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1.0 INTRODUCTICN

There is a continuing interest in the determination of the density function of
a material body. The usual approach is to attempt to rucover the density func-
tion from knowledge of the total mass and the Newtonian poatential (refs. 1, 2,
3, and 4). It is well known that, in general, one cannot determine the den-
sity funetion from knowledge of only these two items.

In .his work we postulate the existence of higher-order potentials, and demon-
strate that the density function can be determined from this set of potentials.
Moreover, we shall show that there is a one-to~one correspondence between such
potentials and the density function, provided it is continuous.

Finally, we note that this demonstration includes a method of constructing the

density function from the set of potentials as well as indicating how one might
approximate the density from incomplete knowledge of the potentials.

2.0 MODEL AND NOTATION

Suppose A is a material body. We model this by assuming that there is a
nonnegative continuous function P defined on Euclidean three space denoted by
E such that P has compact support K, where K has the same geometric shape
as A and P is the density function for A. This notion precludes A

having "point masses," but does not require that A be "in one piece;" i.e.,

K need not be connected.

We denote the real line by R, and vthe norm on E, induced by the inner product
<o’->’ byll- N
If r 1is a positive number and P is a point in E, then

Sp(P) = {Qin E: ||P - ql| < r}

and

85,(P) = {Qin E: ||p - ql| = r}

3.0 MATHEMATICAL ANALYSIS

Suppose K is a compact set in E, which is the support for a nonnegative con-
tinuous function P, which is defined on E. Let C be a point in E and r

be a positive number such that K is a subset of S,(C). Let D denote the com-~
plement of Sp(C).
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Definition 1., The statement that M is the mass of K means M is the
number

[ p(Q)dQ
E

We understand that the integral is i triple integral.

Definition 2. For each nonnegative integer r, V, is the real valued function
defined on D by

Va(P) = J[ --Bﬁgz--dQ for P in D

sp(C) |[P - Q]|D

Notice that for each P in D, Vo(P) = M, and also that V41(P) dis the Newtonian
potential at P due to p,

For each positive integer n, we shall refer to V, as the nth-order potential
and the set {Vht n =2, 3, ***} as the higher-order potentials.

We now state the main purpose of this work,

Theorem. Suppose p 1s a nonnegative continuous function defined on E, which
has compact support K. S¢ is a ball containing K, and Sp is a ball
properly containing S¢ and is concentric with S4. There is a one-to-one corres-

o
pondence between the set V = { {Vp(P)}pn=g. P is in the boundary of a hemi-
sphere of Sp} and p; moreover, p can be constructed from V.

Definition 3. Suppose p 1s in D. Let mp be the function defined on R
by

mp(x) = 0 if x< 0
mp(x) = [ p(Q)dQ if x>0
Sy (P}
2
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mp(x) = [ p(Q)dQ if x>0
Sx(P)

Figure 1.- The function mp.

Observe that for each point P in D, mp is a real-valued nondecreasing
continuous function on R, which has a continuous derivative given by

mé(x) =0 if x<0

mé(x) = f p(x,z)dz if Sp(C) intersects 08Sy(P) (Sp(C)nSy(P))
Sp(CIndSy(P)

m;(x) =0 if x> 0 and 09S4(P) does not inter-

sect Sp(C)

Definition 4. If P is a point in D, then

up = inf.{|]P - Q]|: Q 4is in S,(C)}

vp = sup.{]|P - QJ|: Q is in S,(C)}

Notice that up and vp are readily determined for each P in D.

Using definitions 3 and 4, observe that
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VP
1
Vn(P) :I .-r: dmp(t) fOP ns= 0' 1, 2' LR
t

up
Making a change of variables s = 1/t for up < t < vp, we have

vp-1

up=1
Definition 5. For each point P in D

Ap = yp~!

Bp -1

up
and

Mp(x) = M = mp(1/x) for Ap < x < Bp
Observe that Mp(Ap) = 0, and also that Mp(Bp) = M; hence, we may extend Mp

to (0, Bp) by defining Mp(x) = 0 for 0 < x < Ap. Note also that

' Y 2
Mpﬁﬁp) = Mp(1/xp)(1/Ap) = 0; hence, Mp has a continuous derivative on (0,
BP .

We now have

Bp

Vp(P) = [ xPdMp(x) for n=0, 1, 2, ...

0

2
Notice also that Mp(Bp) = Mp(1/Bp)(1/Bp) = 0.
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We seek to arrange matters such that we are integrating ovar the interval

t_ (0, 1), We have two options at this point. If we restr’ct our attention to
only those points P outside of Sp,1(C), then Bp = up~! < 1. We then are
able to extend Mp to (0, 1) by setting Mp(x) = M, if Bp < x < 1, ard to
observe that Mp has a continuous darivative on (0, 1), and also that

1
Qn Vp(P) = [ xNdMp(x) for n =0, 1, 2, »+»
0
If we do not elect to make this restriotion, then by letting y = x/Bp for
0 < x < Bp, we have
1
n
Vn(P) = BP f yndMP(BPy) fOI" n= 0, 1, 2, e
0
5 If we now define Yn(P) = Bp™™Wp,(P) for P in D and n=0, 1, 2, **+, and
: define Mp(x) = Mp(Bpx) for 0 < x < 1, then we have
1
Va(P) = [ xNdMp(x) for n = 0, 1, 2, =+
0
liet us proceed under the assumption that Bp < 1, keeping in mind that Mp so

defined is a nonnegative nondecreasing function that has a continuous deriva-
tive.

0
If P is in D, we can construct a sequence of functions {Mplp-1 from
o o0 4
the number sequence {Vh(P)}p.p such that the function sequence {Mp}y=1 con-
‘ verges uniformly to Mp on ?O, 1], and there is a one-to-one correspondence

R L)

[v]
between Mp and {Vh(P)}lh=p. (This construction is further defined in appen~

t o
dix A.) Hence, we have a one~to-one correspondence between Mp and {V,(P)},-q
for each P in D.
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Let h > r + 1 and let us restrict our attention to only those points P ;
that are in B, the boundary of a hemisphere of Sy(C). For each point P, : )
let Lp denote the line containing P and C,

Definition 6. For each number x where Sy(P) intersects Sn(C), let
wp(Q), for each point Q in 85x(P)nSp(G), be the point on Lp common to
Sp(C) and 8Sx(P). ‘

Figure 2.~ The function wp(Q).
Definition 7. For each point P in B, and each number x, let
t
G(P,x) = mp(x)

Lemma. G(P,x) is continuous and bounded on Bx (~w, o).
The proof is given in appendix B, Notice that for P in B, ||P - C|] = n.

Definition 8. For each point P in B, let
1 SN
Hp(x) = mp(x + h) for x in (-, «) )

1
With this definition we observe that Hp(0) = mp(h), and also that

3 i
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J Hp(x)e~ixdqy

{0}

= f p(Q)e~1<wp(Q),¥y>4aq for y in Lp
E

where d 1is the number such that y = du with u being a fixed unit veotor
at C, along Lp.

The first of the above integrals is (2m)'/2Hp(d), where Hp 4is the Fourier
transform of Hp.

Since Hp is zero (except on, at most, a bounded set) and Hp is continuous,
it follows that Hp is a continuous Ly(=-w, ®) function for each P in B

(refs. 5 and 6). Moreover, :r follows that Hp(d), when viewed as a two-
place function, is bounded and continuous and is in Ly(Bx(~w», ®)), as shown
by the lemma.

For each point Y in Lp, let

gp(y) = (2m)~3/2 ~[’p(Q)e*i<WP(Q),Y>dQ
E

Definition 8. For each point P in B, let Tp be the transformation from E
onto E, which is defined as follows. For each number x let Ty be the plane
orthogonal to Lp, containing the point Dy = (1 - x/||P - Q||)P + (x/||P ~ Q]]|)C.
If Dy 4is not in Sp(C), then Tp 4is the identity map on Dy. If Dy is in
Sp(C), then for each point Q in Sp(CINdSy(P), Tp(Q) is the orthogonal pro-
Jection of Q onto my. If Q is in the plane containing 3S,(C)ndSx(P) and

Q is not in 8p(C), then TpQ 4is the orthogonal projection of Q onto Ty,
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FPigure 3.~ The transformation Tp.

Notice that for each P in B, Tp is a reversibly continuous mapping from E
onto E, which leaves each point in Lp fixed.

If Q is in Sp(C)naSx(P) and Y is in Lp, then

1t

<TQ,TY> = <TQ,Y>

[17Qf [{¥[] cos ®
[TQ]] cos @ ||¥]]
[1wet@]] 1]

<wp(Q), ¥>

n

13

tH]

We can now write
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op(Y) = (21)=372 [ p(1Q)e~1<TQY>qrg
TEzE

= (2q)~3/2 | o(Z)e=1<Z,Y>4z
E

where Z =TQ and Y is in Lp.

Hence,
op(Y) = Bp(¥)

the Fourier transform of p for Y in Lp.

Therefore,

op(Y) = (2m)=1 Hp(d)  for Y in Lp
where d is the number such that dU = Y.
Notice that if Y # C, there is only one point P in B such that Y is

in Lp.

Definition 9. Let ﬁ be the function defined on E by

H(Y) = Hp(Y)

A
if YAC and Y is in Lp and H(C) = 0.
DPefinition 10, Let p be the function defined on E by

o(1) = (2 =TH(Y)

L32
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In review, if for each point P In B we know {Vn(P)}n=0, then we can deter-
!
mine uniquely mp(x) for x in (~«, ). From this we are able to determine
B(Y) forall Y in E and, hence, p for all Y in E.

Continuing, suppose Q is in Sp(C) and Q 4is not C. Then there is a
unique point P and B such that Q is in the line Lp and

"

(2m)-3/2 [ 5(R)el<wp(R),Q>qR
E

p(Q)

Recall that p = (2m1)~1 H from which we have

1

(2q1)=5/2 /”ﬁ(R)ei<WP(R)»Q>dR
P

p(Q)

Hence, for each " Q in Sp(C), Q # C, we can determine p(Q) uniquely, and
therefore, since p is assumed continuous, we have determined p wuniquely and

[+ o)
the argument is compl~te. Hence, if {Vp(F)}n-0 is known for each point P
in B, the p 1is uniquely determined under the assumptions that p is
continuous.

4,6 COMMENTS

The preceding analysis could have been carried out similarly had we elected
not to assume that Bp < 1,

Also, the requirement that P belongs toc B, the boundary of a ball containing

K, is not necessary. What is essential is that for each point Q in Sn(C)
Q not C, there be a point P not in Sp(C) such that Q dis in the line Lp.

5.0 APPROXIMATION OF DENSITY

N
Suppose that for each point P in B, only {V,(P)},-g is known. Then one
can only construct, for each P in B, the first N approximates to Mp.
This then leads to only the first N approximates to Mp and, hence, to Hp.
One can still proceed, using only these first N approximates since each is
bounded by a summaple function., Notice that for P in D

10
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1
Vh(P) = [ xNdMp(x) for n=0, 1,2, ***
0
and, hence
1
Va(P) = (1/(n+1)) [ Mp(x)dxn+!

0

1
(1/(ae1)Mp(1) = (17(ne1)) [ x™*TdMp(x)

0
for n=20, 1, 2, ¢
Therefore, if we let
L)
Dp(P) = Mp(1) - (n+1) V,(P) for n=0, 1, 2, **-*

and P in D, we could, using thie construction in appendix A, generate a

— OO 1
?equegce {Mpln=0 of functions on (O, 1), which will converge to Mp on
0’10

A second notion is that perhaps for only a finite number of points P in B
X0
is {Vh(P)}pzp known. Then one could proceed as in the argument except that

one interpolates values for Hp for those points P in B for which
{Vy(P)}n=0 are not known; then proceed as before.

Both of these notions, as well as the convergence, rates should be addressed.

6.0 ADDITIONAL PHYSICAL NOTIONS

Suppose that for each nonnegative integer n we define

Fn(P) = grad V,(P) for P in D

1M
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Then Fp(P) = 0 and Fq(P) is the usual inverse square law. Notice also that

p(Q) P-Q
[1B-Q1 ™7 ||P-qy|

Fn(P) = =N f dQ

Sp(C)

for P in D and n =1, 2, **°

If g is a real valued analytic function on R,

8

g(x) = ¥ apxh
n=1

then
o0
Vg(P) = I anpVp(P)
n=1

is well defined, as is

o0
Fg(P) R X anFn(P)
nz1

This is readily observed by noting that

N N
5 apVufP) = | p(Q) £ ap/||P-Q||" dQ
n=1 Se(C) ns1

and, hence

Vg(P) = [ p(Q) g(1/]|P-Q||)dQ
r(C)

for P in D.

12
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In a similiar fashion

N

L ap Fn(P)
n=1

P-Q
{ p(Q) x ap (=n) (17} {p-0|])n+ dQ
SplC)

n=1 ||P-Q]|

( N
{ £ ap(-n)(1/]|P-Q| | )P~
$,.10) ||P-Q||2 n=1

n

daQ

| {P=ql|

and, hence

p(Q) P-Q
F (P) = -
g S{

'(1/||P-Q||) dQ
1P| P

Let us denote V, as the sum potential and F, as the sum force, each rela-
tive to g.

NotiIce that if g(x) = ax, then we have the familiar Newtonian po-
tential and force (ref. 7).

An interesting question that should be addressed follows; if

[o o)

V(P) = % ap Vn(P)
n=1

is well defined for all P in D, then is there an entire function g such
that

13
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7.0 CONCLUDING REMARKS

We have demonstrated that if A is a material body (not necessarily having
only one component), which has a continuous density function, and A is
contained in a sphere S, then if one knows all the potentials (Newtonian and
higher orders) for A at each point P of a sufficiently dense set B, then
the density function for A can be determined uniquely.

In addition, a notion of sum potential and sum force has been introduced.
There 1s clearly a question as to how to determine the higher-order forces and
potentials from experimental data as well as to determine the coefficients of
g, if such a g exists (ref. 8).

The notions mentioned here should not be considered limited to density func-
tions of material bodies. If one chooses the alternative approach (i.e., not
requiring that Bp < 1), thken one could consider questions dealing with forces
or fields near to sources of such phenomena. It should be noted that the domi~-
nant terms then appear to be the higher-order potentials and forces, whereas in
dealing with questions about effects far from the source the higher~order poten-
tials and forces appear to play a far smaller role. The material in reference

8 is very interesting with regard to the above comments. It would also be
interesting to consider the work in reference 9 in regard to the notions
introduced here,

14
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APPENDIX A
GENERATING A SEQUENCE OF FUNCTIONS

oc
We indicate here a method of generating a sequence of functions (Mp}n=1,
each of which is real valued and defined on (0, 1), from a number sequence

{Cn}i;o' (Please refer to references A-1, A-2, A-3, A-4§, A-5, and A-6.)

Given a number sequence {Cn}:;o, the function sequence {Mn}:=1 is called
the associated function sequence.

Suppose n 1s a positive integer and x is a number in the number interval
(0, 1). There 1s a unique integer k(n,x) such that

k(n,x)/n ¢ x < (k(n,x)+1)/n

For each positive integer n define a step function M, on (0, 1) as
follows:

Mn(0> =

[}
<

k(n,x) nn-t p.g .
z (t) p C1)(=-1)% Cipe
t=0 L=0

n

Mn(x)

for x is in (0, 1).

Reference A-4 shows that if M is a real valued function on (0, 1), which has
a continuous derivative, and for each nonnegative integer n

1
Cn = [ xNdM(x)

0

then the associated function sequence {Mn}§=1 converges uniformly to
M -M(0) on (0, 1).

A-1
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APPENDIX B
ESTABLISHING THE LEMMA

The lemma is established here. For all P in B and x in (-, «)
[}
G(P,x) = Mp(x)

If x<0 G(P,x) =0 forall P in B.
If x>0 and 9Sx(P) does not intersect Sy(C), then G(P,x) = 0.

Suppose now that Sy(P) intersects S,(C)

G(P,x) = J p(x, z) dz
| | Sp(CINasSx(P) |
< |P [ dz
I I SP(C)nan(P) l
and, hence

|G(P,x)| < |p] &

for all x in (-o, ®) and P in B,

Let us now demonstrate continuity. If x is a number such that Sp(C)ndSx(P)

is a singleton, then G(P,x) = 0.

If 354(P) does not intersect Sp(C), then G(P,x) = 0; and if x < 0, then
G(P,X) = 0.

Suppose each of P and P is in B, and each of X and x is a positive
number.

COP R ERTE LFNE
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G(P,x) ~ G(P,x)| = p(x, z)dz
[6¢F, | ér(c)nasx(P)

- — (;, Z)dZ
é (C)nBQ_(P)p
r X

£ plx, z) -~ p(; z)|dz
£r(C)na$x(P) | I

* p(x, z)dz - o(X, z)dz
g (CInds (B) é (CInas_(P)
r X r X
+* o(x, z)dz - . plx, z)dz
{ (Chnas_(B) { (C)nas_(F)
r X r X

Since p is continuous, we may make the fiprst integral as small as we please
by choosing |[x - x| small. Since p is continuous and bounded, we may make
the second term as small as we please by choosing |x - x| sufficiently small
with P and x fixed, and by satisfying each of the above we can make the
last term as small as we please by choosing ||P = P|| sufficiently small.
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