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1 INTRODUCTION

1.1 Pro ect Goals

For %the past two and a half years, we have performed a study

of the feasibility of the use of Charge Transfer Devices (CTDs) in

the classification of mu?.ti-spectral image data. This work consis-

ted of two primary stages: 1) An evaluation of particular'devices

to determine their suitability in a matrix multiplication sub-

system of a pattern classifier and 2) The design of a • prototype of

such a system if a suitable device was found. The work centered

around "analog-analog correlator" devices which consist of two

tapped delay lines, on chip multipliers, and a summed output; these

devices will be discussed in more detail in Section 2 of this report.

1.2 Summary of Results

In general, our results have been encouraging; one of the

tested devices showed performance characteristics which warranted

further development, the design of the system was accomplished, and.

construction was begun. Reference is made to two previous progress

reports dated December 20, 1977 and August 28, 1979. These papers

contain detailed reports on the results to the time of their issue,

and the material contained in them will only be summarized in this

report.

The previous reports indicated the following findings:
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(1) The first device evaluated, the Reticon AAC-32

was found to be not suitable because of serious linearity problems.

(2) A second series of devices, the Reticon R5402j5403,
a

was tested and was found to have acceptable accuracy and reason-
'No

able linearity indicating a need to explore its use in a pattern

classifier.

(3) An architectural design and part of the detailed

design for a multispectral classifier using the Reticon devices

and controlled by an LSI-11 microcomputer was completed.

(4) Software was developed to support communication

between the LSI-11 and a VAX medium scale computer. This software

allowed the reading of LANDSAT tapes and the subsequent transfer

of the multispectral images to the LSI-11 floppy disk for use by

the classifier.

(5) Software was also developed to support the display

of false colored images on a Chromatics graphics terminal.

Additional accomplishments since the August report are:

(1)- The design for the classifier was completed.

(2) A printed circuit layout for the analog boards was

completed, and the boards were fabricated. The other boards will

rt
be wire-wrapped.

(3) A test jig for the analog board was built and check-

out begun.

(4) System software development was begun.

F.



2 CTD THEORY

.s

This section contains a brief overview of Charge Transfer

Device characteristics. For a detailed explanation of CTD
i

construction and operation see the 1977 report and its references, 	 1

A CTD is simply a monolithic integrated circuit which moves

packets of charge linearly in synchronism with a clock. Depending

upon the application,. these charge packets may be used to repre-

sent either digital or analog information. CTDs have been,used for

a wide variety of purposes, particularly analog signal processing,

digital memories, and imaging arrays.

Two very common types of CTDs are the "Bucket Brigade

Device" (BBD) and the "Charge Coupled Device" (CCD). The major

1 difference between these two devices is the manner in which the

charge packets are stored and transferred from cell to cell.

This difference results in slightly differing performance char-

acteristics between the two types.

A common use of CTDs is signal processing has been as simple

f analog delay lines or shift registers. By modifying the clocking

electrodes complex functions of the input rather than simple

delays have been realized. These functions are of the form:

E a i b i where the b i s are samples of the input signal and the ais

are weighting coefficients. Such devices are known as "fixed

tap weight devices" (from their filtering applications) because

the weights are determined at manufacture and cannot be changed

afterward. Fixed tap i-.8ight devices have been used to produce

r %	 a variety of functions such as matched filtering, correlation,

r	 or the magnitude of the discrete Fourier transform.



The versatility of the CTD may be extended by using two

delay lines, adding analog multipliers at each point, and

providing a mechanism for summing the outputs of the multipliers.

Such a device  may be used to perform sum-of-product operations

in which both of the operands are arbitrary. Experimental samples

of these "variable tap weight devices" are now available, and

these devices are the subject of this study.



3 PATTERN CLASSIFICATION USING CTDS

A major bottleneck in pattern classification operations has

been the matrix multiplication required in the calculation of the

discriminate function;
N..

OF - uil

where x is the data point vector, u is the mean vector of the ith

class, and Ci (also commonly signified by E i) is the covariance

matrix of the ith class,

Figure 3.1 illustrates a proposed layout of sum of product

CTDs (SOPS) which may be used'to calculate the discriminant

function. In this arrangement each of the first group of SOP

devices (E i --Em) perform one of the row-column multiplications

of the x-^Vi TCi1 term of the discriminant function calculation.

The results from these operations are then multiplexed into the

final SOP device along with the x-u i term producing the desired

final result. It is seen that this configuration requires at

least two CTD loading times to perform the calculation.

A reduction of the calculation time to one SOP device loading

time would be highly desirable. Figure 3.2 shows an arrangement

which accomplishes this reduction by eliminating the multiplexer

and the final CTD. The diagonal symmetry of the covariance matrix

allows this simplification because the matrix may be transformed

into upper triangular form. In this case the .SOP devices perform

the Cil x-pi calculation as before. These results are then each

squared and the results summed to produce the answer.
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4 DEVICE EVALUATIONS

4.1 AAC-32

Once the matrix multiplier configuration was derived an

evaluation of the available devices was needed. A detailed

account of the evaluation techniques and testing set-up hard-

ware is given in the 1977 report.

The first device evaluated was the Reti„con AAC-32, a bucket

brigade device. This chip contains two tapped 32 cell delay lines

with an untapped or "dead" cell at the start of one delay line

I,	 and the end of the other. Thirty-two on-board multipliers and a

summer compute the sum-of-products function.

After determining values for the various bias voltages and

currents required by the chip, tests were made to determine proper

signal levels and to evaluate the performance of the device.

Zeroing and signal level adjustments were satisfactorily executed,

then linearity, accuracy, and repeatability were examined.

The results showed an accuracy of about 5 bats and a repeat-

ability of about 8-9 bits with the variance appearing to be the

result of random noise. Also noted were short-term and long-term

drifts when the device was left unclocked and a start-up inaccuracy.

These results all appeared to indicate that the device was accept-

able for a matrix multiplication application.

The AAC-32 however, Showed a exhibited a serious linearity

problem; in one quadrant, the output was severely clipped.

Adjustments and reductions of the input could not remove the

clipping. The failure appeared to be caused by the multipliers;

observations of the delayed signal after it passed through the

k



bucket brigade showed no distortion problems. Thin non,- linearity

caused the AAC-32 to be ruled unsuitable.

4.2 85402/5403 Series

t.

The Reticon R5402/5403 chips are revised versions of the AAC-32

which do not exhibit many of the earlier chip's problems. The

difference between the 5402/5403 chips is in the number of•taps;
the 85402 has 16 taps; the R5403 has 32. A major change in both

chips from the AAC-32 is the presence of a string of storage

capacitors on one side of the device. The input signal on that

side passes down the string of capacitors and is passed in parallel

to the bucket brigade upon a sample and hold strobe signal.

The tests performed on the AAC-32 were repeated on the

R5402/5403, and the results were encouraging. The chips exhibi-

ted acceptable accuracy ( N7-8 bits) and repeatability and did

not have the linearity problems of the AAC-32. The conclusion

of the evaluation of the R5402/5403 was that the chips' perfor-

mance was marginally satisfactory and that the design of a classi-

fier around these devices should proceed.

5 CLASSIFIER SYSTEM DEVELOPMENT

5.1 Organization

Figures 5.1 and 5.2 illustrate the functional blocks and

data flow of the classifier system. Figure 5.1 shows the set-up

of a general classifier system while Figure 5.2 shows the set -up

of the prototype system designed around the Reticon devices.

I
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In Figure 5.1 the sensor input could be directly from a

LANDSAT sensor after optical, and geometric corrections have been

made, and the dat^i source could be RAM built into the system for

storing the necessary mean and covariance information. In the

prototyp&-system, however, the LSI,11 is the controlling micro-

computer while the floppy disk serves as the sensor input by

storing a LANDSAT image. All of the classifier hardwares CTD's,

signal conditioning and conversion circuitry, RAM, and controlling

circuitry is contained in one block, and communication with the

LSI-11 is over two parallel data buses (16 bits in each direction

per interface). The terminal is a 512x256 point color graphics

display and serves as an output for the classified images. A

more detailed descrietion of the system is given in the 1979 report.

,^ - -A-
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5.2 Hardware

5.2.1 Classifier Module Organization

Thik section contains a description of the classifier modules

and their operation, These modules are: analog boards, timing

and control/interface, and analog-to-digital conversion. Figure

5.3 indicates how these modules are integrated to form the class

ifier system. The modules all plug into a backplane over which

the digital TTL level signals and power pass, The analog signals

are not sent over the backplane over which the digital TTL level

signals and power pass. The ,analog signals are not sent over

the backplane to reduce potential noise problems; instead, they

are passed from board to board by shielded cables. Except fo

the AJD converter data output, a single board provides the required

interface with the LSI-11.

5,2.2 Analog Board

The major functional component of the classifier is the analog,

or sum-of-products board. Eight of these boards form the core

of the classifier; each contains a CTD and squaring circuit; the

necessary DjA conversion, signal conditioning, and bias circuitry,,

and the RAM which is loaded with the appropriate column of the

covariance matrix inverse. Upon receipt of the proper data and

control signals each of these boards will cycle the CTD producing

the row-column vector dot product and squaring the result. An

analog multiplexer is included for diagnostic monitoring of criti-

cal on-board signal points.
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Appendix A contains the schematic of the analog board along

with a :diagram of the printed circuit card layout for the board

and a parts list.

5.2.3 Tieing and Interface' Mods les

The functions of the timing and control module and the inter-

face module are closely intertwined; for that reason, they'will

be discussed together in this section. Clocking, control, data

steering, and interfacing with the LSI-11 are accomplished by

these modules. Ten circuit groups make up the two modules:

(1) Transition Detector (TD)

(2) Counter Clock Reset/Enabler (CDREC)

(3) Counter and Decoder Circuit (CDC)

(4) Clock Generator Circuit (CGC)

(5) Address Bus Arbitrator (ABA)

(6) Mode Decode (MD)

(7) Subtractor (SUB)

(8) A/D Conversion Decoder (ADCD)

(9) Master Clock Generator (MCG)

(10) Chip Enable Decoder (CED)

The instructions arrive from the LSI-11 in the form of a

16-bit control word (see Figure 5.4). There are three basic

operating modes for the classifier: LOAD, DIAGNOSE, and RUN.

In LOAD mode the LSI-11 has control of the address bus and is load-

ing new information for the classifier to ,process. In the DIAG-

NOSE mode the LSI-11 is driving different parts of the classifier

to test their performance. In both of these modes the LSI-11

controls the backplane bus, and the CTD output data is invalid.
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In the RUN mode classifier operations proceed normally with the

backplane bus controlled by the timing circuitry. These modes

are selected by the mode selection bits (13-14) of the control word

which are decoded by the Mode Decoder.

The Address Bus Arbitrator is a three-line multiplexer that

has, as inputs, the three low order address bits of the control

work and the three low order bits from the CDC, and has the

three low order bits of the backplane address bus as outputs.

When the classifier is in LOAD or DIAGNOSE mode the Arbitrator al-
lows the LSI-11 to control these three bits, otherwise the timing

circuitry exercises control.

The RAM selection bits (3,4,5 of the control word) go to

the Chip Enable Decoder. This circuit has 6 output lines; the

RAMs on the analog boards are enabled, two at a time, by four of

these, the x-RAM is enabled by the fifth, and the V-RAM is enabled

by the last. During RUN mode this circuit is bypassed and all

RAMs are enabled.

The Data Output Bus Enable selects the pair of RAM output

bus drivers to be enabled. This selection is necessary to avoid

having two RAMs attempting to control the backplane bus. This

circuit is located on each of the analog boards.

The Subtractor is simply an ALU set to continually perform

the necessary subtraction to obtain the x-N term. The inputs come

from the x-RAM which is loaded once per pixel and the u -RAM whir'

is loaded once per image.

The Transition Detector generates a single pulse to initiate

a new ,sycle of the CTDs to produce the discriminate function

results. This pulse is generated when the classifier is in the

RUN mode and a change is detected on the three high order address

bits



The Counter Clock Reset/Enabler generates the signals to

clock the CTD. When the CDC receives a Counter Enable signal

from the CDREC it will begin the loading of the CTD. The Clock

Enable signal is sent to the CGC to enable the CTD clocks.

In addition to the Counter Enable signal, the CDC receives
t,

the Master Clock from the MCG. The data is loaded into the CTD

twice (assuming an eight-feature vector); this method should

yield better accuracy than loading once and padding with zeros.

During loading four outputs are produced. Three of these are low

order addresses and go to the address arbitrator. The other out-

put is the Count Finished signal issued when the loading cycle

is complete. a
In addition to the Clock Enable and Count Finished signals

the CGC receives the Master Clock signal and the three decoded

mode signals. The clocks are always enabled during the LOAD

and DIAGNOSE modes, and during RUN mode the clocks are started

when the Count Enable signal is true. When the Count Finished

signal is received one more clock cycle is applied to the A side

of the CTD to correctly align the data because of the "dead" cell.

The clocks are now halted, and the CTD is strobed to pass the

data from the capacitors to the bucket brigades. The Load Ready

strobe is now sent to the A/D Conversion Decoder.

The A/D Conversion Decoder generates the convert command that

activates the A/D converter. In Run mode this command is con-

trolled by the Load Ready Strobe, and in the other modes it is

under the control of the LSI-11. The signal "A/D status" is

generated by the A/D converter upon completion of its operation.

This signal is used to restart the CTD clocks to avoid drifts and

to signal the LSI-11 to read the A/D.



5.2.4 A/D Board

The A/D converter is the same 12 bit, 30psec Analog Devices

module used in the chip evaluations and operates in the same

fashion. t,

In addition to the A/D converter the board contains the

summers for the eight signals from the analog boards. Switching

is also provided between the summer output and a diagnostic

signal jack used for monitoring various points on the analog

boards during testing.	
R

5.3 Testing Software

0

Special arrangements were necessary for testing of the ana-

log boards. A testing stand was constructed to allow the board

to be exercised without the full classifier. A subset, of the

control word signals which was necessary for the operation of

the analog board was used. Clocks, control, and data which are

normally provided internally were added. The revised communi-

cation word formats are shown in Figure 5.5. The purposes of the

system were to check out the RAM on the board and to adjust the

signal levels and offsets of the CTD inputs.

The adjustment algorithms are similar to thosF,: used for the

device evaluation. These algorithms are discussed in the previous

reports. We are including two new RAM testing programs here;

Appendix D contains program listings.
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1. Program RAMTSB

RAMTSB checks the RAM in a bit -by-bit fashion. It loads
the RAM with 1 at the first bit of the first location than checks
the output. It then loads the RAM with 0 and checks the output.

If the outputs are not consistant with the input data an error is

logged. The testing sequence is from the first bit of the first

location to the first bit of the last location (63). The program

then checks the second and remaining bits in the same manner.

2. Program RAMTST

This program is,an abbreviated version of RAMTSB which tests

the RAM in a byte-by-byte fashion. It will not find all possible

errors, but it may serve as a quick first test of the RAM opera-

tion. The program operates by loading each location with all 1's

and all 0's and examining the result.

6 CONCLUDING REMARKS

The principal goal of this project has been the evaluation of

Charge Transfer Devices and their potential use in pattern classi-

fiers. As such, much of the work has been centered around testing

the devices rather than construction of a final system. Since

the devices were experimental and the application was new the

work often involved a "ground-up" approach. In the case of the

AAC-32, for example, very little information was available regard-

ing optimum operating points, etc. In addition, some traditional

types of tests were found to produce misleading results, for

Y



example the correlation of two sampled analog sine waves appeared
to produce very good performance i.e., a high signal-

to-noise ratio. It was not until the testing methodo-

logy waa rethought and a different form of test was applied that

the problems with the device became evident.
f

Three general conclusions may be drawn from the work:
t,

(1) With the advent of "variable tap weight" devices there

is a strong potential for the use of CTDs in pattern classifiers.

They can be used to provide matrix multiplication subsystems.

Suitable architectures were developed in this project, and-their

potential,performance i3 good. The time required to produce an

answer has been reduced to one CTD loading time. Further, such a

classifier architecture allows the parallel computation of all of

the discriminate funq ions (i.e. up to eight in this case) at

once. Such a system of very fast, low power classifiers could be

of tremendous benefit in processing data from sources such as

LANDSAT satellites, particularly by making on-board classification

feasible. This could make the use of pattern classification

techniques and satellite data much more widespread, and could

open the door to new uses of the techniques which are not possible

now because of prohibitive computational requirements and their

resulting delays.or high cost.

(2) The evaluation of the Reticon AAC-32 clearly showed

that it is not suitable for use in a classifier application. The

failure did not, however, rule out the use of CTDs in classi-

fiers because it appeared to result from a design problem in the

analog multipliers rather than the CTD technology. It is inter-

esting to note that if the failing quadrant was avoided, the AAC-32

did show usefulness in other applications such as programmable

transversal filters. (See Appendix C).



The Ret con 85402/5403 indicated the validity of the conclu-

sions since it did not have the problems of the AAC-32. The

performance of these new devices indicated that they were candi-

dates for matrix multiplication applications.

(3) % A design for a micro-computer controlled classifier

using the R5402/5403 chips was accomplished, and the paper system

has a reasonable size, complexity, and power consumption. The

further devleopment of the system for testing and evaluation pur-

poses is recommended.	 A

This project has by no means concluded that a CTD based

classifier will operate well, only that such a system appears

to be possible. The only was to accurately guage the performance

of a CTD fused classifier is to build and tast it as is recommended.

Several questions remain which cannot be answered simply by testing

devices. These questions include; the stability of the system,

particularly the analog interface and signal conditioning circuit-

ry; the effects of long term drifts and aging on the accuracy of

the total system when added together; the speed at which the

total system may be operated, and the reliability of the devices

when operated in such a system. The CTD technology is developing

rapidly, and performance characteristics can certainly be expected

to improve in the future. This project and other novel appli-

cations of the devices will certainly aid in indicating areas of

technology development which need improvement and would increase

the chances of the production of future devices which could

operate even better.
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The schematic is oversized and has been sent to NASA under

separate cover.
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The board used is a double sided PCBs with 72 possible gold finger contact
evenly distributed in both sides, the space between contacts is 1255 in. , the
base material used is FR4,the overall size of the board is
9. 1 x 5. 2 in,

PARTS LIST

RESISTANCES

The following values are given in Kohms and are assumed to be of 5%
tolerance an 1/4 W maximum dissipationfunless otherwise especified,

location	 value(Kohms)	 location	 value(Kohms)

R1 R41 150
R2 10. R42 62,
R3 1210. R43 62,
R4 1. R44 100.
R5 10, R45 15,
R6 20, R46 2.
R7 10. R47 68,
R8 1, R48 300.
R9 1.0 R49 33.
RIO 10, R50 100,
RII 20. R51 100.
R12 1. R!52 1.
R13 20. R53 100.
R14 20. R54 1.
RIS 2. R55 10.
R16 10. R56 5. 1
R17 20. R57 1.
R18 2. R58 10.
R19 10, R59 5. 1
R20 20. R60 1.
R21 10, R61 .62
R22 4.7 R62 .62
R23 20. R63 62
R24 10. R64 .62
R25 4.7 R65 .62
R26 10, R66 .62

R67 .62
R28 20. R68 .62
R29 1. R69 .62
R30 56. R70 2.
R31 15. R71 2.
R32 100, ohms 72 2.
R33 20. R73 2,
R34 270, R74 5.1ohms
R35 100, R75 5.1ohms
R36 62. R76 .47
R37 160. R77 .47
R38 120 R78 .47
R39 150. R79 147
R40 100. ROO 20.

CAPACITORS

The	 following capacitors are given	 in OF with	 15 Vdc ratings and
tolerances better to	 10% unless	 otherwise	 specified.



A

H e	 ^

location value location v'..lue

C1 15p f C20 0.1
C2 0.1 C29 011
C3 0. 1 C30 0, 1
C4 15pf C31 0. 1
C5 011 C32 0.1
C6 0.1 C33 0.1
C7 0.1 C34 0.1
C8 15pf C35 0, 1
C9 011 C36 011
CIO 0, 1N. C 37 0. 1
C11 15pf C38 0, 1
C12 011 C39 1 OOp f
C13 0.1 C40 011
C14 15pf C41 0.1
C15 0.1 C42 0.1
C16 0.1	 ' C43 loop f
C17 15pf C44 0.01
cis 0. 1 C45 0.01
C19 O' i C46 0.01
C20 15pf C47 0.01
C21 0.1 C48 0.1
C22 0.1 C49 0.1
C23 15pf C50 0.1
C24 0.1 C51 0.1
C25 0. 1 C52 0, 1
C26 15pf C53 0.1
C27	 0. 1

D I ODE,"'-'

The selected diodes must supply 0.7 forward biased voltage,

location	 model

D1 GE 914
D2 GE 914
D3 GE 9111
D4 GE 914

INTEGRATED CIRCUITS

location model

ICI AD509JH
IC2 AD509JH
IC3 AD509JH
IC4 AD509JH
IC5 AD509JH
IC6 AD509JH
IC7 AD509JH
IC8 AD509JH
IC9 AD509JH
IC10 RC420OND
IC11 DG509CJ
IC`12 R5402 E 176
IC13 MC140BLB
IC14 MC1408L3
IC15 N82SO9N
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IC17	 Fj.d7A33J
ICIS	 SN747414

ICi q	DS0026CN
IC20	 DS00 bCN

JUMPERS

J1	 takes the multiplexer output to the PNC connector

J2	 takes the output ofthe squaring circuit to the DNC cannectar

J3	 ,loins both paths of ground
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PATTERN CLASSIFICATION USING CHARGE TRANSFER DEVICES

W. E. Snyder ` and J. H. Reecef
North Carolina State University, Raleigh, N. C.

^ 	 and

H. F. Benz
NASA Langley Research Center, Hampton Va.

Abstract

The potential uses of charge transfer devices (CTD's) in
pattern classification operations are explored. The needs for
a hardware-based pattern classifier are established, and a ma-
trix multiplication subsystem based upon a sum of products CTD
is presented. An evaluation process for sum-of-products de-
vices (particularly analog-analog correlators) is developed,
and the feasibility of employing.a particular device in a pat-
tern classifier is determined. Fin4;:Iy, the possible impact of
future trends in technology is considered.

I. Introduction

Recent technological innovations are making general pur-
pose computers cheaper and more accessible. Witness, for ex-
ample, the dramatic increase in computational complexity avail-
able per dgllar in just the last five years. These same tech-
nological innovations are making instrumentation packages sim-
pler to use, more computationally dense, and much less.expen-
sive. It thus is becoming more and more reasonable to talk
about special purpose, dedicated pattern recognition
equipment.

We can discuss only a small subset of the "pattern recog-
nition problem" in this context, since that larger problem is
far from well defined, much less solved, and "special purpose
equipment" implies that we are trading away flexibility i:i
exchange for speed and/or simplicity of use. We have chosen to
deal with the problem of multispectral satellite image classi-
fication. Under certain assumptions, this problem can be con--
sidered well defined, and a pressing need exists for special
equipment which can deal rapidly with the vast amounts of data
coming from satellites every minute.

NASA has been and continues to be concerned about the fact
that present (general purpose computer-based) techniques are
too slow and too expensive to begin to deal with more than a
tiny fraction of the LANDSAT data which are currently
available. This paper is one of the results of an ongoti ng

a
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study conducted by NASA to investigate technologies which might
contribute to the solution of this data processing bottleneck.
This paper discusses the use of metal-oxide-semiconductor (MOS)
technology in the construction of special purpose equipment for
pattern classification.

11. Device Background

Charge transfer devices may be divided into two classes:
the "bucket brigade device" (BBD) and the "charge coupled de-
vice" (CCD) with various subclasses within the major groupings.
The two types of UD's "differ inthe manner in which charge is
stored and transferred from cell to cell and have slightly
differing performance characteristics. Most CCD's have lower
noise figures and higher transfer efficiencies (the percentage
of charge in the original cell . which is transferred to the new
cell) than BBD's.

When used as analog signal processors, charge transfer de-
vices may be employed to obtain Complex functions of the input

waveform: One such function is Ja i bi, where the b's are

samples of the input waveform and the a's are weighting
coefficients. This function is found in recursive filtering,
correlation, convolution, and a number of other operations.

As shown in Fig. 1 and photographed in Fig. 2, the cor-
responding cells of two CTD delay lines can be connected to
multipliers and the multiplier outputs then summed, In this

case the result is again Jaibi, but the weighting coefficients

are determined by the data stored in the second CTD and may be
changed simply by clocking in new data.

Such variable tr.) weight devices may be used as sampled
correlatoos of continuous analog signals. More important to
this project, however, is the fact that, since they operate on
discrete data samples, variable tap weight devices may be used
to generate the vector dot product,

n
_	 x i y i

i=1

where n is the dimension of the vector and may be as large as
the number of cells in the CTD. This product is obtained
simply by loading one vector into one side of the CTD and the
second vector into the other. The answer thus obtained is the
result; of one row by column operation of a matrix
multiplication.



Unlike conventional filtering application, in which a use-
ful new result is available each clock cycle, dot product oper-
ations with two arbitrary vectors require that the entire CTD
be loaded before a useful answer is produced. Thus, for a
typical 16 component vector, 16 clock cycles are required to
load -the device. However, 5-Mhz clock rates are quite. reason
able; making it possible to perform 16 multiply and add oper-
ations in 3.2 uses.

III. Pattern Classification Hardware

In the case of multispectral image classification, the in-
put X is a vector resulting from measurements of light inten-
sity in several different spectral ranges. Each vector X
corresponds to a single point (pixel) in a scene. A typical
LANDSAT scene consists of an array of over one million ordered
pixels.

It has been shown l that, for a given class, all pixels
belonging to that class may be reasonably described by a multi-
variate normal distribution. With this assumption, the prob-
ability that a vectbr X belongs to a class i is

POW	 2rrN/2 (^ ---- exp[-j4X-ui )T Ji l ( X -u i )]
( 2012 ) (

I

) 1yi, 	)
where Ii and ui are the covariance matrix and mean vectors,
respectively, which-describe the statistics of class i.

Taking the logarithm of the probability gives a discrimi-
nant function

g i (X) a tn[ P (ijX)] - -1/2(X-1ji)T Iil
(X-pi)

+ Anij i ( -1/2 + Ln(2,r4/2)

Since the logarithm function is monotonic, the class
having the largest discriminant function for a given
measurement X will also be the class having the largest

f
probability, p (iJX) that X belongs to that class. tn(2n-N/2)
is a constant for all classes and therefore does not contribute
to discriminating one class from another. Furthermore, the

term Anlfl -1/2 needs to be computed only once for each class.
T E7 1 (X-u i ), however, must be computed for each of the

F-



millions of measurements made in an image, Consequently, this
matrix computation with a general purpose computer is very
time consuming.

Figure 3 shows a block diagram for a hardware configura-
tion of a system for classifying multispectral data. Data may
come Virectly from a sensor array in analog form, or for pur-
poses of testing, from a digital data source. The microcom-
puter is the control element for the system. In a training
mode, it derives the statistics which describe the various
classes. In classification mode, the microcomputer loads
those statistics into an array of parallel CTD classifiers,
controls steering of data input to those classifiers, and
examines their outputs.

The individual classifiers are shown in Figs. 4 and 5.
In Fig. 4, each of the row-column dot product operations is
performed in a charge transfer device. The outputs are
multiplexed together and fed to one more 'CTD for the post-
multiplication dot product.

In contrast, Fig. 5 depicts a hardware simplification
which also results in increased_ speed, since it eliminates the
multiplexer and a delay. This simplification is made feasible
by the diagonal symmetry of the covariance matrix, which may
be transformed into upper triangular form.

The matrix operation shown in Fig. 5 can be decomposed
into cellular substructures as shown in Figs. 6 and 7. At the
conclusion of the training mode, the processor loads one row
of the covariance matrix into the first-in-first-out memory
associated with each cell. The hardware then takes over and
under control of the clock generator, performs the entire
discriminant function computation.

On a pixel-by-pixel basis, the output of the individual
hardware classifiers is digitized and read by the processor,
which then classifies the pixel as belonging to the class
whose discriminant function was maximized. Using 128 CTD's,
a pixel described by 16 multispectral measurements may be
classified into one of nine categories in 3.2 usec.

IV. In Situ Cell Qualification

The critical element in the pattern classifier system is
the charge transfer device that performs the row-column
multiply. -Extensive testing has been performed on prototype
units which have recently become available from semiconductor
manufacturers.

The hardware test station shown in Fig. 8 has been im-
plemented. It tests individual devices in a cellular
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T	 structure similar to the structures used in the classifier.
Typical results of one of the tests on one of the devices are
shown in Fig. 9. The figure shows the aggregate linearity
and offset for a Reticon 5402, a 16-element analog-analog
sum of products device. Plotted is the computed output in
expanded scale and inverted decimal form) versus the B input
values; where all of the B cells are filled with the
fractional numbers indicated. Similarly, the A cells are
filled with the numbers indicated, and these point values are
connected to form families. It is apparent from this figure
that there is a small offset, the point where the curves all
intersect. There is also a small nonlinearity, where the
points fall off the curve. The rotated appearance of the
curve is caused by the small offset in the B side being
multiplied and summed by the data in the A side. These test
results demonstrate adequate linearity and offset at the 8
equivalent bit input and 8 equivalent bit output to
continue further development. Figure 10 is a photograph of
the test system showing the chip under test, the micro-
computer and the associated data conversion circuitry.

V. Conclusion

This paper has shown one method of implementing dedicated
hardware for pattern classification. Recent technological
developments have made such classifiers feasible using
sampled analog processing. Test results have indicated that
prototype development should continue. It is expected that
continued technological improvement will lead to more
compact, lower power, and even faster system configurations,
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SATELLITE PATTERN CLASSIFICATION USING CHARGE TRANSFER DEVICES

C. Husson and H.r. Benz

NASA Langley Research Center
Hampton, Virginia
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H.E. Snyder

North Carolins State University
Raleigh, North Carolina

Abstract

The potential uses of Charge Transfer Devices
(CTDS) in pattern classification operations are
explored. The needs for a hardware-based pattern
classifier are established, and a matrix multi-
plication subsystem based upon a sum-of-products
CTD is presented. Applications of the subsystem
to the classification of multi-modal Gaussian
distributions in general and to LANDSAT data
processing in particular are discussed. Finally,
the potential impact of this technology on
satellite data processing methodologies is
discussed.

Key words: Gaussian Classifier, Charge coupled
device
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1. Introduction

Recent technological innovations are making
general purpose computers cheaper and more
accessible. Witness, for example, the dramatic
technological increase that has been made in just
the last five years. These same technological
innovations are making instrumentation packages
simpler to use, more computationally dense, and
much less expensive. It is thus becoming more
and more reasonable to talk about special purpose,
dedicated, pattern recognition equipment.

We can discuss only a small subset of the
"pattern recognition problem" in this context
since that larger problem is far from well defined,
much less solved, and "special purpose equipment"
implies that we are trading away flexibility in
exchange for speed and/or simplicity of use. We
have chosen to deal with the problem of multi-
spectral satellite image classification. Under
limiting assumptions, this problem can be
considered well defined and a pressing need
exists for special equipment which can deal
rapidly with the vast amounts of data coming
from satellites every minute.

NASA has been and continues to be concerned
about the fact that present (general purpose
computer-based) techniques are too slow and too
expensive to reduce to classified images more
than a tiny fraction of the LANDSAT data which is
currently available. This paper is one of the
results of an on-going study conducted by NASA to

investigate technologies which eight contribute to
the solution of this data processing bottleneck.

Of particular interest to NASA are
technologies which may lead to flyable "on-board"
processors, units on the satellite which can
classify a multi-spectral image in real-time and
transmit to the ground only the"classified image.
A unit must meet several requirements before it
can be placed in such an application. First, it
must be.capable of dealing with the analog data
directly as it comes from the sensors. Second,
since the unit is to be placed on a satellite, it
must consume little power, be light in weight, and
be highly reliable. Finally, the unit must be
programmable from the ground and capable of
deriving its own classification parameters.

This paper discusses the use of Metal-Oxide-
Semiconductor (MOS) technology in the construction
of special purpose equipment for pattern classifi-
cation. The computational function of individual
sum-of-products chips is first described, then,
• scheme for the organization of the chips into
• pattern classifier is shown.

The potential of on-board classification has
both possible gains and hazards associated with
it. With the obvious benefits of timely data
availability comes the potential of the unavaila-
bility of the raw data for further processing.
This difficulty is discussed in Section 4.

2. Device Background

Charge Transfer Devices may be defined for.
the purposes of this paper as devices which move
charge linearly in synchronism with a clock. If
the charge is quantized in a binary manner, CTDs
may be used as digital delay lines or as shift
register memories. It is, however, the ability of
CTDS to move analog data that has resulted in
their widest application. They have been used to
acquire analog video data and to process analog
data from other sources. Special classifier hard-
ware fits into this last category.

Charge transfer devices may be divided intc
two classes: the "bucket brigade device" (BBD)
and the'bharge coupled device" (CCD) with various
subclasses within the major groupings. The two
types of CTDS differ in the manner in which charge
is stored and transferred from cell to cell and
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have slightly differing performance characteris-
tics.

Most CCDs have lower noise figures and higher
transfer efficiencies (the percentage of charge in
the original cell which is transferred to the new
cell) than BBDs.

When used as analog signal processors, charge
transfer devices may be employed to obtain complex
functions of the input waveform. One such

function is Ea ibi Jlere the 'b's are samples of the

input waveform and the 'a's are weighting
coefficients. This function is found in recursive
filtering, correlation, convolution, and a number
of other operations.

Buss  shows a simple means for implementing
"fixed tap weight" devices where the tap weights
are the weighting coefficients of the Eaibi

function and are fixed at the time of manufacture.
The tap weights are realized by splitting the
transfer electrodes of one clock phase of the CTD
in the ratio (1 + a i): (1 - a i ) where a  is the'

ith desired coefficient.

In an alternate and potentially somewhat more
useful approach, as shown in Figure 1 and photo-
graphed in Figure 2, the corresponding cells of
two CTD delay lines can be connected to multipliers
and the multiplier outputs then summed. Ian this,
case the result is again Eaib i , but the weighting

coefficients are determined by the data stored in
the second CTD and may be changed simply by
clocking in new data.

Such variable tap weight devices may be used
as sampled correlators of continuous analog
signals. More important to this application,
however, is the fact that since they operate on
discrete data samples, variable tap weight devices
may be used to generate the vector dot product,

n
X•Y = E X . where n is the dimension of the

i=1 1 1

vector and may be as large as the number of cells
in the CTD. This product is obtained simply by
loading one vector into one side of the CTD and
the second vector into the other. The answer thus
obtained is the result of one row by column opera-
tion of a matrix multiplication.

Unlike conventional filtering applications,
in which a useful new result is available each
clock cycle, dot product operations with two
arbitrary vectors require that the entire CTD be
loaded before a useful answer is produced. Thus
for a typical 16 component vector, 16 clock cycles
Are required to load the device. However, 5 Mhz
clock rates are quite reasonable, making it
possible to perform 16 multiply and add operations
in 3.2 us.

3. Pattern Classification Hardware

It has been shown  that for the purpose of
LANDSAT data classification, all pixels belonging
to a given class may be described (typically), by
a multimodel multivariate distribution. The
multimodel distribution may be adequately
decomposed into an aggregate of Normal distribu-
tions. Classification then consists of determining
which of several Normal distributions a particular
pixel is most likely to belong to and assign the
pixel to the class having that distribution. With
this assumption, theprobability that a vector X
belongs to a class i is

P(wilX)

1

(2x)
N12 (IC ill/2) EXP(-1/2(X-ui)TCi-1(X-ui))

Where C  and u  are the covariance matrix and mean

vectors respectively which describe the statistics
of class I.

The usual definition of the Normal distribu-
tion includes a term representing the a-priori
probability P(wi ) that a sample X belongs to a

particular class wI , Experience has shown that

very satisfactory results can be had by treating
all a-priori probabilities as equal. If this is
the case, then for the purposes of classification,
the a-priori probabilities may be neglected.

Taking the logarithm of the probability gives
a discriminant function

g i(X) = tnP(wilX)

-1/2(X- P i ) TC i -1
(X-p i ) + tn l C J 

-1/2 + tn(2e-N/2)

Since the logarithm function is monotonic,
the class having the largest discriminant function
for a given measurement X will also be the class
having the largest probability P(w i lX) that X

belongs to that class.

tn(2n -N/2 ) is a constant for all classes and
therefore does not contribu ,Ce to discriminating
one class from another. Furthermore the term

In ICI .-1/2 needs to be computed only once for each
class.

(X-u i )T C i-1 (X-u i ) however must be computed

for each of the millions of measurements mach in
an image. Consequently, this matrix computation
-with a general purpose computer is very time
consuming.

Figure 3 shows a block diagram for a hardware
configuration of a system for classifying multi-
spectral data.

Data may 'come directly from a sensor array in
analog form or, for purposes of testing, from a
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microcom.iwirt lwd: th,.t , tatisticL inter an
array of parallel CTD classifiers, controls
steering of the data input to those classifiers,
and examines their output..

The individual classifiers are shown in
figures 4 and S. In figure 4, each of the row-
column dot product operations is performed in a
charge trant4 er device. The outputs are multi-
plexed together and fe! to one more CTD for the

postmultiplication dot product.

In contrast, figure 5 depicts a hardware

simplification which also results in increased

speed since it eliminates the miltiplexer and a
delay. This simplification is made possible by
the following argument:

by the constructed diagonal symmetry of the

C matrix, the product z = (XT 1 IC" 1 1 (XI may be
rewritten as

z - (XT I(A) T (A)(XJ where A is upper triangular
t hen

z	 (XTAT) JAX)

JyT11Y)
Y?

The matrix operation shown in figure S can be

decomposed into cellular substructures as shown, in

figure E. If 8 features are assumed, then 8 of
the sum-of-products structures in figure t are
needed -- one for each row column operation.

At the conclusion of the training etude, the

processor loads of the covariance matrix
associated with each class into the covariance
me-mury associated with each cell. If 8 possible
classes are assumed, this memory is 64 x 8 bits
as shown. During this time, the X-u vector for

each class is loaded into the X-y RAM. also.

At this point, the hardware controller takes
over and performs the discriminant function

computation. The outputs of all sum-of-products
cells are summed and passed through the analog

to digital converter whose output is read by the
processor as shown in figure 7. This operation

is repeated for each class simply by stepping to
the next group of covariance matrix rows and X-u

vectors in RAM. The processor then classifies the

pixel as belonging to the class where discriminant
function was maximized.

Operating the classifier in this fashion with

longer memories holding all of the statistical
information allows the use of only a single

classifier without the need to reload th,e

covariance inlu rmition for each discriminant
function calculation. In this manner a significant

reduction in hardware over the use of a separate
classifier for each class is realized with only a

slight reduction in operating speed.

it 	 rla:.:.fflc -it Ito

Le have Lb..wr. in this paper an architecture

w'.ich mats feasibl e the possibllity of on-!ward
cAdesification. An on hoard classifier offers

significant potential gains in performance of the
satellite system; data would be available to the
user in minutes rather than months.

There are significant logistical and technical
problems which must be overcome before these

benefits could become reality. In this section,
we demonstrate only a few and their potential
solutions.

A Scenario

We will make this demonstration through a

scenerio of how a typical classification might be
performed:

(1) A county agricultural agent reserves the
satellite for its next pass over. In so doing,
he specifies the coordinates of some areas known

to be corr., soybeans, and cotton.

(Z) The coordinates of these training sets are
transmitted to the satellite. As the satellite
passes over, image data is acquired and stored.

The on-board classifier performs a cluster

analysis on the training sets and derives a
Gaussian fit for each cluster.

In an alternative proposed system  the satel-

lite clusters the entire scene, transmits the
cluster statistics, and for each pixel, transmits
the number of the cluster to which that pixel is

assigned.

(3) Once appropriate statistics have been derived

to describe training sets, the classifier described

in section 3 is initialized by loading the
statistics into the RAM:, and the data is then

classified as belonging to one of the classes
identified as corn, soybeans, or cotton. The
results of the classification are then encoded
and transmitted to the ground.

(4) The agriculture agent then can receive a false

colored map of the area or a digital tape with the

classification results.

:t should be noted that this scenerio hws

passed over a significant amount of pre-processing

which must be done to the sensor output prior to
classification, including correcting for geometric

distortion.

On board classification provides a tremendous

potential benefit since it makes reasonaCle dire--t

user interaction with the satellite; and provides
data for the user in expeditious time. The one
factor which some users may consider detremental
in such a system is the fact that no longer doe:
the ground user have the raw data to mull over at

his leisure.

This factor does open u; a new area of study,
for in those instances when the user has both, a
com;uter and the time to study the image, he may
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Abstract

The potential uses of Charge Tran&frr Devices
(CTUs) In pattern classification operations are
explored. The needs for a hardware-based pattern
classifier are established, and a matrix multipli-
cation subsystem based upon a sum of products CTU
Is presented. An evaluation process for sum of
products devices (particularly analog-analog eor-
rrlators) is developed, and the , feasibility of
emploving a particular device in a pattern classi-
tier is determined.	 Finally, the possible Impact
of future trends in technology is considered.

1.	 Introduction

kecent technological Innovations are cocking
general purpose computers cheaper and more accessi-
ble. Witness, for example, the dramatic Increase
In computational complexity avallable per dollar
In just the last five, years. These same techno-
logical Innovations are mocking instrumt•ntation
packages simpler to use, morel computationally
dense, and much less expensive,	 It to thus becom-
ing more and more reasonable to talk about special
purpose, dedicated pattern recognition equipment.

Wt, can discuss only a brrall subset of the
"pattern recognition problem" In this context since
that larger problem is far from well defined, much
less solved, and "special purpose equipment"
implies that we art, trading away flexibility in
exchangr for speed and/or simplicity of use. We
have chosen to deal with the problem of multispec-
tral satellite image classification.classification.	 Under certain
absumptlnns, this problem can be considered well
defined and a pressing need exists for special
equipment which can deal rapidly with the vast
amounts of data comin ► from satellites even
minute.

NASA has been and contlnurs to be concerned
About the fact that present (general purpose
(omputrr-based) techniques art- too slow and to,
expensive to be,Fin to dial with more than a tlnv
traction of the 1.A.'<DSAT data which th current)v
available. This paper is one of the results of an
onrolnp stud y conducted by NASA to Snvestipate
technoloyleh which might contribute to the solution
of this data processlnp bottleneck.

This paper discusses the use of mw • tal-oxlde-
memiconductor (MOS) technologv in the construction
of special purpose equipment for pattetr.
clahslflcation.

"In1& work was supported b y NASA kebe arch Grant
NSG 1)53.

Katy f Hunt
NASA•Langley Research Center.
Hampton, VA 23665

2. Device background

Charm transfer devices may be divided into
two classes: the "bucket briradr device" MW
and the "charm coupled device" (CCU) with various
subclasses within the major rrouptng&. The two
types of CID& differ In the eanner In which charge
1s stored and ttansferred fro¢ cell to cell and
have &lightly dlfferinF performance characterlbtics.

Most CCDs have lover noise figures and higher
transfer efficiencies (the percental • t• of charge In
the oriFlnal cell which is transferred to the new
cell) than bblib.

Ulu• n used as analor sirnal processors, charw-
transfer devices mAv be employed to obtain complex
functions of the Input waveform. One such
function Za t b t where the 'b's are samples of the
Input waveform and the 'a'& are weighting coeffi-
clents. This function Is found In recursive
filtering, correlation, convolution, and a n..mber
of other operations.

As shnwn In Fiyurr 1 and photographed in
Figure 2, the corresponding cell& of two CTD delay
lines can be connected to multipliers and the
multiplier outputs then summed. In this case the
result Is again In I b t , but the wrirtcting coeffi-
cients are determined by the data stored in the
second CTU and may be changed simply by clocking
in new data.

Such variable tap welpht devices may be, used
as sampled corrc•lators of continuous analoF b1F-
nals. More Important to this project, however, Ss
the fact that since then operatr on discrete data
samples, vatlable tap welpht devict • b mev be used
to Fenrrate the vector dot product,

)i	 1'	 L x t y t where n is the dimension of the
1.1

vector and ma y be as larye as the number of cells
In the CTD. This product 1h obtalnrd simply by
loadlnr one victor Into one side of the CTD an'
the second vector into the other. The answer thu-
obtained is the result of one row by column
operation of a matrix multiplication.

Unlike conventional filtering appllcatl, %, 1t.
which a useful new result is available vac', cl,,.
cvcl y , dot product operations with two arbltrar%
vectors require that the entire CTD be load,'
before a useful answer is produced. Thus fir a
tvpical lb component vector. Ib clock cvclrs are
required to load the device. However, S Klrt cleci
rates arc quite reasonable, m64-lnF it posbitle t.
prrfrr- It r.ultlpl% anc: add operative,- 1! L. .. .
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I .	 1'allt- ► n fla

In tilt case of s.ult I'-I • - I cal I	 -s	 ...	 If I-
ntton, the Input,	 X. 1h is v. - t,t rt h ulttnl It.'

ms allurements of light lnttn •.11v In o— vt-ral d111er-
rnt spectral langrs.	 I.acl, vector	 X cot rerpond,

to a single point (plxal) In a scene. A typleal
IJINUSAT scene consists of an array of , ,vur one
million ordered pixels.

It has been shown 111 that for a given class,
all pixels belonging to that cla p s may be reason-
ably described by a multivarlate normal distribu-
tion. With this assumption, the probability that
a vector X belongs to a Blahs 1 is

P(1/X) -	 N/211 EXP(-u I ) T 	I1(X-ut))
(2-	 Ii/ )

6'here L 	 and li t are the covariance matrix
and mean vectors respectively which describe the
statistics of class 1.

Taking the logarithm of the probability gives
a discriminant function

9 I (X) 
G 

in(P(1/X)) - -111(X-w I ) T L-I(X-yI)

+ trill Iil 2 + tn(2r-ti/`)

Since the logarithim function to munotonic, the
clash I-aving the largest discriminant function for
a given measurement X will also be the class
having the largest probability P(1/X) that X
belongs to that clabb.

in(271 -N/2 )	 ih a constant for all clatises and
therefore does not contribute to discriminating

one clabb from another. Furthermure. the term

inil P/1 needs to be computed only oc,ce for each
class.

(X-y t ) T _ I I (X-y t ) however must be computed
for each of the millions of mt • asuremcnts made in
All Image. Consequently, this mitrlx computation
with a general purpose computer ih very tlrm
consumint.

Figure 3 chows a block dlagrac. for a hardvar,

contIpuration of a system for classifying multi-
ayectral data.

bats may come directl y from a sensor arra y in
analog fore or, for purposes of testing, from a

digital data source. The microcomputer is the con-
trol element for the s y ster_.	 In a training mode,
It deriver. the statistics which describe the
various classes.	 In classification mode, th,
microcomputer loads thost statistics into an nrrac

of parallel CTU elaasiflurb, controls steerinl, of
data Input to those classlflerb, and examines their
outputt..

1•	 .	 ff	 r	 is	 ..	 .	 ,
ur	 .	 u	 I	 t t..	 e • .

I	 d t{ t	 r t ­ { t rat 1••n • 	1•. I,erforr . d Is• is
t1..r,	 lt..	 It s d, vi to. .	 Ila uutputs att m„Iti-
1 1• ••	 t ,• tl,cr ,no(! fed to , cont Port CTi) for list-
L	 t • Of 11 :1catlnn d, t p ► t•du.t .

It, contrast, firute 5 de•l.Icts a hardware
sirpllflcation which also, results in lncreabrd

speed since It eliminatrs the multiplexer and a
do-Inv. This almpllflcatton Is made Iraslblr by
tile- d'aro , -1 avr_-,try of the ••,varlance matrix
which may be traneforred In t o upper triangular
form.

The matrix operation shown In figure 5 can
be decomposed Into cellular, substructures as
shown In figures 6 and 7. At :he conclusion of

the training mode, the processor loads one row of
the covariance matrix into the first-In-first-out
memory associated with each cell. The hirdwrr
then takes over and under contic•1 of the clock

Venerator, pertorms the cutire discriminant func-

tlun computation.

On a pixel by pixel basis. the output of the

Individual hardware classifiers are digitized and
read by the processor, which then classifies the

pixel as belonging to the class whose discriminant
function vas maximized. Using 128 CTDs, a pixel
described by It multibpectral meahurements mty be

classified Into one of nine catarorles in 3.2 4s.

4.	 In Situ Cell Qualification

The critical e• lerwrit In the pattern classifier
system is the charge transter device which perlorms
the row - column multiply. lxtensive testing has
been performed on prototype units which have

recentl y become available from semiconductor
m v,ufacturers.

The hardware test station shown In flgurc 6

has been implemented.	 It tests individual devices
In a cellular structure similar to the structures

used in the classifier.

Typical results of some of these tests arc
shown In figure 9. Shown are results of tebtln^

three different d r v; ces, the ketieon AAC-31. a

31 element unit, the 5403, a mudlfted AAC-31, and
the 5401, a Its element unit. The f1pure shows

output numerical computations In families for
varying input number!..

In going from the AAC- 32 to file 5403. ketit,rt
significantly improved the numerical range of

calculatfont•.

5. Concluder

This paper has shown one method of lt.pler.

ing dedicated hardware for pattern elassific.stt

kecent technological developments have made sit.'.

classifiers feasible • using sarnitd analc• ►
processon,.
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ABSTRACT

This paper addresses a particular application, that

of tracking moving objects with a television camera, (1, 2,

5, ....) and deals in this context with the interactions

between motion, image gradients, and image representations.

A representation for moving images in terms of Taylor's

series expansions is developed, and application of this ex-

pression is shown to suffer From the assumption that images

are continuously differentiable. A simple numerical example

is given, and the velocity-segmentation work of Fennema

and Thompson is e3tplained in this context.

It is concluded that motion information results only

from the motion of edges and that not understanding this

principal can lead to problems.

Correlation trackers, and in particular, a tracker

developed by Fitts',are shown to, in fact, correlate the

motion only of edges.

Finally, in the appendix, it is shown how Fitts' tracker

can be derived from first order Taylor's series assumptions.

Key words: Tracking, gradients, motion.
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1. INTRODUCT10N

t
	

Traditionally, the intensity . function representing the bright-

ness at a point in an image is considered to be a two dimensional

continuous function, I(x,y). Image operators derived using this

model are then discretized by setting Ax and Ay to one in the finite

increment model.	 '

We will extend this model to consider the possibility of motion

within a scene by allowing the intensity function to vary in x,y, and

t. The images will be modeled in the context of digitized television

images, therefore the t will be discretzed to the frame-to-frame

time interval.

We will examine a particulaz model for the image, the Taylor

series expansion of the d.ntensty function, and it will be shown how

this expansion leads to a mechanism for segmentation and velocity

detection. The capability of segmentation results from the concept

that all the pixels having the same velocity will belong to the same

region, Some	 work in this area has been done by Fennema and

Thompson 131, and is extended here. A second method of determining

pixel velocity will then be considered, a correlation tracker. This

method was introduced by Fitts (4]. The correlation tracker assumes

that at least some segmentation has already been done and, in fact,

this method estimates the velocity of a group of pixels. We will

then compare the velocity estimation accuracies of these two methods

and come to some rather predictable conclusions that better tracking

can be done if some segmentation has already been done. (See 16, 9,

11, 13) for related work).



The fundamental weakness of both of these appronclies Will then

be noted. We will generalize this to a philosophy for dealing with

digitized images.

2, THE TAYLOR SERIES MODEL FOR TIME -VARYING IMAGES

For purposes of clarity, we will at first describe the intensity

function I as a function of a single variable, x, and consider the case

of shifting I(x) .

I(x) thus, represents in one-dimension the grey scale values of

the object to be tracked. It will be the same function in two sequen-

tial frames, but will be displaced in x.

Consider the following example, I(x) R x2 . This is shown in

Figure 1,

i	 7 l..l	 T (v>

x1

At some point on the x axis, x l , we measure I0 (x 1) from the

first frame, and later, at this same point x 1 we measure Il (xl) from

the second frame. But the two functions are the same except for a

shift in the axis, so

Io (x-8)	 I1 (x) .	 (1)

ORIGINAI, YAG.O ISOF PW't Q IJAt II,y



Expanding; 10 (x. - 6) about x l , we get

Io (x l -s) _ Io (x l) - 6Io(x l) + -7- I01 (xl)	 (2)

and from the equality (1) we find that

I l (xl ) - Io (xl -d') = Io (xl) - Io 
I 
(xl ) 6 + It I (xl ) 2 - ...

, 2

and finally

2

I1 (xl )	 Io (xl) - aI° (xl) d + --- (xl) d2	 (3)
ax	 ax	 2

I0 (xl ) is the value of the intensity function measured at point

xl in the first frame, and likewise, 1 1 (xl ) is measured in the sec-

ond frame. Thus, if we,can compute or accurately estimate the gra-

dients in the first frame, we can solve the above equation for the

displacement a.

Now, let us consider the extension of this concept to two di-

mensions. Assume we have a function I 0 (x,y) and a second function

I l (x,y) which results from shifting I o (x,y) through ax and a y . That

is ,
Il (x ,Y) = Io (x - ax,Y- a y)	 (4)

Expanding Io (x-ax ,y- a y) at a point (xl ,yl ), we get

1 (x -a ,y -a ) = I (x ,y ) - 
aIo 

(x i ,Y l) .a + aI° (xl ,y l ) .a0 1 x 1 y	 0 1 1	 ax	 x^	 y

a 2Io (x1.Yl) 2	 2a21o(xl.Yl)	 a2IO(xj,Yl) 2
+ .^	 ^	 x	 x Y	 2

ax	 axay	 ay

However, we know	 from (4) that this is equal to 11(xl,yl ) which
is measured in the second frame.



Now, let us consider the following notational simplifications

and define

alb(xl,Yl),
	

. aIo(xl'yl)
R Gx	 ax	 y	 ay

3
2
1 (x ^Y )	 02T (x ,Y )	

a2T 
(x ► Y )

G 
s	 o ]. 1	 G s	 o l l 	 G ^

	 o l 1,
xx ^	 YY — ay	 xY axay

1 1	 ,

and Al ` 
I1 (xl' yl) - Io(xloyl ) , and this reduces to

DT _ .Gxx d 2 + - ̂62 +.G dx	 x xd - G d - G d	 (6)
2	 2	 Y	 xy	 Y	 Y Y

Thus, a single pixel (x,y) substituted into (6) will yield.a

quadratic equation in two unknowns, 6  and dy . However , all pixels

having the same velocity will have characteristic equations whose

solutions pass through the same point.

In practice, due to noise, one finds that the solutions pass

throggh • nearly the same point, so that a clustering technique may

° be used to find the best approximation to that point of common inter-

section., thus yielding an algorithm for finding frame -to-frame displaceme)

2.2 Several Numerical Examples

Let us consider the ability of this representation to determine

the displacement of a simple signal. Assume displacement only occurs

in the x direction so we may use the simpler , one dimensional form

Al	 G *6 2 - Gxdx

or

d x GX t. GX + 2GXX,&I

Gxx



1

or, in the case Gxx 0, we use

x G x

First, we apply the -technique to Io 	 x2 between -6 <x<6

X -6 -5- -4 -3	 -2 -1 0 1
r

2 3 4 5 6

Io 36 25 16 9	 4 1 0 1 4 9 16 25 36

1 1 64 49 36 25	 16 9 4 1 0 1 4 9 16

Gx -12 -10 -8 N-6	 -42 0 2 4 6 8 10 12

Gxx 2 2 2 2	 2 2 2 2 2 2 2 2 2

Al 28 24 20 16	 12 8 4 0 -4 -8 -12 -16 -20

6x 2 2 2 2	 2 2 2 2 2 2 2 2 2

On this signal, the algorithm works exactly, Now consider it on a

. pulse.

x -6 -5 -4 -3	 -2 -1 0 1 2 3 4 5 6

Io 0 0 0 2	 4 4 4 2 0 0 0 0 0

Il 0 0 0 0	 0 2 4 4 4 2 0 0 0

Gx 0 0 1.18 2	 1.18 0 -1.18 -2' -1.18 0 0 0 0
I

Gxx 0 .643 1 0	 -1 -1,18 -1 0 1 .643 0 0 0

Al 0 0 0 -2	 -4 -2 0 2 4 2 0 0 0

a 0 0 2.35 1.00 -4.24 -1.84 2.35 1 1.18 .8 0 0 0

or +1.88 +1.84 -4.24 -.8
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After experimenting with this algorithm with several different

signals, we observed the followings

"-
"

1)	 For signals continuous over the domain, 6 is computed
exactly.	 For example,

$ ' x2

} y	 (x-6x) 2

Computing this function analytically for s = x2 yields an exact

-• result.	 That is 6 - 6x for any 6x .	 We need to , point out that

S(x) is continuous in all derivatives and defined over the	 tire

interval from	 -a to a for any a.

;K 2)	 A test of the predictor was made numerically, again using

S - x2 , over the interval -6 to4 6,	 With Ax - 1, the following

numerical . values.

x -6	 -5	 -4 -3	 -2	 -1	 0	 1 2	 3 4	 5 6

s(x) 36	 25	 16 9	 4	 1	 0	 1 4	 9 16	 25 36

y (x) 64	 49	 36 25	 16	 9	 4	 1 0	 1 4	 9 16

as
-12	 -10	 -8 -6	 -4	 -2	 0	 2 4	 6 8	 10 12

W
12	 10	 8 6	 4	 2	 0	 -2 -4	 -6 -8	 -10 -12

_y-S 28	 24	 20 16	 12	 8	 4	 0 -4	 -8 -12	 -16 -20

j	 W(y-s)

!

336	 240	 160 96	 48 -	 16	 0	 0 16	 48 96	 160 240

,- jW(y-s) a 1456

(( as 2 144	 100	 64 36	 16	 4	 0	 4 16	 36 64	 100 144
2

E ^
as i

x
- 728

d EW(Y—S).._. - 1456	 2

=
'
as

2	 72g
E [ 1"XJ

A
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This rather remarkable result, an exact answer, can be attributed

to the fact that x2 is a nicely behaved function.	 Let us try it	 j

,. with some other functions which are not quite so nice, t I

77 -6	 -0 5	 -4	 -3	 -2	 -1 0	 1	 2	 3 4	 5 6

s	 t 0	 0	 0	 2	 4	 4 4	 2	 0	 0 0	 0 0

Y 0	 0	 0	 0	 0	 2 4	 4	 4	 2 0	 0 0

r1
as
TX— 0	 0	 ,, 1.18 2	 1.18 0 -1.18 -2-1.18 0 0	 0 0

r
W 0	 0	 -1.18 -2	 -1.18 0 -1.18 2	 1.18 0 0	 0 0

. y-s 0	 0	 0	 -2	 -4	 -2 0	 2	 4'	 2 0	 0 0

W(Y-s) 0	 0	 0	 4	 4.72 0 0 4.72	 4	 0 0	 0 0

j E(w)(Y-s) 17.44

R
s 2
X 0	 0	 1.93 4	 1.93 0 1.93 4	 1.93 0 0	 0 0

2

E C^
15.72

d s 1.1 a significant error from the correct value of 2

G
Suppose the function s(x) is a longer duration pulse, but with the

same edge values. 	 In this case, we observe that if the object is

homogeneous in the interior, the W term will be zero at those points

E

and contribute nothing toward the sum.



Consider one more experiment, assume the signal is a step edge

x	 -6	 -5	 -4	 -3	 -2	 -1	 0	 1	 2	 3	 4	 5

s	 0	 0	 0	 0	 4	 4	 4	 4	 4 0 0 0

Y	 0	 0	 0	 0	 0	 0	 4	 4	 4 4 4 0

TRI0	 0	 0	 2.56 2.56	 0	 0	 0 -2"56-2.56 0	 0

W	 1.	 0	 0	 .0	 -2.56 -2.56	 0	 0	 0 2.56 2.56 0	 0

yd" Is 	 0	 0.	 ' 0	 0	 -4	 -4	 0	 0	 0 4	 4 0

W( Y -s)	 0	 0	 0	 0 10.24 0	 0	 0	 0 10.24 0 0

Ew(y-s) =. 20.48

as 2	 0	 0	 0	 6.55 6.55	 0	 0	 0 6.55 6.55 0	 0
Vx

2	
t

E 8	 - 26.2

w
6	 .78 An even larger error

We can now understand intuitively the operation of Fitt's

predictor.. When an object moves from one frame to the next, a

signal is produced in the difference image y-s. For objects which are

homogeneous in their interiors, no information is contained in

those homogeneous regions, only at the edges. Thus, it is not the

motion of an object which must be tracked, but the motion of the

edges of that object.

With this, we see that

	

fw(y-s) de	 f ( z,) (y (e) - s(e))  de

is in fact nothing more than the correlation of the edges of an

object due to intensity changes with the edges due to motion.

Thus we can conclude:

1) Tracking is a gradient-based operation. Only the motion of

edges is significant.

2) The motion of the object from one frame to the ndxt must be



small, not small with respect to the size of the object, but small
with respect to the distance over which meaningful information can

be gleaned from the gradient. That is, motion must be less than

the edge width.	 •

These conditions result from the antithesis of the continuity

assumption for images. Images are in fact NOT continuous functions
i	 •

of space and intensity, but do contain step discontinuities, and the

fewer number of grey levels in the digitization process, the worse
I	 '

the continuity assumption becomes.

We now see more clearly why it was necessary for Fennema and

Thompson [3) to blur their images, for this makes the continuity

assumption closer to valid, but induces increased uncertainty in

object location.

These two conditions above must hold if tracking is to be done

utilizing only pixel grey value information. However, if some

image preprocessing has been done, it may be possible to permit

larger frame to frame displacements. One possibility would be to

track some feature of the object which is more likely to be continuous

than its intensity. A typical such measurement might be the vertical

cross section.

The alternative is to admit that digital images are not

continuous and that classical signal processing techniques simply

are not appropriate, particularly ' if binary images are being tracked.

We can then deal with the data with that thought in mind.

4. CONCLUSIONS

In general, we feel that segmentation is necessary for good

tracking and conversely, motion information can be a good cue to

direct a segmentation operator to the appropriate area. Thus, a

feedback structure is necessary, containing both the elements of



segmentation and tracking, with the ability to average out the

background over time and to extract trackable features from the

region of interest.
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5. APPENDIX

Derivation of the Fitts' tracker from a first order

Taylor ' s series expansion.

The measur&d signal y (x) is assumed to have the form

V
	 y(x) - s(x-A) + n(x)

where the expected signal is s(x) and n (x) is noise. For

purposes of this derivation, we will ignore the noise'term.

Then expanding y(x) , - s(x -A) in a Taylor's series we get

+(
(x)	

s(x) - ass 	 as) a22y 	 - ...
ax	 ax

=	 -(x) âsA, or

(1)	 A Wx - s(x)-y(x)

t

x

}

4 ab..

We can make this equation independent of x by integrating

over the non-zero domain of x. However, since

b

ax dx - s (b) -s(a)
a 

may be expected to be zero, we must first multiply both

sides of eq (1) by x (assuring a non zero integral), and

then integrate

A t(a ) 2dx f a (s(x) -y(x) ) dx
a	 a

'F	 b
.► 	 p - 1 b s (e (y) "Y (x) ) dx ; ' where c ^' • f ( aX) `{ dx .

c I' x	 a
a
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IIntroduction.

The last thing it would seem that the image processing

community needs is yet mother way to compute image gradients.
The subject would seem to have been exhaused, since it is dia-
cussed U numerous textbooks,	 (2, 3, 5)	 (just to list a few) and
literally hundreds of papers ;we will not list them) 	 (1) provides

• one survey) yet here we are, about to report on another gradient
- operator and worse yet, an operator which is not computationally

efficient! There is only one thing which motivated us to develop

this operator, an intense need for accuracy. This is because we

are modeling frame to'frame motion, and using in some cases, the
value of the gradient to pedict the intensity function in the
next frame. Consequently, we could not be satisfied with an edge

detector, or some vector in the correct direction and proportional
to the magnitude. For example, to represent an image by its

I	 ¢'
I

Taylor's series,

I(x,Y)=1(xo'yo) + a
x (xo pyo ) (x-xo) + ay(xo ,yo ) (Y-Yo) + ..,

{ requires that the partial derivative terms be evaluated as closely

as possible to the correct value, not only in direction, but also

in magnitude.

The image processing literature is filled with techniques

for computing gradients of pictures. There are linear gradients,

mask gradients, statistical gradients, and many others. Virtually

all of these return a number which is an indication of the di-

rection and magnitude of the gradient vector.

Th simple mask

f (if j )-f (-1, j)
t	

•

yields 
ex
 at point i,j, however, such operators are sensitive to

--	 noise, and operators which cover a larger area are desirable since

they tend to filter noise.



i

i '	 Sobel (2 0 P271) proposes finding dx at (i,j) by computing

I

Where f(i,j) is an averaged version of f(i,j) computed by taking

a weighted average of pixels about (i,j) in the vertical (y) di

rection. N'rhis gradient has good smoothing properties, and there-
fore is not so sensitive to noise, however some observations need

to be maces

1) The Sobel operator actually returns twice the gradient,. since

it is taken over a space of two pixels.

t

2) The operator achieves smoothing by throwing away information,

the center pixel is ignored.

Some authors EPrewitt, Rosenfeldi point out that one way

to find the gradient is to fit a curve to the set of points, and

then to differentiate that curve. In this paper, we propose to
fit a plane to a 3x3 set of points, and the slope of that plane

will be the gradient.

We will compute asaf and ay separately, and in fact reduce

the problem of fitting a plane to two line fitting problems.

For purposes of clarity', the following explanation con-

siders only X,. The argument for the y axis is symmetric.

Definition: f(i,j) is the value of intensity at point i,j,

where i corresponds to the x coordinant and j to the

y coordinant.

Definition: f(i,j) A (f(i,j- 1)+2f( ,j)+f(i,j+1)/4 is the

weighted average (as in the Sobel operator) of the

intensity at a point, averaging being done only in

the y direction.

Thus, in a 3x3 neighborhood, we can compute three hori-

zontal intensity values (for notational convenience, we will

rename these variables) f(i- 1,j) AIa , f(i,j) QIb	, and f(i+1,j)=Ic.



i

w

We now wish to fit a straight line to these three

points. The slope of that Line will be the gradient at i,j. To

avoid the coordinant-dependent degeneracy problems pointed out

by Duda and Hart E23, we will use eigenvector line fitting.

We will consider each point as a vbctor spanning the

space < i,f(x)) (having eliminated the y coordinant for the time

being.

111

	

1 2,	 113

121	 122	 123	 => 1a Ib Ic

131	 132	 133

example

3	 8^	 11

4	 8	 9	 =>4 8 10

5	 8	 11

'	 Now Ic-lo t Ib=8, and Ia=4

Then the vectors a, b, and c can be defined:

10

9	 c

8

7

6

5

4	 b

3

2	 a

1



Fall"

a

Let the mean vector ;T < mX ,Ml > ,
where mx-xb and mI= (Ia+Ib+Ic ) /3. The best fitting line will pass
through this point.

We now transform the coordinant system to put the

origin at m by subtracting m from each point.

t
va	 <(x a-x b ) , (Ia-^ml ) ^

Tvb	 o	 , ; Ib-mI

v^ 	 <(xc-xb).(Ic-ml )>

T

Now, we compute the scatter matrix of the three points,

(define the scalar m 
0 

mI ) .

•

3	 a(x -x )

S	 E v vT _	 b	 C(x -x ) ( Y -m)]i- (Ia-m ) L a b	 a	 +

[

0	 1*0 (Ib-m)]	 (xc-xb) [ (xc-xb)	 ( Ic-m)]

(I b m)	 [(I C-M)

We assume unit spacing on the x axis, so (x c-xb)=1 and

xb-xa=- 1 , and S simplifies to

2	 (Ic-m)- ( Ia-m)

S =

(Ic-m)-(Ia-m)	 (Ia-m ) 2+(Ib-m) 2+(Ic-m)2

Define C _ (I a-m ) 2+( Ib-m) 2+(Ic-m) 2 and Q = IC-la , and simplify

S some more yielding

1.



Ami"il^

2	 n	 ()I? 
p oAF, PAG L9 fS =

	

	 n QUA Id7,r
e

In the example above e - I c-Ia = 10-4 = 61
'1.

	

M = 10---^ 4	 7.33, and c = 18.665.

The line which best fits the data will be in the di-

rection of the principal eigenvector of S. Thus we must first

find the principal eigenvalue of S. The characteristic equation

is derived from

det(S-XI)

A	 R-A)

X2 - (2+;) a + (2;- e2) .

Setting det ( S-X I) = O yield's

X = 1 + ;/2 ± (Nl(2 +;) 2 - 4 (2;- e 2 ) /2

k	 1 + 4/2 + 1/2 (^l C-2) 2 + 4 ^ 2

Since we wish the largest eigenvalue, we will choose the

positive sign.

Now solving

(2-X)	 a	 e1

= 0 for e 1 and e2 will yield

	

e	 (^-a)	 e2

the principal eigenvector



The units we shall use for the gradient will be inten-

sity units per pixel. Thus, we will define the horizontal axis

to be measured in units of pixels. Therefore we can assume

xa -xb

In this case, let e2=1 then e1=A/(X-2). So the prin-

cipal eigenvector is 1(4/(a-2)) 13 and the best linear approxi-

mation to the 3 points is a line passing through m in the

direction [ ( A/(a-2))	 13. The slope of that line is

(1) slope = 
a-2_
A

which is the gradient in the x direction.

In the example: ',,.

1+ 1.8.26.5 + (2+18.665) 2 - 4(2(18.665)-36) = 20.602.

31 _ 20.6	 2 = 3.1
ax -	 6

We should observe at this point, that it is not

necessary to assume the sampling rate (xa-xb ) is equal to one.

If instead, the sampling rate is x a-xb = -k,	 xb-xc = -k,

for a positive real number k the solution yields:

(for Ic = Ia)

2	 /^---

(2) slope = X max- 2k F where X	 = 2k2+C+y(2k2-C)2+4k
2A2

kA	 max	 2

The solution (1) is degenerate in the case Ic = Ia , since the

denominator then goes to zero. This case is best handled by

explicity testing for Ic = Ia . In that case, one must then

test if ^<2. If so, the gradient is zero, otherwise infinite.



Conclusion

This paper has derived a mechanism for computing image

gradients from 3x3 neigborhoods. The method is based on fitting

a straight line to the 3 points corresponding to a weighted

average of the 9 points in the x (or y) direction. The method

is optimal in the sense that it minimizes the summed squared

perpendicular distance from the observed points to the line. It

is not efficient computationally, since it requires calculation

of a square root, but does provide highly accurate estimates of

the image gradient in the neighborhood.

:

I
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ABSTRACT

Region growing is often given as a classical example of the use of

a
recursive control structures in image processing. Recursive control

structure; hovever, are somewhat awkward to build is hardware, where

the intent is to segment an image at raster scan rates. This paper

describes a hardware structure capable of performing region labeling

iteratively, at scan rates. Every pixel is individually labeled with an

identifier signifying to which region it belongs.

The difficulties which often justify

regions, etc.) are handled by maintaining

,hardware, transparent to the computer, vh;

The mechanism for updating the region map

recursion ("U" and "N" shaped

an equivalence table in

Lch reads the labeled pixels.

is exptained in detail.

Actual implementation of such a system would require a content.

addressable read/vrite memory. Such memories are now feasible, using

existing LSI fabrication techniques.



1. Introduction

One central problem arising in scene analysis is the partitioning

of an image into a set of meaningful regions. These regions are composed

of all pixels that have similar attributes (such as grey level) and that

are connected to each other. One of the most powerful approaches to this

task is ,"region growing" <3>. This technique is initiated by choosing a

pixel which meets the criteria for inclusion in a region. It then

proceeds by examining all adjacent neighbors of the pixel and

Incorporating into the region all neighbors meeting an acceptance

criterion. This acceptance criterion is based upon the similarity

between the pixel and the neighbor in question. Typical measures of

similarity include the magnitude of the aeighboriag pixel's grey level

or the relative contrast between the pixel and its neighbor under

consideration for inclusion in the region. This process is repeated

recursively for all newly accepted pixels until no new pixels can be

added to the region. Then a new region is "grown" around a pixel which

has not been assigned to a region. When all pixels have been assigned to

a region, the algorithm terminates. Since the region growing technique

Always results in closed regions, this techniques is sometimes

preferable to other techniques which are based on edge detection or line

fitting.

Numerous variations and applications of the basic region-growing

technique have been proposed in the past. A critical component of the

region growing technique is the selection of appropriate acceptance

criteria. For example, if the acceptance criteria are based on the

thresholding of the contrast between a pixel and a neighboring candidate

pixel, situations can arise in which a final region does not meet the



original acceptance criteria <q>.

Brice and Fennema <1> overcame this problem with a region merging

}	 procedure. An image is initially partitioned into a large number of

regions each of uniform grey level. A pair of simple heuristics is then

used to merge similar neighboring regions. These heuristics are based on

the strength of boundaries separating regions and the rate at which the

boundaries of merged regions increase. Takimovsky and Feldman <2>

described a similar procedure in which the region merging criteria are

founded on Bayesian decisiontheory and heuristic tecbaig ues.

4N

Milgram et. al. <11> have described the super-slice algorithm for

region extraction based on edge detection and variable thresholding.

First, a thinned edge picture of an image is obtained. Nest, a range of

thresholds is chosen, and the regions resulting from each threshold are

computed. The threshold resulting in the highest percentage of border

paints which coincide with the thinned edge points is chosen to define

the regions. This method bears similarity to the work of Krakauer <8>.

Although region growing has proved to be an integral part of scene

analysis, its use can quickly become computationally prohibitive,

particularly for high resolution images. This has prompted some

researchers to consider alternative methods of region partitioning.

2. An Algorithm for Region Partitioning

The algorithm for region partitioning presented in this section is

a region growing technique based on the concept of equivalence

relationships between the pixels of an image. Two pixels a and b are



defined to be equivlaent (designated R (a, b)) if they belong to the same

region of an image. This relationship can be shorn to be reflexive

(R (a, a)) , symmetric (R (a, b) <e>R (b, a)) , and transitive

(R (a, b) U (b, c) =>R (a, c))
k

The transitive property enables all pixels in a region to be

t determined by consideFing only local adjacency properties. In this

elgoritha, each pixel will be compared first with the pixel to its left

and then with the pixel-above itself in a left-to y-right, top-to-bottom

raster scan faskon. The assignment of a region label to a pixel results

from this comparison operation. Figure 1 demonstrates the situation tha

can arise as a result of this comparison. Pixels in a simple binary

image are being labeled in raster scan order. The region labeling

proceeds in a straightforward manner until the equivllence relation

R(1,2) is discovered at the pixel designated by the question mark.

The system proposed in this paper employs hardware to assign regio

1	 labels toP ixels and to maintain a table of equivalence relationships.

Figure 2 shows that this hardware resides between the image memory and

host computer. Functionally, this hardware is transparent to the host

computer. For the example of Figure 1, all pixels will be perceived by

the host computer as belonging to region 1 (the lower numbered region

label takes precedence in an equivalence relationship).

The operation of the hardware is described in the flowchart of

figure 3. In order to understand this flowchart, the following notation

is introduced:



1(x, y) is the grey scale value of the (x, y)
pixel in the image memory.

N(x,y) is the region label number corresponding
to the	 (x, y )	 pixel in the image memory.

K is the contents of the i-th element in the
equivalence memory.	 This memory Is a
content-addressable memory.

K+ (il <•K ( j)	 implies the sequence;
1. 1) read K(J)

2) search K using i as a search key
(i,e. determine all 1 sock that K'(1)=i
write K(J) to all positive responders
of the search.

^- T is a tgreshold
iw

P is the highest numbered region label

^	 t

•N

r

e)a
t

3
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{
3

i

The algorithm is illustrated in Figure 4 for an arbitrary region

adapted from !llgran et, al. <11>.

9

As the region partitioning proceeds in real-time (i.e.

synchronously with the raster scan), two activities most be performed.

First, the h memory must be loaded with the region label number of each

pixel under consideration, and second, the K memory most be updated with

all equivalence relationships discovered. For example, if region 4 is

actually identical to region 2, then both K(2) and 9(4) will contain 2

(the lower numbered region label takes precedence). Hence, when the host

computer interrogates pixel (z,y) of the R memory, the
a

interface/processor interprets M(x,y) in terms of the K memory and

returns K(h(x,y)) to the computer. For example, pixel (10,10) in Figure

4 would be returned as belonging to region 1 since K (R (10,10)) =K (4)=1.

The difficulty generally encountered in this type of procedure is

the problem of chaining. That is, if R (2, 4) and R (3, 4) have been

determined, then R(2,3) must also be deduced. However, to require that
j

the computer search out all such possiblilities after the image has been !.

processed defeats the original objective of performing region
i

partitioning during the scan time. Chaining is avoided in this algorithm

by ensuring that K(2)-K(3)-K(4)=2.  However, this merely transfers the

chaining problem to the scanning and labeling process. Block 4 of the

algorithm flowchart shown in Figure 3 resolves the chaining problem.

Whenever an equivalence relationship is detected, all locations in the K `!

memory containing the larger region label number are loaded with the

smaller region label number. While the execution.of this step in

rual-time is patently absurd for conventional random access memories, it

It



in within the capability of the content-addressable memories discussed

in the next section.

3. an Architecture for Implementation

•_

	

	 The architecture proposed to implement the algorithm of section 2

i n shown in Figure 2. This hardware is intended as a special-purpose

+ 	 processor for an existing computer-based image processing system. Dori

et. al. C92 have also described a special purpose region labeling module
.F F

used with the Toshiba Pattern Information Cognitive System. However,

3.	 their system was not intended to operate at real -time (i.e. video)

rates.

The architecture of Figure 2 contains four major components: image

Memory (I), region label memory (M), equivalence memory (K), and an

interface/processor. The grey scale values of the image reside in the

^-	 image memory. Typically, the I memory would contain 512x512 bytes. The

region labels assigned to individual pixels are contained in the region

label memory. However, the contents of the M memory also include all

intermediate region labels for which equivalence labels were determined.

Therefore the contents of the M memory must be interpreted in terms of

r

	
the contents of the equivalence memory. The size of the h memory is

directly related to the bit length required to represent the region

label (including intermediate region labels) associated with each pixel.

This problem is further discussed in Section 4,

The I memory and the M memory are both conventional random access

memories. However, the equivalence memory is a content-addressable

memory. A content-addressable memory has the property that memory cells



can be accessed or (in this application) loaded by their contents

<5,6 0 7>. In this application, the content-addressable capiblilites of

the S memory are used as follows: The K memory is considered to have a

data bus into it, an address bus, and several control wires. (see Figure

5). in conventional read or write operations, the address is placed on

the address bus, the A control line set to zero, and the data will

appear on the data bus synchronously with the el clock line. In this

mode, it performs as a conventional RAN. In the also ciative, mode (A=1),

the data bus is interrogated during el, and all memory locations in K

ace compared with the contents of the data bus at that time. for each

memory location, there is a flag flip flop (F) which will be set or

cleared according to whether or not the contents of that cell matched

the contents of the bus. Then, during 92 time, the data which is then on

the data bus (presumably the new equivalence) will be read into all

calls whose flags are set. Thus, the operation 9 4t(i)=i can be performed

in two cycles of a fast clock.

High cost and technical limitations on the size of these memories

have traditionally hindered their widespread acceptance and use.

Halydware implementations of content-addressable memories have employed a

wide variety of performance. However, the development of VLSI and THSI

technologies should stimulate the use of such memories.

Critical design specifications for the K memory are the access

speed, memory size, and the ability to write an arbitrary number of

memory locations simultaneously. Most techniques for building

content-addressablememories emphasize one of these parameters at the

expense of the other two. For example, the multi-dimensional access

I

f
	 (RDA) memory of the STARAN computer 00>r with its bit-slice structure,



achieves the last two specifications at the expense of memory speed. Th(

parameter most crucial, to the development of a satisfactory memory, and

hence a system capable of operating in real-time, is the memory size. A

near real-time system will result if the memory size necessitates a

compromise in the access speed. The memory size is discussed further is

section 4 where simulations involving real images are investigated.

The final component of tke proposed architecture is the

interface/processor. The primary purpose of this unit is to execute the

algorithm described in Section 2 and flowcharted in figure 3.

Additionally, it must be capable of

1) processing the video signal input into grey scale values for
4

storage in the I memory, and

2)interpreting the h memory in terms of the K memory.

The ability to process images in real time will undoubtedly

mecessitate'a design based on special purpose, high speed, bipolar.

components. However, if near real-time performance is satisfactory,

currently available bit-slice microprogrammable microprocessors should

prove adequate.

4. Simulation

The algorithm was applied to a 128x128 "television image of moderato

complexity. Three cases were evaluated:

1) I1=I2,

2) ABS (I1-I2) <3,

4 connectedness

a connectedness

3) 1BS (I1-12) <3,	 8 connectedness

)



)	 In case 11, for two pixels to be considered in the sane region •

they had to have identical intensities, whereas in cases 2) and 3), two

pixels were considered in the same region if their grey values differed

by less than 3 (in a 6 bit image) .
t.

In case 3, the center pixel was compared, not only to the pixels

above and to the left,,, but in addition, to the pixel above and to the

tight (northeast). This is not true 8-connectedness, since the upper

left pixel was not tested, but it demonstrates the reduction in

complexity which results from this rattier simple change.

,4

Three parameters are of interest.

1) the number of elemental regions (those whose labels are stored in M),

since this affects the word width of h and K. and the length of K

2) the number of equivalence relations detected, since that indicates

amount of data reduction wAch occurs, and

3)the number of regions perceived by the computer, since that determiner

the amount of further processing which the computer must do before

useful information can be gleaned from the image.

The results are summarised below:



.1

=NOW'
	 ...

Case 1) 1589 elemental regions (requires 128x128x11 h and
204801 bit 9)

42 equivalences
M

1554 perceived regions
M

C^se 2) 392 elemental regions (requires a 128xI28x9 bit h and
t,	 5120 bit K)

315 equ ivakences

291 perceived regions (a significant reduction)

Case 3) 3118 elemental regions

412 equivalences

241 perceived regions
t

•h



The simulation required 4 seconds in PL'I on an Amdahl computer.

Figure 6 shows the contents of the h memory for a small area of the

i
	 image, and Figure 7 shows the same region as perceived by the computer.

It is interesting to note that most of the small regions occur because

edges have widths greater than one pixel, a fact that is reasonably easy

to detect and filter out (in this image).

5. Conclusion

In this paper we have addressed the issue of performing image

analysis operations in real time on television scanned data. We have

shown that it is possible to design hardware which can perform the

operation of region growing in this way. The concept of using

equivalence relations to partition an input set is fundamental to the

algorithm. And the use of content-addressable read/write memories is

essential to the implementation of such equivalence relation processing

in real time. This raises the question of whether or not such

associative lookup structures cannot also be used for other

traditionally recursive computations.
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THIS IS THE PRI -NY OF THE A MATRIX

ZEILENLAENGE =	 128 ZEILE:NZAHL =	 128

1*1 0 0 0 1 2 2 2 2 0 3 3 3 3 0 4 5 5 6

34 1 0 1 1 1 1 1 1 1 14 14 14 14 14 14 14 14 0 0

5*1 0 24 21 21 21 21 21 21 21 21 21 21 21 21 0 O 0 0

7;1 0 0* 0 0 0 31 21 21 21 21 21 0 0 0 0 0 0 0
rt

9*1 0 32 33 33 33 33 33 33 34 35 36 37 0 0 0 0 O 0- V

'Ll*^ 0 32 32 32 32 32 33 45 41 41 41 41 46 47 0 0 0 0

13 *1 0 32 32 32 32 32 51 41 41.4t 41 41 41 52 57 0 0 0

15* 1 0 58 58 58 .	 0 0 0 63 64 65 65 41 66 67 0 0 O 0

17*1 0 0 59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6,
Contents of the region label memory
Areas of •high intensity (saturated sensor) were

ORIGVAL PAGEIS
	 set to zero

pF pooR Q,u ALLTY

MATRIXTHIS IS THE PRINT OF THE REDUCED M

ZEILENLAENGE: = 128 ZE ILENZAHL = 128
w	

1*1 0 0 0 1 1 1 1 1 0 3 3 3 3 0 1 1 1 1

'Z
'	 3*1 0 1 1 1 1 1 t 1 1 1 1 1 1 1 1 1 0 0

5*1 0 24 1 1 1 1 1 1 1 1 1 1 1 1 O 0 0 0

7* 0 0 0 0 O 1 1 1 1 1 1 0 0 0 0 0 0 0

^. 9*1 0 1 1 1 1 1 1 1 34 35 36 37 0 0 0 0 0 0

11*1 0 1 1 1 1 1 1 45 41 41 41 41 46 47 0 0 0 0

13*1 0 1 1 1 1 1 51 41 41 41 41 41 41 52 57 0 0 0

-T4.
15*1 0 58 58 58 0 0 0 63 64 65,65 41 66 67 0 0 0 O

17*1 0 0 58 0 0 0 0 0 0 0 0 0 0 0 0 0 0• 0
,r

Figure 7
Contents of the region label memory
appears to the computer, having been
the K mapping

as it
translated by
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Computer tracking of moving objects using television
imagery is diaeuseed. Problems which are unique to
this field are described, including caner• motion,
occlusion handling, and difficulties with correlations.
These problems are described in the context of seve-
ral solution approaches mentioned in the literature.
A field-operational system is described which demon-
strates the ability to deal with these problems with
some limitations. Finally, future direction for
research in this area are proposed.

INTRODUCTION

It vas of.1y a few years ago that ever, the simplest
image processing operations strained state-of-the-art
computers to their utmost limits. A 128x178 array took
a lot of memory, and even the air.plest operations re-
quired anormous amounts of time. Today, with faster
computers and cheaper memory, image operation n still
take a lot of time, but it is no longer unthinkijle
to process 512x512 images. So now, with the tech-
nology catching up, imaging devices are expected to
become an increasingly important type of sensor for
closed-loop controllers in different kinds of "in-
telligent systems" such as occur in robotics, missile
guidance, and automatic tracking of moving objects.
These applications reluire real time processing of
sequences of images, and once again the demands of ima-
ge processing strain the technology to its limits.

We define Computer Analysis of rime-Varying Images
(CATVI) to mean the processing of a time sequence of
images in order to extract some property which changes
in time. There are two types of uses for motion infor-
mation:

1) Where the motion information itself is what is im-
portant. Trackers typify such systems.

2) Where the motion information is used to provide
additional features to scene analysis systems.

Since :n order to classify a target one must first
locate and track it, systems whose primary goal is o!
type 2) generally incorporate components of type 1).
Such systems can also be decomposed (as Martin and
Aggrsval (131 did) into components which have the tasks

of a) motion detection, b) attention directing, and c)
cognition. For practical real time applications these
process should run in parallel.

Under the category of trackers, we distinguish two
types of systems, background trackers and target
trackers. background trackers identify some feature in
a background (e.g., a bridge). and track that feature,
even though the camera may more. background trackers
have found applications such as reswtely-piloted vehic-
les, "smart bombs". which must home in on a target, and
1AND6AT-type satellites which must identify and track
ground control points to increase their pointing accu-
racy. In all these applications, the intensity function
can usually be considered to be continuous and diffr-

,rentiable at all points, with non-rero derivatives at
most points. (As we will discuss in a moment, these
assumptions are important to the design of the tracker).

A target tracker may have to deal with an entirely
different situation, for example, an airplane against
a daytime sky. In such applications, the sensor is
often saturated, resulting in an image with high con-
trast and low dynamic range. The region(s) in the
image which describe the target are then homogeneous
in intensity. and motion information can be extracted
only at the edges of the reginne.

Gilbert 191 extends our definition of trackers
slightly to distinguish between contrast trackers,
which threshold the intensity, edge trackers, which
threshold the magnitude of the gradient, and corre-
lation trackers, which correlate shapes, based on
intensity.

Under our category 2) above, we can make use of
motion information either for image segmentation or
for target classification. Segmentation implies
grouping of similar pixels. For example, velocity in-
formation could be used as a similarity measure to di-
rect segmentation. In addition to grouping of pixels
of a similar velocity or acceleration together and
thus aiding segmentation, that same velocity or accele-
ration data can be used to provide features for a
classifier.

The area of CATVI ran be subdivided in many ways,
ccording to objectives of the system, as we have done,

or by the methods used, as Nagel 1151 har done. In
this survey paper. Nagel points out that the basic
problem offindin p relationships between images in a
sequence can be broken down into several steps:

1) Derive a description (or descriptions) of the image
substructure,

2) Establish a (dis-) similarity function of these
descriptors,

ORIGINAL PAVE 13
or Pooh ^UE1Li'i'Y^



.t Jr' nr n;.l	 i..t .	 . .. J:re

3) Use this fuoctioa to establish compatibility or to
compatibility between substructures, and

1) As a result of the cunW i son. describe the perti-
nent aspects of the Used• sequence. 	 i ,	 .

Nagel then goes on to survey the literature aceor-
dir.g to this schema.

Our purpose in this paper is nct to provide a survey
of the literatJe, 	 but to discuss tracking. The reader
is directed to the aforementioned survey by Nagel, sad
to the survey by Martin and Asserval Ill) for a thorough
literature review. We would mention one interesting
item at this point, however. As Martin and Aggarval
point out, the fundamental problem in CATVI is the
problem of occlusion. This observation brings us to
discuss what are perceive as the priscipal research
problems in this area.

2. DIFFICULT SITUATIONS FOP CATV1 STSTEX3

Although this is a very new area (the military has
been in the business a bit longer than the Univdrslty
community), there have been nonetheless a considerable
number of papers )ublished. and it is instructive to
note the simplifying assumptions which people have spade
in order to develop systems which work. The cost common
assumptions are:

1) The camera does not move

2) The target is never, or never totally, occludes

3) Image gradients are well defined

Item d) is often an implicit assumption and seldom
stated outright in this form. We will discuss these
three items briefly.

2.1 Camera motion

The most straightf: %dou-6 means for tracking mo-
ving objects is to we	 ..h difference pictures.
This entails computine, ^.e absolute value of the
difference between two successive frames, on a pixel-
by-pixel basis. Then, with a stationary background,
the background pixels subtract away to zero, and the
moving target stands out clearly.

but consider now a TV tracker with a servo on the
pan and tilt of the TV camera. If the tracxer works
perfectly, the target will be in tie center of the
screen at all times. Frame tc frame differencing then
subtracts out, not the background, which cnanges with
camera angle, but the target! If we then add a servo
controlled zoom lens to the system, the problems be-
come really interesting)

Of course, if all these effects are precisely known,
they can be computationally taken into account. However,
it is doubtful whether these effects will ever be sc
precisely known that difference methods on a pixel by
pixel basis alone will work in real situations. Any
sophisticated algorithm must therefore ultimately be
tested against real world conaitions. Robustness, the
ability to adapt to unexpected circumstances, is a ma-
jor requirement.

2.2 Occlusion

The target may occasionally be either partially or
totally occluded. In the case of partial occlusion, a
number of approaches are possible, including subtrac-
ting the occlusion to find the non-occluded portions)

of the target, ana than matching those parts to the
model of the target, to get an undated tar get locstlor,.
This matching problem can be quite difficult in the
general case.

when the target disappears behind an occlusion,
tracking is, of course.im"sible, Une clue for hand-
ling this situation may be derived by observing people.
Confronted with a moving target which flym behind an
occlusion, people tend to extrapolate the velocity of
the target and predict its point of reemergence from
behind the occlusion. They then direct their atten-
tion to that point. A backup mechanism in the fors of
p.ertferal vision seems to be provided in cue the tar-
get does not emerge as predicted. Thus, to Ovulate the
occlusion handling capabilities of people. a computer
system needs prediction. attention directing, and
"peripheral vision" coupled with backup capabilities.

Yet anotherclass of problems occurs when the occlu-
sion is itself a moving object. In this came, saw
classification is necessary to distinguish the two ob-
jects when they separate. Among the sore recent work
along these lines is that of Martin at.d Ageezval (141.

extendel by Posch and Aggarval (161, where the edges
of objects are segmented into a set of approximately
straight lines and circular arcs. While this segxen-
tation again appears artificial or "man-made", the
idea behind it, i.e., matching edge segm.r.ts Of par-
tially occluded objects using motion information to
"analyze an apparent object into its constituent ob-
Jects"- represents an important step in the direction
are think occlusion analysis should go. In section 3.
are discuss a very simple but effective form of occlu-
sion handling in an operating tracker system.

2.3 The Problem with Edges/preproce a inyr

Digital images, particularly images of man-made ob-
jects, teni to have areas which are homogeneous in
intensity. if one places a small window or local opera-
tor about a pixel in thr center of a homogeneous re-
gior., and then looks at the- same area in the next
frame, no change will be observed unless an edge moves
through that window. This situation is most extreme in
the case of binary images and contrast trackers. Mo-
tion information can be derived, not from the motion
of regions or objects, but only from the motion of
edges.

We should point out here that our use of the word
"edge" implies an area where there is a significant
rate of change of intensity with respect to distance
in picture coordin , nts. Edges and object boundaries
are not synonymous. While object boundaries usually
give rise to edges, the existence of an ed g e does not
necessarily imply a boundary, since objects may have
internal detail whichgives rise to internal edges.

We have observed the fact that notion information
comes from edges occurinr several times in current
literatures are will point out two examples.

First, consider the velocity estimator of Fennerca
and Thompson [5]. They point Out that motion can be
represented by a velocity vector

do
V e dt

and that if ds is an incremental translation of the
surface, and di an incremental variation in intensity
due to this motion, ther.
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:fonulation can be derived from a firstordertruncation '^Ilocslly) only it the edges, and this fact must be ~
;pf the Tayl^'a series expansion of the intensity fumc-. y kept in mind when designing • CATVI system. since it

~' • Is clear that Motion information is so Intrtostcly 3m'
valved with the structrure of intensity sO»es, one

_. Par-"i• method to work, the, gradient at the pins 	 ght thou aak if it does not Make sense to handle thm
being examined must be the sue to both frames, which 	 (attraction of edges as a separate operation. Further-

, implies dJldt must be very small or sere. /enema and 	 more are there not other. similar operations which
Thompson accomplish this by blurring the edges to in- 	 mould be handled at a low, preprocessing levels. There
sure that the width of the edge is greater than the 	 is a great deal of evidence that organic systems per-

frame to frame displacement, so that, on the average.	 tars such preprocessing functions.
G does not vary from frame to frame.

Anaymis of time-varying images looks at first like
radar signal processing, since the objective is to pick
out a known signal from some backgrouni (noise). How-
ever, due to the 2-4imensional nature of the nigpal.
the probability of homogeneous areas, and the likeli-
hood of occlusions, classical correlation techniques
based on intensity alone are not likely to be,succeso-
ful. As Lreachler and Bagel M point out,

e.."

It might be argued that croescorrelation between
object candidates extracted fres two consecutive
frames should allow tracking t%e image of a .
moving object... There are several weak points
to such an approach... Unless a tight subsection
around the image of a Moving object can be de-
tormined fairly accurately... the crosscorre-
lation of such subsections from consecutive
frames will depend heavily on the structure

For instance, Gaardner (B) has pointed out that the
human visual system heavily depends on an intrinsic
fevdback system involving eye jumps ever. in the fit-
ation case. It is indeed easy to show that when the
eye is fixed on a certain object without movement, the
image of the object blurs due to adaptation. However.
small eye Jumps produce refreshed images resulting is 1

^. s .sew information only at the edges. There are other
hints that in oamm (inn visual systems there is a lot
of feature and edge enhancement. Prom Hubel and
wiesels's work (11). we know that in the cat's visual

f, P I cortex there are neurons functior,ing as edge or line
detectors, with special sensitivity to orientation.
Some of these functions are even independent of trans-
.1ational shifts Of.these lines.

There have been different artificial approaches to
preprocessing pictures for feature enhancement. Such
preprocessing serves one of two basic purposes: to re-
duce the dimensionality of the feature space, or to
increase the orthogonality of the featur e vectors [12),
both of which potentially lead to better performance
of a matcher. One could, for example, preprocess to
extract a segment of the target contour, and then match
that segment.

Another form of preprocessing results front the use
of image transforms. The general area of transforms
has been studied extensively. to the point that such
transforms are textbook material 11, 177. but only
s.me work has been done on transforms in the context
of CATVI (2. 4, le, ?01, particularly with respect to
,transforms of segments of an image with the intention ^)
of removin g or identifying translational effects. For
example, at first glance, the properties of the Fourle
transform seem very striking, since the amplitude
response is Insensitive to translational shifts, while
.the phase response Immediately shows up the amount of
such shifts. but In reality there never is a whole Pic-
ture which t• completely shifted, but only a small nart
in it which Is not Identified a-priori. Thus the
Fourier transform simi , ly hat a different appearance,
without a discernable correspondence between the shift
of the target and the response of the transform. Con-
sequently, one must also temper his enthusiasm when
C. onsidering "obvious" applications of transforms.

of the stationary image components in the at- 'tn•:x,
lected subsection. Tracking of the image of a
Moving object thus tends to became unreliable.
On night attempt to circumvent this difficulty
by crosecorrelating difference pictures ob-
tained with respect to a reference frame. This
will only succeed if the ir--are of exactly one
moving object dominate* the difference picture-
an assumption which night be difficult to check
automatically during this stage of the analysis.

for these reasons, we feel it is necessary in ge-
neral that processing of images of moving objects be
based on "matching" of features other than simple inten-
sity functions. However. with the correct assumptions,
the concepts of correlation and matched filtering can
be used, although such a system will inevitably encoun-
ter this same problem with edges.

One much system, developed by Fitts [6) encounters
the problem with edges in a slightly different way. He
determine* that the displacement of a point 6 x can be
computed with only two one-dimensional correlations, by
using

b
b x a	 f - 2x	 )-S(R)3 dt

n

ll
1•
r

6 t is the estimate of 6x, y(x) is the Measured in-
tensity function, (assumed• to be y(x)vs(x-6x)#n(x)),
and S is the known (tracked) signal. Again, one obser-
ve@ that information exists only in the edges, for to
have an non-iero integrand, the tracked signal must
have a non-zero derivative at the same point that it
Las a difference due to Motion. It is thus More suitable

We have mentioned some of the difficulties with
analysis of time varying lmaoes 	 and some of the pro-
blems which one encounters when attempting to apply
conventional tools to those problems. we will now des-
cribe one operational system which functions reasonably
well in this environment.
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VitA each frame etartlat palter the same t>^ratloem
accurate. That is. small inaccuracies is computed tar
met location, velocity, wad description of target shape 	 ue Initiated, ti'Aiela is sl*Tnpius 'to a norial -somplild

data system. While frame a is recorded from the video
can be tolerated, but the tracker must not over Iose the 	

signal, the computer is prreessnr.g the contour extreme
target'	 I

which is operational in the [te 	

of frame k-1. This program !s concurrently interrupted
by

This section describes the D1Y1J^ level 1 tracker. 	
b' the transmission of the contour values o[ the running

	

ll. Our level ? tracker	
line of frame k. Coupled with this transmission is a

provides greatly improved eD fie d to distinguish tar	
min-max search so that at the end of frame k the corre-

get shapes, but is currently implemented only in simu- 	
sponding extreme are known. Processing of free L 1,

lation. and will not be discussed here. 	
being a background job is also finished at the end of
from• k. The computer has by the and of frame k checked
the suppositious target motion for plausibility, corree-

3.1 The overall syste m 	 ted it it vicesmary, predicted the target position two

tracking system. The video signal is supplied ty a
black and white giatalled camera and displayed on a
color monitor. (The color functions of the monitor are
used to overlay the window location and k reshold bound-
aries). At the same List the analog video signal is
com, •.red in the signal processing logic with an ad-
justat.le grey value level. Whenever the amplitude of
the video signal crosses this threshold. either rising
or falling, the corresponding line number and pine)
number in this line are registered from counters syn-
chronised with the frame and line sync pulses. At the
end of the line these values, having been accumulated
in a fast memory, are transmitted to • process com-
puter.

Signal evaluation (from the hardware) occurs only
within • window which is normally adapted tc• the ob-
ject size automatically by the computer. The computer
then has the task of calculating the center and ea-
tensions of the target by the given contour values
(including window calculation) and servoing the camera
so an to null the deviation between object center w.d
screen center.

The level 1 tracker is characterized by an enor-
mous reduction of information flow. It uses only the
first and last threshold values in one line (inside the
window) and it actually does not process all values of
the object contour, but only the extreme in the hori-
zontal (a) and vertical (y) directions. So only four
values are actually encoded in each frame and used for
decision making. These four extreme may be due to the
target contour, or they may stem from occlusions ente-
ring the window. It is the task of the logical decision
part of the computer program to cancel implausible
values and replacet!.m by estimated ones.

Structure of the camera control local

In this section, the closed loop for camera control
a and y) is briefly outlined in its dynamical be-
ior. An essential implici.tion is the temloral re-
ion between scene perceptioi., processing aid rea-
ation of camera motion. (taole 1),

Fig. 1 shows • simplified block diagram of the 	
frames in advance and calculated window eoordinants
and comers position from free- k•1,

Lotis :'+a	 ,	 , ., .
Consequently, by the time data transmission from the

windtw in frame k•1 starts, the camera has been commian-

dad to so.,e (by a command :vitiated after analysing
framr k-1), and will be in the correct position.

In a control theoretical sense, the pliant here con-
sists of a delay made up by t o sampling periods (i.e.
frame periods). In the z-tranefcrm domain often used
with sampled data systems, • delay of 2 periods is
characterised by a factor a -2 , while a prediction of
two periods means multiplication by s2 (men figure 2).

As is displayed on the screen, only the relative
position between target position and camera. position
is measured by the computer. To deal with occlusions.
it is necessary to get the corrected target position
by adding the camera motion. The problem solving and
processing proVrom (see figure 2) tries to solve this
task in "problem" cases too, and then predicts the
("true") target position two frames ahead in order to
catch up the inherent delays. After processing occlu-
sions and estimating velocities (if necessary). the
effects of camera motion are re-inserted to provide
an error signal for the comer• servo. A digital low
pass filter processes this error signal first. This
filter is charged with:

a) as othing the small contour jumps from frame to
frame which are due to the interlaced scanning
techniques used in television,

b) supplying sufficient phase reserve ahead of the
position-error integrator in the camera control
circuit.

The dynamics of the closed loop are adjustable with
the gain Y (from fig. 2), so that the closed loop poles
yield sufficient stability. As the system contains only
one integration, an object moving with constant velo-
city generates a stationary position error that has no
Major influence on the tracking capability.

3.3 Treatment of eroblem cues (e.g. occlusions)

The most critical part of the control program has
the task of checking the messurea (apparent) object
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`f) a jump di - turbance, which occurs when suddely oM; .^
several contour extreme (in the followingaDDre-

`^\/{j111111 T11OID^ \_\,\^
visted as CE) coinciae with window edges;	 in this Most work in the area of ca.puter analysis of images
case it can be assumed that an occlusion has onto- to date has used "synthetic" algorithms. That is, the
red the window; of course, for this to work, the tracking techniques are based on ideas of how we	 I

real target size never should exceed the edges of 	 I intuitively perceive that a computer could be directed'
the window. The window size is continously monitored to perform those tasks. Our thinking in developing these
to insure that this assumption is true. algorithas is likewise directed by the assumption thatI

D) a velocity disturbance, which occurs when the ve will be using a digital computer. The methods we

measured interframe chanpr of a contour extremua 	

I

develop nay be well formulated mathematically, but they

(CE) does not have the same sign as the computed ;are,	 in some sense, not "natural", being based as they

i	 overall velocity.
I

are on the principles of today ' s serial computers.

x-direction
In case of a jump disturbance or a velocity distur-
bance the velocity of the disturbed CE is not updated;
if both Cis are disturbed, pure prediction is perfor-
med, i.e., window size and speed keep their old values.
Moreover, in the case of a velocity disturbance in one
CE, the disturbed CE is estimated from the latest , ob-
ject size and the other (un^isturbed) CE. Object size
is updated only in undisturbed cases.

y-direction
Here only jump disturbances are checked. When a dis-
turbance is recognized, the corresponding CE is again
estimated from the undisturbed one and updating of CE
velocity is omitted. If both Cris are disturbed, predic-
tion is used.

'"elf .:	 111 	 ^.
If the growth of the y -extension taken over several

frames exceeds a threshold, then that CE which is the ,iii
leading one with respect to object velocity is used to
briefly ( i.e. for one frame) draw after it the other
CE. rhen ( in the next frame) it will be determined
whether the object size actually increased so much or
whether i t must overcome an occlusion stationary with
respect to y.

Several typical cases as they are recognized and
solved by the program are shown in fig. 3. For example,
it takes care that in case of a target merging hori-
zontally into an occlusion the window is fixed in the y
direction, but the window edge entering to occlusion
tries to move to the end of this occlusion and to wait
for the target there. Independent of whether meanwhile
the target reverses its direction or not, the window
is finally detached from the occlusion.

Though the tracker initially was designed only for
ground-air tracking with good contrast, it proved in
field experiments to show good tracking capabilities
in ground-ground tracking with occlusion situations
too. Thus it can be shown that by intelligent processing
of dramatically -educed information (4 values per frame)
seeding only 30-401 of real time on the computer, our-

1 prisingly good results could be achieved.

A major weakness of these programs is their ina-
bility to generalize. Just as one cannot write a pro-
gram which is a "little bit wrong", such programs are

'incapable of generalising to slightly different situa-
tions. Thus, such tracker* are highly dependent on
assumed situations, for example, on the assumption

^p.r that acceleration .f..the target is less than somr
threshold.

But how is it possible to build machines wich
' generalize?	 • 	 . r

In the late 50s and early 60s, the theory of thres-
hold-logic devices as computational structures repre-
sentiog neural models was highly touted as the so-
lution to all pattern recognition and cognition pro-

" blems. These threshold logic devices seemed an similar
to basic computer operations that the main problem
vas believed to be how such elementary classification
decisions could be combined in multilevel or hirrarchi-
cal processes in order to construct intelligent ana

learning systems.

These theories declined in popularity rapidly as it
became virtually impossible to find support for re-
lated research. This decline can be attributed to	 i
several causes:

!1) The remarkable advances in silicon technology with
corresponding drops in price and increases in
capacity of conventional (von Neumann) computers.

2) The observation that von Neumann machine implements
a Turing machine and consequently can compute any
computable function, at least in principle.

3) Early overentnusiasm on the part of the neural model
researchers, with corresponding claims of potential
which far surpassed actual results.

4) A significant underestimation of the complexity of
the brain. I

t
So people became more and more interested in the use

of digital computers, particularly as the technological
breakthroughs of the 60s occurred. Most of the work in
artificial intelligence then concentrated on formulating
problems so that they were conveniently treatable by
digital computers. The enormous advances in technology
prevented people from asking the critical questions
as to whether computer development based on the von

INeumann machine . might turn out as a tremendous sidetrack.

Taking account of the typical structures of occlu-
sions (trees, poles, horizon), different algorithms
were developed for the x and y directions, which, j%jong
condensed form, are as follows:
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< Single threshold devices, but of highly parallel. 	 "A Sell organizing Neural Network with a /Lnetio0-

analog, feedback-type and even linear connections ^` ^ —of Associative Memory". Pin o c 1 Z[bcrnetics 2e.j

	that represent 44stributive "memory traces" whlet	 \
are learned during n ez g	 perieoce and which alloy
the association of storedin com plete

	^oaardner. [.
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	-input keys. Reconstruction of patterns seems to be 	 -press. Wast,ington, 1975•
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lassification Of Single itsmsiaod ^ 91, Zoilbert, A.,and Giles, M.

-	 Concept r in Neal-time Tracking", TR STN 'S-M-Te

	

b) today @ computers show very little similarity to the y	White Sands Missile Range. Nov Mexico. 	 1
functioning of the brain. They are, as already
mentioned, unable to get along with even slightly 	 I	 103 Hirzinger G., and lAndzettel, K.

I	 erroneous input information unless that particular 	 "A TV-tracking System Based on Computer Intelligence"

case has been anticipated by the programmer; i.e., t	 AGARD Panel Technical Meeting on Image and Sensor

the are unable to associate. 	 I	 Data Processing, for Target Acquisition and Recog-
nition, Copenhagen, 1980

Thus, after several years of neglect, the concept
of brain models is arising again, with a betterunder-
standing of neural structure and much more sophisti-
cated models 1 71. Work currently undervay is also well
founded mathematically (121. Such systems have demon-
strated the ability to recall a sequence of previosly
taught images when presented with a single element from
the sequence [22. 71; to recall an entire image when
presented with only a portion of it (123; and under
certain constraints, to generalize. 	 4

.1: , t	 .	 agar r"

As yet, there i- no clear way to structure such an
associative machine so that it can recall an entire
image (say of a target) when presented with only a
portion of the image (an occluded target), vhict: is
rotated and displaced in space. This property of hand-
ling displacement is essential to the use of associa-
tive machines as trackers.

We feel that this area of research deserves more
attention now that a better theory is seen to be
evolving, as it could potentially provide solutions
with the necessary parallelism to attain the speeds
required for real time image analysis.

%11 ' 	 .	 .
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APPENDIX C

USE OF THE AAC-32 IN A TRANSVERSAL FILTER APPLICATION
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A PROGRAMMABLE TRANSVERSAL FILTER

USING BUCKET BRIGADE DEVICE

ire...	 ...^



a

2 RE-VIEW OF REIATM TOPICS

2.1 Digital Filter

A digital filter is a computational process in which the sequence of

Smut numbers is converted into a sequence of output numbers representing
R

the alteration of the data in some prescribed manner.	 The input-output
r

relationship can be mathematically represented as

n	 n
y(n)aix(n-i) -	 biy (n-i)	 (1)

i£0	
iIl

t where x(n), is the ,input, y(n) is the output and a i I s and bi I s are

constants that determine the characteristics of the filter.	 If all

values of bi I s are zero, thep it is a transversal filter.

The realization of a digital filter may involve eit: har hard%-dm or

software.	 In the hardware approach, it is necessary to build digital

circuitry which can have the operations of delay, addition and multipli-

cation with appropriate order. 	 In the software approach, the end product

might be a program for a computer.

The Z-"transforination of equation (1) is 	 {
r

Y(Z) ± I	 b Z 1Y(Z)	 aiZ 'X(Z)	 (2)i	 I
-i=l	 i=0

r
where Z is a complex variable.

r, The transfer function H(Z) of transversal filter is defined as

n

^ aZir. H(Z)	 V Z )	 'ic0ni	 (3)	 r
1 ±iIlbiZri

^.

To examine the frequency response of the filter, it is just simply

to substitute Z for ei T 133.	 T is the reciprocal of sampling frequency.•



2.2 Bucket Br.^ri, —e Device

The bucket brigade device is a type of charge transfer device.
t

These devices can move quantities of electrical charge in a controlled

manner across a semiconductor substrate by applying a sequence of clock
t

pulses. A fully integrated MOS version of BBD was fabricated in 1970

[4].

The circuit .shown in Figure 1 is known as a MOSFET BBD, because

the activity of this circuit resembles a fire brigade of old.. Its

basis is a chain of storage capacitors and charge-transfer circuits

acting as an analog shift register with externally variable shift rate.

IN

PI

P2 .-----..,

Figure 1 MOSFET BBD

^.



.	 3 THE FMOON AAO-,fir'?

The configuration of the AAb-32 is shown in Figure 2. There am

two charge transfer analog delay lines and each line has 32 individual

taps. Each pair of corresponding taps is input to a `our-quadrant

analog multiplier. The outputs of the multipliers are summed on-chip,

thus performing sum-of-product operations. Clocks control the shift

rate of the sampled analog signal.. Each delay line also needs a

complenentary clock. Two "deelcells offer the convenience of

examining the sampled signal on each deli;! ljre. This particular

device was evaluated by -Vder [4]. Some useful conclusions are

summarized below.

.`Clock rate. 4 The AAC-32 will function well with clock rates as

high as 100KHz.	 ,

Four quadrant multiplication test. In the fair quadrant multi-

plication test, it was shown that the device had a tendency to clip'in

the third quadrant.

i
1
1
1
D
J
1
1
I

r

.-Jlj
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4 DESIGN AND M NfA71ON

4-.1 Dei3iAn Considerations

4.1.1' 'Clock  • rreguewX

The clock frequency of AAC-32 is essentially the sampling frequency

for the input signal. For a baseband input signal in filtering, lower

sampling frequency has the better performance. This conclusion comes'

from the result of computer simulation. In Figure 3, transfer functions

of different sampling rates at 60, 30 and 100KHz were simulated and

plotted. The transfer function for a sampling rate of 60 KHz has the

sharpest cutoff at stopband. It seems good to have a possibly low

sampling frequency in this filter design. However, sampling frequency

was set at 100 W in order to have minimum idle time (A second order

distortion was observed to be a function of the time during, which the

clock was idle).

4.1.2' 25 ,wel6hts

The transversal filter was designed to be a 10 	 low-pass filter.

An 8-bit PROM was programmed to provide weighting coefficients. Com-

puter simulations was completed to examine t1V effect of quantizing tap

weights for this filter design. Since the Fo^xrier series method [5] was

used in determining the weighting coefficients, only an odd number of

coefficients was required for a finite impulse response filter design.

Thus the 32nd tap was set to have value zero. An examination was also

made to pick up the first 32 weighting coefficients fran the 33-coeffi-

cient filter design under the same specifications. A Hamming window [53

has been used in evaluating weighting coefficients in order to overcome

the Gibbs' pbenomenon 153.	 .
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The results of simulations are summarized.in  the following:

The quantization of weighting coefficients has a significant

effect on the stopband attenuation. There is about 13 dB difference

betren the maximum ripple in the stopband (Figure 4). Also the cal-

culated response of the filter having exactly computed weighting

coefficient has a sharper cutoff. These conclusions hold for 31- and

32-coefficient filters in this design. Figure 4 is the simulation of a

31r-coefficient filter and Figure 5, for a 32-coefficient filter. The

dashed line represents the frequency response of the filter with

weighting coefficients quantized to eight bits. The solid line gives

the frequency response with: weighting coefficients cmputed 32 bits

accuracy. Canpa„;ng the frequency  responses of 31 quantized coefficients,

filter with that of 32 quantized coefficients, 31 coefficients' filter

-has slightly better performanr..e. The 31-coefficient filter will . be used

in the implementation of a practical filter. Figure 6 shows the

frequency responses of these two filters.

4.1.3 Charge transfer inefficiency

The charge transfer inefficiency [6] is defined to be the fraction

of charge left in one stage when charge is transferred to the next.

The overall charge inefficiency is proportional to the number of stages

if the fraction is constant and independent of signal charge. Typically,

a device with less than 10000 stages is acceptable [1]. Transfer

inefficiency did not appear to affect the performance of the filter.
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4.2 Irig_ilementation

4.2.1 Loading weighting coeffic ents

An AAC-32 can corpute a sum of products of two sampled analog

ss^s. The output is

Iy  
i 0 

a1x1 	 (4)
= 

where y is the analog output and the a i l s and xi I s are the samples of

the analog input signals controlled by the external clock. The trans -

versal, filter has the following; input-output relationship:

n
y (n)	 I aIx(n-'I)	 (5)

i=0

Here , y(n) and x(n) are samples of the input and output signals

respectively. The ai l s are weighting coefficients which determine the

characteristics of the filter. 'To use the AAC-32 for the computation

of Equation (5), we mast keep the ai l s constant while the xi 's are

being clocked thrrigh the delay line. It would be desirable to singly

load the coefficients into the CM, and leave them alone, while passing

the data through the filter. Unfortunately, the coefficients are stared.

in the form of charge on capacitors, and- will decay if not refreshed

periodically. A method of refreshing which is general to this class of

devices is shown in Figure L with timing diagrams in Figure 8. Thy

general concept is one of time multiplexing. The coefficients of -e

EM are refreshed while the other is computing, and the roles are

reversed every 32 clock cycles. All ai l s are clocked into one delay

Lim of one of these devices and held 320 usec;•that cycle then repeats.

4
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(At a sanpling frequency of 100KHz, 32 delays results in 320 Naec

delay.)

4.2.2 Configuration	 .

The overall configuration of this implementation is illustrated

In Figure 9. It ,can be divided into three main portions. These are

control, data processing and data acquisition. Each part will be

discussed separatdly.

4.2.3 control

AAC-32 requires  two--phase cornplementary square-wave clock drive.

A free-running variable frequency clock provides the time base. Two-

phase complementary square-wave clock and the clocking waveforms which

control the loadin g of coefficients in Figure 8 are inplemented by using

combinational logic as shown in Figure 10.

4.2.4 ' 'Dicta 'processing

The input signal with 1 volt swing passes through a level shifter

to have 'zero' at 5.6v. Since the nultipliers have biasing problems

In the third quadrant, we are forced to have all signals higher than

-	 5.6v after passing the level shifter. Thus we r:re actually computing

11
y(n) a	aix(n-i)• ±

	
a i c	

(6)

i=0	 i=0

where c is the input DC offset with respect to 5.6v.

Two AAC-32 1 s were used to process input signals. Since we need

320Nsec to refresh weighting coefficients, only 320Nsec of processed

_	 data of every 640psec output is valid for each AAC-32. The output cir-

cuit is a differential amplifier which is a current-to-voltage converter

(F1guze 11) ..	 .
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4.2.; Data ac uisition

An analog switch is used to select the valid data from the outputsr
of the current-to-voltage converters. Eery 3201isee, the analog switch

passes one output and cuts the other. Following the analog switch, a

eample and hold circuit is used to hold valid data, become only when

both of the driving clocks of the AAC-32 are high Is the data valid	 4

(refer to Figure 7). The sample pulse is delayed about 3usee,to allow

the data to settle. A simple low-pass filter can be connected to the

output of the sample and hold circuit• to eliminate high frequency

conponent due to clocking.	 j

- 4.3 Results

Figure 12 sh3ws the frequency re4pmanee of a low=pass tx ansver—

filter conpared to the calculated filter response from DC to 14KHz.

These two sets of data are quite consistent.

0

y

a
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5 SUMMARY AND OON=SIONS

7he overall operation of a transversal filter can be described as

a cross-correlation of the sampled input signal and weighting coeffi-

cients. If the weighting coefficients can be treated as another sampled

input signal., then a transversal filter is a remarkably versatile

Instrument for processing signals with different characteristics. A

different response can be obtained by simply changing the Siglk l source

which generates the weighting coefficients.

This thesis discusses , the implementation of a programmable 32-tap

charge-transfer transversal filter. Me AAC-32 was used as a primary

device to implement a low-pass filter with tap weights controlled exter-

nally. An, 8-bit PAM was prograrn^.ed to store the tap weights. It was

used to generate the coefficients for the designed filter, and the

coefficients nay be changed simply by replacing the PROM. The amplitude

response of this filter is consistent with theoretical prediction.

Since both the'weights and signal are stored in charge transfer

devices, the weights are volatile and must be refreshed periodically.

Additional circuitry is required to accomplish this refreshing.

The complexity and cost in design and implementation of this

transversal filter can be reduced significantly if one can have an on-

chip static binary shift register or Programmable Read-Only Memory to

hold the weights. We understand that semiconductor manufacturers are

row developing such a product.
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7.2 The weighting coefficients of 31-tap low--pass filter

for loading Intel 1702A in iMl,ementation

Address Data
(HexadeciTr l.)

00 80
01 80
02 80
03 7F
04 7F

} 06 8

07 82
' 09 87

OA 85
OB 80

0C 68OD ,
OE 5C
OF 51
10 4D
11 51
12 5C	 .

'	 13 68
14 76
15 80
16 85
17 87
18 85
i9 82
1A 80
1B 7F
1C 7F
1D 7F
lE

80

1F 80

e
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PROGRAM LISTINGS
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.TITLE RAMTSB.MAC VERSION 37

.MCALL .PRINT;	 .EXIT

CSR1=167770 ;DEFINE LOG. NAME FORCONTROL
CSR2=167760 ;STATUS REGISTERS
OUT2=10762 ;DATA INPUT ASSIGNMENT
IN2=167764 ;DATA OUTPUT ASSIGNMENT

.. 13UT1=167772 ; OUTr'UT CARD 1

START: MOV :.;SP ;INITIALIZE SP
BIC :140PW-#CSR1-' ;CLEAR AFFECTED BITS OF CSR1
BIC # 14 0 P P#CSR2 ;CLEAR AFFECTED BITS OF CSR2
BIC 0177777;a-:0UT2 ;RESET THE RATA OUTPUT
CLR R1 ;INITIALIZE TO ZERO ALL DATA
BIS ~i;Rl	 • ;;SET TO 1 THE 0 BIT OF THE DATA OUTPUT
JSR PC}TEST ;INITIALIZE FOR OUTPUT BITS
BLS 27R1 ;SET TO 1 THE 1 BIT OF THE DATA OUTPUT
JSR. PCYTEST ;INITIALIZE FOR OUTPUT BITS
BIS ;:4•R1 ;SET TO 1 THE 2 BIT OF THE DATA OUTPUT
JSR PC;TEST ;INI•TIALIZE FOR OUTPUT BITS
BIS 0-10;R1 ;SET TO 1 THE 3 BIT OF THE DATA OUTPUT
JSR PC;TEST	 ' ;INITIALIZE FOR OUTPUT BITS
BIS -:.20PR1 ;SET TO 1 THE 4 BIT OF THE DATA OUTPUT
JSR PC;TEST ;INITIALIZE FOR OUTPUT BITS
BIS .-:4 0 ;R1 .;SET TO 1 THE 5 BIT OF THE DATA OUTPUT
JSR »PC;TEST •-;INITIALIZE FOR OUTPUT BITS
BIS 'x:100-YR1 ;SET TO.1 THE 6 BIT OF THE DATA OUTPUT
JSR •PC;-TEST ;INITIALIZE FOR.OUTPUT BITS
BIS 4:200.-R1 ;SET TO 1 THE 7 BIT OF THE .DATR OUTPUT
JSR •PC+TEST ;INITIALIZE FOR OUTPUT
CLR -Rl ;CLEAN THE DATA OUTPUT
.EXIT ;END OF PROGRAM

TEST: MOy -RlsQe:OUT2 ;OUTPUT THE DATA SET
MOV :OUT1-;R4 ;STORE DATA OUTPUT ASSIGN INTO R4
BIC x:100000; ?R4 ;ENABLE THE BUS DRIVERS
CLR R3 ;;INITIALIZE TO ZERO EIGHTS COUNTER
CLR R2 ;INITIALIZE TO'ZERO UNITS COUNTER
BIC ::3407;8R4 ';CLEAR ADDRESS BITS

IN1: JSR PC;CHECK. ••;CRLL CHECK SUBROUTINE
INC 7R4 ;INCREMENT IN 1 THE LOW ADDRESS BITS
INC R2 ;; INCREMENT THE UNIT COUNTER
CMP R2;^7 ;;TEST FOR COUNT TO 7
BLE IN1 ;BRANCH TO ROUTINE

CMP --7;R3 ;CHECKS TOP OF HIGH ADDRESS BITS

r
BEQ NEXT ;EXIT THE PROGRAM IF COUNT IS FINISHED
BIC s:7; WR4 ;CLEAR THE L061 BIT  ADDRESS
ADD ::4009PR4 INCREMENT 1 UNIT OF HIGH BIT ADDRESS
INC R3 ;INCREMENT THE EIGHTS'COUNTER
CLR R2 ; INITIALIZE TO ZERO UNITS COUNTER
JMP INi	 _ ; INITIALIZE COUNT WITH LOW ADDRESS



F

r:

k

NEXT: .PRINT ::MES2	 ` ;INDICATE END OF TESTING OF ONE BIT
CLR RI ;RESET 'VALUES OF THE OUTPUT BITS

' RTS PC	 >, ;RETURN TO ROUTINE TESTING THE BITS
r 4

CHECK: BIC 4:50000ro)R4 ;WRITE TO THE RAM

#
PIS I'l 0000; RR.4 ;READ THE RAM
CMPB Epon,-IN2 ;COMPARE THE INPUT AND ECHOED BITS
BEQ RET •IF DIFFERENT WRITE MESSAGE
PRINT 40MESSAG

BIC :l77?77rp:OUT2 ;RESET THE OUTPUT DATA
.EXIT

RET: RTS PC	 R ;RETURN VIA PC

MESSRG: .ASCII /APPARENT ERROR IN RAM/
MES2: .RSCIZ 'FINISHED ONE BIT/
r

..-END START ;MAKE PROGRAM SELF STRRTING



RAM TEST PROGRAM

-
MCALL PRINTP EXIT

;THIS IS  SHORT VERSION OF RAM TESTING PROGRAM.
;IT PASS ALL 1 1S TO RAM AND CHECK THE RAM OUTPUTS.
;THEN IT PASS AL O'S TO RPM AND CHECK THE RAM OUTPUTS.
;INITIALIZATION;

PSECT
UP1=167772
UP2=167762

YY

IP2=167764
START: May "".'v SP ;LOAD STACK POINTER

BIC #140oP#167770 ;SET CSR OF PORT 1
BIC #1 4 0p P." 1677600 -;SET CSR OF PORT 2
May '—'50000-Y R3 ;SET CONTROL FORMAT
ma

y
#50000qR4 ;SET CONTROL FORMAT

CLR ;p#lDp 1 ;CLEAR OUTPUT PORT I
CLR (10 11"OP2 ;CLEAR OUTPUT PORT 2

BEG 114: JMP TEST ;BEGIN TESTING
CK: CMP 4*4000•R4 ;COMPARE THE REQUIRED NO. OF TEST

ENE BEGIN .;BRO,Nr,u	 IF NOT F INI ' ll%^Vl	 A	 I	 all A QIn

RETURN: PRINT -"ITXT2 ;INDICATE FINISH TEST
EXIT ;EXIT TO MONITOR

TEST: KR Pl."Opi ;CLEAR OUTPUT PORT 1
CLR p•lOP2 ;CLEAR OUTPUT PORT 2
May R396POOP1 ;PUT CONTROL FORMAT AT OUTPUT PORT I
May =* 7 7 v, c? 0P2 ; LOAD 'DATA TO OUTPUT PORT 2
BIC 4e40000.     P#0P I ; ENABLE RAM
BIC =:100009,  *1 ' " 0 P 1 ; PUT RAM AT WRITE MODE
BIS -,., 10 0 0 0 9, p#Op 1 ;DISABLE RAM AT WRITE MODE
BIS #4 0 0 0 0 P P­OP I ;DISABLE RAM
May R4pQ•',DP1 ;PUT CONTROL FORMAT AT OUTPUT PORT 1
BIC #40000P POOP1 ;ENABLE RAM
CMPB --1377PP#IP2 ;COMPARE THE ECHOED DATA
BEG! FIRST ; BRANCH IF NO ERROR

PRINT -#TXT ;OTHERWISE INDICATE ERROR TYPE 1
FIRST: CLR P"'LOPI ;CLEAR OUTPUT PORT 1

CLR iP•-'DP2 ;CLEAR OUTPUT PORT 2
May R3vP #,OP1 ;PUT CONTROL FORMAT AT OUTPUT PORT 1
may

::09  c? '-,' O P 2 ;LOAD DATA TO PUTPUT PORT 2
BIC #'4 0 0 0 0 P P#'OP I ;ENABLE RAM
BIC 10 0 0 0 v ;I -, " D P 1 ;PUT RAM AT WRITE MODE
BIS :: 100009, P'Oop 1 ; DISABLE RAM AT WRITE MODE
BIS #4 0 0 0 0 v P:tOP I ;DISABLE RAM
May R4!, ;P.','OP 1 ;PUT CONTROL FORMAT AT OUTPUT PORT I
BIC 4#4 0 0 0 0 9, Zs '­'O P I ;ENABLE RAM
.CMPB COOF P-41 P2 ;COMPARE THE ECHOED DATA
BEG! SECOND ;BRANCH IF NO ERROR

PRINT '."TXT1 ;OTHERWISE INDICATE ERROR, TYPE 2

'I.



SECOND: CMPB -47y R3 ;CHECK LOWEST 3 ADDRESS BITS
BNE so ;BRANCH IF NOT FULL
imp THIRD ;DTHEOIJISE JUMP TO THIRD

60; INC R3 ;NEXT TEST LOCATION
INC R4
imp CK ;BACK TO THE 

MAIN 
PROGRAM

THIRD: BIC -07 P R 3 ;RESET LOWEST 3 ADDRESS BITS
BIC =:79 R4
ADD 0400rR3 -	 ;INCREMENT HIGER 3 ADDRESS BITS
ADD '--4 0 0 v R4
imp CK ;BACK	 TO THE MAIN PROGRAM

TXT: ASCIZ /ERROR: TYPE 1: CHECK RAM/
TXTI: ASCIZ /ERROR: TYPE 2: CHECK RAM/
TXT2.* ASCIZ /FINISH TESTING/

.END START

0



A

ZERDA PROGRAM

;THIS IS A PROGRAM TO ADJUST THE ZERO OF A SIDE OF BED.
;S3H STROBE KEEPS HIGH ALL THE TIME.
;THE SIGNAL INPUTS TO B SIDE OF BED HAS SAWTODTHED PATTERN.
;THE PROGRAM CAN BE TERMINATED VIA CONSOLE BY USE*THE COMMAND CONTROL C.

;INITIALIZATION:

PSECT
DP1=167772
OP2=16776E

;LORDING RAM WITH 'O e AT LOCATION 0:

START: MOV ".,.Psp ;LOAD STACK POINTER
BIC 0140v4t'1167770 ;SET CSR OF PORT 1
BIC #'I 40r 0)•:167760 ;StT CSR OF-PORT 2
ma

y
40'150000iR2, ;STORE THE INITIAL CONTROL FORMAT FOR LODING

May R 2 p &o. r] P I ;CDNTM FORMAT FOR LOADING RAM
May '0376p P-#OP2 ;LOAD RAM WITH '0'
BIC -04 0 0 0 0 P @,",OP 1 ;ENABLE RAM
BIC 10 0 0 0 p popop 1 ;INPUT DATA TO RAM
BIS 10 0 0 0 7 p "'Op 1
BIS #'40000viP#0P1 1DISABLE RAM

;INPUT DATA TO :PBD AND ADJUST THE-ZERO OUTPUT ON 8 31 BOARD:

LOOP: May #130330PR2 41MITIAL CONTROL WORD TO LOAD DATA TO BED
May 4:17700opp""OP2 ;LOAD DATA '0' TO D 3A CONVERTER
JSR PCPDATA ;OUTPUT DATA FROM RAM TO D 3A CONVERTER

;AND LORD DATA TO BED
may ::1400. ;Pa:OP2 ;LORD DATA '+1/2" TO D 3A CONVERTER
JSR PCPDATA
May ='177400pP'_'0P2 ;LOAD DATA '+I' TO D3A CONVERTER
JSR PCPDATA
ma

y
4#14009POIOP2 ;LOAD DATA '+112' TO D3A CONVERTER

JSR PCPDATA
may #177000pot;OP2 ;LOAD DATA '0' TO D/A CONVERTER
JSR PCPDATA
May =:1000. P""O pa -;LOAD DATA 1 -1,,2 1 TO D3A CONVERTER
JSR PCPDATA
May 0 p a P 2 ;LOAD DATA '-l' TO D 3A CONVERTER
JSR PCPDATA
MIDV #1000v*n#OP2 ;LORD DATA '-112' TO D/A CONVERTER
JSP PCPDATA I

BR LOOP ;CONTINUE THE PROCESS,



f
tr

;SUBROUTINE TO LOAD DATA TO BBD=

DATA=	 BIS ^10030PR2 ;PULL UP THE CLOCK 18 & 1B
MOY R2i, P::OP1
PIS 040tP::OP1 ;PULL UP THE MASTER CLOCK
BIIC 1#40 1- Pc:3PI ;PULL DOWNTHE MASTER CLOCK
BIIC 4%30YR2 ; PULL DOWN THE CLOCK 18 & 1B
MoY R2v V"OP1y	
BIS :.409 ;p ::OP1 ;PULL UP THE MASTER CLOCK

'	 B I C 1- 4 0 v P00P 1 ;PULL DOWN THE MASTER CLOCK
RTS PC ;RETURN YIA PROGRAM COUNTER

t	 .END' START

0



ZEROS PROGRAM

;THIS IS A PROGRAM TO ADJUST THE ZERO OF 'B SIDE OF BBD.
;S/H STROBE KELPS HIGH ALL THE TIME.
;THE SIGNAL INPUTS TO A SIDE OF BBD HAS SAWTOOTHED PATTERN.
;THE PROGRAM CAN BE TERMINATED VIA CONSOLE BY USE THE C13MMFIIID CONTROL C.
p
;INITIALIZATION:

. PSECT
OP1=167772
OP2=167762

;LOADING RAM:

START: MOV
Ell C
BIC
May
MOT,LJ TMay

JSR
INC
May
May
JSR
INC
May
May
JSR
INC
May
may
JSR
INC
May
May
JSP
INC
May
May
JSR
INC
may
May
JSR
INC
May
may
JSR

psp
-140.% ZI -41 6777 0
-14CI	 )p;P,,t167760
.'150000v R2s
R2-,;p#npl
#376 9, d'-'Ope
PCPLOAD
RE
REP;)-#OPl
-'374,pQ-OP2
PCPLOAD
RE
-R2
UOV94"OP2
PCPLOAD
RE
-R2g-P#OPl
#3749 POUP2

,PC q LOAD
RE
R2. ;9::OP I
it 376 v -9 CtOPE
PCPLOAD
RR
R294,00PI
#375vP:;OP2
PCPLOAD
RERE 

9 p ltop 1
#3777 94POP2
PCpLOAll
RE
'2i,;s*'DPl

#375 p poopE
PCs,LOR;

. w

;LOAD STACK POINTER
;SET CSR OF POPT 1
;SET CSR OF PORT e
;CONTROL FORMAT FOR LORDING RAM

;L[3811 RAM LOCATION ZERO WITH `0--

;NEXT LOCATION

;LORD RAM WITH 1+1/2.-

;NEXT LOCATION

;LOAD RAM WITH '-+-I'

;NEXT LOCATION

;LORD RAM WITH '+1/2'

;NEXT LOCATION

;LOAD RAM WITH '0'

;NEXT LOCATION

;LOAD RAM WITH

;NEXT LOCATION

;LOAD RAM WITH '-V

;NEXT LOCATION

;LOAD RAM WITH /-l/p."



 r
}
;INPUT DATA TO VDD AND ADJUST THE ZERO OUTPUT ON ctrl BOARD:

MOY =150300, ;):;OP1 ;DISABLE RAM
MOY 44 0U, va«OP2 ; LORD	 4X—LI>'S D/A WITH '0-*
MOY :,130330PR2 ;INITIALIZE CONTROL WORD TO LOAD DATA TO BBD

LOOP." PIS 4:100309R2 ;PULL UP THE CLOCK IA & 1B
MDY R29, ;)::OP 1
BIS ::40}?a:OPl ;PULL UP THE MASTER CLOCK
BIC --40vP*.:OP1 ;PULL DOWN THE MASTER CLOCK
Dx C ::30, R2 ;PULL DOWN THE CLOCK JA & 1 B
Milt R2, ;.OP 1
'Els --40, P:q*OP1 ;PULL UP THE MASTER CLOCK
BIC =-°407 9.:OP1 ;PULL D06IN THE MASTER CLOCK
INC R2 ;INCREMENT RAM ADDRESS
CMPB ::310, R2 ;CHECK LOWEST 3 ADDRESS BITS
BNE LOOP ;CONTINUE TESTING
IIIC •:10,R2 ;ELSE RESET LOWEST 3 ADDRESS BITS
BF' LOOP ;CONTINUE TESTING

;SUBROUTINE TO LOAD RAM:

LOAD:LOAD: BIC -:40000, d:;OP1 ;ENABLE RAM

BIS
BIs
RTS

. END

.100009 9: OPI
=:100U0}?::OP1
U40000, a::OPl
PC

START

:INPUT DATA TO RAM
4
',DISABLE RAM
;RETURN Y I A PROGRAM COUNTER,

a
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