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THEORY OF TWISTED NONUNIFORMLY HEATED BARS

B. F. Shorr

An approximate theory of twisted, nonuniformly heated bars of 	 /141*

arbitary cross section is discussed, with the nonlinear distribution

of normal stresses taken into account, as applicable, according to

experimental data, up to twist parameter 2R5.

The theory of twisted bars, which is of great importance in calcu-

lation of airscrews and compressor and turbine blades, has been developed

in two directions. In the studies of P.M. Riz [1, 21, A.I. Lur'ye and

G.Yu. Dzhanelidze [3] and others, the problem was solved by the methods

of elasticity theory. Because of the complexity of the solution, they

were reduced to final form, only for bars of the simplest cross sections.

V.P. Vetchinkin and N.N. Polyakhov [4] and I.A. Birger and the author

(in 1954) proposed approximate methods, which are applicable to uniform-

ly heated bars with specific types of cross sections. A general theory,

which imposes no restrictions on cross section shape and is valid for

both slightly and moderately twisted bars (a refined classification of

bars by degree of twist will be established below), with nonuniform heat-

and with account taken of variable elasticity parameters, is presented

below.

1. We consider a bar of constant cross section with, in the un-

stressed state, a uniform twist relative to the rectilinear z  axis,

which passes through a certain point i normal to the cross section axis

(Fig. 1).

We limit ourselves to analysis of bars, for which, before and after

deformation, the following condition holds true

(aR) , < f	 (1. 1)

"lumbers in the margin indicate pagination in the foreign text.
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where a is the relative angle or twist of the Oar,
R is the distance from the z3 a-kis to the most'
remote point of the section.

Since

or  tss,
	 (1.2)

where g r is the angle between the zi axis and the
screw line which connects the corresponding points

of adjacent sections, condition (1.1) is equivalent
Fig. 1	 to the assumption that this angle is small, which

permits it to be considered that

/142

3i118, =8,=ar,	 Coss,=f 	 (04r101)	 (1.3)

Together with plane of the cross section no , we introduce "orthogonal

section"' A, a surface, the shape of which would be the cross section,

if the bar were reduced to the twisted state (a•ao ) from the untwisted

state (a=0) by free twisting (Fig. 2Y

Fig. 2.

By definition, the orthogonal section

coincides with the warp surface at a=a 0 and,

with condition (1.1), it is described by the

equation [5, 6]

U 'o	 J)	 (1.4)

in which
(ao4'x')t < 1.	 (ao(Pv T <	 ( 1-5)

where O(x, y) is the twisting function, $ x =ao/ax,oy =a¢/ay; x, y, z
is the rectangular coordinate system which moves together with the cross

section. For bars with variable elasticity parameters E(x, y) and

The term "orthogonal section" was proposed by I.A. Birger, as applied

to bars of elongated cross section, for which section n can be identified
approximately with the surface normal to the screw lines.
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and G(x,y), Function 0 should satisfy the equation [71

(G^x7= +(G%IV'—C='(y—yi)—GV,(x— xc) 	(1.6)

and the boundary conditions on the profile

(ji_ —y+yi)dy—(?v +x—xj)dx-0 	 (1.7)

Because of condition (1.5), no distinction can be made between the

areas and equations of the profiles of the orthogonal and plane sections.

To be definite, we assume that a given orthogonal section R corresponds

to the plane section n o , with respect to which

CG?dR-0	
(1.8)

Eq. (1.4) characterizes the configuration of a twisted bar, to

within the position of twist axis z i . The final results do not depend

on the direction which satisfies conditions (1.1), selected as the

direction of the axis; however, as for prismatic bars, the theory is

simplified if it is assumed that the z  axis passes through the center

of rigidity of the section.

Since, corresponding to twist a o , the initial "shifts"

Tt=o = ao( pz — y + YO,	 T8V* c ao (Cf, + x — xi)

should not depend on selection of the position of the axis,

(1.9)

(1.10)

Here, 0
0 

is the twisting function, determined as usual, on condi-

tion that the axis of rotation passes through the coordinate origin.

2. With condition (1.1), the elastic twist deformation can be con-

sidered as a continuation of the initial "deformation," and the shifts

can be determined by the formulas
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I — — O (Y — YO,	 v= — 8 (z— sr), W-4

	
(2.1)

where 8 is the relative angle of elastic twisting which, at small

initial twist angles, can be commensurable with ao.

The twisting stress in an orthogonal section is

"S.", — CO (q)z — Y + Yi),	 TRWM — CO (TV , `i' T — r1)	 (2.2)

	

For determination of the normal stresses, we consider that, at	 /143

all points, the profile of the orthogonal section is normal to the

open lateral surface of the bar. Therefore, it can be proposed that

the tangential stresses on this section, which are not connected with

twisting (at 8-0), are of secondary importance (,4ust as for a plane

section in the theory of transverse bending of beams). Therefore, as

the initial direction of a longitudinal fiber of a twisted rod No

(Fig. 2), it is natural to assume the direction normal to the orthogonal

surface with the directing cosines

	

to — cos (Nox) — — ao^z , mo — cos (Noy)	 aofFo', no — cos (Nos) — 1	 (2-3)

and, following the general theory of bars, to disregard the pressure of

one longitudinal fiber on another, i.e., to consider

o-E(e--TO
	

(2.4)

where a is the longitudinal stress and yt is the thermal expansion of

the fiber.

It is evident that, in the general case, the directions of the

longitudinal and screw fibers do not coincide.

The length of a unit fiber in the initial state is

	

dso — ds Y1 f lot -{- mo	 A 1  +- 2 o'	 (T,."+'Po'*)]	 (2-5)

i
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and, after deformation,

. di - ds Y(I + 01 + P T—W -	 (2.6)

where c z is the deformation of the fiber parallel to the rod axis, t-
t 

o +At ,, M-M 
0 +Am and At. Am are the increments of the angles of inclina-

tion of the longitudinal fiber, in connection with elastic twisting of
the bar.

Based on the "orthogonal sections" hypothesis similar to the

hypotheses of plane or irregular sections, we assume that, in stretching

and bending ., the orthogonal section does not change its shape, moving

according to the laws of solids. Then [83s

	

XXX — , +	 ( 2-7)XVY

where c o , K X , K y are coLponents of the plane of deformation, 6-de/dz,

and

—Yi),	 Am M 9(X_Xj)	

(2.8)

In conformance with (2-3) and (2.8), Eq. (2.6) takes the form

d*=dift	 1126%,	 YJ? +I 10gov, — 04-011
)	 ( 2.9)

from which

	

+	 (,2.10)

where polar coordinates r. *, with the pole in the center of rigidity,

are introduced, and it is taken into consideration that

94
	

(2.11)

The normal stress in the orthogonal section with direction N(L,m,n)

is

+	 +	 YI)
	

(2. 12)



Besides torsional stress T (l) , tangential shear stresses T(2) act

in the orthogonal sections. The latter are connected with stress v by	 /144

the equation of equilibrium

8t at	 s^ (a)

F +	 ^e= A. ay
 +P 0	 (2-13)

where p is the bulk force component in the direction of the longitudinal

fiber.

The total tangential stresses

Tsr 
(1)+r 

(2)

The stresses in the plane of the section can be found from the

conditions of equilibrium of a longitudinal element bounded by sections

II and II o (Fig. 3), which gives

t(^^ s) 0 _ A&OpJ p _ 411 °Ail	 •1(14 — f) 9 + =&OV 1 O — rrs 14 ssy	 I

(0 + 60-0)	 (2.14)
A(Ali^) 

+ ;101.10 1  V + C nbe:s +' :dstl) 
V + 

0 e °o

Fig. 3.

In particular, in the case of stretching

of the bar, by dropping out all nonlinear terms,

we obtain, with x i=y i=0 and t•0,

ago Z+	
-+41	

(2-15)

Here, I  is the polar moment of inertia, and

T is the geometric rigidity in twisting, which

coincides with the precise solution of P.M. Riz

[1] .

At points where ^ -0, Eq. (2.14) coincide with the conventional

formulas for the stress in inclined areas.

With the force factors in the plane of the section considered to

be known, we write the equilibrium conditions in the form
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P..` o'dF,Qs.. s,+^ dF ^ 	 Qv	 iiv dF

M'M
 i

yaOdF, ' AlV ..— ` so dF, 31. E 	 lc.r* (s —s^) — =ix(y —yJ1 dh	 (2.16)
 ► 	 lE

We note that, between the force factors in a twisted bar, there are

the relationships

Q: s — d^ -T- s (Pyj — M:)

M= _"QY	 --a(pZ,+MV)	 (2.17)

which Eq. (2.16) identically satisfy.

By substituting the values of the stresses in the first and last

three equations of (2.16), we obtain a system of four equations, which

are linear with respect to the components of the plane of deformation

E03 Kx , Ky , and nonlinear relative to angle g. Without presenting the

general expressions, because of their bulk, we consider some applica-

tions of theoretical or practical value.

3. For profiles of dimensions x, y of one order, tangential

stresses T (2) and the constrained twisting effect can be disregarded.

In this case, we arrive at the following system of equations: 	 /145

1''1' !'^•"l=^{t0P— x,Sv —XVS:+0 [ao (Ir, --T) +1OlpJi

Afs + AI=t —R', It.$. — x;1'v—xv1=-1- 0 [ao (Ip: — T:) + § 0t;,]1 	 (3.1)

My + MV, — — F.m { I.S. -- xxly — xvl+v + 0 [ao (I pv — TV) + j OI PV1I

M, — CITO.1- E. {co 1&0 (Ip — T) + Us,) — x. lao (1 pv — T j + Olpv!-

- xv (do (Ip; — Ts) + pip.) + Oxo !ao (11 — T•)+ f (11 — Tn)) +
.	 -- ao (Cr --11q) — 811
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Here, we introduce designations for the reduced geometric

characteristics

(3.2)
is = IB*ydJ?.  S„ _ JB-xdP.

!_ = S Eeyvp, I„= Eez'dF. In _ ^EezydF

h S E'redF, I.= J f `r*ydF, I„,= JEer=zdF, I,= JEeredF
•	 i	 }

T M ^E'(ip , +rt)&. T„ _ E'r(gy + rl dF, T„= jPz(j,'-F ►a)dF

T,	 dF, Tn = C B*P*(gi+ + r1 dF

E' M1IM, E,^	 F;dF = 2 (! r-^- µ) Cno µ —coast

and temperature factors

Pr = ^EytdF,	 I ytydF, Jfw =— S EytzdF
	

(3.3)

B# _ ^EytrtdPo	 Big _ jEyt (ip*'t r=)dF

In the derivation of system (3.1), it was taken into account that,

because of the properties of twisting function 0 and the assumption
wo<<R,the role of the terms which reflect the effect of tangential

stresses on quantities P. Mx , My is insignificant, within the limits of

accuracy of the theory. For simplicity in recording, subscript i in

moment Mx is dropped subsequently.

By proper selection of the coordinate origin and directions of the

x, y axes, condition S x=Sy=Ixy =0 can be ensured. By introducing the

principal values of the components of the plane of deformation
a

e	 1
x; w x^ - T- [ae (f'. — T„) 

+ = 61 ^'a 1

xre `" xr—' 0 fee (1p, — T,) -f- 1 O/, .,

Or pooi

(3.4)
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the principal polar coordinate

r,lm r2-  	 s— y (00-1-0)	 (3.5)

and the principal value of function ^ *

i 	 (3.6)
T I r	 r

which satisfy the conditions

I 
p	 px	 py	 x
* WI *=I *mom	 T*•T *sTy*no

where In*, Tn* (n is an arbitrary subscript), are determined by Fq. (3.2),
with substitution of r*2 for r2 and (^*)^' for ^', we represent the
first three equations of (3.1) in the form

p+pt
• MV+'Wt
	 1 M,+M^	 (3.7)

_e• s Jam . us —6 /	 my1's—^^	 ^ y 	a► s

Eq. (3.7) are the same in form as the corresponding relationships

for rectangular bars. However, in twisted bars, parameters K x 0 
and K y 0

do not coincide with the components of the elastic curvature of the

rod axis or c* with its elongation.

It follows from (2.12), (3.4)-(3.7) that, with 8.0,

(P + pt fur +Mw X 
)W,+M:t!

VF*
2(3.8)
-

It]

The last equation of (3.1) can be presented in the form

	

e, —W-6 ( t +v+pi*)+3(!+µ)a,G ' 7. "^ + U+ JA) ^'-	
(3.9)
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where

®.- TI-r	 (3.10)

'	 i 
^P	

(3.11)r	 (l^._7')_ '(lwi Tr) -F T (fit,,, -N--(B, ' —B,i )^

!	 P	 At	 At	 rr

:	 -	 ' (Ir Js Ty js,r + 7= Ism - B,'
1	 (3-1 2)

where 2Bt +^ andB t ,* are determined by Eq. (3.3), with the substitution

of r,, for r and r0 0 ),' for 0^ , and

^• .,2(1.} 1+) a:I% T -	 (3.13)

With a o-0 (initially untwisted bar), Eq. (3.9) changes to

(3.14)

For cases of stretching and twisting bars of circular and elongated

rectangular cress sections, with t-0, formulas are obtained from (3.14),

which coincide with the results of S.P. Timoshenko (9]. With 80nO,

Eq. (3.14), besides the trivial solution 9-0, has a second solution

T +Vt

which takes on a real value at y,g -1.

By assuming in (3.12), the value v--1, we find the condition

for loss of stability of a rectangular bar due to twisting. At M X

-My-0, t-0, this gJves the known formula for the value of the critical

fo-oce [1O]	
P * --G

P
10



4. By disregarding the 
02 

and 03 terms in Eq. (3.9), we solve it

for g,

V
	

(4.1}

The formula for the effective geometric torsional rigidity of the

twisted bar results from relationship (4.1)

TawT(l+v+02)

which, at v«1+g 2 , coincides with the formula obtained for this case by

Chen Chu [11], as applied to hollow tubes with an elongated bisymmetrical

section.

Dimensionless coefficient 02 plays an important part in the theory

of twisted bars, and it c&,r ;,e called the twist parameter. Depending on

the value of 0 2 1 it is expedient to provisionally divide twisted bars

into three groups.

a. Slightly twisted bars, 0 2«l. In this case, wit2. 9 0=0, elastic

twisting angle 6 is proportional to angle a 0 , strains a and c z practi-

cally coincide, and normal stresses c can be calculated by the conven-

tional formula for a rectangular bar.

For a section with two axes of symmetry, with t •0 and vv<l(k,til),

we have

P	 M8	 M 

t	
Y

M8	P 1	 Al.	
(4.2)

which coincides with the results of G.'(u. Dzhanelidze [121.

b. Moderately twisted bars, zhe value of 
S2 

is commensurable

with unity. With increase of 0 2 , the torsional rigidity of the bar

increases considerably, which is confirmed by experiments [11], the

tensile and bending rigidities decrease (for asymmetrical pvofiles),

11



and the normal stresses in the orthogonal section Land the stresses

practically equal to these in the plane of the cross section) are

redistributed according to relationship (3.8).

As was shown by the tensile tests of twisted bars by the author

[131, the approximate theory reported, based on assumptions (1.1),

gives good accuracy up to 8245.

For blades and air screws, the value of 82 can reach 2-3 or more.

Together with the concise notation of (3.7) and (4.1), the basic

system of equations of a twisted bar of arbitary cross section, with

0245 and v<<1+8 2 .  can be represented in the following developed form

ti •	 ail.,	 (4.3)
lim a

where ej should be understood to be strain components co , Kx , Ky , 8 and

Lk , the force and temperature factors P+P t , My+Myta 
Mx+Mxt'	

/
-�

Mz+ao ( Bt —B tu ), and coefficients ajk, which satisfy the theorem of

reciprocity, have the following values
(4.4)

s

pig .^ ^. a. 1 i "tl i y,y l40Or*	 i^ 7 _ t 7 ?
	 d11	 4i	 --krQ, G.—f

!	 (r ^r 

>'y^ 	

I — ?*V
did' lsa,ly t -! ': (^ •i N) 

k at., . _ f

 77	

digsi+ ^- a+s' ° kyot^ -`	 Y
41

v

d" _ 	 ,l j • ! ; _' ( i ) 1► ? kva.0=	 ?'/s	 1	
es, F — au t-; keg, C- ^ 7

•u _ :.^ r ^, o ar " —6 33 " — keare Ups 
^^,^1 PV 7'y)

en	 ^ w^ s y

di, s,i	k11a„s	
M r)(^vv" Tv^

	

dig	 do, koQ„+ p— T)(^Ps— rs^

C. Strongly twisted bars, 6 2x5. A general theory of such bars

has not been developed.

12
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It follows rr9m Eq. (3.2). that, .J,n the case of slightly warped
profiles, for which ^ti0, the equality 'T u1 occurs, and all the terms
which contain angle ao revert:to zero, i:e., in this case, the initial

twist does not play a part. An example of such a bar is a round

cylinder.

5. Twisting has the greatest effect on bars with elongated, strong-

ly warped profiles, for which the value of integrals (3.2) depends

basically on the values of the subintegral functions at points remote

from the rod axis, where r>>h (h is the greatest thickness of the pro-

file), and the initial "shifts" in the plaice normal to the radius

	

T,** = ao (r -) r 4y )	 ( 5.1)

become small, compared with the initial "bends" of the fiber

l at.(
	^	 .1	 (5,2)

w= ,, = z r -- r ^^ I

With the assumption that yz^ Oti0, we find (Fig. 2)

cos (N.1) =- — ! qv' = aor = a.	 (5-3)

i.e., at points sufficiently remote from the axis, the longitudinal

fiber coincides with 'he screw line, and the orthogonal section, with

a section of the corresponding screw surface, as was adopted by I.A.

Birger.

Because of equality (5.3), we have

and all formulas of Sections 3 and 4 are significantly simplified.

Instead of relationship (2.3), there will be

(5.4)
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and, instead of (2.12)., with etc o,	 /149

	

o - /: (,^ - y,x - - xvl/ • I • 6 •9 . 1 x„ 9r= --- It
	

(5.5)

If, to condition (1.8) adopted above

	

.0
	 1 ,?2-dP — 0

	
(5.6)

is added, formulas (3.7) remain in force, and conditions' (5.6) are

used to determine the coordinates of the center of rigidity.

__By the substitution of (5.5) in torque Eq. (2.16), without con-

sideration of the e 2 and 6 3 terms, we obtain

00 = a0v _ 0 + Y ----I.
	

a,b Isg ;=dr
F

where M z (T) is the torque of tangential stresses T (2) , which can be

found for elongated sections without determining the stresses them-

selves, if it is assumed that 0r '« r-10 1 , i.e., that warping is re-

duced primarily to rotation of individual elements of the cross

section relative to the radius. Then,

T., -Y —yt,	 ?,;	 (x —_0	 (5.8)

M,t`^ = — F ^(t,xt=Ip)x' v t21p)v 1 dF + p ((t,x ts^)x + (T:v ta^)v) dF =

-- ^ p (t,:(=)d!/ — tSv t=tds) — J Q ac dF— "ppdF
F as	 F

Because of the boundary conditions on the profile, the first

integral equals zero, so that, with at/az-0, we have

1t1,t`^	 r,. I,d — E,,,a od E°pr.2 dF — ppdF
(5.9)

F	 F

where
10 _ C E°p'dF

	

$	 (5.10)

14
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By substitution of ( , 5.9) in (5.7), w e arrive at the differential

equation of constrained twisting

k.X2 (Do — a0v -{- C)	 (5.11)
where

	

X_ =	 T1

	

2(t + 
t')kc10 

•	 C =
	

, S QpclF	 ( 5.12)
F

with the boundary conditions 0=0 in the end connection and 8=0 at the

free end.

With a o =0, p=0, t=0, Eq. (5.12) coincides with the equation of

constrained twisting of the theory of thin bars [8].

By designating

	

Do = — E 1.6,  1110
am
	 III,- = .l/ t - ,1/ ; 	 41^tIF — C,,,l acv	 (5.13 )

F'

we obtain	 m'.
8=ko- F	 (5.14)` 

/150and, consequently,

( P+!-1	-- ,.- 
x i	

- + Al..,	 It

 ^-f-	 (5.15)

to^a: h1	°/l)ma: ti'e •17^!
(5.16)(C

For thin wall profiles, on the basis of (5.8),

	

T. =( ►J—YJX.,—(x— XI) Y. 	 (5.17)

where s is a coordinate read along the midline of the profile.

15



After integrating C5.17?, with-changes of through the profile

disregarded, we obtain, to within a constant,

9fm—w	

(5.18)

where W is the doubled sector area.

Tangential stress T(2) , which acts along the midline of the profile,
is

	

!38e1 = Ti (a) [S P (s,) h (s,) ds, -+ a S o (s,) h (s,) ds,	̂ (5-19)

which, with 3t/ a z=0 and with (2.17) taken into account, gives

.^	 (5.20)

	

Ts. u) _ ^ t
	 S P (s) h (s) ds — S P (s,) h (sil ds, + QdC 1 (') +t 0	 0	 T

QA (s)	 Ate S, (l)	 r	
Sv (+)	 SO)	 10  (1))+ 	 + tY — ao I (Pyi —U-) ^y — (Psi x A'rv) 	

+ Br
 

^Y J^

where	 • )	 •	 ,

	

F(S) a S F. -h 	 S„ (s) a 
S 

AN yds,, S. (s) a Phrds,
4	 u	 0

•	 (5.21)
E°hwds,,	 f r (s) = S E°hr.:dsl

0

and So is the length of the midline.

6. In a number of cases, the constraint effect appears only near

fastened cross sections, where 8=0 and the initial twisting has no

effect but, in sufficiently remote sections from the end connection,

the twisting can be considered practically free, which considerably

simplifies the calculations.

Without consideration of constraint, Eq. (3.9), for elongated

16



profiles, is reduced to the norm

P + 3MI -I- 2 (1 + i + A2)1 — 2 (Co — Ov) ( E 
as 

9, Eo ° a eo )	 ( 6.1)

Analysis of Eq. (6.1) which reduces arbitrary cases of deformation

of twisted bars to the single relationship t =^ (C ov j ), confirms that

the role of nonlinear terms ^2, E3 is small, as a rule.

By using the equations of elasticity theory in a nonorthogonal

curvilinear coordinate system, V.M. Marchenko developed, in general

form, a theory of free torsion and tension without bending of a uniform-

ly heated twisted bar, with an arbitrary value of angle a o , in which,

for an elongated elliptical section with semiaxes ab(a>b) and P a 1/3,	 /151

the solution in approximate form (by the method of variations) was

reduced to calculation formulas, which have the form (in our notation)

_	 A/:	 ao
	 _
5
_ 
a'ao'	 b t

20 wool ) ' A/ aot	 `	 r
`o -' k,	

F' 1 84 'I	 T61-7,

For' an elongated ellipse (n<l), with P=1/3 and v<<1+5 2 , by

formulas (3.13), (4.1) and (4.4), we have

Are	
11	

8 c'ao-T, 	 a ll
	 ko / 1 3i aloe',

adas = C7' '	 a il = au = —1►0 rd-F-t

and comparing solutions (4.3) and (6.2)	 shows that they practically

coincide. The normal stresses in the center of the section are:

according to V.M. Marchenko

	

60 a'ae' P _ 29	 A/,1

according to formula (5.15)

	

_	 ((	 31 a'ao'1 P _L
	

/t 1° (0) ^e ^\ 1 8U ^I / T	 ao 1-w J

17



The divergence of the results also is small.

Thus, comparison of the approximate theory with experimi

and with the partial solutions obtained with the use of the

elasticity theory, indicates its sufficient generality and al

The author thanks I.A. Birger for discussion of the work.
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