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ABSTRACT

The differential equatione,of motion, and boundary conditions, describing

the flap-lead /lag-torsional motion of a flexible rotor blade with a pre-cone

angle and a variable pitch angle e(x,t), which incorporates a pre-twist 0pt(x),

are derived via Hamilton's principle. The equations are valid for both ex-

tensional and inextensional '; Iades, and the meaning of inextensionality is

formally discussed. The equations are reduced to a set of three integro partial

differential equations by elimination of the "extension" * variable. Both cases of

hover and of forward flight are addressed. T.ae generalized aerodynamic forces

are modeled using Creenberg's extension of Theodorsen's strip theory. After the

equations of motion are obtained, they are systematically expanded into poly-

nomial non-linearities with the objective of retaining all terms up to third-degree

so that the influence of such terms on the motion of the system may be evaluated.

The blade is modelled as a long, slender, initially straight beam of isotropic

Hookean material. Offsets from the blade's elastic axis through its shear center

and the axes for the mass, area and aerodynamic centers, as well as radial non-

uniformities of the blade's stiffnesses and cross section properties are taken

into account. The effect of warp of the cross section is also included in the

formulation.
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CHAPTER I - INTRODUCTION

An important problem associated with helicopter dynamics is the determine-

tion of the dynamic response and aeroelaa'ic stability associated with the rotor

blades. Considerable attention has been given to rotary-wing neroelasticity pro-

blems, as evidenced by the numerous publications in ;nis area, e.g. (1-60). As

a re,ult of this effort, it is now.recagnized that such problems are inherently

non-linear and thus special attention should also be given to the development of

consistent mathematical uodels to address them. Due to their flexibility, rotor

blades are able to bend in tuo principal directions as well as twist. This fact

alone introltmes several important non-linear terms in the differential equations

of motion. It is also well known that considerable complexity is further intro-

duced due to the effect of rotation, through the addition of centrifugal, inertia

and Coriolis forces, and of the aerodynamic forces. Comprehensive reviews of the

subject have been written by several investigators, e.g., (1-3). The work reported

in [1) by Loewy reviews the literature up to 1969, while the recent review presented

by Friedmann (3) includes most of the work done up to 1976/1977. Several aspects

of helicopter modelling have been discussed by Ormiston [4).

In 1958, Houbolt and Brooks (14) derived a comprehensive set of linear

differential equations to describe the coupled flap-lead/lag-torsional (or, in

short, flap-lag-torsional) dynamics of non-uniform rotating pre-twisted blades.

Expressions for the aerodynamic loads were not specified in [14). Further work by

several investigators established that non-linear terms not considered in (14) play

a fundamental role in the response and the stability of both hingeless (cantilevered)

and articulated (pinned) rotors. The non-linear equations of motion are quite

complex, and efforts are still devoted today toward their formulation. Hodges and

Ormiston [15) analyzed the coupled flap-lag behavior, which can exhibit insta-

bilities, by restricting themselves to torsionally rigid blades. A set of integro
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partial differential equations of motion with quadratic non- linearities were

developed taking into account the effects of the blade's pitch angle and of a

small pre-cone angle. A study of the stability of the flap-lag motions ^f a

hingeless rotor in hover was then performed by making use of such equations. A

comparison between the results of the stability analysis for elastic and rigid

blade models was also presented in (15). Work with rl,gid blade models has also

been done by several other investigators, e.g. (22-31).

Hodges and Dowell(32] developed a comprehensive set of 'differential equations

with quadratic non-linearities for the flap-lag-torsional dynamics of rotating non-

uniform extensional blades. The presence of pre-twist and of a small pre-cone angle,

and the effects of offsets between the mass and area centroids from the elastic

axis through the shear center were considered. Three-axes Euler angles were used to

"escribe the orientation of the principal axes of the blade's cross section -- an

approach that facilitates the development of the equations. This approach was also

used by Peters and Ormiston (33) when considering the effects of the second-order

non-linearities on the angle of attack of hingeless rotor blades. The equations in

(32] were used in (34) to investigate the stability of a uniform rotor blade in the

hovering flight condition. The equations of motion developed in (32) were also used

by Dowell, Traybar and Hodges [36] to correlate the experimental and theoretical

results obtained for the static deflections and bending natural frequencies of a

cantilever beam with a tip mass, after the appropriate terms due to the inclusion

of the tip mass were added to such equations. Reasonably good agreement was

reported for the cases where the basic assumption in [32) of retaining only quadratic

non-linear terms in the equations could be justified. A similar study was also

recently presented by Rosen and Friedmann (37).

The equations developed in [32,34] were further extended by Hodges (38) to

include not only the effects of twist and pre-cone but also of droop and sweep

angles, torque and blade root offsets, and pitch-.link flexibility simulated by a
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torsional root spring.

The coupled flap-lag-pitch res;onse of hingeless blades for both cases of

hover and forward flight were considered by Friedmann and Tong (40,41). A set

of equations to describe the flap-lag-torsional motions of a pre-twisted

cantilevered blade in hover, considering root torsional flexibility, was also

derived by Friedmann (42). The derivation presented in (42) follows Friedmann

and Tong's earlier work (40,41) and a modification of Houbo,lt and Brooks' work

[14) to include quadratic non- linear terms. An ordering schema, also used by

other investigators, was employed to neglect several non-linear terms in a

systematic way and obtain the equations with quadratic %ton-linearities. A revised

set of non-linear differential equations of motion was later derived by Rosen

and Friedmann [48). The equations developed in 1481 for pre-twisted blades with

a small pre-cone angle include the effects of offset between the blade's area

2nd mass centroids, shear and aerodynamic centers. As in (32), three axes

Euler angles are used to describe the blade's orientation in space.

Some of the work on the flap-lag dynamics of rigid hinged blades and hingeless

elastic blades for both cases of hover and forward flight has been examined

by Kaza and Kvaternik (50).	 For the rigid blade case, two types of hinges

were considered, one fc•r which the lead/lag hinge flaps with the blade, and the

other for which the flap hinge also executes a lead/lag motion. Stability

boundaries in the flap-lead/lag frequencies space were obtained, indicating that

such boundaries depend on the physical hinge sequence. This work was also

reported in (30). The same authors also examined in (51) the flap-lag-torsional

kinematics of pre-twisted blades using lag-flap-pitch and flap-lag-pitch three-

axis Euler angle sequences to describe the orientation of the blade's principal

axes. Here, howe lver, a source of disagreement with the work of [32,33) arises
	

i

when the third Eulerangle -- a final rotation about the blade's elastic axis

--is equated in (511 to the twist angle of the blade rather than determining
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the blade's twist from the component along the elastic axis of the curvature

vector (which is obtained as a function of the pre-twist, the three Luber angles

and their spatial derivatives), as done in (32,331. The kinematic expressions

obtained in [511 are used in [521 to develop a set of non-linear differential

equations of motion with quadratic non-linearities for the forward flight

condition using two-dimensional quasi-steady blade element theory. The differ-

ential equations for the two Euler angle sequence mentioned above are shown

explicitly. Although not mentioned in (521, these equations, which represent

the same physical problem, should be equivalent to each other. In [50,52) th6

authors make explicit use, in their derivation, of the blade's kinematic axial

deflection, or foreshortening.

The source of disagreements previously mentioned in regard to the formulation

of the flap-lag-torsional dynamics of rotating blades was recently clarified by

Hodges, Ormiston and Peters [55]. They considered the kinematics of rotating

extensional beams and developed expressions for the curvature vector and the Euler-

angle transformation matrix for all possible six sequences of the three-axes Euler

angles. By means of an appropriate change of variable, they showed that these

sequences are equivalent to each other. In addition, they showed that the angle

of twist, obtained by integration of the twisting curvature does contain a higher-

order integral term, and that such an angle is a quasi-coordinate much like the

axial deflection used in [50,52] with the foreshortening considered a 	 priori.

This angle of twist, first obtained by Peters and Ormiston in (33], is discussed

by Nordgren in [611 and was independently obtained by Crespo da Silva and Glynn

[62-711 in connection with the nonlinear flexural-flexural-torsional motions of

inextensional beams.

The non-linear differential equations of motion for inextensional beams were

derived in [62,68] by making use of Kirchhoff's kinetic analogy [721, three-axis 	 a

Euler angles to describe the orienta_ion of the beam's cross sectional principal

axes, ant- Hamilton's principle with the Lagrangian adjoined to the inextensional
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constraint by a Lagrangian multiplier. Physically, the Lagran`s multiplier repre-

sents a force along the beam's neutral axis necessary to maintain inextensionality.

This farce is dependent on the deflections in a non-linear manner. The equations

derived in (62,68) were then expanded into cubic non-linearities and converted to

a set of integro partial differential egwimions ;63,68J. These were subsequently

used to investigate the non-linear response, and its stability, exhibited by the

beam under several conditions (63-67, 69-711 including support asymmetry (64).

The systematic formulation of (62, 63, 681 may be extended to address the rotor

blade dynamics problem by incorporation of effects such as blade rotation, pre-

twist, pre-cone angle, and aerodynamic forces.

An investigation of the response, and its stability, of a dynamical system

described by a set of nonlinear differential equations with q wldratic and cubic.

nonlinearities acting simultaneously has been presented by Nayfeh and Kamel, and

by Nayfeh (73,74). Although the problem considered in f73,74 1, is also a complex

one, the rotor blade aeroelastic problem is substantially more involved. To

this author's knowledge, a system.gtic investigation of the influence of the

extensional and inextensional assumptions, and of the next order -•- cubic -- non-

linearities on the rotor blade aeroelastic response is missing in the literature.

In this report the work presented in (62,68,32) is extended with the objective

of deriving the differential equations of motion for both, extensional and inexten-

sional rotor blades with pre-cone and a pitch angle 8(x,t) -- which incorporates a

pre-twist 8pt (r.) -- including third-order (e 3 ) non-linearities. The pitch angle

8 may be included in several ways. One way, for example, is to start with an un-

pitched blade and to impose the known pitch angle I about its longitudinal axis

to obtain the directions of the principal axes of the undeformed but "pre-pitched"

blade. Then a sequence of Euler angles can be used to bring these axes to their

new orientation obtained after the blade's elastic deformati ,,)ns. Aaother way,
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introduced in [32,33), is to s tart with a set ( C 3 , n 3 , t 3 ) of non-principal axes

of the pitched blade with, say,F, 3 along the blade ' a elastic axis, and ( n 
3' 

4 3 ) being

two non-principal crr^,ss sectional axes at an angle -e with the "pre-pitched" (but

undeformed) blade ' s principal axes along its cross section. A sequence of three

Euler angles is then employed to bring (E3,n3,43) to their corresponding orient&

tion after the blade has undergone the elastic deformations. Since the blade's

cross section is now, after the elast j,c deformations, in its " final" orientation

in apace, a further simple rotation 6(x.t) about the "final" position of the

F.3 a^ axis will then bring the triad (r^ 3 :n 3 ,K 3) into coincidence with the deformed

blade's principal axes (,n, ). With this approach, the pitch angle 6(x,t) appears

in the differential equations simply as an aaditive term to the third Euler angle,

as long as this angle is a rotation about the blade's elastic axis [32,33,55]. Be

cause of its inherent simplicity and compactnc*s, this is the approach that will he

used here.
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(,,HAFTEI? II - THr DYNMIC SYSTEM AND BASIC ASSUMPTIONS

Consider an initially straight, but pre-twisted, rotor blade of length R

when not elastically deformed, mass m per unit length, and of closed cross section.

Its maximum cross section dimension is assumed to be much z:aaller than its length

so that the blade may be approximated as a beam. A blade segment, both in its

undeformed and elastically deformed states, is shown in Fig. 2.1. The (&, n, ^)

K	 A	 ^ 	 A

=	 axes -- with unit vectors (	 ,	 ,	 x n ) -- are the principal axes of the

cross section at the shear center C 	 of the deformed blade; it is assumed that

the cross section is symmetric about the n axis. The ^ axis is tangent at all

times to the elastic axis of the blade.

The (x,v,z) axes, with unit vectors ( x,y,z=x x y ) shown in Fig. 2.1, are

a se:: of rotating reference axen, the, x axis is coincident with the Qiasti,c axis

of the undeformed blade. These axes rutate in space with constant angular veloc-

ity Q about a direction perpendicular to the rotor hub. This is shown in detail

in Fig. 2.2 together with their spatial orientation relative to a set of iner-

tial (X, Y, Z) directions. As seen in Fig. 2.2, the orientation of these axes

may be described by first aligning (x, y, z) with (X, Y, Z) and then performing

two successive rotations. The first rotation T - Qt ( where t is time) about Z

brings the (x, y, z) triad to its new orientation (X 1 , Y
1
, Z 1- Z), while a second

rotation R about the negative Y 1 direction (i.e., a clockwise rotation) brings

(X1 , Y l , Z 1 ) to its final orientation (x, y, z). The angle s, which is the angle

the undeformed blade x axis makes with the plane of rotation, XY, is the blade's

pre-cone angle. This angle is taker, to be a constant. The "blade root offset" el

shown in Fig. 2.2 will be taken to be zero for simplicity.

The principal axes (n , ) of the blade's cross section, centered at C  as

shown {:i Fig. 2.1, make an angle e(x, T ) with two cross section non-principal axes

7
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l31	 3 ) also shown in that figure. It is assumed that the angle ®( x,T) -- the

geometric pitch, angle of the blade -- is given as

n	 ,
9(x,T) 8c + 0pt (x) + ^j^ eic cos i T + 8 i sin i r	 (2.1)

i	 1
where @c is the collective pitch angle -- a constant --, ®pt (x) is a pre-twie6t

angle that may be incorporated to the blade, and ® ic,and e iq , i - 1,2,...,n, tre the

harmonic pitch components that ms ,y be introduced by a control system. When the

blade is elastically undefoimed the non-principal n 3 and C 3 cross section axes

are parallel to the rotating y and z axes, respectively.

Nring, the elastic deformations, point C  -- the elastic center of the

undeformed (but pitched) blade's cross section at location x-x shown in Tig. 2.1

-- moves from its location (x-x, y-0, z-0) to its new location C whose
e

coordinates relative to the (x,y,z) rotating axes  are written respectively, as

Rx + Ru ( x,T), Rv ( x,T) and Rw(x,T). Here u, v and w are the (x, y, T,) components,

non-dimensionalized by the uodeformed blade ' s length R, of the elastic displace-

ment vector of the blade's cron y ;section elastic center. Clearly, 0 < x < 1 is a

non-dimensional quantity.	 t,

In general, each cross section of tie blade experiences the elastic. displac(t-

,,tents Ru(x,T^, Rv(x,T) and Rw(x,T) of its e`l4 .istic center C and a rotation about

	

^	 e
*	 ti

C . The orien'on of the principal axes (f;,n`^ji, through C , of the blade'ion	
e

s
`^ 

g ross section at C , may be described by three successive Euler angle rotations.

A set of three-axes Euler angles is used here for this' ~purpose. We begin this

process by aligning (^, r^, ^) with (x, y, z) and then per	 the threey1.

,ysuccessive rotations shown in Fig.2,3 * , The first rotation A 
z 

+ x,t) about z brings
'^,.

*Due to warping of the cross section, the coordinate system (x, n, ) is in
reality a non-orthogonal system if Wax 0 0 since, in this case, 	 is not
coincident with x. However, this effect is quitsmall [75, 761 and, for
this reason, it will be neglected here.
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that unit vector triad to (^ 1 , nit G1 z). The second rotation 0 (x,T) about
A

the negative direction (a clockwise rotation) of the new position n1 of the

n unit vector brings 
(^1' n 1 {1 ) to (&2 ' n2 - 

nit C2)' A third rotation

A	 IL	 A A
6x (x,T) about &2 - & brings this triad to the orientation (t• n 3, C3)'

Thus, the sequence ( e z , ey , ex) takes a non-principal triad from its initial

orientation associated with the undeformed blade, and aligned with the rotating

(x,y,z) reference axes, to its" final"orientatton associated with the elastically

deformed blade. As indicated in Fig . 2:1,an additional rotation of the
A A

triad, which is still aligned with	 n3, C3) after the third Euler angle
A

rotation 6x (x,T), by an amount equal to the pitch angle e(x,T) about & will bring

the blade ' s cross section principal axes to their"final orientation in space.

A A A	 A A ^
The transformation matrix [T) between (x,y,z) and	 n	 defined as,

A	 A
x

n	 -	 [T]	 Y	 (2.2)

^	 A
^	 Z

may be readily obtained with the aid of Fig. 2.3. As found in [32, 33, 551 its

components t ij are given is

ce cey	 Z

[T] - -ce 1 se Z - se l soy cez

se 1 
seZ - ce l soy ceZ

COy soZ	
80 

ce 1 ce z - so so so Z	 set cey
Y

-se, ce Z - ce 1 se so 	 cel cey
Y

(2.3)

where se  and c6  denote, respectively, sine  and cose k (k-l,y,z), and 6 1 is given

as

12



(2.cel - 9(x,T) + ex(x,T)

The advantage of incorporating the pitch angle e(x,T) in the way that is done

here is that e(x,T) simply shows up in. the equations as an additive term to the

third Euler angle 0 x(x,T), regardless of the fact that the blade is given a

known "pre-twist" ept (x), or a general known pitch angle 9(x,T). This approach

was first introduced in (331 for pre-twisted blades.

With the position vector of the elastic center C a , relative to the hub

center 0, given as

re	R ( (x + u) x + v y + w 
111

(2.5)

it follows that

A

a(Rx	 (x + u) + x + v+ y + w+ z	 (2.6)

where * 	( )+	 8 ( Mr .

Equations (2.2) and (2.6) imply that

tll	
cey c® Z M (x + u) + 	(1 + U , )x 	 (2.7a)

t 12 • cey 90  • v+ M v  x+	 (2.7b)

* The symbol 0 is used here to denote "equal by definition". The scalar
quantity r denotes arc length, non-dimensionalized by the blade's undeformed
length R, measured along the elastic axis.

13
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t	 t13 ' Be  - 
w+ - w' x+
	

(2.7c)

where ( )'	 a( )/ax. Equations (2.7a-c) may 14e combined to yield the

following expression for x+ in terms of u; v' and w',

y+ - 
[(1 + u' ) 2 + v 12 + w,2 1- 1/2

Equation (2.8) will be used in the sequel to relate the partial derivatives

( )+ to ( )' and u', v', w'.

By letting dots denote partial derivative with respect to the non-

dimensional time T a Qt, i.e. ( )' - 3( )/3T, the angular velocity w(x,T)

of the principal axis system	 with respect to the inertial frame

(X, Y, Z) is obtained directly from Figs. 2.1, 2.2 and 2.3 as

O z z - 6y n 1 + 6 1F ] + Q z

sa [ 6 l + (6 Z + ce)sey + sS cey co Z]

+ SZ [( 6Z + c¢)se lcAy - 6yce l - (co l se Z + sel sey ceZ)sO]n

+ SZ [O z + CO)ce l cey + 6y se l + (se l se Z - ce l soy ceZ )s8]^

A	 A	 A
SZ [W & ^ + wn n + w^ C] (2.9)

C

By making use of Kirchhoff's kinetic analoo; y [72, Chap. 191, the c mponents

i4
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C^ , Cn and C^ of the elastic axis curvature vector C(x,T) can be readily obtained

from equation (2.9) as

RC - (eZ i - ey n 
l + 0+ )

[ei + eZ se y ]A + [eZ se cey - ey cel ]n

+ [eZ ce l cey + e  se l l 	 A x+ [Pt & + Pn ^ + PC G l 	(2.10)

Although a total of six dependent variables (u, v, w) and (0 Z , 6y , ex ) have

been introduced, only four are needed. As seen from equations (2.7a-c), the

angles 8y and 6 r are related to the spatial derivatives u, v and w as

tan e Z - v'/(1 + u')	 (2.11a)

sin 6y - w'x+ - w I [ ( 1 + u') 2 + v 12 + w 12 1 -1/Z	 (2.11b)

The differential equations of motion to be developed here will involve

the elastic displacements u(x,T), v(x,T) and w(x,T), and the third Euler ang%e

6 x(x,T). To obtain such equations, the extended form of Hamilton's

principle [ 77,78] will be used. For this, expressions for the variations of

the kinetic and strain energies of the motion are needed. Expressions for these

energies are developed next.

15



CHAPTER III - KINETIC AND STRAIN ENERGIES OF THE MOTION

e
The position of an arbitrary point P on the cross section through C e , which

is located by the vector r e given by equation (2.5), is shown in Fig. 3.1.

Due to warping, P experiences a small axial displacement given approximately as

- (R^)(P,x+) ^, where ^(n, {) is the warp function -- normalized by R 2 -- obtained

by solving Lap ace's equation for the cross section (79, 80). In terms of non-

dimensional coordinates n and { (along the n and C axes, respectively), the

position vector of P relative to the hub center 0 is then written as

rP re + R(n n +	 RAP &x+S

R((x + u + nt 21 + ^ t 31 - WP^x
 tll)x

+ (v + nt 22 + ^ t 32 - ^YP ^x+t 12 )y + (w + nt 23 + Ct 33 - 
^UP^x+t13)Z]

The velocity of P relative to 0 is then

vP - drP/dt - Q[(drP/dT)X	 z + 2 x rP].9.

(3.1)

(3.2a

where (drP /dT ) X ^^ is the velocity of P as seen by an observer fixed to the rotat-

ing reference frame (x,y,z).

Equation (3.2a) yields

16
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FIG. 3.1 POSITION OF AN ARBITRARY POINT P ON THE BLADE'S CROSS SECTION

THROUGH CE , INCLU)ING THE EFFECT OF WARPING.
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vP
/(SZR) • fu - vc8 + x ( ;21- t 22ca) + C(t31- t32c8)+ 

'PPCX+ t12co - ("CX+tll)°'i

+(v +(x + n)c8 - vsf3 + n(t 32 + t21c8 - t23 as)

+C(; 32 + t
31c8 - `3388) + *P CX+(t 13s8 - t1ie8) - We t12)•1Ŷ

+r; + vas + n(c 23 + t22as) + V;33 + t 32sd)-0 CX t12a8 -(*P CX t13)' It
(3.2F

Assuming that the velocity of the hub center 0 is constant, which is true

for both cases of hover and of non-accelerated forward flight, the kinetic

energy of the motion of the blade is then

1
T	 R 3 j	 If Pvp vp do dC dx

x-0	 A

(3.3)

whe •.e P is the blade's material density at point P and A is the undeformed blade's

cross section area, normalized by R Z . The mass per unit length of the blade, m, is

defined as the following area integral

M A R2 if P do dC	 (3.4s)
A

and will be assumed to be a constant. This implies that p is not a function of

x, that is, P-P(n,C). It will also be assumed here that the blade's cross

section has material symmetry about the n axis, so that

1fp C do dC - ff P n C do dC - 0	 (3.4b)

A	 A
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and that the warp function *(n,{) satisfies the following relations

ffP^ do d {	 ff P* n do do - 0	 0.40
A	 A

With the aforementioned assumptions, and defining the following cross section
integrals

m a g R2 If Pn do dC	 (3.5s)
A

mJ n Q 
R2 

ff P {2 do d{	
m1 

n R2 ff P n2 do dG	 (3.3b)A	 A 

l d J n + 
J C	 (3.50

the kinetic energy given by equation (3.3) may be written, after making use

of the expressions for the elements t ij of the transformation matrix (T) given
by equation (2.3), as

1
T/(nQ R3 )	 1/2 f ((u-vc6 ) 2 + (d +(x + u)c6 - ws6 J 2 + (w + vss) 2

}dx
0

+1/2 1f ( & wE + , n Un + , ^w;) dx
0

+ f e{(u-vc$) (t 21-t22C6) + (w + vs6) 
(t 23+ t22S O

0

+(v + (x + u)c6 - ws6J (t
22 + t21cs - t23so))dx

r.

a

+ T* /(mQ2R 3 )	 (3.6)
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The terms not shuun explicitly in equation (3.6) are included in T	 T.tie

expression for T s is given in the Appendix. The quantities a and j (a
a	

r10 &, , {)

defined by equations (3.54-c ) are the blade ' s mass center offset from the elastic

axis, normalized by R, and its distributed mass moments of inertia, normalized

by mR2.

To obtain the expression for the strain energy of the deformed blade, a
w

strain tensor, represented here by a matrix [e) with elements t i' , iw aseded.

As a measure of than deformation of the blade, the square of the distances

between two infinitesimally close points on the blade, before and after the

deformation.is used [80,811. The nonlinear strain-displacement relations for

the deformed blade are sought for the case of large displacements, and for this

the strain components 
Cij 

are formulated in terms of the increments dr, dn and

dy for the deformed configuration. The strain components are still assumed to

be small enough, however, so that Hooke's linear law relating the stresses

at any point P of the deformed blade's material to the strains at P is still

applicable. The matrix [£] of strain components e ij is thus determined as

^dr
drP 	drP - dr

PO	 drPO	
2R2 [dr dpi dc] IEl d[ ,,

d;

(3.7a)

where, as obtained from equations ( 3.1) and (2.10),

rP0	 r  i	 R ((x - V^O e1 )x + lr^ O cA - {Ose)y

u-veX
^ 0

+ (TI 0B e + ^O ce) Z
	

(3.7b)
	

7
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In equation (3.7b), *00 n0 and G 0 denote, respectively, ^, n and C when u - v - w •

0x - 0. As discussed in 1321, the difference between the quantities a 0 and a

( ci s m ,v for the blade's cross section is very small. In-plans cross section

distir,tion will be neglected here, and tho approximations no 
or no GO as E and 

00 
r ^,

are adopted.

From equations (3.1) and (3.7b) it follows that

drPO /R - ((x+ - ^►8" x )dr - 6' [(a* / 3n)dn + (3*/3Vdc1 )x

+[-®'(ns® + tc®)dr + (ce)dn - (s®)dCly

+[A'(nce	 W)dr + (s®)dn + (c9)dC]	 (3.8)

di A - [ (x + u) + x +v+y + w
+x 

V- (pax+) +F,)dr

+(h - E 
pax+ 

X/an )dn + (^ - & P &x 4 W aO d4

+( p&^ + Pn^ + P ;0 x (n n + ^ ^ - ^A & x++ x	 Q dr	 (3.9a)

Making use of equations (2.1), (2.2) and (2.7a-c), and defining, for the sake

of compacteness, xl - x, x2 - y and x3 - z, equation ( 3.9a) may be written,

after performing the cross product indicated and noticing that ( p&x) - x (p &x )

as
i
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3
drP/R	

i•1 
(Itli + ( Gpn - nP; )tl.x+ - *(PCX	

tlix+

-(' + OP CX+ ) pC x+t 2i + (n + Onx+)P^x+t3iJdr

+(t21 tli 
C 
C 
X + 3Wn)dn + ( t 31 - 

t 1 
ptx+ )*/W dOxi

	'(3.9b)

Equations ( 3.7a). (3.8) and (3.9b) immediately yield the following expressions

for the strain components ei'.

2E 11 • ( 1 + (CPn - n pc) x+ - ^X+(p&x
+) 12 

+ I(C + oCX+) 2 + (n + Opnx+)2J(P&x+)2

	

I(1 - ^6
11

) 2 + (n 2 + ^2)9'2Jx+2	 (3.10x`

2E12 - (C + Wan) (PC - ®' ) x+ + [(nPr - CPn )DWan - *P0P&x+2

	+ IP&x+(P&x+)' - 9 ' e '. Jx
+
^ Wan	 (3.10b)

2c13 • (n - w ao (P C - 8 ' )X+ +[( n p ^ - cpn ) Wac + On)PC x
+2

+ IP&x+(P&x+)'	 9 ' 0"IX+tp a*/ac	 (3.10c

2E 22 • [(P &x+) 2 - e' I I (40n)2	 (3.10d

2E 23 • [(P x+) 2 - 6 12 J (Wan) N/a;)	 (3.10e)

(3.10f)
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The strain energy, U, is given by

3

U ' 2 111	 [all E 11 + a22 E22+0 33- e 33 + 2(a12 E12 + °Y3 E13 ♦ a23 E23),dn dZ dx

	

(blade)	 (3.11)

where ai' are the stresses acting on the blade. For a linear and isotropic

elastic material, the stresses and the components Ei' of the strain tensor

at any point P of the blade are related by Hooke ' s law as

E 11	 (a ll 	V(O22 + a33)) /
Ey	 (3.12a)

` 2?.	 l °22	 " (a ll + a33)3/EY	
(3.12b)

E 33	 [a 33 	v(a ll + a22)I /Ev 	
(3.12c)

E12 • (1 + v) a12/Ey . a12/(2G8)	 (3.12d)

E 1 , M (1 + v) a13/Ey a a13/(2Gs)	 (3.12e)

E23 • (1 + v) a
23 /Ey a 023MG8 )	 (3.12f)

where Ey (x), v and Gs (x) . Ey / Ml + v)) are, respectively, the Young modulus,

Poisson ratio and the shear moduluq for the blade's material.

With the assumption that the blade's maximum cross section dimension is much

smaller than its length, the blade is approximated as a beam, and the normal

i

^I



i

stresses o22 and 
a33 

are neglected. Under this assumption, equations ( 3.12a-c)
	

i

reduce to

E 11 ` '11 /Ey 	E22 ` E 3 3 " - X11
	 (3.13)

and the strain energy U, calculated from equations (3.11), (3. 12d-f) and (3.13),

becomes

U -1 3 ^1 1^Ey 1 -x
+2 

+2(^Pn - nP{ )x+ +( rp, - nP,) 2x+2 +(n 2 + { 2 ) ( P2 - 8'2)x+2

x-0

8	
A	 ^

+ ^ 2 [ pP x+ ) /2 + ( P 2 + p2)P2x+2 _ 8
0 21 x+2 + 2

^1

e to x+2 _ 
(Pe 

+)0
x+

2
+(CP C + nPT1 E

x+3 
- (CPn - npC)x+2 (P Cx+) '1 , do d^ dx

J

+.R 3
+  f  o

f (;	
(P^ - 61)2 ^(^ + Wan) 2 + (n - Wat;)21x+2

X.0	 J

+ 21P C (p& - e , ) 0 - WaO Y O p p - CPn )4/ac + onjx+3

-(C + Wan) (rip - C Pn ) Wan - 
^PJX

+3
	do d; dx + Ue (3.14)

where the term US is given in the Appendix.
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Assuming that the blade cross section is symetric about the n axis, and

that the warping function ^ is antisymmetric, it follows that

ff do dC	 -	 fjt, do dC jjcn 2 do dC - jfc 3 do dC	 0 (3.15a)

A A A A

ffO ^j	 dC	 - ffn* do dC -	 ffo(n 2 + C2 ) dn dC - 0 (3.15b)

A A A

Non-dimension:+.tizing the Young and the shear moduli as

E A Ey /(nQ 2 ) Cs/ (MO 2 ) (3.150

y

4M

and defining the following non-diitensional cross section integrals,

D^ 0 C jj((C + a^ /an) 2 + (n - av^/aci 2 Jdn dC (3.16a)

A

Dn A E ff C2 do dC ;	 DC E ffn 2 . dn dC (3.16b) A A

1^ o ff (n 2 + C 2 )dn dC ;	 A © jfdn dC	 ;	 AeA^ ffn do	 dC (3.16c)
A A	 A

B 1 ff (n 2 + C2 ) 2 do dC B2 © ff n(n 2 + C 2 )dn dC (3.16d)
A A

B 3 a jAf C 2n do dC B4 D B 2 - B3 (3.16e)

C 1 A ^f ^2 do dC C1 6 ffC	 do dC (3.16f)

in 
0 f f [(n -	 wao + (C + av an)C avanldn dC	 (3.16g)
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J4 G 
Af 

((n - a^ /ac)n any/a{ + (4 + a^ j an) (^ - n Wan)) do dC	 (3.16x)

the strain energy given by equation ( 3.14) may be written as

U/(mSd2R3) - 2 f [D (Pt^(P - I ) 	n2 + D pn + D^ p^]x
+2
 dx + ^ 1 EA ( 1-x+2 ) 2 dx

0	 0

1

+4 f (1 - x+2 ) Q EI & (P 2 - e ") + Dnpn + D CP;]x+2 - McApCx+
0	

}dx

^

+ 2 f {4 EB l (P2 - A l2 ) 2x+4 - EB2 p^(P2 - A92)x+3
0

-E(3b pn P^ + B4p3)x+3 + EC 21AX - 2EClpn ( P' - A)} dx

1
+ f G(JnPn + J AY ( p^ - A^ ) p^x

+3
 dx + U* /(mSt2R3 )	 ( 3.17)

0

The term U which includes most of the contribution due to warping, is given in *..he

Appendix .

The quantities D,, D  and D^ defined by equations (3.16a,b) are, respectively,

the torsional and flexural stiffnesses of the blade, normalized by nQ R 4 , while

I^ -- defined by the first of equations ( 3.16c) -- is the polar moment of inertia

for the cross section (referred to its shear center C^) normalized by R 4 ; A is the

blade ' s cross section area normalized by R 2 , and e  is the cross section area

centroid offset from the shear center, normalized by R. It is worth noticing

that the curvature components Pax + , p 
n 
x + and p^ x+ appear directly in the expression

for the strain energy U. This is a direct consequence of defining U via the strain

components formulated in terms of the increments dr, do and d^ for the deformed

configuration.

r

k
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CHATTER IV - HAMILTON'S PRINCIPLE AND THE DIFFERENTIAL

EQUATIONS OF MOTION, AND BOUNDARY CONDITIONS

In this report the extended form of Hamilton's principle (77,78] is used

to obtain the differential equations of motion for the blade, and their boundary,

conditions. This principle may be expressed as

f 
2 (6(T) - 6(U) + 6W]dT d(mA2R3)61 - 0
	

(4.1)
Tl

where 6W -- which is not necessarily the variation of a function W, and hence the

the distinction from the notation used for 6(U) for example -- designates the

virtual work done by the external and damping forces. Here, 6W is expressed in

terms of the virtual displacements of the non-dimensional generalized coordinates

u,v,w and 6 x as,

1	 1
6W - dQ2R 3 { 6W 	 +	 f (Qu 6u + Qv 6v + Qw 6w + Q e 6Ax)dx }

x - 0
0	 x

(4.2)

The quantities Q u , Q 
v 

and Q 
w 

are the distributed forces associated with the virtual

displacements R6u, R6v and R6w, respectively, normalized by DO 2R, while Q® is the
x

distributed moment associated with the virtual rotation 66 x , normalized by mS12R2.

The term 6W  is included in equation 4.2 to account for the cases where the

virtual work done by the distributed forces acting on the system is also dependent

on the variation of the spatial derivative of any of the variables u,v,w and Ax.

In such cases, an integration by parts in the expression for 6k' immediately yields

a 6W  term, as in equations (6.15a,b) in Chapter V1.
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From equations (2.3) and ( 2.8) to (2.10) the following quantities, which

appear in the expressions for the variations of the kinetic and strain energies,

are obtained

6W^	 ((ex + cs)cey - ss soy ce x )6ey - as cey sox he x + 6ox + soy box 	(4.3a)

.	 .	 .
6Wn w W^6o- - [(ex + cs)se + t sslse 6e - t so 6e - ce 6e + t	 60	 (4.3b)y	 11	 1	 y	 22	 z	 1 y	 23	 x

6W^ - - Wn box - (( 6 x + cs)sey + t 11esice l 60  - t 32so he x + se l 6i  + t 33 6ox

(4.3c)

6 P 	 . e i ce 6e + 6o ' + se 66 '	(4.3d)
Y Y	 x	 Y

6pn a p^ 6e x - ei soy so t 6ey - ce l 60; + coy se l 6ei	 (4.3e)

6P^ - - P  6ex - ei se ce 1 69 + se l So' + ce ce 1 68 z,	(4.3f)

	

y	 v	 y	 y

6t 21 ' t 31 6ex - t 23 ce x Soy - t 22 6e x 	(4.3g)

6t 22 ' t 32 6ex - t 23 so x boy + t 21 66 z	 (4.3h)

6t 23 " 
t33 6e

x - so  so  
So 
	 (4.31)

x+6x+ . - ( ( 1 + u')6u' + v'6v' + w ' 6w')/['(1 + u 12 ) + v 12 + w ' 2]2	 (4.3j)

The virtual variations 6e  and 6e x may be found directly from equations ( 2.11a,b) as
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69 - (- ", [ , 1 + u' 6u' + v'6v'j+ ^(1 + u') 2 + W 211/2 6w , )/((1 + u') 2 + v' Z + w12j
Y	 J(i + u') 2 + v'2ji 2

- (ae y /au' )6u' + 0ey/av')6v' + (aeyIW )6w'
	

(4.4a)

6e $ - (-v' 6u' + (1 + u')6v')/(1 + u') 2 + v'21
	

(4.4b)

- (ae zIW )6u' + (set/av')av'
	

(4.4b)

From equations (4.1) to (4.4b). (3.6) and (3.17) the following differential

equations of motion are obtained after performing a few integrations by parts in

equation (4. 1)

{( Te + Ue )ae y / au , + (T® + Ue ) ae z /au' + Te (1 + u') + hu }' Q Gu (x ► T)
y	 y	 z	 z

n 01"'21)•' -2(v + et 22 ) * c8 +(w + et 23 )s$ 0 -(x + u + et 21 )c 2S - Qu	 (4. 5a)

{ (T6 + U 6 )a8 /av' + ( T6 + U6	 z	 e) a6 /ay . + T' ' v' + h }' : GV(,x,T)
Y	 Y Y
	 z	 z	 v

-(v + at 22 )
..
 + 2(u + at 21 ) * c8 - 2(w + at 23 )

.
 so -(v + at 22 ) - Qv	

(4.5b)

{( T6 + U® ) aey /aw' + Tew' + hw }' A G'(x,T)
Y	 Y

-(w + et 23 )
.. 

+ 2(v + et 22 )
. 
s8 +(x + u + et 21 ) sS c8 - (w + et 23 ) s 2B - Qw	 (4.5c)
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T8x - u  x + he x + Q® x = 0
	

(4. 5d)

where

Te • -x+4 
D& (P C - e 1 ) 2 + (3 - 2x+2) (D ►1P2 + 

Dip2)/2 + ET (1 - 2x+2 ) (P2 - A 2)/2

- EAeAp^(1 - 3x+2 )/ ( 2x+
) 
+ E(p2 - e 12 )x+ [ B 1 ( P2 - 612 ) x+ - 3B 2 P { 1/2-EA(1 - x+2)/2

- 3E(3B P 2 P. + B p 3)x+/2 + 3G(J p + J p) (P - 61 )P x+ 	(4.6a)3 n ^	 4{	 n n	 {{

T8 

Y	 (jawcsel - j
nwn ce 1 )^ - i EW^[(e z + ce)cey - s6 se 

y 
cez)

+( ,j nwn se l + j^W^ce l ) [(e z + cs)aey + s6 coy cez)

-e Lu -^2e - wss +(x + u ) ca co ce z cey +EV + 2u c6- 2ur s e - v sezcey
.J 

+ ^^, + (2v - w se + (x + u) cs)s1se y sol	(4.6b)

TO  - 
fj^WC SO Y + (j nwnse l + j cwcce l )cey ) ' + [j &w&ceyse z + jnwn(celcez-selseysez)

- j,w,(se 1 cez + ce I SO y so Z ) 196 - e E" - (2v - w se + (x + u)c e
) 

c] t22

+2uc6 - 2ws6 - v1c21	 (4.6c)

a
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v

T x	 J
. (jn - iOw flw= - 

J C- - 
a[[̂ - (2v - w s8 +(x + u)c0) c81t31

+ v + 2u c8 - 2; 88 - v t 32 + E
v 

+r2v - w a8 + (x + Oc8) s6 ce l ce y 	(4.6d)

u®	 pCOC - 8') + p^
L
l - x+2 )EI^/ 2 + EB 1 (p2 - 8 2 ) x+2 12 - EB 2p^x+ + (EC1pn)'/x+2

+ G(J^pn + J^P^) ( 2P^ - A^)x
+
 x 

+2 a , cay _ 2(3 - x+2 ) (DnpnSo + DypycA1)x+26 se

+3^+[-I' CEA(1 - x+21eA x+ + EB2(p - A 2)x+3 + 3E(B3pn + B4p`)x 	 cvl

+ [3ZB	 +3 + EC	 "	 + J A3pnPC x1(^a^ - 0)^s6 l - GO, sa l 	, c l )P
&
(P, - A' 

)v+3 
Az soy

+
	
C3-x+2) ( Dn pnce l -D ip =ab l ) + EB 2 (P 2 - A '2 ) x+ so l + 3E(B 3pn + B 4P2 ) x+sa x+2

„

+ 1 EAU - x+2 )GAx+ a® 1 - 3EB3 pnp^x+3 cA l - EC1(P^ - A )cal

+ GO 
n  

cA l - J c so 1 ) p4 (PC - 8 ) x+3
	

(4.6c)
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U	 _[[D &( P^- A ) + 
E

I (1-x
+2

)p + E B ( P 2 - A
f a) p x+2 ., EB p px♦ + (EC*P )' /x +2

z 2 E	 2 1,	 2 G E	 1 n

+ GO Pn + J^p^) (2P^ - A')x+] x+2 se, + Z(3-x+?) (D 	se se i + D^p^cAl)x+2c-Ay

1+2	 t	 2 - A i2)x+3 +3E(B3pn +B4p2)x
+3 ]ce

l cAy2 CEA(1-x ) eAx + EB2(P

EB3 pn PZx+3 + EC1(P^ - e" 1sA l c6, + G(J, SA l + J{ cA l )P^(PC - 
O f ) x+3cey

A - HI
	

(4.6f)
z

U[FD (p _ A') + E Y (1 - x+2 ) P + E B (P 2 	A 2)Px+2- EB P P x++ (EC * P )^/x +`6	 2	 2 1	 f,	 2 C	 I nx

1
+ C(Jn pn + J ^P^) (2P^ - 8^ )x+^x+2-(EC161	 + Z(3-x+2 ) ( Dn - D^)PnP^x+2

+ 2 EA(1 - x+2 )eAx+ + EB 2 (P 2 - Q 2 ) x+3 + 3E ( B 3pn + B4p{ ) x+3]pn

[EB
3
 pnP^x+3 + EC (P - off P^ + G (JnP C - J P11)P^(P^ -	 )x +3

(4.6g)

The second term, EI & ( 1 - x+2 ) P & /2, that appears in the expression for

U^	 is a tension-torsion coupling term that reflects the increase in the effec-
x

tive torsional stiffness of the blade due to axial tension, e.g. [45,75). This

is discussed further in Chapter VII.

t

L
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The term Te/x+4' given by equation (4.6a), is the coefficient of -x+8x+ that

appear in the variation of (U-U e )/(uQ2R3) given by equation (3.17). The term

hu t hv , h  and he that appear in the left hand side of equations (4.5 a-d) denote
x

the small contributions due to (T*- U*)/(mn2R3). The terms in equation (4.1) that were

integrated by parts yield the following boundary condition equation

[G
u
 Su + Gv Sv + Gw Sw + Hx hex + E (Cleot - C*Pn )SOX, - EC ip^(so )SOO +H Mo /au' )du,

'	 1

+ (ae z /av')Sv +J- ey Caey/au t ) 6u' + (aey/av')6v- + (aey 	
-J^

/W)Sw'^- SW	 -o

	

J 	
x -0

(4.7)

where,

H- D (P - e') + 1 EI (1 - x+2 )P. + 1 EB (P 2 - e' 2 )P x+2 - EB p P x+
x	 E	 2	 &	 2	 1 E	 &	 2{&

+ G(Jn pn + J {P { ) (2P, - A')x+] x+2 +(EC 1 Pn - EC 1AX')'	 (4.8a)

and

H - 1 (3 - x+2 )
 

(D.P.  cA - D p sA ) + 1 EB (P 2 - e' 2 )x+sA + E(B p2 + B p2)x+se
Y	 2 	 1	 {{	 1	 2	 2&	 1	

a,

2	 3 n	 4 {'	 1

- 3EB 3Pn p ` x+ Ce 1 + G(J n Ce 1 - J^ so 1 )p (P C. - 8')x
+] x+2

It

+ 2 EA(1 - x+ 
1eAx+ 

se t - EC 1 ((Pe - 810 1  - Pn 8 i c8 Y )	 ( 4.8b)



CHAPTER V - EQUATIONS OF MOTION WITH 0(E 3 ) NON-LINEARITIES

Equatio „ta (4.5a-d) are a set of four non-linear coupled partial differential

equations satisfying the boundary conditions extracted from equation (4.6). In

general, they admit non-zero particular solutions which are either an equilibrium

state a - constant © a  (a - u,v,w,e x) for the case of hover, or an steady state

solution for the case of forward flight. Of special interest is the determination

of these particular solutions, and the analysis of the stability of the perturbed

motion about them. Due to the complexity of equations (4.5a-d), they will now be

restricted to "moderately large” deflections. Toward this end, the non- linearities

in those equations are expanded in Taylor series and the results truncated to a

certain degree in order to obtain a set of approximate differential equations that

are more amenable to analysis, It is well known that the resulting equations, with

polynomial non-linearities, still retain relevant information about the motion.

Here the expansions will be carried to include terms up to third degree.

To expand equations (4.5a-d) into third degree polynomial non-linearitics a small

parameter E, cif the order of the bending deflections, is introduced and an order of

magnitude 
En 

(n- 0,1,2,...) is assigned to the variables and parameters of the system,

e.g. [32,42,52,62]. For example, the blade's geometric pitch angle is taken to be

of 0(1), but its space and time varying components [see equation (2.1)) are assumed

to be small so that 6 pt (x) - 0(E), 6 i c,- 0(E) and h is - 0(E). The assumed order of

magnitude of the quantities that appear in equations (4.5a-d) are as follows

Order E0:

X, 6 c l Dn , D	 D V EIS

The order of magnitude of the quantities indicated after a semi-colon follow as a
consequence of the assumption for the order of magnitude of the appropriate
O(1), 0(E) and OW) quantities indicated before a semi-colon.

a

r
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'	 Order E:

v, w, e, 8 , 8 , 8 ' sin $, n, ^, e;* At  E B , E H, E D 0 EC *, G J, G J
x	 pt	 is	 i•	 2	 3	 L	 1	 n	 G

Order E2

U. ^: JEv 
in, 

J { . EB19 EC 

In addition, EA - 0(E-2)

From equations ( 2.11a,b) and (4 . 4a,,b) the following expansions are obtained

for 6 Y , 6 z and their partial derivatives with respect to the elastic displacements,

6	 - w'(1 - u' - v' 2 /2) - w' 3/3 + 0(z5)	 (5.1a)

6z - v'(1 - u') - v' 3 /3 + 0(E 5 )	 (5.1b)

aH
Y 
/au' - - w' + 0(E 3 )	 (5.1c)

3eY /av' - - v'w' + o(E 4 )	 (5.1d)

3eY /3w' - 1 - u' - v' 2 /2 - w' 2 + 0(E 4 )	 (5.1e)

ae z /au' - - v' + 0(E 3)
	 (5.1f)

3e /av' - 1 - u' - v' 2 + 0(E4)
z

Also, from equations (2.8), (4.6a) and (2.1) it follows that
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x+ • 1 - u' - (v' 2 + w' 2 ) /2 + 0(E4 )
	

(5.1h)

,2	 ,2	 ,2	 ,2 2
A (1 - x +2 )	 EA(u' + _v
	 i w + u - 2(u' + v + w j ) + 0( k4 )	 (S.l)

	2	 2	 2	 2	 2	 2

	

T	 U u' + 	
02 + u ,

2 + u^ 2 - tiru' + v 2 + W 2 ) 2 - e	 u' 4,v'2
2	 2	 2	 2

[IV

w' 2 	 1	 r.	 ► ^	 I	
2

io ^2	 1	 o^	 t]c@ 1 + [w (1 - u - 2 \-	 + v v]Sol

^2	 ,2	 N'`
- 6(u' + 2 + 2 ) (v" CO  + w" sec)	 - r

 

X. + 2 
I eX(eX

	ZD
n No! sec - w" c6 c ) 2 + D^(v" ce c + w" sec ) 2 + P ( e 3 )	 (5.1j)

.j
After expanding the remaining terms in equations (4.6 a-g),*,,end noticing that

the terms hu , hv , h  and he in equations (4.5 a-d) due to the T any} U
t

x
contributions to the kinetic and strain energies are of higher order --^'\as can be

readily verified from equations A.1, A.2 and A.3 in the Appendix--thr foll

differential equations with polynomial non-linearities are obtained

,2	 ,2 `^ 1
GI • V'[D (v" s@ - w" C@ )se + D (v" Ce + w" Be )CO - EAe (u' + v + w )c8"^

	

u	 c	 c c	 e	 c	 c c	 A	 2	 2	 eJ^ti
v ,2	 w 	 1

- w'CDn (v" s@ - w" c@ )ce - D (v'" ce + w" se )se + EAe (u' +c	 c c	 G	 c	 c c	 A	 2	 2	 Cl

t
- xe(v' c@c + w' se

e )c20 + Te (1 . + U'')	 u - e(v ce c + *w sec)'

- 2(v - eg1 s@c )d + (w + e s9c )so CO - EX + u - e(v' cec + w' sec)lc2e

- Q  + 0(E 3 )	 (5.2a)

* Although sin$ and cosh are related as cos t $ + sin 2 0 . 1, the 0 ( 1) quantity
coo@ is left in the equations as c8 for simplicity.
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1

)481 +w ̀CB) + (){ - ) n ) C(2%P ' + cS)eel ce l - w^ c2ec]cB - • (v^se l - w ' ce i ) (2d+ x cS)cB

	

-(w + 2; s  + x 0 cS)ce l + (v - 2w	 v+ 2u cs) s e l - DC[BI • v" w'

.2	 ,2
-e' (2u'+ v' 2 + w' 2 )1 + EI^e l' (u' + 2 + 2 ) - EB 2ei (v" cec + w" ee c )

0 2	 02
+(v" se l - w" ce l ) ^(a - D^) (v" CO l + w" ee l ) + EAeA (u' + 2 + ^ )^

+ (EC 
S")oo - SEC (v"s@ -

 %41
'r
 c@ )I" c) I" - EC eX' (v f ce c - w" se)

1 x

IG 	

e
+ 61) 	 n	 cJ(v" se -	 c	 ^	 c	 cw"ce) + GJ(v" ce + w" se) 	 Qe + 0 (E4)

x

(5.2d)

In equations (5.1j) and 5.2 b-d) the expansions for sine l and cosel,

truncated to the appropriate order, should be used. With e l expressed as

n
6 1 (x,T) = 6 c + e x (x,T) + 6

pt 
(x) +I ( e

is 
CiT+e

is
 aiT) ^ 6c + 611 (x,T)	 (5.3)

i^+^ 1

these expansions are

s6 1 - sec + 9 11 ce c - Z ell se
c-	

6 ell ee
c + 0(E 4 )	 (5.4a)

ch i - ce c - a 1 sec - 2 91 1 c^9c + 0(E 3)
	 (5.4b)
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Equations (5.2 a-d) may be reduced to a set of three integro partial

differential equations in v, w and e x , with cubic non-linearities in these

variables. For a rotor blade with the end x - 1 free, equation (5.2 a) may

be integrated with Cu (x - 1, T-T) - 0 to yield an expression for u' in terms

of the remaining variables. To obtain such expression, the integrated form

of equation (5.2 a) is first written as

T  - [Dn W, se c - wit 	 (w' ce c - v' se c ) + x(v' cec + w' se
c )ac20

I
,

+ (v' cec + w' sec)[EAeA(u' + 2,2 + ^ 2 ) - D 4 W , ce c + w" sec)

 ]

x
+[_U 	 2e-w0+ (x+u)cs CS

1

- e (v' - v' c 2 0)cec + ( W' - 26! 1 C6 - s o cs - w' c 2S)sec	dx

X
-(1 -u') f Q ,̂ dx - 2 (1 - x 2 )c 2a + 0(E3)

1

(5.5)

Equating the right hand side of equations (5.1j) and (5.5) to each other, and

multiplying the resulting equation by [1 + 6 (u' + v' 2 /2 + w' 2 /2) -u' / 2 + (v' 2 + w'2)/4],

the following expression for EA(u' + v' 2 /2 + w' 2 /2), which is needed to 0(E 2 ) in

equations (5.2 b,c), results when Q um o(E)
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r"

,2	 ,2
EA(u' + 2 + 2 ) •CDn (v" sec - w" c8c ), '(w' cec - v' sec)

-[ D 
C 

(V
ol 

c8c + w" 88c )]"(v' cA c + w' se c ) +' xe(v 9 c8c + w' sec)c28

+ DCAx 2 - 2 El.0' (sx + 28')+ 
2 

EDn ,v" sec - w" cec ) 2 + D C (v" cec + w" seC ^1
J

X+ j u - [20 - w 98 + (x + u)cslc9 - a v' - v' ca8 )cec
.9

+ (w' - 26 1 c8 - s8 c6 - w' c28)se 1 dx	 - EAeA 2 u' - 4(v
,2 - w ' 2 ) v" c8c

::JJ	 C

+ 1-2i u' + I (v' 2 - w' 2, w" s 9 c - v' w' w" a®c - v" c91 - Vol s Al

1
EA(v' 2 + w ,

2)2 - j Q ex. + (EAeA)' (v' c9 c + w' sec 	 + v,2 + -!L
12 )

8	 1 u	 2	 2

r	 ,
+ 2 (1 - x 2) [6 (u, + 2 ,2 + z 2 ) - 2u ' + 2 (v' 2 + w' 2 )^ e 2a + o (E 3 )	 (5.6)

The remaining u-terms in equations (5.2 b,c) are needed to 0(E 3 ) at most, while

only an O(E 2 ) expansion for u is needed to eliminate u and its derivatives in the

right hand side of equation (5.6). To 0 ( e 3), equation ( 5.6) may be solved for u' as

x
u' - eA (v" ce l + w" se 1 ) - 2 (v'2 + w'2) + EA [.1 (1 - x2 )c 2 8 - f ( 2v c8 + Qu )dx] + 0(V,J)

1
(5.7)

Or, with the boundary condition u(x - 0, T - T) = 0, and making use of equations

(5,4a,b),
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u - Jx (eA (v" ce c + w" s8 ) - eA
 e
ll (v" so  - w" c8 C ) - (v' 2 + N'2)/2jdx

0	 c

+ f F-1A (2(
1  - x2 )c 2 6 - ix (2S c6 + Qu ) dx]dx + 0(E4 )

	
(5.8)

When equations (5.7) and (5.8) are used in the right hand side of equation (5.6),

the expression for EA (u' + v' 2 /2 + w' 2 /2) becomes

^2	 °2
EA (u' + 2 + 2 ) - tDn (v" se c - w" ce c )J°(w' ce c - v' sec)

- [D,(v " cec + W" se c )] I (v' c6 c + w' sec ) + xe(v' cec + w' 90 c )c 2
B + D&eX2

- 2 EI^ex (ex + 26') + 2 [D W, sec - w" cec ) 2	+ D^(v" cec + w" 80 ) 2

x
- f (2v - w s$ + x coca + (e - eA) Iv' - VI c 2 8 ) ce c + (w' - w' c2$)sec

1

X x2
e(26 1 + ss)cs se c dx	 1 0 (v° v' + w' w')^ + Z C 1 x ) c28 - v'2

- w' 2
1c

26 dx dx	 + 2( 1 -x 2  (v' 2 + w' 2 )c 2$	 8 A (v'2 + w'2)2

+-2(3 c7 - 1) (1 - x 2 )eA (v" ce c + w" sec) 
+ SEA (1 - x

2 ) 2 c4$

2	 '^
+ EAeA Cv" (v'2 + 2' ) + v' w' w"Icec + (w'2 + 2^2)w" sec - 	Qu dx

.JJ	 1

+ EAeA (VII ce l + w" s6 1 ) - 2 EAe 2 (v" cec + w" soc ) ` + 0(6 )

(5.9)

E

i
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The integro partial differential equations in v, w and O x with non-linearities

to 0(C 3 ) are obtained when u and its derivatives in equations (5.2b,d) are re-

placed by the expressions given by equations (5.7), (5.8) and (5.9). The re-

sylting equations are written here as equations (5.10) to (5.12) for the special

simpler case of constant stiffnesses and e - e A 0 0.

Gv'
	

^(D^i - D^) 

2.' 
s2e - (Dn 8 2 0 1 + D^ c 2e1)v..] 

+ (D, - D;) [!2E 

1" (V#2 + W92)

+ 2
C  
w - 2 (1 - x 2 )w..l ^ sec cec - (Dn s 2 ec + D^ c 2ec) 2' (v ,2 + w,2).,

+ Eat 
E, - 

2 (1 - x2 ) v.^I	 - w' [DS O.' + v" w') + EC1(v ... sec - w... eec)^

E [B 2 6.'(e' + 28') + 38 (v"se- w 10 c@ ) 2 + 3B (v" ce + w" sA )2]ce2 	 x	 3	 c	 c	 4	 c	 c	 c

- 3EB 3 (v" sec - w" cec ) (v" ce c + w" se c )sec - EC ( 8 , + v" w')' sel

^x
+ G(Jn s ec + J^ cec )e, (eX + @')	 - v' j [ 2^ - w sO + x c$)c$

1

+ 2EA (x - 33 ) + Qû  dx + 1 f C v' v' + w' w')^ - 2 (v' 2 + w' 2 ) c 2 8^ dx dx
to

(1 - x2) c48 Cv' 2 + w' 2 - (1 - x2) EAR	 + jn(v 
so	 0

0- w cA c )' se 

1

+ j (v c@ + W s ec )' cec + (j -j) (29 1 + s8) c6 soc Cec
C	 c	 n	 j

v - v - 2 w s6 - 2(c$) J I
V

' v' + w' w' +	 fx( 2 v ca + Q u)dx]dx - `v + 0(C4)
0	 1

(5.110)
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yy 1
GW	 C(Dn - D^) 

f" 
s20 1 - (Dn c 20 1 + D { 4 2 e 1 )WO	 + (On - D^) v t w' Wr•r

+ Vrr(V'2 + w r 2 	 r r ,,	 C,^ 3 	 2 rr 1C2	 )+ v w w 1 + EA IV - 2 (1 - x) v a $0c c0c

2- (Dn s0c + D^ c^0c )w' (v'	 2v°') ` - 
(Dn c0

c + D^ s 2ec ) ^ W - Z (1 - x2)w

	

C	 J

+ W r(w r wrr)r+ V" CD^(ex + V" w') + EC 1 (V rrI s ec - w"' cecl

+	 CB281 (0X + 20 1 ) +	 3B 3 (v" sec - w" ce c ) 2 + 3B
4 

(Vol cec + W" sec ) Is0c

- 3EB 3 (v" sec - w" ce c ) (v" ce c + w" sec )ce c - EC1(6 1 + v" W')' c e1

i

C(2v+ GO cec - J^ sec )6 1 (e X+ e')	
x

W' f 	 - w sa + x CO Cs
1

co s	 x3	 x x
+ 2L (x - 3 ) + Qu dx + I ! (v' v' + w' w') - 2 (v' 2 + w' 2 )c 2sldx dx

1 0	 ^JJ

^	 2

(1 - x2	

2
) c4 w' 2 + w' 2 - (1 - x2) 

c2S	
se- j n (v	 c - w ce )' cecc

+ j ; (v cec + w sec )' sec - (i
n 

- j c )61 c2ec cs - j & (6 1 + se + w' c8)c8

1

+(i T , ` s 2 e c + j { c 2 8 c) (w' cs + ss ) cs	 w + (2v - w as)ss

x	 2	 3	 ,
+ Cx - 2 f (v' 2 + w' 2 )dx +
 

CFA (x - 3 ]SO  cs -QW + 0(E`^)
L.	 0

(5.11)
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J E 01 + w' cs) * + (J^ - i n ) F + co ) s2e 1 -' c2e cl c o

[D E [@-'x + v" w' - 9t(1 - x2 ) c 1 + EI
&

e t a - x2) ?20 - E8 2e1(v" cec + wP, sec)
J

+ (D- D ) (V
ol se - a" ce ) (v" co + woo

	 ) + EC e" ll - ECs 
E

v" se - woo ce )'o
n	 G	 1	 1	 1	 1	 1 x	 1	 1	 1 1

+ 811W, ce c + w"' sec) - (3X + el) [Gi n (v" sec - w" cec)

i

+ GJ C (v" cec + w" se al	 Q® + 0(c6)
x

(5.12)

i
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CHAPTER VI - GENERALIZED AERODYNAMIC FORCES EXPANDED TO 0(c 3) NON-LINEARITIES

The velocity v  of a point on the blade ' s elastic axis, relative to the hub

center 0, may be obtained directly from equation (3.2b) in Chapter III as

v 0 QR{(it v cR)^Z + [v + (x + u)c8 - w sOl ye	 + (w + v 88)z }

The rotation of the blade, with angular velocity = (see Fig.2.2 in Chapter II),

induces a "downwash" air inflow with velocity - QRv iZ - S2Rv i (R 98 + i co). It

should be noted that in the notation used here v i denotes the magnitude of the

induced inflow, normalized by OR. If V  denotes the magnitude of the constant

forward velocity of the hub center-, 0, normalized by QR, the velocity v ela of

the blade's elastic axis relative to the air is written in terms of the advance

ratio p a V f cos ar = 0(1) and inflow ratio A © Vf sin ar + v i w 0(c) as (6,9,281

vela - v  + QRV f Mot r + Zsar ) + QRviZ

• V  + S2R{u[(R ca - i sa)cT - 9 sT1 + A (R sR + z cs)}
	

(6.2)

(6.1)

Making use of equations (2.2) and (2.3) in Chapter II, equation (6.2) may

be expressed as

vela " QR(URC + U
Tn + UP;)
	

(6.3.1)
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-T-

where

U u

UT [ T ) v	 +

Up w	 +

I

V c$ + N c$ CT + A ss

(x + 1,) c8 - w 98	 -	 }r or
	

(6: 3.2)

V as - ', 98 ct	 + A c6

(6.4)

(6.5)

(6.6a)

The aerodynamic forces and momenta will be modelled wing Greenberg's

extension of Theodorsen's theory in which only the U T and UP compone-ts of the

velocity 
ve/a are assumed to effect the aerodynamic loading [17-19,34,46,52,56).

According to this theory, the lift L and aerodynamic moment M a per unit length
A /` A

,along the blade, expressed in the	 unit vector triad, may be written for

quasi-steady aerodynamics as

L - (MS12R) [LU (C ca + r sa) + LNC{)

Ma a (nLQ R2)MAE

where the non-dimensional quantities LC, 
LNC 

and MA are given by * (56)

L
C 

. •6 U[-Up + (2 - xA)w^]

* A more general expression for the generalized aerodynamic forces in hover may be
obtained by allowing the aerodynamic coefficients to be a function of angle of
attack (82,83). As shown in [83), this procedure yields a refined expression for
calculating the steady induced inflow velocity in hover.

47



V

I`NC	 4 c(- UP + (S - xA)^]	 (6.6b)

2

r:A - - 6 ( xA UUP + (4 - xA ) 2 Uwe - c(4 - xA )UP + 8(16- 	 cxA + 2x 22 	(6.6c)

As illustrated in Fig. 6.1 the circulatory lift component mS2 2RL0 acts in the

direction normal to the velocity QRU, where

U . (UT + U 2 ) 1/2	 (6.7)

The angle a is the angle of attack for the airfoil, while c and x  are,

respectively, the airfoil chord and its aerodynamic center offset from the

shear center C*, both normalized by R. These quantities are shown in Fig.
e

6.1. The non-dimensional parameter, Y that appears in equations (6.6 a-c) is

the Lock number for the flow, defined as

Y a 61TpAR2c /m	 (6.8)

and p  is the air density. The distributed aerodynamic drag acting on the blade

is also shown in Figure 6.1 and is written in terms of the airfoil profile drag

coefficient c 00 as

PA 
RccdO (QRU) 2 (^ sa - n ca) r (mil 2R) 6 2tt0 U2 ( Zsa - n ca)

D (mS2 2 R) D	 sa - tj ca)	 (6.9)

As can be seen from F!g. 6.1, sin a and cos a may be expressed as

sa - - U P /U	 ca - UT/U	 (6.10)

Da	
2
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FIG. 6.1 DI RECTI ON OR THE AERODywiC FORCES ACTING ON THE AIRFOIL.

49



b

-

Combining equations (6.4), (6.9) and (6.10) the resultants F A , of the

distributed aerodynamic forces acting on the blade is determined as

FA/(MD2R) - (LO sa - D ca)n + (LHO + LC ca + D sa) C

A	 A

©Fn n+FC c

4

where.

Fn +^ 6 (Up - (2 - xA )UPw^ - 2n0 WT]

c
F r	 6 (- UpUT + (2 - xA )U;i,W	 - 

4 11P 
+ 4(4 - xA)jU	

27t0 UL►PI

The virtual work done by F A during a virtual displacement R(x 6u + y 6v + z dw)

is then

1

(6w) dueto F	 M (MO R3
A	

) 1 (F nn + F C C)	 (x 6u + y 6v + z 6w)dx
0

• (MQ 2R 3) jl (Lu6u + Lv6v + Lw6w)dx
0

where, according to equations ( 2.2) and ( 2.3) in Chapter II,

L  - t 21 Fn + t31 F 

L 	 t22 Fn + t32 F^
	 (6.14b)

(6.11)

(6.12x)

(6.12b)

(6.13)

(6.14x)

L 	 - t 23 Fn + t33 F^
	 (6.14c)
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With the virtual rotation, about the - axis of the airfoil obtained directly

from either equation (2.9) or (2.10) as (Se x + (aey) so Z )the virtual work

associated with the aerodynamic moment Ma is

1

OW) due to M '" f o MA taex + ( ( ae Z/w )au' + (ae , /`av' )6v , isAy}dx
a 

;,	 1	 1
• (mf12R3) awa l + j (MAaex - (MA ( ae Z /au')sey )' 6u-(MA (ae s /av')se y I'6 v)dx

0 0
(6.lsa)

where, upon substitution of sey by w' x+,

N - MA ((ae z /au')au + (ae z / av')6V)w'x+ 	(6.15b)

The 
6W  term given by equation (6.15b) is included in the boundary condition

equation for the system [equation (4.7) in Chapter IV].

Equations (6.13) and (6.15a) yield the following non-dimensional general-

ized forces due to the aerodynamic loading

(Qu ) aero - L 	 - (MA(" Z/au')w'x+J'	 (6.16a)

(Qv )aero - L 	 - (MA(aez /av')w'x+)'	 (6.16b)

(Qw ) aero - L 	 (6.16c)

(Qe ) aero - MA	 (6.16d)
X
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If there are no other forces acting on the blade, such as damping for example,

QK - (QK) aero (K - u,v,w,ex).

To expand the generalized aerodynamic forces into polynomial non-linearities,

the angle of attack, a, of the airfoil is assumed to be small so that U P - 0(E).

With UT - 0(1), equations (6.12 s,b), (6.116 a-c) and (2 . 3) indicate that the

expansion for UP is needed to 0(F 3 ) and the expansion for UT to O (e 2 ). We then

express UP and UT as

UP - UPi + UP2 + UP3 + 0(E4)
	

(6.17s)

UT - UTO + UTl + 11T2 + 0 (E 3)
	

(6.17b)

where U Pi and UTi denote the order z.i (1. - 0,1,2...) term in the expansions

for UP and UT , respectively. With

y/6 - 0(1)

C	 - 0(E) ; xA - 0(E)

cdO /(2 n) - O(E2)

and w - 6 1 + w' CO + SO + W'V' + 0(E 3 ), as given by equations (2.9) and ( 5.1a,b),

the following expansions are obtained from equations (6.12 a ,b) for Fn and F 

Fr) - Fn2 + Frl3 + O(E4)
	

(6.18x)

Fr - F 	
F^2 + 

F 	 O(E4)
	

(6.18b)

i
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where

F	 -	 (Y/6)(

	

U2 - CdO U20 10 
0(c 2 )	 (6.18c)

r1 2

F	 -(Y/6) (2U	 U	 - (S - x,) U	 (6 + w' cR + e0) - CdO U U j - 0(c 3 )	 (6.18d)1 P1	 1	 TO T1

F - - (Y /6) UP1 UTO - 0 ( c)	 (6.18e)

F{2 - - (Y/6) (UP1 UT1 + UP2 UTO - 
(2 - xA) (51 + w' CO + 8S)UTO + 4 UP1( - O(E2)

(6.18f)

FC3 - - (Y/6) (U P1 UT2 + UP2 UT1 + UP3 UTO - 
(Z - xA ) ( ( g l + w' c6 + sMT1 + wIv'UTOI

C
+

	

S. UP2 - -c4-(4 - xA ) ( e l + w ' c8) + 2n0 UTO UP1) - 0(c 3 )	 (6.188)

;Making use of the expansions for sin8 1 and cosO 1 given by equations ( 5.4 a,b),

the following expanded forms for the generalized aerodynamic forces are then

obtained from equations (6.16 a-d), (6.14 a-c) and (6.6 c)

(Qu ) aero - (v' se
c - w' c6c) F^l + O(e 3 )	 (6.19a)

(Qv)aero - - F{1 90  + {(F r12 - 6
11 FC1 )ce c - F^2 sec}

+ t(Ft1 
3 - 

ell 
F 
V - v' w' Fc1)cec

r2

(ell Fn2 - 1 ell F^1 + F{3 - 2	 F {l )sec ) + O(E4)

+ (Y/6)xA ( w'U 
TOUPI I' + O(e4)	

(6.19b)
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(Vaero a	
FC1 CO  + ((F n2 - 011 F^ 1 )sec + FC2 ced

,2

+ {(Fn3 - 0
11 p'C2)r0c + 

(0 .11 Fn2	 2 011 F;1 + F{3- 2 F{1)cec}

+0(s: 4,)	 (6.19c)

(Q0x )aero - 6 (Y.(UTOUPl + UTOUP2 + UT1UP1 ) + ( 4 X ) 2 (91+ W , CO + a8)UTO

4(	 - 
X )UP1} + 0(C 

4 )	 (6.19d)

To complete the formulation of the generalised aerodynamic forces, only the

closed form expressions for the terms UPi and UTi (i - 0,1,2,...), as defined by

equations (0,17 a,b), remain, to be determined. Making use of equation s (2.3),

(5.1 a,b) and (5.3), the following approximate expressions rice obtained for UT

and Up

UT	 (v' c0 1 + w' s8 1 ) (v - u cz)Cf + (v + u c^ - w sOcel

, 2
+ (x CO - u ST) [(1 - 2 )c8 1 - v' w' 96	 + [w +(v - u c T) s6 + a c61s01

(6.20x)

U F,	 (u + A ss - v c^) (v' so l - w' co l ) + P(cT c^) [V' (I - u' - 2 )s01

,2
w'(l - u' - v' 2 - 2 )ce l l - (u co - w W86,

,2

(v - u ST + x cs) ( (1 - 
Z 

) s 01 + v' w' c0 1 J + v 88 c01

,2
+ (w - y c'r S^ + X ca) ( l - 2 )c01 (6.20b)
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With s9 1 and ce l expressed as in equations (5.4 a,b), and with UP when

U a v a w a ell . 0 being an 0(E) quantity, the following expressions for

UTi and 
UPi 

(i	 0,1,...) are obtained from equations (6.20 a,b)

UTO	 (x c8 - u 9T)cec	 (6.2la)

UTl M - (v' cec + w' se c)u CT co + v cec - (x ce - W Well sec•

+ (w - N cT se + a cosec

(6.2,1b)

UT2 - (v' cec + w' soc )v co + (v' 90  - w' cec)ell W CT c9 + (u c9 - w as)cec

+ (v as - v ell )3ec - (x ce - W ST) (2'2 cec + v' w' se c + 
Z el

l cec)

	

+ (w - µ CT se + a c6)e11 cec	 (6.210

UPi - ((a CO - W CT S$)cec - (x cs - W sT)se c I - (x cs _ W sT)e 11 cec

+ (v' sec - w' ce c )W CT CS - v sec + w cec	 (6.21d)

UP2 " (w' cec - v' se c )v ce + 9 11 (v' cec + w' ae c )W CT CO - (u CS - w sS)sec

- v 
2

e	 ce + (x cs - W ST) ( `Z' se - v' w' ce + 1 e 2 se J + v aw ce11	 c	 2	 c	 c	 2 11	 c	 c

	

cur - W c*, so + X 
cs)ell sec	 (6.21e)
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VP3 • ( u + X s6) (v' se c - w' ce(:) - 9 11 (v' cec + w' se c )v c8

u(CT c6) [Z 621 (v ' se c - w' ce c ) + V , ( u , + 2 

2 
)se c - w' (u' + v' 2 + 

2, 2 )c3 c1

- (u ca - w We 	 ce c + v[ 2 (621 + v' 2 )se - v o w' cer,	 c

r2
+ (x CO - u ST ) ( (6 0 2 + 

2 
)CO c 	c+ v' w' so IT - e ll v s6 sec

- 1 (p - u CT sS + X c$) (e ll + w' 2 )cec	 (6.21f )

i
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CHAPTER VII - CONCLUDING REMARKS

A case of particular interest, for which the equations of motion reduce

to a simpler form, is that of an inextensional blade. For this case no EA

terms appear in the differential equations of motion as the blade behaves as

infinitelly stiff to axial extension. The equations of motion for this case

may be obtained by taking the limit EA + m in equations (5.2b - d), with u

obtained from equation (5.8) in order to recover the 0(e 3) inextensionality

constraint (55). It should be noted that the spatial independent variable for

this case is now the arc-length r(0 < r < 1) along the blade's neutral axis.

A question that naturally arises is "what line along the blade's span is

the inextensional Line." It can be shown with the aid of equations (5.7) and

(3.9b) that in the limit as EA	 the line that connects the area centroid

of each cross section (point C a (^; - 0, n - eA , ^ - 0) shown in Fig. 6.1) along

the blade's span is the inextensional line. According to equations (3.9b) and

(2.7a - c), if the line of area centroids is inextensional, the following

condition has to be satisfied when warping is neglected, for simplicity,

3 r 	 '	 +
^^^ La^ 	 e	 4• e P it 1 2 + ((1/x+

 - e p ) t	 + e	
t 
	

2

^^
p )t 

11	 API 31	 A	 12	 AP 11 32

	

+ ((1/x+ - eA P C )t 13 + eAp 133]2 = (1/x+ - eA P 4 ) 2 + (e AP) 2 - 1
	

(7.1.a)

{ [(1 + u') 2 + V'2 +w'`JL/2- e A a^} 2 + (eA0 2 - .1 - 0
	

(7. lb)

or
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It can now be readily verified that, in the limit EA 	 equation (5.1) is

simply the 0(e 3) expansion to equation (7.1b).

An alternate way to obtain the differential equations of motion governing

the flexural - flexural - torsional motion of an inextensional blade via

Hamilton's principle is to adjoin the inextensionality constraint to the

Lagrangian of the motion by a Lagrange multiplier as in 162, 681. The advantage

of using the limiting process previously mentioned is that both the extensional

and inextensional cases may be investigated via the same equations of motion.

The differential equations of motion for an extensional rotor blade were

derived in this report in terms of the three elastic displacements u(X, T),

v(x, T) and w(x, T) for any point on the blade's elastic axis, and an Eu1er angle

1) x (x, r ). The total angle of twist of the blade, ^ t (x, T), may be obtained by

first expressing the twisting curvature C 	 Pax+ defined by equation (2.10)

as (32, 33, 55, 61, 631

V' t =
	

X 	 + el + a' so ) A X+P
X	 °z

(7.2)

and then integrating equation (7.2) over the domain 0 < x < 1. Since the total

angle of twist, $ t , includes the non-elastic pitch angle e(x, r), the elastic

angle of twist of the blade, d(X, T), is then

x

^(X, T)	 f w - d')dx + 0 t ( X-0, T-T) - e(X-0, T-T)
0

X	 X

= 8 (x, ;`) + f 0' sa dX - 6 + f v" W' dX + p 4 )	 (7.3)
X	

0	
2	 V	 x	 0	 )

Equation (7.3), relating a  to ^, could be used in the outset to derive the

differential equations of motion for the blade in terms of u, v, w and ^. When

this approach is taken, the expression for 6p  for example, given by equation
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(4.3 d), simply becomes S^'. In such case, the term D^(p - A')Sp^ 	 Dr410',
5

obtained when the variation of the strain energy U given by equation (3.11) is

taken, gives rise to a single term D SO " in the S^ equation. In contrast, if

•`6 x is used instead, the term D^0' Sp, gives rise to the term DO'' in the

60
x 
equation but also to the 0(e 2 ) terms (D &O'w') " and (D^O'v " )' in the Sv and

Sw equations respectively [equations (5.2 b, c)]. However, the differential

equations derived via Su, Sv, Sw and 66
x 

as done here and in [62, 631, and those

derived via Su, Sv, Sw and 6c, anti done in [321 to 0(e 2 ), are equivalent to each

other since one set of equations may be converted to the other by the integral

transformation given by equation (7.3).

As mentioned in Chapter IV, the term EI (1 - x
+2

)p r /2 that appears in
S

q ,oation (4.6 g) is a tension - torsion coupling term that reflects the increase

in the effective torsion stiffness of the blade due to axial tension. To show

this, the case of a non-rotating beam undergoing only static axial extension

and torsion, as in [751, is now briefly addressed. 'For simplicity, it will be

assumed that no external torsional moment, Q 0 , is applied to the beam and
x

that the beam's cross section is symmetric about both the n and . axes. From

the expression for the variation SU of the strain energy, the following

differential equation is obtained when the coefficient of 60' is equated to zero

D^O
x
 + 2 I S (1 - x

+2
)(0x, + 0') + E B 1 (0 12 + 2ElW )(dx + 0')x+2

- (EC 1 0'')'/x+2 • 0
	

(7.4a)

* Here D., for example, denotes the torsional stiffness of the beam, as defined in

Chapter III, but without carrying out the normalization process implied by equations
(3.15 c) and (3.17). A similar observation applies to the other quantities in
equations (7.4a,b).
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a:

F

x

With x+	1/(1 + u')	 1 - u', and u'	 - (f Qudx )/(EA) - Te / S EA) as given by
1

equations (3.7) and (5.5), equation ( 7.4a) may be approximated as

(D + Te I^/A)ex' + Te I
E
 8'/A - (EC 18X')' + 0(e4 ) . 0	 (7.4b)

The coefficient of ®X in equation (7.4E) is the effective torsional stiffness

of the beam [14, 75, 84]. For slender beams, the first two t^ ms in that

equation are the dominant ones and equation (7.4b) reduces to equation (18) in

(14). A more accurate formulation for the torsion - tension coupling problem

that takes into account the non-orthogonality of the coordinate system (x, n, r)

for the elastically undeformed pre-twisted beam was recently presented in (75).

The work in [75] diFclosed that an Extra term proportional to H' should be

Present in equation (7.4b) and that for values of G/E that are typical of

isotropic materials the :influence of this extra term is quite small and may be

neglected.
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r,-

APPENDIX	 - KINETIC AND STRAIN ENERGY CONTRIBUTIONS T^, Us and U*

The warping terms not shown explicitly in equation ( 3.16) are included in

T which is given as

1

T* /(mS1 2 R 3) - f CT1 C12 p &x+c6	 (tllp^x+)•^ ^t31	 t32ca)
0

+ I t 13ss - t 11ca)P^h+ - (t 12Px+)0] (t 32 + t 31ca - t33ss)

['--12 
pax+s' + 

(t 130 Cx+)•] (t 33 + t32sR) dx

1	 ?	 2
+^ c 

[It	

h
+
C
	

Ct p-	 x
+)	

+ t P-x+sG + ( t P X+)2 1 T2	 1.2 Pr?	 11. F	 [ 12 c	 13 F,
0

+ L t 13sR - t 11cR)P^x+ - (t12P^x+) 2] dx	 (A. 1)

where

MC
Tl. ' R2 1I P'I'E d o d ^	 mCT2 ' R2 f pP 2 do d^	 (A.2)

A

The expression for the term Us appearing in equation (3.14) is

*	 R3 1

U s z 
^ 

II Gs [( n P^ - ;Pn ) 30 /an - V^P 2 Pax
+4

 + [n p r - ^P n )W D ; + ^UPn^P^x+4
A	 J

2

+ lb
2 [aqj /ar^) 2 + (aq)

/3 ^ )I [P (P X+) 
x+ - 

eIel1	
x+2

+ 2tp (8^/3^)CP (p x+) , x+ - 6 6^^ (n-4/30 (P C - e ) + In
p

^-CP n )9 ID/3^+ IDP,Py x+ x
T11

i
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2^^( r{r /a ►1) 
1p^ (0^ X+ ) , x+ - e r e rr	 (^,+ ^ /gin )(P^-6') + I rlp^-^Prl ) UlOrl -PO 

I 
P^x
j

x+i'

2	 2
+ E prx+2 - a ' ) (4/3 ,0) ("'W"J	 drl d^dx	 (A.2)

M

A

The strain energy contribution U appearing in equation (3.17) is obtained

directly frjm equation (3.14) as

1
U *	US +4 1

 fj 	 f E	 W 4 H2 + 4^ H 2 (L2 + H 3 ) + 411? (H3 + 2L 2 H l)
0 p

+ 21P 2 H 2 ( H 1 + L 1 ) + 4 q) 1 L 2 I + H 3 )H 1 + L 1 H] do ds dx

	

7	 21,	 r c.

+	 j f f E [(rpn - ^^^ ^) 4 + 2(n + `) (^ p 0 - rlf ) (P - 8 ,, x+4 drl d^ dx
0 A	 J

L	 2	 „2

+ 2 f El l 
x+2 [P^X+) -
	 x }1 - 8x dx

0	 J

l- j EC p* [(
Px

+i - 6%]x
+`

 - (P^ - e tr dx	 TO2R3ln

0	

)

Where's

(A. 3)

2
N L	 1 - x+2 - 2np s x+ + ( S pn - rps)2 x+2 +(n 2 + ^ ) (p - er )x+2

L 1 = 2^ pnx+,

[ ( pax+ )

12 
+ ( p^ + PS)

p2x+` - e"2Ix+2

5

H( ps + r7P n ) p2x+3 - (^p n - ri p s ) (pax
+) x+2

(A.4)

(A.5)

(A.6)

i

(A.7)

(A.8)
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