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TECHNICAL MEMORANDUM

NUMERICAL STABILITY OF AN EXPLICIT FINITE DIFFERENCE SCHEME FOR
THE SOLUTION OF TRANSIENT CONDUCTION IN COMPOSITE MEDIA

INTRODUCTION

Stability of numerical schemes plays a key role in the computer solution of
transient heat conduction. A stability analysis relates permissible combinations of
grid spacing and time step. For a given grid spacing, the time step must be
smaller than a certain value for an explicit numerical scheme to be stable. A time
step as close to the maximum as possible is desirable to reduce computer run times
and cost.

In composite media, the transient heat conduction equation is not valid at inter-
faces between media with different heat conduction coefficients. In this case, a heat
balance technique can be used to drive an explicit finite difference scheme. The
derivation is presented herein. and a theoretical stability analysis is performed.
Because of the complexity of the resulting relationships, a computer graphics code
was developed to allow easy determination of an optimum time step. A sample problem
is examined, and graphics output is presented.

DERIVATION OF THE FINITE DIFFERENCE SCHEME

Figure 1 illustrates the general problem that is addressed herein. The following
assumptions are made: (1) Media interfaces lie along two directions that are orthog-
onal, e.g.. vertical or horizontal, as shown in Figure 1. (2) Interfaces lie along
lines of grid points; and when more than two media intersect, they do so at a grid
point. (3) Media interfacial contacts are perfect, i.e.. infinite interfacial conductance.
(4) Cartesian coordinates are used. (5) Heat conduction is in *wo dimensions.

The preceding assumptions were made for simplicity of presentation and are not
absolute restrictions on the usefulness of the methods described. All results can be
generalized so that none of the preceding assumptions is required.

Figure 1 shows a small clement centered around grid point (i, j). An explicit
finite difference equation is desired involving the temperature at (i. j) and surround-
ing grid points at time t and at time t + At, where t is the time step. The desired
result is accomplished using a heat balance. The heat balance is in the form

Change cf internal energy within the element during the time step =
heat conduction into the element during the time step.

A heat balance form is used because the heat conduction equation is not valid at the
interface between media. In equation form, the preceding relation is
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Figure 1. Finite difference grid arrangement for the general case
of four intersecting media.
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+ Ay 3 (k1 + k2) (1)
where

T = temperature
i = subscript corresponding to x direction
j = subscript corresponding to y direction
n = superscript corresponding to the time step




vyt LI

e o

Ax x grid spacing

y grid spacing

Ay
At = time step

thermal conductivity of the media in quadrants 1 through 4

k,, ko, k

kis Koy kg, Ky

density of the mecia.

P1s Pgs Pgs Py
The terms in equation (1) are

Change in the internal energy of the element during time At = heat
flow into the element from the left-hand side during time At + heat
flow into the element from the bottom + heat flow into the right-hand
side + eat flow in from the top.

Equation (1) is an explicit form; i.e., the temperature one time step ahead can

be determined from temperatures at the grid point and adjacent points at the current
To see this more clearly, equation (1) is rewritten in the following form:

time step.
il C1P1 7 CPa Pyt Py n ar it RY o ar (gt Ry
i,j 4 i+l,j (Ax)2 2 i-1,j (Ax)2 2
n ot KptED o g, a (Bgtky)
* Ty 41 7 *TijaTT 32
) 7 oy

ol (cypy *+CoPg *CgP3 +Cydy)

i,] 4
\ k2+k3 k3+k4 k1+k4 k1+k2
- At 7 * 7t 7" )
2(Ax) 2(Ay) 2(AX%) 2(ay)

(2)

If the media in the four quadrants are the same, equation (2) reduces to

n+l n n n n n n n
g T ook T Ty TPk Tige TGt Mg 3)

At cp (Ax)?‘ pe (Ay)2
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Observe that equation (3) is just the finite difference form of the heat conduction

equation. The assumption of steady state heat flow with Ax = Ay reduces equation
(3) to

Tier,g * Tiong Y Tigjer Y Ty5o1

Ty ° 3 : 4

The superscript is dropped from equation (4) because it is superfluous. Observe
that the preceding equation is a well-known finite difference form of LaPlace's equa-
tion, i.e.. the steady state heat flow equation.

The finite difference form for the heat balance equation was derived and is
given by equationz (2). This equation is in explicit form and, hence, is only condi-
tionally stable. An inequality relating At, Ax, Ay, and the material parameters must
be found so that the marching technique suggested by equation (2) is stable. For
equation (3), the relationship can be shown to be [1]

kK At

—_— L
co(Ax)2

(5

| -

The normal procedure for obtaining stable solutions is to select Ax for adequate reso-
lution of the temperature field and use equation (5) to calculate the maximum At. The

relationship analogous to equation (5) for the heat balance equation will be derived in
the next section.

STABILITY OF THE EXPLICIT FINITE DIFFERENCE EQUATION

The stability analysis of the finite difference equation (2) will follow the pro-
cedure outlined by Richtmyer and Morton [1]. First consider the real solution of
equation (2) given by Til?j . The actual solution calculated on the computer will be
il.]j = Tir?j + ai',]j . where &iljj is a small error that may be due to roundoff or trunca-
tion, function evaluation error, etc. If the solution with error is plugged into equa-
tion (2), it can be seen that “gil.]j is a solution to the same equation as Ti,,l' since
Tinj is a solution of (2) and hence will cancel out. Reference 1 shows that the errur

function Sinj can be represented in the form

L En ei(iBAx + ijy)‘ (6)
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Here ¢ is, in general, a complex amplitude factor;and En means £ raised to the
nth power (not £ superscript n). £ and y can he considered free parameters that
can change independently of each other. Substituting equation (6) into equation (2)

yields, a.ter some rearrangement,

(k, +k, +k, +k,)
€=1+a\[1 2 3 4(cosB+cosG-2):l

)
[k, +k, - k. - k.) (k. + Kk, - k. - K,)
+ia[1 42 2 3 gnp+ L 22 3 4 sing| , (N
where
_ ant
AXAY(C py + Cohy + C3pg + Cypy)
B = pRAx
G = ¥yAy .

In the example of the discretized form of the heat conduction equation, £ is real.

For the current form, & is. in general, complex. For a given grid point, the ampli-
fication factor for any error is given by equation (7). If the modulus of { is greater
than unity, any error present can amplify and disrupt the numerical solution of * 2
temperature field. To assure stability of the solution, |£| < 1 must be satisflied at
every grid point in the interior of the composite region and at every boundary point
(if heat flux or radiation boundary conditions are specified).

For a given grid point in a composite medium, { is a two-parameter function of
B and G in the complex plane. If Ax and At are selected and |£| < 1 for every
value of B and G, then the stability condition is not violated.

To better understand equation (7), fix G at some arbitrary value. Then the
following representations can be made:

Re[f] = ¢, cos B +c,

1
Im[£] = cq sin B +c, . (8
where
Re[£f] = real part of ¢
Im[£] = imaginary part of ¢
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a(k1 + kz + k3 + k4)

€1 7 2
ey = 1+c1(cosG-2)
c3 = a(k1 + k4 - }(2 - k3)/2
Cy * a(k1 + k2 - k3 - k4) sin G/2 .
Let
E=x+iy =Re[f] +iIm(g) . (9
Then
X -c¢
2 = cos B
¢1
y -c
4 _sinB
3
Finally,
(x - 02)2 (Y - C4)2
————-——--——c ) + ———-c——i——- = 1 . (10)
1 3
This is the equation of an ellipse centered in the complex ¢ plane at £ = cy +1 C4

with semimajor axes cy and Cq- Reference to the definitions of ¢, and Cq indicates

that the semimajor axes are constants for a given composite medium; i.e., they are
not functions of G. cy and ¢, are functions of G and can be written in the form

H

c2 @ cos G + 00

4 8y sin G, (11)
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a = ¢

O = i- 2c1

: _ a(k1 + k2 - k3 - k4)
1 2

Equation (11) is the parametric form for an equation of an ellipse. Equations (10)
and (11) represent a seri2s of ellipses centered on points on an ellipse. At this
point, two approaches can be taken. The first to be considered involves trying to
find an envelope for the series of ellipses defined by the preceding two equations.
Determining an equation for the envelope involves combining equations (10) and (11)

in the following form:

(x - w, cos G - (10)2 (y - Bl sin G)2

f(x,y.G) = 3 + 5
¢ C3

-1, (12)

If an envelope exists, it is necessary that it satisfy the following two equations (see
Reference 2, for example):

f(x,.y,.G) =0
fG(x,y.G) =0 (13)
The subscript G refers to partial differentiation. Conditions (13) become
2 . 2
(x - g cos G - (12) (y - 3, sin G)
3 tem— 1 =0
c c
1 3
(14)

tanG+k1smG-k2= 0 .

where
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The usual procedure for solving for the envelope involves elimination of G from the
two equations in (14). Because of the transcendental nature of these equations,
elimination of G is difficult. Rather than proceed in an attempt to obtain an analytical
solution, a computer program was written to plot up the series of ellipses. This pro-
gram is described in the following section.

COMPUTER GRAPHICS STABILITY DETERMINATION

The graphics program is based on equations (8) and (11), which are presented
here in slightly different form for convenience,

x=c1cosB+0t1cosG+a0

(1%5)

C

<
[}

351nB+BlsmG

This represents a two-parameter family of curves. The finite difference form of
equation (2) is stable, if the follcwing inequality is true:

li[=¢x2+y231 . (16)

The preceding two-parameter family is plotted by holding G constant and varying B
between 0 and 2n. This plots one ellipse. After G is incremented between 0 and 2r,
a series of ellipses is drawn that allows visual determination of the £ envelope. The
program listing in the appendix draws the circle |£| = 1 and the ellipses. If a part
of the envelope falls vutside the unit circle, instabilities can be expected. If this
occurs, At must be reduced and a new graph drawn. When the envelope just stays
in the unit circle, the corresponding value of At is nearly optimum.

To better illustrate the method, the following section outlines an example prob-
lem and indicates how optimum time increments can be obtained.
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EXAMPLE STABILITY ANALYSIS

The example geometry of Figure 2 is used to illustrate principles outlined in the
preceding sections. The composite medium is made up of copper, plexiglass, cork for
insulation, and Dow-Corning 200 Series oil (viscosity 1000 centistokes). Although the
oil is a fluid and subject to convection, its high viscosity and the low temperature
gradients of the problem (low Rayleigh number) mean that most heat transfer is ¢
conduction. Ax and Ay are 0.1 cm for the example. Given these values for Ax <uc
Ay, the object of the stability analysis is to determine the maximum At for a st. :e
solution.

0 0.8 1.0em

Cs w w e

OC — 200 SERIES OIL

PLEXIGLASS

DIMOOOO
IMOVON

CORK

Figure 2. Composite medium geometry.

Each grid point can be classified into one of several categories, as indicated
in Figure 3. To assure stability, each of these categories must be tested. For the
example problem, stability consicerations sre dominated by copper because of its high
conductivity relative to the other three materials of the composite medium. Exper-
ience shows that the only catzgories of interest are those containing copper in at
least one of the four quadrants.

A trial and error procedure indicates that At = 0.002 sec is nearly the maximum
or optimum value. Figure 4 shrws the stability plots for the interiors of cach of the
four materials. £ is real In . .e interiors and becomes significani only for the case of
copper. The plots of Figure 5 show the remaining categories listed in Figure 3.
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Figure 3. Classes of grid point arrangements that must be

considered for stability.

Because of the dominance of copper, all curves for the interfaces appear to
circles with centers on the real axis. Although not belonging to one of the cate-
gories, tiie plot of Figure 6 is included to show more fully the general character of
the stability equations. Even this plot appears to be composed of circles. Again,
the dominance of copper is evident. If two dominant materials existed with compar-
able but unequal conductivity, a series of ellipses could be expected.

To check the resuits of this stability analysis, the thermal code based on
equation (2) was programmed. For a value of At = 0.002 sec, the code was stable.
For At = 0,00225 sec. instabilities soon developed in the solution.

If inequality (5) for copper is used to find the maximum value of At, the
result is At = 0.0021665 sec. Figure 7 shows the copper category stability plots.
The amplification factor closely approaches the unit circle. Figure 7a serves as a
check on the code. These findings suggest that stability is determined by inequality

(5) applied to the dominant material of the composite medium. The result is by no
means proved, however.
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MATERIALS
1=CU
2=CORK 1
3=0C OIL
4=PLEX

TIME INC =
00200 SEC

MATERIALS
1€y
2=CORK 2
3=0C OIL 2
a=PLEX

TIME INC =
H0208 SEC

T
-2
-2 0. 1
RE (XI)
&)
5
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Figure 4. Stability of the finite difference scheme in the interiors

of the four materials,
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Figure 4.

(Concluded).

MATERIALS
1=CU
2=CORK
3=0C OIL
4=PLEX

TIME INC =
.00200 SEC

MATERIALS
1=CU
2=CORK
3=DC OIL
4=PLEX

TIME INC =
00200 SEC

313
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MATERIALS

F.,dre

1=CV
1 2=CORK
T 3=DC O
+ 4=PLEX
T TIME INC =
T 00200 SEC
+
-1. 0 1. 2
RE (X1)
5(a)
MATERIALS
1=CU

T 2=CORK
+ 3=0C OIL
t 4=PLEX
4: TIME INC =

£3200 SEC
1. 0. 1. i
RE (X1)
S(h)

Stakility at the interfaces.
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MATERIALS
1=tV
™CORK
3=0C 0L
4=PLEX

TIME INC =
0200 SEC

MATERIALS
1=Cu
2=CORK
3=DC Ol
4=PLEX

TIME INC =
0208 SEC
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-(- -
e 4+
TIME INZ =
00200 SEC
RE (X1)
5(e)
AATERIALS
-+ 1=CU
- 2=CORK 3|3
] 3=DC OIL s 4
1 4=PLEX
<+
%\‘
-{I—
-
-v—
bt 4
i
Tb—/
.
+ TIME INC =
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Figure 5. (Concluded).
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MATERIALS

1=CU
t 2=CORK
{ 3=0C OIL
4=PLEX
1.
=
E 3
1. 1
T TIME INC =
: 00200 SEC
rS
2
-2. 1. 0 1. 2

RE (X1)

"gure 6. Hypothetical grid point with a different material
in cach of the four quadrants.

16

211
] 4



S 3

2
1.
3:' 0. b+ +——+—+
1.
-2.
-2. -1. 0. 1. 2.
RE (X1)
Tl
2.
1.
=0
x
-1
1
4+
1
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MATERIALS
1=y
2=CORK
3=0C OIL
&=PLEX

TIME INC =
00217 SEC

MATERIALS
1=CU
2=CORK
3=0C OIL
4=PLEX

TIME INC =
80217 SEC

Figure 7, Stability plots for the optimum At,
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Figure 7.

(Continued).

MATERIALS
1=Cy
2=CORK
3=0C Ol
4=PLEX

TIMEINC =
00217 SEC

MATERIALS
1=CV
2=CORK
3=0C OIL
4=PLEX

TIME INC =
0217 SEC
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: 1=CU
1 2=CORK
+ wocon |3
+ 4=PLEX T 1
1.
= 0-
x
3
1.
TIME INC =
1 08217 SEC
<4
2.
'2 1 o. 1 2
RE (X1)
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Figure 7. (Concluded).

SUMMARY

A computer graphics technique was derived that was useful for determining the
maximum time step in an explicit finite difference equation describing transient con-
duction in a composite medium. An example was used to illustrate the method. For
the example., two codes were programmed. The first was the explicit, conditionally
stable thermal code based on equation (2). The second, or stability code, was a
computer graphics program for determining the optimum time increment which was an
input for the thermal ccde. Values of At for which the stability code indicated
stability (At = 0.002 sec) and instability (At = 0.00225 sec) were input to the thermal
code. The results from the thermal code were consistent with the predictions from
the stability code.

For the example problem, an accurate stability prediction could be achieved by
applying inequality (5) to the dominant material, which in this cuse was copper.
This result may or may not be a universel one.

The stability of the conditionally stable explicit finite difference equation (2)
was contrelled by the dominant material in the example problem. For the other three
materials. a much larger maximum time step would be calculated from (5). Two
possibilities exist for overccming this problem. One is to use a larger Ax and Ay in
the dominant material. For the example, this procedurc was not feasible because
sufficient resolution could not be achieved. The second possibility is to use a
different time step in the different materials. This possibility means that, while the
solution: is updated every 0.002 sec in the copper of the example, it is only updated
every 0.2 sec in the other materials. This variable time method should be explored.

19
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APPENDIX

This program listing is written in Hewlett-Packard (HP) Fortran 4X, which is
described in Reference 3. Except for the multiple statement lines in which statements
are separated by the dollar sign ($), the program uses standard Fortran IV. The
graphics subroutines are part of a special package called Graphics 1000, which is
described in Reference 4.
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0001
0002
0002
Q004
000S
0006
aneovy
0008
2009
00t
0011
0o12
0013
aet4
Q15
0016
0017
0018
R R]
0020
0021
0oz
0023
0024
0025
0026
0027
0pee
0o29
o330
0031
032
0032
034
ou3s
0034
2037
003k
0039
0G40
QY]
0042
0473
0044
0045
Q46
(=
tudd
0043
(osSe
noSH
0052
nes3
(0S54
GOSS
00Se
nns’

npsS=

FTN4 . L
PROGRAM TSTRE

C PR PP PP LR L R RN NSRRI PPN PPN RELPE AR EEERE R EE L E L L L R
C o o’k
C *+% PROGRAMMER: WARREN CAMPEBELL-/3-188¢ e b
C www LEE ]
C w%x+ PROGKAM PURPGSE: TO CALCULATE STABILITY FOR FINITE DIFFERENCE ==
C &%+ SCHEME FOR SOLUTIOGN OF TRANSIENT CONDUCTION EQUATION IN "o
C wx+ COMPOSITE MEDIA WHOSE IMTERFACES ARE YERTICAL OR HOKIZONTAL. L)
C wkx EX
T bk i Aot i e b e At dok e A b e b b RAROE R i ok Kb b ol AR O A ok A i e e e e M o i e ok o
I owakx EE Y ]
C #++ DEFINITION OF VARIARLES: ik
T e ok
C =++ NOTE: ALL UMNITS mkE LGS *Aon
C ww ke e
C #++ RHOCU = DENSITY OF COPPEFR LR L]
C w«+% RHOCKk = DENSITY OF CUORK o
£ sy PHODC = DENSITY OF OOW CORNING 200 =ERIES QIL L2 3]
C e RHOPL = DENSITY OF PLEXIGLRASS - ok
L owew CCU = SPECIFIC HEAT OF COPPEP LT
L ««+ CCK = BPECIFIC HERT OF CORK ek
C #«¢t+ CDC = SPECIFIC HEmT OF DOW CORNING 200 SERIES QIL o
L %4 CPL = SPECIFIC HEAT OF PLEXIGLASS o’ o
C %++ KCU = THERMAL CONLUCTIVITY OF COPPEFR o’
C #»##+ KCk = THERMaAt CONDUCTIVITY OF CORK e e
C wxx KDC = THERMAL CONDUCTIYVITY OF DOW CORNING 200 SERIES OIL ” o
C ¢4 KPL = THERMAL CONDUCTIYITY OF PLEXIGLRASS ko
T #+r+ RHOY! . RHOZ2,RHOS,RHD4 = DENSITY IN 127 .2HD,3IRD, 4TH QUADRANT > e
i wxr C1,C02,03,09 = SPECIFIC HERT IN " " " ° n o o
C ¢#¢+ Ki,Kk2, k3, kd = THERMAL CONDUCTIVIT It 15T, ..., ,ETC OURDRANT A
C #+4¢ DELX = X INCREMENT IN FINHITE DIFFERENCE EGQUATIONS T
C «¢+ DELY = VY » " " " " LS
C x««4 DELT = TIME INCREMENT LR L)
C +«%x4 4 = DEFINED PARMMETER rT
C «e«t M = COMPLEX AMPLIFICRTION FRCTOR ol
L o«td X = PEAlL. PRRT OF THE MMPLIFIraTION FROTOR 00
C *x+¢ ¥ = [MAGIHAPY PART OF AMPLIFICATION FAHCTOR oA
R Yy LI R PRy VYR YRRy N N R E P Y RN RN RN PP YR RPT YWYy Wy ys ey Yy,
U Rt 0 e oA b b N b Aot e e kO N g A Ak b A e A A A A e o A A e e A el o ol ke e ok e g

DIMENSION IPLTRL132),.Cud),RHOC4Y, IM 4
REAL kud ) kCU,kTkh, kDO, KFPL
PI=3.14153
DELX=0.1
DELY=0.1
WRITE. 1,999
39 FORMAT: " ENTER TIME INCREMENT p_ "
FPERDv1,+ DELT
ttt COPPER PRRAMETERT «+w
KCU=0,3%12
RHOCU=& , 3¢
CCl=(0, 92
C %+t CORK PARPKRMETERS #¢ &
K=o, qult s
FHOUY, O, 1602
(CKa=( (4
DU 200 QIL FRFWMETEFS wes
D= a00=T

L]

™
-
-
-
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0059 RHODC =0, 971

0060 COC=0,2379

0061 ( #%+ ENTER PLEXIGLASS PHRAMETERS w%w
0062 KPL=d 475E~4

0062 RHOPL=1.19

0064 CPL=(,35

0063 C *x+ ENTER MATERIAL FOR EACH OF THE FOUR QUADRAMTS w#»

0066 WRITE<1,1000>

0067 1000 FORMATC" CU=1, CORK=2, DC 0IL=2, PLEX=d, QUAD 1 MAT=f4_">
0068 READC 1, =) IM(3)

0069 WRITEC1,1100>

0070 1100 FORMAT(" QUAD 2 MAT=4_">

0071 READC Y, =) IMC2)

0072 WRITECY, 1200

0073 1200 FORMATC" QUAD 3 MAT=4_".

0074 READCt , =3 IMC3)>

0075 WRITEC1,1300>

0076 1300 FORMAT(" QUAD 4 MAl =§_"»
007?77 READC1,*)> IM(4>

0078 DO 130 I=t,4

0079 IFCIMCI ) NE. 1Y GO TO 16O

0080 K¢ 1>=KCU

0081 RHOC I »=RHOCU

0082 C{1r»=<CCU

09083 GO TO 130

0084 100 IFCIMCIDN NE. 2 GO TG 110

008S K¢ 1 0=KCK

0086 RHOC 1 >=RHOCK

0087 C¢ 1 )2=CCK

0038 GO TQ 120

ag8s 110 IFCIMITD.NE. 3> GO TO 120

0090 K{ T ) =6 DC

0091 RHOC 1 v=RHODC

0092 C¢Ioa=CDC

0093 GO TC 130

0094 120 Ki1)=WPL

Q0SS RHOC I '=RHOFL

0096 C<1HX=CPL

6os7 130 CONTINUE

ae9g Azd  xDELT/CDELX«DELY# O { y%RHOCI D+ 0, 2 ) «RRHOC204CC 7 1 4RH0OC 3D+ 4 x
0099 1RHOI4 )

0100 C =+« SET UP PLOTTER =

0101 WRITE: 1,111

g102 1111 FORMAT" ENTER 1D NUMEEP §_"»
103 READc 1, % ID

0104 WRITEC1,1112)

0105 1112 FORMAT:" ENTER LU HUMBER &_"»
0106 FRERDy 1, « LU

0107 CALL PLOTRCIPLTR.ID, V, LU
0108 CALL VIEWP(IPLTR,iS5. .85, . 1%, &5,
0109 CALL WINDWCIPLTR,-2 ,&.,-2..2.
n1taQ IPEN=1

0111 CRLL PENCIPLTR, IPEN)

012 CRLL LAXES IFLTP,-.c.0.2.0,,0.,5%..5%, .t .
n113 CALL FRAMECIPLTP)

Q114 CRLL MOVELIPLTR. ! 0.

n11s 00 200 I=9,10%

0116 HRG= [ -1 g #FI Y00,

ey =L OS2k G)

RE:] YeSIn, ARG
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6119 CALL DRAKCIPLTR, X,
0120 200 CONTINUE

g121 CALL PENUP{IFLTR?

0122 DO 210 1=},2)

0123 CALL PENCIPLTR,IPEN)

0124 ¢ Gul{]l=1,0%2, %P1,20,

0129 DO 220 J=1,St

0126 B=( J-1)%2 ,»P[/S0,

0127 Xmil , +A%( 0,52 (K( 1 )+K{2I4KCII+K(4 I COSCRI+COSCL -2, )
0128 YaQe( (K 1 )+K G )=K(2)=KC3)m , SHSTNCBI+C K1 D+K(2I=K( 3 ) =K(4 ), S
0129 128INCG)?

0139 CALL DRAWCIPLTR,X,Y)

0131 220 CONTINUE

0132 CALL PENUPCIPLTR>

0133 IPEN=]PEN+1

0134 IFCIPEN.LE. 4> GO TO 210
0135 IPEN=1

0136 210 CONTIMUE

0137 CALL VIEWPCIPLTR,G.,152..0,,100.)
0138 CALL WINDW«IPLTRK,0.,152.,0.,100.)
0139 IPEN={

cr4q CALL PENCIPLTR,IPEN)

0141 CALL MOVECIFLTR,S50.,10.)
0tdz CALL CPLOTCIPLTR,-3..0.>
0143 CALL LABEL<IFLTR)

0144 WRITECLU,40C0 >

0145 4000 FORMATC"RE(XI ")

0146 CALL MOVECIPLTR,10Q.,50.)
0147 CALL CPLOT.IPLTR,0.,-3.)
0148 CALL LDIRCIPLTR,1.57)
0143 CALL LABELCIPLTF

0150 WRITECLU, 41 00>

0151 4100 FORMATC("IMIXKI )

0152 CALL LDIRCIPLTR, 0.

G153 CALL MOVEC IPLTR, S0, ,50.
0154 CALL CPLOT  IPLTP,-13.,0.2
015S CALL LABELCIFLTR

0156 WRITE{LU,4200)

(157 4200 FORMATCYAMPLIFICATION FRCTOR PLOT®
0138 CALL MOVECIPLTR,90.,8%.
0159 CAkl LABELCIPLTR

0160 WRITECLU,4300)

0161 4300 FIRMATCYMATERIALS")

0162 WRITECLU,d44G0>»

0163 4400 FORMATC® 1=LU%)

0164 WRITECLU, 4500

0165 4500 FORMATL"  =(0kRkK")>

(166 WRITECLU, 4600

0167 d4K0u0  FORMATC® I=pC OIL"»

0168 WRITECLU, 4700

MEes 4200 FOAFMATC"  4=PLEX"»

ar?z CALL MOVE. IPLTR, V10, ,7%.
01?1 CALL DRAW TFLTR, 120..7% )
utve CALL MOVE.WIPLTR, 115,20,
G173 CALL DRAWCIPLTR, 118, .80,
01724 CALL MOVECIPLTR,1t7?..?77.
01?s CRLL LABEL IPLTK

0176 WRITECLU, 4800 M1

0177 4800 FORMATCI)
178 CALL MOVE.IPLTR, 112 .77



P,

0179
0180
0181
0182
0192
0164
a1as
0186
437
ates
o189
0ol
0191
192
133
01954
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CALL LABELCIPLTR 4
WRITECLU, 48002 IMi2>

CALL MOVECIPLTPR, 132 ,72..
CALL LARELCIPLTR
WRITECLU, 43000 M3
CALL MOVECIPLTR,tt7v.,7V2.7

CALL. LABELCIPLTR

WRITECLUY, 4800 IM{4)

CALL MOVE< IFPLTR,30.,730.>

CALL LABELCIPLTRD

WRITECLU, 49500 DELT
FORMAT«"TIME INC = “"F&.5"% SEC")
CALL PENCIPLTR, O

STOF

END

ENDS

ERE TPy vIR )

4
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