-( IL-

I01* C
 
10-2' - C -US-E FLO-I N-T--F-OR4 --
S ,4L-AoNCE- -ART---
103v 105 DO III Io1,NV 

-- 1-0-4-4- S. ---- ----,___ . _ 

IO5 T z T+H 
,106* " OT -C-ALL F-PD -.....

107' IF (NH) 305,449,631 

SlOB - . 6-fI- If ---N4-'-) 9-S1 r201 -,-2-1 ... ..-...-... .. ...-. ... ........ ... 
1oq - '49 N6 a N6+1 

Ill PRI'NT 9,HNSN6,Nq
 

120 9 FORMAT(3HH wEI2,S H NS wIqIH N aiS.S NI,',Is) "
 
113.. IF (N6-S) 530 ,4SO,4SO
 
11$. 202 ASSI-GN 99" TO NS5
 

II's C
 
I .. --. . ..... D--Pf -- ON-.. . . .
 Gi)f "NT--- yOWN H--F-'T- ANn MOV-E- . .. ...-.
117' 500 DO' 120 IslNV
 

. ......... . . . . .
- g "Y--7-I'-- 6 (-1)-------. ... . .... ....... .. . ... . ... ..
 



--2--- -- a4AI) y---I)) -'119o --- Y6'( T .- .4A-!--

12.1* Y'4(1) = Y31 )
 

12316 Y2 I)- = y 1 )
 

1-25. - YO(I) = lI

127* 0Y6(1) = DYSCI)
 

129' DYC(I) DY3(1).
 
-- 1-30 .. - --- - ( - - - - -1
 
13 Is* OY 2 ( Y) - DY.I ( I )
 

- ........ L- -.-- ~- .W-tLLLL..a -l-O-.-ot 

133' 120 DYO(I) DYCII"
 
.3 GO .105 . . ..OT.0 . ... 


1,35o
 
--t-3,6 i__ -,-C-.. .. N-E D-- -5 .-- S-T-P'---N -T-s--R-l- S- P-I-E'5 -N-T--P-9'4N-T- -F-OR-F -F-T-F- FR-I-V-T-I- VK-- 

137-'i qSa CALL DY
 

139' C D-SY RETURNS El MAX(ABS(YV).DLIM-ABS(y)YEL.JM)
 
,,q *-. ---- -- C --- ----- - ---- -. -A-Nf-E-2-a--MA- (-A-- -( V..-OL-t-i.-A-5--y-t-.-E--n-,,-) -

Iql4 GO TO-NSW(98,99)
-1-4-2 *- -...C---:-- --- ----........... _____
 

113* C THIS SE-QUENCE ONLY PERFORMED IN STARTING
 
--- 8-- +F--- -ELIM}--EI 20

tq s,* C ,
 
---- q&-.. .. C ...... -- L-O-w .M--Stee-ss-rS-VE--S-T-A-~ I G F I f - .. . .
 

IP7* 951"NF NF+I 
------ " •... F-F-NF..L"M9-tr -____....... -N -I-r991------------


149* 201 NP NF+I 
* - -I- fl4--4Nr !M:-9EO r h~ 

vs5 I C 

- 52-*-.......-C -.... -:-RE-D-UcE--s-T-2P-- AND-.RE-S-T(-RE. -INI-T-t-A-L--COND -T-1-ONS--FO----N -- 3
 
153* 952 H - H'Oj
 

--- -5- --... . ...-- 0- ,. : I- "I-_ .... _ _ 

"1 .- 953 YV l) = Y3V I)
 
-.4-56- -- -.. . . ..,-*--_ _-_ __'
" 
15;?7 C REDUCE STEP AND RESTOPE INITIAL CONDITIONS FOR Nq - ' 
-~ S .---. -C--. ... -.. . . . .. . .. .. ... .. . ... .. . . . .. . . ... .. . ... . .
 

1-599 950 H H #, 0

161' DY31II = OY-( ) 
-1T.-6-2-, 

-'-- - ------<3--I--4---e--.Y-M4-1)---- 

163* 160 YO(I) = y4-(-II 
- 444 ---.. -- . -40O---j . ... ... -.. ... .. . . .,-.--GO O .. . ........... .. . . ...
 

16 S, - 99 IF I.El -'ELIM) 212,212,211 
- --- - :... .. .-.--------------------...1-6-6'--......-.C- ... . 

167 C ERROR OUT OF BOUNDS - HALVE STEP SIZE AND TRY AGAIN 
-- 6-8 . -- . . . 2"----H- -- ----- -_
 

1-,9 -F (H-HMIN): 99Q,9q,940
 

1-70a -9-4o -T"-TOH--- ----...........-T -
171" DO 130- l-NV
 
-I7 -- .. .- QMAX- - -Y-lII
1730* S s, "Y3(I
SET 


F-"3(j "s0"-j .; . ....- -. ... a-- yF 11h- 9 4 0'-* §MAWX---- r -* 'V2-4-I-)-..-- 6-,-5-E"1-5 .-Y-f1-1)FI-' -.-'&7-B-l-2-S.... 

.175' Y3(I )i-s.*YoI)+6-,-.QIAX +90o*Y2(I)-20'SET.+3,,Y4())*,0078125 
7-b6'-1 -- --- ---..qi-- -- -(- 1--. . . . . .... 

http:MAX(ABS(YV).DLIM-ABS(y)YEL.JM


177* 
m 

DY4(!) =DY2()
 
--t... -¥-2- -I--.---e-4-- ----- .....----


1790 130 YZ(1)=QAX
 
-I . - .- -Ne =-4-.
1810 CALL STATE (Y3,OY3)
 
182 ' T - T+H -H- ... .......
......... 

183. CALL STATE (YIDYI)
 
--- -8------........- ...----- T- H .......... . ......
 

185 GO TO 105
 
186* C . .
 

1870 C ERROR IN ROUNDS - CHECK WHETHER TO PRINT
 
188* 212- IF (T-TPR)-302p3 - 301 . .. ...
 
l89* 301 CALL PRYNT
 
I9 * ... . --. Ls t2-ER_-_.-- - .. -2- E - , o-

191 304 IF (T-TF) 302,306,306
 

1-9C - - - - - - - - - - -. .
 
1939 C" CHECK WHETHER TO DOUBLE STEP SIZE - DELAY OF 3 PASSES
 
194- C...--- -&-MAND.A-ED.-B---.T-R-uCT-UR-E--O-F- P-O--N-T-,-SAVN---
N&-AN-ISS
 
1950 302 IF 1N6-A) s5o,0eo 8qO
 

.- 13. - saa. £L_ -J -ED~u---22Z1-,..2-_-,-_.O0 

197' 991 PRINT INFsEI
 
-.19-a-'s . I 2-lH1 2.S. .- WR-E - -ER-R.OR- El 7--)
- -- F 0 R M A.T. 0- H-5SR-A " &-F.-A-l 

1996 990 PRINT 2,HT
 
2Of-} - .... r -E-I.-S-------T -,--7
-----...2- E O.R-M-AT.I 2-I-O4S-T EP -T-OO---SMI4-a- I--


201* 305 PRINT 78 IY(I),Y0II)tYl(IityZ(I) Y3(i) ,Yq((I) ,YS I) ,Y6(I) .. l1 ,NV)

-- 2.0-2-*---- 7-8B-FMRM ._L4H-G,A--,7= A I 

203*' 306 PRINT 7,NUM 

-2v-D4--m-.--------7--F-OR t-A T-1-2-6-H-05-T-A-T-E- bk-AAET15,N6&V-F -IH -
205' PRINT 8,JAC 
20-6, 8 F'ORAT -1 HO-4A-C.aO.I1AN- E-V-AJLU A -E-D4-iS-*J-kTE-S) 
207' STOp 

--zO -- E- N----......... 


.-.. ..COMPILATION:N- DIAGNOSTI
8-'--.-.....D---LA - NO 

ND OF COPLTO:NO -D IA'GNOSTICS.
 



-33 

1* CFPO 

COMMON YDDY;DBITiHINVNUMIMY*Yj ,Y2Y3Yq4,,EI ,E2,DYDOYIDY2,DY3,

u

" ... ..... .. .. l..... ,_-IT-r_ _ _ _,-T-_- _E-_-_4_--_-_-_ 

COMMON/BNDS/YLIMIXNLIMELIMSc ,NEQ3,NH

6'-- -..	 -0 - -1--, -e-- a --- --o-o ua-E--pRE C 4-5-I C N--fO-0- 1 -r - - V 4 o--vY +-i-a---i-I-Ie)-,- ,--a le-
74 I Y'4(tO) ,Dv(c) ,oyi (10) ,DY2(1O) ,DYS(Icfl ,DYW(1O) .Q(I0) ,G(IOIO)) 

--	 B - - ---- -EX T-R-A-4 -- ) i- - I-0--rP--S-(4--r-O-)-rO L-f fr4 4 , t -t40- On 
9o 	 3 B(Ifl)
 

11. EQUIVALENCE (NVNVZ)(YB),(BtLIMYLIM),(OLDBEXTRA)
 
1-2* . - -...... DAT-A----,---M -/-,N4HLIN/-i-- -...
 

13* C
 
1'-+ C- - N--COUNTS E-VAL--U-A-T-ONS---OF- P.. -...........
 

IS* C 'NICO FLAGS TWO SUCCESSIVE NDEX STEP FAILURES

*.. . Cc_ . . ... . ._ c 	 - __, ___ _ _5.,rU___ ___ _ _______T. 

170 	 NSt
 

Igo 	 ASSIGN 8s TO NHEX
 -.20s...... - --- -- - -.......- - -----................ . ....
 

21' .C FIND SQRT OF PERFORMANCE INDEX, TO AVOID OVERFLOW 
- 2-6- - -- ---- C_-__-y- -A.+T+ 

234 CALL Qx(DQQMAX) 

-2--4 - - -1 -1 O. 
25+ 00 20 -1=,NV2 

-26-.- - -- 2 ( ?,I-+- PA- j-+-iO-Q (-I-I-/l -x-)-4- 2---....... . .. 
27* Pi1 z SQRT(PII) QMAX

-- a - .. 2 .-0-,4-6-1--N
29* CURnY(1) = DY( )
 

--30 .... ... 1-6 -3--G : B -I--- - -(-

31++ 50 N6 a 1
 -- 32*-----.... I.- -N- ~ 	 - _ _ _ _ _ _ _ _ _ _ _ _ ..--- -T- y- -------. 

33. 	 DO 25 Imt ,NVZ
 
-- ~ -- 5I.~
I-M-t0.0
 

35 DO 35 Jnl,NVZ
 
3& .. ....- 35 SU.M-.A -SU -.-+-G( I -J).t-DA-4------_J- -..........
 
374 IFiDABS(SUM)rXNLItM4(SC-i+ABSIOLDBt I))) I 199,199,25
 
38- --- 1-9-9- IOU-T--m -- 9U-T--I -------. . . .. ..... . . .. .
 
39* 25 08!IS)SUM
 

14'* C IF ALL IN BOUNDS, PRESENT R 4 5 ARE TiE SOLUTION 

'$3* 67 BN * 0. 

qs; 	 DO 68 1=1,Nv
 
q 6-o ..- B - N - ) 	 _-_I--)_-

q7* 68 DBN a DBN + DB(I)*DB(1)

4 -- -- IsF- (-DBN-BN--I- -63-,63-,-64 -- - - - - - --... . ........ . .......... ..
qg* 63 TI . I. 

--	 03 - - O--T 0 6 -0 ....... ---.... 

SIO 64 TI - SQRT(BN/DBN)
 

530 210 PO 205 I!I,NV
 
&J4 --205 D-y- II-. CuRD-Y(-.I- -.........
 
550 NH = 0
 

56 	 -RET-U-R-N -------- - - --.... 

57* C 

59-. .- . o . . O+w.M--0E --T-0--L A-RGt-r.-.R-E-C-A- ¢LCL-A-T4------A. - .T-t-M.------I-----------
59'+90 TIN, *TII 



------

65. " B 15I)'OLDB IY- TI*DBA I) 

63" N6 N6-+ -

-- 1C " IF NDEX FAILURES, CALCULATE NEW.G - .- HALVE IF THIS FAILS 

67.0 75 IFNIO) 230,230.220
 

6'90 7,7 FORMAT(26HONO CONVERGENCE,NIO-Q, NS,#=Iq,4H H .PEIS.7,4H.T 'EI5.7)
 
- 0--7 --.......-- 30S- P R-t-Nr--7 ---- 1-r Tt-. f-- jy--f-yi tfT '$f4- flrff Vi
 
71 - 78 FO'RMAT(tX,6 E16#8)
 

.. .4 2- .... . - -...--- (.N -N -IL I '-_-- -_-__7__,--7 

73.o 575 NH m NH+I
 
--- 7-*.- - - .
 

75* S76 NH = -1 

" 7.7J " 220 Nl Oz-o .
 

79* C MUSt RESTORE OLD-B'<s 
- -f0 *----- -DO-+--I-b---i t- r"-

"81 161 B(I) a OLDB(I) 
--8 2 ' ..---...C-.. ... .. ..... . . . . .. . 

8,3' .C FIND G
 

* 85. -. x B -1 tI 

87. IF'(DIF) 16,Ils5 

89' SET a I.ODq 

91 15' 8(1) X*1.OOIDO 

936 - 18 CALL STATE (YDY.
 

----- CALL- ---QK".Q-- MAX- __
 

9-S. - DO 1 Ja'INV2
 

--" - --- -- G± -I -w -J--970 ILI =' . . .. .. ..
S AVE(J I) G(JI ) ... ..
 

99. CA'LL- MATINV(NVZG)
 

iO)I. C -

90-2.---- --....[-"- .. .. I -TER-A-- -- ON---HE---RE-S.- I-0u-A L--I.------

103t. DO 302 MaILIM
 

"DO 4'12 J=jINV
 

.- 0- -------- U-- -- - - - - - 

-907. - 13 -KcNV,MV
-lass " . .. . -DO .-4I-3-S UJ-1- -- 5-tIM '-----A VE---I-iK--l ( 6- -r d±--_ __ _ 

-1090 - 412 RE5(i1J) - -SUM 

Ilii ' DO 20- Is INV."I 1'2------------- --- c -7-" jr='iJ+V .. .. .. . . . ...-.. ..-.. . . . . . .. ...---. .. . . . 

113 SUM'* oO 

11 40I- --- 0- -18---WI-~' 
u1S' 418 SUM - sUM + G(IrK)*RES(K#J) - . 

117'~ D0 Af9 JnINVi'8*- --.. -- M :i-9-+ ---- )------ O--f-J-)------- -------- ---........ .. -.... . .
 



119' 420 CONTINUE
 
.-20-- ---. 4 -44E3 0 7- -C0N-.-

1210 GO To So
 
.122 . . . ..C ... .
 

123- C TO HERE IF LESS THAN NDEX FAILURES
 
I24*- 7-0---CALL- S-T-A--T-E- - -Y---y -- - ---

12so CALL QX(QQMAX)
 

127. 'DO RO 'ImtNV2
 
128-" -80 P1Zp-2 2- (Q{-"--) t -A-X )-'2--------------.....
129. P12 a SQRT(PIZ).QMAX

..C .
 

131' "C CHECK NEW P 1
 
1 300 -.. . .. .. . . 

I F CP I 2-P I i ) 87 .Qgn .9n 
133' 87 GO TO NHEXt(BS,86)
 

13R1 .- (4M5-200-0,-2 ....
86- IF(4*S-200) .... 

1350 250 PRINT 260,HT

•-1-36 A- .....2a--E0 FML~t.. 2-7-Oun,---C N GF.-{Ep.,.,,Op a-a--4.r--4---+Tg-4 5 * 7 

137o GO TO 305
 

1390 2q5 ASSIGN 86 TO NHEX
 
-iap ..-..... G O --T-O -7-5
 
19l* C
 

2o C 


0q34 240 PIInPI2
 

-0_' -.- ---- ---- TE-RAUTE--SE-E.T-GNE G-.A4[1TY
 

4. -. a -- ---- 10)- 1 

INS' Do 110 I-INV2
i-' 6---.. -..... 11t o-D Q-4-4--)-a Q-(--f-)-- (1Q{4 -)----. -........ . .. .... __ __ __ __ __ __ __ _
 

147' DIV=ODO 

l49* SUMU=ODO
 

ISle " 151 SUM=SUM+DQ(J)*G(IJ)
 
-. 2 * . --. . - - -.
 
"1S3* 150 EXTRA(1). SUM + TI * DB(l1
 
- -)-5-q-.- -. - - . . V-.--'O I-v - . -.. . .. .... . .. . ... --- ---- ........ 


ISs' DO ISS I=INV2
 
-4"5-k*---- ----&W44-------T--A+/--A v--- -_____
 

157* Do 1Sq J-INV2
1-58-iL.......-.. LS'4 .SALE_!IUJLnfl.BI.JLL _UI. .. ..- . .... . _. ... .. ......
 

159I* 155 SAVE(I I),=I,4SAVEIIl
 
-6 0-----la -- K I -,-N-V2- ... . . ...... ...... . . .
-......... 

1610 DO 157 I-s1,NV2
 

163. 00 IS8 JsINV2 
1--- --- --- 1-5- SUM=sSUw~aS-A-V-E--It---J---G4--,-K =) .-................---- __
 

165'157 EXTRA(I)=SUM 
---1664 --- 1--I -NV .--------------......... . .......- . .... - -DO 


1674 159 G{IK)=EXTRA(1)
 
4-- - -- 4-S 6--DQ4 K--Q (-K-)---- - .---.----
1690 GO TO '40
 
170*- EN-D- . .. .. . ... . 

-
:No OF COMPILATION: NO DIAGNOSTICS.
 

http:SALE_!IUJLnfl.BI


.... . . ....CPR- N-T .. . .. . . _. 

2# SUBROUTINE PRYNT
 
-3--- -- ----- COMM-ON- -Yo y,8 rT-Dd-W UM -,1-ry-r---,-TE-r tfritfrYt3ti 

z4' I DY4jTPRDT ,
......- . .-- B L---R-E-GI-r4 -- ll fCa 1,3- ,9 ' -r ,; ;, i Y2! I. ;, 3' 

6* 1 YIl O) ,OY(!O)DYI IO) DY2[in) ,DY3(H0) ,DY4(10) 
-, .D-1-ME-NS I ON -V--6- Z(-, - -7* 


8' EQUIV.ALENCE (ZDB)
 
" 
9 C
 

t' C LAGRANGIAN INTERPOLATION To MAKE THE TIME COME OUT NICE
 

12' Do 10 JsI,6
 
- .. -- PROD- 1 .  ....... . .........
 

140 D a T
 
--- -......... O--h--2- - - . . --... 
" . t A ...............

16' IF(K-J) 2ow12020
 
-LL .
--..17-a . .. -- ,R_.-_-___ - t ---.
 

Is* 12 D a 0-H
 
........ -V .J---- PROD.------. ... . .. . . . . . .
 

2o 10 At = Aj-H 
-


- -2-'--....... .. .. ..... . .. .......... ... ..
... OO--3-O--j-a4H -4V---- . . . . . . . .. 


* 
22 30 ZtJ)-.V(I).YLJ +V(2)YO(J) V(3).YI (J)*V(4)0Y2(J)V(E)'Y3(J)
 

24* PRINT 4O,TPR
 
-- 2-.......---- )
g---F-oGR- A-T-+-4--T--,E-i=-S-a 

26. PRINT 60,(Z(I IxINV)
 

28* TPR=TPR+DT 
- 2--.-Z-9. .. - - . ....... .. . . RET-URN...- - - --.... ....... 


30' END
 

.Na.t-f..L.D PJ.LA GA. N LA.D I AGN 5.LtCS, 



- -

I' CGILL
 

2'w -- 5UB RO UT-N E-6-t-L
3$ COMMON YODYOU,THNV,NUM
 

5# . DATA A/95DO,.292893218813q52476Do1)707106781 1865475200,.166666666
 . - . . e6-7-0D 0-,t~ .-(1 -i-, 4fl89_; -pJ-2.B--4
-.6 k . I.-a6 66- . 3- - - Jt -ZA-0g- ,A-.9 _t44-fl. .r 2 t ,._ . 

7* 2333333333333330t, 1,,DOt,sS78643762690495IDO,3,4l&I21356237309505Doi 

_C ..... ...... ZR_.R.UlL L= 5_T_" S IU ! __-Q A ?RAv IIPpiT -w rM. 

1.1* - CALL STATE(YODyO)
 
12" DO S00 Ja- tNV * -. . .. ... .. . . . ... . . . ..
 

13# son U(J)=ODO 

i * - - . - 1 .....-
15* 1040 00 1050 Ja1,NV
 

179 1050 U,J) m A(JI,3)'DYO(J) - A(J1,')OU(J) 
- 13 . . - --G0-----0--- -1-0 6n-, -0-1l0-rt- - -9 S 0-- 1 -... 

19 1-060 TWT*H.O.5 
-- -- ....---- 0"l-0- -J--l"----JI2 . " -+-- .............
 

21* CALL STATE(YODYO)
 

230 950 CALL STATE(YO,DYO)
 
-2.** ---RET-URN - ----. ... .. 

2S9 END
 

ENDO-
-0t-aMo -LL-A:s.&LoL --J---l-AS-bW-TC-S
 

t* COSY
... 2NL.. . . . . "SUflR. L_..NElDSy --__- - - - - - _ _ _ _ 

30 COMMON YODYODBTHNVNUM,YYlIY2Y3YLIEI E2
 
.....- 4*--------------DOUBL-E •PREC -S-I-N- 1 TO1y -O-,S-ft.Ty--O--Y-t-.*- 2 -t- 3 1t0 ----

5* 1 Y'4j0) 
-- - --- -C-N- - bS -,%Y-L-v-44W-_r_--I-4
7' DATA DLIM/.080S/ 

9 C CHOOSE MAXIMUM TRUNCATION ERROR (SORT OF)
* 10- .............--------------"---------............
 

Ij. E2 = El
 
; .... 1-2-20 -2-j=- _rN V
 

13$- ER = ABS(YJI+5(Y3(J)+2,*(Y(J)-Y2(J)I - yO(J))'-"Y'lJ)) * DLIM4 t.* -ES5= .. ).*E.-1 -. . ... A .B.$(-y.(_J-) L--.--.. ... .... .. .. .....-. 

rs5 ET = ER-ES 

17$ 30 El ET 

19,0 I1F1E2-ETI 90 t20 ,20
 
" -20"- l E?- E-
- E=- - -.... ...... . ... ..
 

2 20 CONTINuE
 
22' RETuRN .
 

23#. END
 

'ND -OF COM ..L-A T . . NO " -A NOS-TI .,. .... .......- ..... .... ....... .. .. .
 



-----

2-'- SUBROUTINE OX(QZ) 
COMON#-e,--tBIpT'IN ,wvNUM,fltY 

'4 DOUBLE PRECISION YOIO) ,DYO0(I)ODBlO)IyCO)IYIcIIo)tY2(lO) Y3(10) 

6" DOUBLE-PRECISION QZ.X
 
- 7- .. -'-* 

8' DOUBLE-PRECISION BMO,82,B3B1,IAOAIA2,A3
 
-T . .. . . . S-- ~ "-@ -

1t' DATA Al/-1 ,01696S2999999A671DO/
 
I t' -- DAT-A A2-/ -5294q-o.t9999-709-B-&DO/-
120 DATA A3/-,967787149999991,0463D-I/

i --.
- 1.~-- ... 0A T-A- -.B M.-I rWSa-3-W-6-6-2-th*' Yt 9- &0ti - -

Is* DATA BO/@23S0263094467B7243DO/
 
1..|- DA-T-A--B--!45--f-3-,D- 1-/
 
16* DATA B2/ .67200.52B010787qOSD-2/

1-71---- ------- DAT-A - '3-1--2l-1-3700ffi9-7-2-q20-3/ 

18' C
 

--- s- C - - TAKE D--E.F-E-RENC-E--OF -Y---RE IC-E t-oR---N,LLA -- o -- ttR - T ~0N 
20w C AND-Y CALCULATED (BASED ON INTEGRATION FORMULA) 

22' DO 30 JE1,NV
-;... .. Q iJ-)-•oY( ,-y---J)
....23a- .. ~ -- Y (-J-)-'-A 1-.-- 2 -. J-- -A4+ Y4,( J-4S=A4 -i, ... . . ....... ...
 

2q* I H*(DY(J)*BM+DYO(J)*BD4+DyI (J)'BI DY2(J)*s24DY3c(J) 83)I 

26* IF (X-Z) 30,30,Lq
..--- - zl --- -- 27-'----. . . 44 0 - .. .. ..... .. .. . . . . . .. . ... . . . . . . . . .
 

28# 30 CONTINUE
 

1', CMATINV
 
20 - SUB-FOUT-I NE-M-AT-I-NV-(N-I71. . ..
 
3* DOUBLE PRECISION Z,X.CC
 

- ----- .. ... --NfE.N-St-N-- 1-i--Pt-Z-t0t-- -- H---i..2) 

5* Do 10 I=IN
 
....- --.. I- . .. __
 ....1"- -IP1-I--s .. 


7* 00 76 11 1 pN
 
- " -..-- Or0 O .. ..... . ... 
8" . . . - -... .. ..
 

9 DO 69 J=)N
 
...- ..... I$---- rJ 1)-ktrb-r 4 1
 

I114 61 DO 68 K*1,N
 
- 1-2-'------------- I F -IPA(K -F) -&-6 ,-6S-ra#F9 - . --- ...........-...-.... ...... ..... __--------

13' 64 CC=DABSZ(JK)) 

Is* 67 12'J
 
--- -I-6- --.- I-K

17' X a CC 
.18 - - - 68 XC 'TULNUE - . . . -----

19' 69 CONTINUE
 

21 1F(12-Il) 70,72$70
 
22- ------ O-t'-l-rlTN
 
230 X=Z(12,L)
 

Z5' 71 Z(IIL)nX

26'" - 72"-IXCil)rt-----------------------------------------------
27* - IX( I it)=-I

-2-9- . . -- - ---- (±Pr1- ± .. ........- _-. 

29' . Z(1l,tI)tlsCO
 

- 3t1.... .. . ... O -?-- t-=i. - t-......... . . .. _ . ..
 



31 73 Z(IIL)sZ(-IsL)/X 

--
33*-3 .... -

IF(JI1)714 - Z- 7q,76t74 
- - ----

--

356* 

o-
37* 

Z(JIfls1o 
..----- - -------. DO . S-L-,I-flN---

75 Z(JL)=l(J L)aZ(ItL)*X 

39* L m N+I 
-4a .-.- . .... DO. 79- 1 -IYrN .... --1 

'4j L, L-I 

- t- i-I-X (-L 11---X (4- 0-2-H- -7-7 
43* 77 12sIX(LI) 

. - - 1. . . ... . . ... - -- XLL - - ..... . .... 

45. DO 78 KIN 
*-'46w XwZ.(K*I 

* 470 Z(K 3 I2),,z(KII) 
.... -i.......... .. - t .-.-1 )-3[X--. .. ............ 

14g0 78 CONTINUE 
....5 --.... ... 7--9- " N-T-;LN-J£. 

S1 3r99 RETURN 
-o 2  -. .. . ... ..END .. .. ... ...... 

pi-79 ,--7_ 

-2.

... . 

__ _ ..__ _ 

_ 

__ __ 

_ __ 

_ __ 

__ 

__ _ __ 

_____ 

_ 

END OF COMPILATION: NO DIAGNOSTICS, 



- ---

1 CS,TATE 

30 COMMON YOpDYODBtTHiNVNUM
q....-.... --0-U &.L__E--# C-I_- ----- +r 4O.)_rfl-W.I4-T0-|
) 

5" DOUBLE PRECISION X(I),t(I)
 
0 q.2 )---X I-).X( 2-Y -' D 2

go RETURN
 
10. END . 

{N0 OF COMPILATION: NO DIAGNOSTICS, 

------- ---- --. .-.- --- --- ---- --- - - - ---



41 

nlOfaqIofr1 ).10000O0E o 

LIO.EOnMEI-05 0.1000000E-03 0,1000000E-04 U.1O00000E 01 

H n.lO0OOE-01 N5 26 N6 n 4 fT 4 
H 
H 

U fl*OfOlE-01 N5 
OlOnO,(Ih-02 N5 

x 
x 

2 N6 
2 N6 

a 
2 

5 N4 
4 N4 

n 5 
4 

H 
H = 

( ,l}OnFOi--02 
1.IofOf)I-03 

N5 
N5 = 

2 
2 

N6 
N6 

z 
a 

5 
4 

N4 
N4 

5 
4 

H = 0.10n0tE-03 N5 
H f,1OnO0-O. N5 
H O.1OOOE-03 N5 
H =O.T100I0E-03 N5 

S 10nOOE-03 N5 
H 0.200OOE-03 N5 

x 
= 
= 
f 
= 
= 

2 N6 
2 N6 
2 N6 
2 N6 
P N6 
3 N6 

a 
: 
= 
v 
= 
= 

5 N4 
6 N4 
7 N4 
8 N4 
9 N4 
5 N4 

R 

5 
6 
7 
8 
9 
10 
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