NUMERICAL STABILITY OF AN EXPLICIT FINITE DIFFERENCE SCHEME FOR THE SOLUTION OF TRANSIENT CONDUCTION IN COMPOSITE MEDIA

By Warren Campbell
Space Sciences Laboratory

November 1981

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama
TABLE OF CONTENTS

INTRODUCTION ... 1
DERIVATION OF THE FINITE DIFFERENCE SCHEME 1
STABILITY OF THE EXPLICIT FINITE DIFFERENCE EQUATION 4
COMPUTER GRAPHICS STABILITY DETERMINATION 8
EXAMPLE STABILITY ANALYSIS ... 9
SUMMARY ... 19
APPENDIX .. 20
REFERENCES .. 25

LIST OF ILLUSTRATIONS

Figure Title Page
1. Finite difference grid arrangement for the general case of four intersecting media ... 2
2. Composite medium geometry .. 9
3. Classes of grid point arrangements that must be considered for stability ... 10
4. Stability of the finite difference scheme in the interiors of the four materials ... 11
5. Stability at the interfaces ... 13
6. Hypothetical grid point with a different material in each of the four quadrants ... 16
7. Stability plots for the optimum Δt .. 17
NUMERICAL STABILITY OF AN EXPLICIT FINITE DIFFERENCE SCHEME FOR THE SOLUTION OF TRANSIENT CONDUCTION IN COMPOSITE MEDIA

INTRODUCTION

Stability of numerical schemes plays a key role in the computer solution of transient heat conduction. A stability analysis relates permissible combinations of grid spacing and time step. For a given grid spacing, the time step must be smaller than a certain value for an explicit numerical scheme to be stable. A time step as close to the maximum as possible is desirable to reduce computer run times and cost.

In composite media, the transient heat conduction equation is not valid at interfaces between media with different heat conduction coefficients. In this case, a heat balance technique can be used to drive an explicit finite difference scheme. The derivation is presented herein, and a theoretical stability analysis is performed. Because of the complexity of the resulting relationships, a computer graphics code was developed to allow easy determination of an optimum time step. A sample problem is examined, and graphics output is presented.

DERIVATION OF THE FINITE DIFFERENCE SCHEME

Figure 1 illustrates the general problem that is addressed herein. The following assumptions are made: (1) Media interfaces lie along two directions that are orthogonal, e.g., vertical or horizontal, as shown in Figure 1. (2) Interfaces lie along lines of grid points; and when more than two media intersect, they do so at a grid point. (3) Media interfacial contacts are perfect, i.e., infinite interfacial conductance. (4) Cartesian coordinates are used. (5) Heat conduction is in two dimensions.

The preceding assumptions were made for simplicity of presentation and are not absolute restrictions on the usefulness of the methods described. All results can be generalized so that none of the preceding assumptions is required.

Figure 1 shows a small element centered around grid point (i, j). An explicit finite difference equation is desired involving the temperature at (i, j) and surrounding grid points at time t and at time t + \(\Delta t \), where t is the time step. The desired result is accomplished using a heat balance. The heat balance is in the form:

\[
\text{Change of internal energy within the element during the time step} = \text{heat conduction into the element during the time step.}
\]

A heat balance form is used because the heat conduction equation is not valid at the interface between media. In equation form, the preceding relation is
Figure 1. Finite difference grid arrangement for the general case of four intersecting media.

\[
(T_{i,j}^{n+1} - T_{i,j}^{n}) \frac{\Delta x \Delta y}{4} (c_{1,1}^{\rho} + c_{2,2}^{\rho} + c_{3,3}^{\rho} + c_{4,4}^{\rho}) = \frac{T_{i-1,j}^{n} - T_{i,j}^{n}}{\Delta x} \left[-\frac{\Delta t \Delta y}{2} (k_{2} + k_{3}) \right]
+ \frac{T_{i,j}^{n} - T_{i,j-1}^{n}}{\Delta y} \left[-\frac{\Delta t \Delta x}{2} (k_{3} + k_{4}) \right]
+ \frac{T_{i+1,j}^{n} - T_{i,j}^{n}}{\Delta x} \frac{\Delta t \Delta y}{2} (k_{1} + k_{4})
+ \frac{T_{i,j+1}^{n} - T_{i,j}^{n}}{\Delta y} \frac{\Delta t \Delta x}{2} (k_{1} + k_{2})
\]

where

\(T \) = temperature
\(i \) = subscript corresponding to \(x \) direction
\(j \) = subscript corresponding to \(y \) direction
\(n \) = superscript corresponding to the time step
\[\Delta x = x \text{ grid spacing} \]
\[\Delta y = y \text{ grid spacing} \]
\[\Delta t = \text{ time step} \]
\[k_1, k_2, k_3, k_4 = \text{ thermal conductivity of the media in quadrants 1 through 4} \]
\[\rho_1, \rho_2, \rho_3, \rho_4 = \text{ density of the media.} \]

The terms in equation (1) are

Change in the internal energy of the element during time \(\Delta t = \text{ heat flow into the element from the left-hand side during time } \Delta t + \text{ heat flow into the element from the bottom } + \text{ heat flow into the right-hand side } + \text{ heat flow in from the top.}

Equation (1) is an explicit form; i.e., the temperature one time step ahead can be determined from temperatures at the grid point and adjacent points at the current time step. To see this more clearly, equation (1) is rewritten in the following form:

\[
T_{i,j}^{n+1} = \frac{c_1 \rho_1 + c_2 \rho_2 + c_3 \rho_3 + c_4 \rho_4}{4} = T_{i+1,j}^{n} \frac{\Delta t}{(\Delta x)^2} \frac{(k_1 + k_4)}{2} + T_{i-1,j}^{n} \frac{\Delta t}{(\Delta x)^2} \frac{(k_2 + k_3)}{2}
\]

\[
+ T_{i,j+1}^{n} \frac{\Delta t}{(\Delta y)^2} \frac{(k_1 + k_2)}{2} + T_{i,j-1}^{n} \frac{\Delta t}{(\Delta y)^2} \frac{(k_3 + k_4)}{2}
\]

\[
+ T_{i,j}^{n} \left[\frac{(c_1 \rho_1 + c_2 \rho_2 + c_3 \rho_3 + c_4 \rho_4)}{4} \right]
\]

\[
- \Delta t \left[\frac{k_2 + k_3}{2(\Delta x)^2} + \frac{k_3 + k_4}{2(\Delta y)^2} + \frac{k_1 + k_4}{2(\Delta x)^2} + \frac{k_1 + k_2}{2(\Delta y)^2} \right].
\]

(2)

If the media in the four quadrants are the same, equation (2) reduces to

\[
\frac{T_{i,j}^{n+1} - T_{i,j}^{n}}{\Delta t} = \frac{k}{c \rho} \frac{T_{i+1,j}^{n} + T_{i-1,j}^{n} - 2T_{i,j}^{n}}{(\Delta x)^2} + \frac{k}{c \rho} \frac{T_{i,j+1}^{n} + T_{i,j-1}^{n} - 2T_{i,j}^{n}}{(\Delta y)^2}
\]

(3)
Observe that equation (3) is just the finite difference form of the heat conduction equation. The assumption of steady state heat flow with \(\Delta x = \Delta y \) reduces equation (3) to

\[
T_{i,j} = \frac{T_{i+1,j} + T_{i-1,j} + T_{i,j+1} + T_{i,j-1}}{4}.
\] (4)

The superscript is dropped from equation (4) because it is superfluous. Observe that the preceding equation is a well-known finite difference form of Laplace's equation, i.e., the steady state heat flow equation.

The finite difference form for the heat balance equation was derived and is given by equation (2). This equation is in explicit form and, hence, is only conditionally stable. An inequality relating \(\Delta t, \Delta x, \Delta y \), and the material parameters must be found so that the marching technique suggested by equation (2) is stable. For equation (3), the relationship can be shown to be [1]

\[
\frac{k \Delta t}{c\rho(\Delta x)^2} \leq \frac{1}{4}.
\] (5)

The normal procedure for obtaining stable solutions is to select \(\Delta x \) for adequate resolution of the temperature field and use equation (5) to calculate the maximum \(\Delta t \). The relationship analogous to equation (5) for the heat balance equation will be derived in the next section.

STABILITY OF THE EXPLICIT FINITE DIFFERENCE EQUATION

The stability analysis of the finite difference equation (2) will follow the procedure outlined by Richtmyer and Morton [1]. First consider the real solution of equation (2) given by \(T_{i,j}^n \). The actual solution calculated on the computer will be \(T_{i,j}^n = T_{i,j}^n + \delta_{i,j}^n \), where \(\delta_{i,j}^n \) is a small error that may be due to roundoff or truncation, function evaluation error, etc. If the solution with error is plugged into equation (2), it can be seen that \(\delta_{i,j}^n \) is a solution to the same equation as \(T_{i,j}^n \) since \(T_{i,j}^n \) is a solution of (2) and hence will cancel out. Reference 1 shows that the error function \(\delta_{i,j}^n \) can be represented in the form

\[
\delta_{i,j}^n = \xi^n e^{i(\beta \Delta x + j\gamma \Delta y)},
\] (6)

where \(i = \sqrt{-1} \).
Here \(\xi \) is, in general, a complex amplitude factor; and \(\xi^n \) means \(\xi \) raised to the nth power (not \(\xi \) superscript n). \(\beta \) and \(\gamma \) can be considered free parameters that can change independently of each other. Substituting equation (6) into equation (2) yields, after some rearrangement,

\[
\xi = 1 + a \left[\frac{(k_1 + k_2 + k_3 + k_4)}{2} (\cos B + \cos G - 2) \right] \\
+ i a \left[\frac{(k_1 + k_4 - k_2 - k_3)}{2} \sin B + \frac{(k_1 + k_2 - k_3 - k_4)}{2} \sin G \right],
\]

(7)

where

\[
a = \frac{4\Delta t}{\Delta x\Delta y(c_1\rho_1 + c_2\rho_2 + c_3\rho_3 + c_4\rho_4)}
\]

\[B = \beta\Delta x\]

\[G = \gamma\Delta y\]

In the example of the discretized form of the heat conduction equation, \(\xi \) is real. For the current form, \(\xi \) is, in general, complex. For a given grid point, the amplification factor for any error is given by equation (7). If the modulus of \(\xi \) is greater than unity, any error present can amplify and disrupt the numerical solution of the temperature field. To assure stability of the solution, \(|\xi| \leq 1 \) must be satisfied at every grid point in the interior of the composite region and at every boundary point (if heat flux or radiation boundary conditions are specified).

For a given grid point in a composite medium, \(\xi \) is a two-parameter function of \(B \) and \(G \) in the complex plane. If \(\Delta x \) and \(\Delta t \) are selected and \(|\xi| \leq 1 \) for every value of \(B \) and \(G \), then the stability condition is not violated.

To better understand equation (7), fix \(G \) at some arbitrary value. Then the following representations can be made:

\[
\text{Re}[\xi] = c_1 \cos B + c_2 \\
\text{Im}[\xi] = c_3 \sin B + c_4
\]

(8)

where

\[
\text{Re}[\xi] = \text{real part of } \xi, \\
\text{Im}[\xi] = \text{imaginary part of } \xi.
\]
\[c_1 = \frac{a(k_1 + k_2 + k_3 + k_4)}{2} \]

\[c_2 = 1 + c_1 \cos G - 2 \]

\[c_3 = a(k_1 + k_4 - k_2 - k_3)/2 \]

\[c_4 = a(k_1 + k_2 - k_3 - k_4) \sin G/2 \]

Let

\[\xi = x + iy = \text{Re}(\xi) + i \text{Im}(\xi) \] \hspace{1cm} (9)

Then

\[\frac{x - c_2}{c_1} = \cos B \]

\[\frac{y - c_4}{c_3} = \sin B \]

Finally,

\[\frac{(x - c_2)^2}{c_2^2} + \frac{(y - c_4)^2}{c_3^2} = 1 \] \hspace{1cm} (10)

This is the equation of an ellipse centered in the complex \(\xi \) plane at \(\xi = c_2 + ic_4 \) with semimajor axes \(c_1 \) and \(c_3 \). Reference to the definitions of \(c_1 \) and \(c_3 \) indicates that the semimajor axes are constants for a given composite medium; i.e., they are not functions of \(G \). \(c_2 \) and \(c_4 \) are functions of \(G \) and can be written in the form

\[c_2 = \alpha_1 \cos G + \alpha_0 \]

\[c_4 = \beta_1 \sin G \] \hspace{1cm} (11)
where
\[a_1 = c_1 \]
\[a_0 = 1 - 2 c_1 \]
\[\beta_1 = \frac{a(k_1 + k_2 - k_3 - k_4)}{2} \].

Equation (11) is the parametric form for an equation of an ellipse. Equations (10) and (11) represent a series of ellipses centered on points on an ellipse. At this point, two approaches can be taken. The first to be considered involves trying to find an envelope for the series of ellipses defined by the preceding two equations. Determining an equation for the envelope involves combining equations (10) and (11) in the following form:

\[
f(x,y,G) = \frac{(x - a_1 \cos G - a_0)^2}{c_1^2} + \frac{(y - \beta_1 \sin G)^2}{c_3^2} - 1.
\]

(12)

If an envelope exists, it is necessary that it satisfy the following two equations (see Reference 2, for example):

\[
f(x,y,G) = 0
\]
\[
f_G(x,y,G) = 0.
\]

(13)

The subscript G refers to partial differentiation. Conditions (13) become

\[
\frac{(x - a_1 \cos G - a_2)^2}{c_1^2} + \frac{(y - \beta_1 \sin G)^2}{c_3^2} - 1 = 0
\]
\[
\tan G + k_1 \sin G - k_2 = 0.
\]

(14)

where
The usual procedure for solving for the envelope involves elimination of G from the two equations in (14). Because of the transcendental nature of these equations, elimination of G is difficult. Rather than proceed in an attempt to obtain an analytical solution, a computer program was written to plot up the series of ellipses. This program is described in the following section.

COMPUTER GRAPHICS STABILITY DETERMINATION

The graphics program is based on equations (8) and (11), which are presented here in slightly different form for convenience,

\[x = c_1 \cos B + \alpha_1 \cos G + \alpha_0\]

\[y = c_3 \sin B + \beta_1 \sin G\]

This represents a two-parameter family of curves. The finite difference form of equation (2) is stable, if the following inequality is true:

\[|\zeta| = \sqrt{x^2 + y^2} \leq 1\]

The preceding two-parameter family is plotted by holding G constant and varying B between 0 and 2\(\pi\). This plots one ellipse. After G is incremented between 0 and 2\(\pi\), a series of ellipses is drawn that allows visual determination of the \(\zeta\) envelope. The program listing in the appendix draws the circle \(|\zeta| = 1\) and the ellipses. If a part of the envelope falls outside the unit circle, instabilities can be expected. If this occurs, \(\Delta t\) must be reduced and a new graph drawn. When the envelope just stays in the unit circle, the corresponding value of \(\Delta t\) is nearly optimum.

To better illustrate the method, the following section outlines an example problem and indicates how optimum time increments can be obtained.
EXAMPLE STABILITY ANALYSIS

The example geometry of Figure 2 is used to illustrate principles outlined in the preceding sections. The composite medium is made up of copper, plexiglass, cork for insulation, and Dow-Corning 200 Series oil (viscosity 1000 centistokes). Although the oil is a fluid and subject to convection, its high viscosity and the low temperature gradients of the problem (low Rayleigh number) mean that most heat transfer is by conduction. \(\Delta x \) and \(\Delta y \) are 0.1 cm for the example. Given these values for \(\Delta x \) and \(\Delta y \), the object of the stability analysis is to determine the maximum \(\Delta t \) for a stable solution.

Each grid point can be classified into one of several categories, as indicated in Figure 3. To assure stability, each of these categories must be tested. For the example problem, stability considerations are dominated by copper because of its high conductivity relative to the other three materials of the composite medium. Experience shows that the only categories of interest are those containing copper in at least one of the four quadrants.

A trial and error procedure indicates that \(\Delta t = 0.002 \) sec is nearly the maximum or optimum value. Figure 4 shows the stability plots for the interiors of each of the four materials. \(\xi \) is real in the interiors and becomes significant only for the case of copper. The plots of Figure 5 show the remaining categories listed in Figure 3.
Figure 3. Classes of grid point arrangements that must be considered for stability.

Because of the dominance of copper, all curves for the interfaces appear to circles with centers on the real axis. Although not belonging to one of the categories, the plot of Figure 6 is included to show more fully the general character of the stability equations. Even this plot appears to be composed of circles. Again, the dominance of copper is evident. If two dominant materials existed with comparable but unequal conductivity, a series of ellipses could be expected.

To check the results of this stability analysis, the thermal code based on equation (2) was programmed. For a value of $\Delta t = 0.002$ sec, the code was stable. For $\Delta t = 0.00225$ sec, instabilities soon developed in the solution.

If inequality (5) for copper is used to find the maximum value of Δt, the result is $\Delta t = 0.0021665$ sec. Figure 7 shows the copper category stability plots. The amplification factor closely approaches the unit circle. Figure 7a serves as a check on the code. These findings suggest that stability is determined by inequality (5) applied to the dominant material of the composite medium. The result is by no means proved, however.
Figure 4. Stability of the finite difference scheme in the interiors of the four materials.
Figure 4. (Concluded).
Figure 5. Stability at the interfaces.
Figure 5. (Continued).
Figure 5. (Concluded).
Figure 6. Hypothetical grid point with a different material in each of the four quadrants.
Figure 7. Stability plots for the optimum Δt.
Figure 7. (Continued).
A computer graphics technique was derived that was useful for determining the maximum time step in an explicit finite difference equation describing transient conduction in a composite medium. An example was used to illustrate the method. For the example, two codes were programmed. The first was the explicit, conditionally stable thermal code based on equation (2). The second, or stability code, was a computer graphics program for determining the optimum time increment which was an input for the thermal code. Values of Δt for which the stability code indicated stability ($\Delta t = 0.002$ sec) and instability ($\Delta t = 0.00225$ sec) were input to the thermal code. The results from the thermal code were consistent with the predictions from the stability code.

For the example problem, an accurate stability prediction could be achieved by applying inequality (5) to the dominant material, which in this case was copper. This result may or may not be a universal one.

The stability of the conditionally stable explicit finite difference equation (2) was controlled by the dominant material in the example problem. For the other three materials, a much larger maximum time step would be calculated from (5). Two possibilities exist for overcoming this problem. One is to use a larger Δx and Δy in the dominant material. For the example, this procedure was not feasible because sufficient resolution could not be achieved. The second possibility is to use a different time step in the different materials. This possibility means that, while the solution is updated every 0.002 sec in the copper of the example, it is only updated every 0.2 sec in the other materials. This variable time method should be explored.
APPENDIX

This program listing is written in Hewlett-Packard (HP) Fortran 4X, which is described in Reference 3. Except for the multiple statement lines in which statements are separated by the dollar sign ($), the program uses standard Fortran IV. The graphics subroutines are part of a special package called Graphics 1000, which is described in Reference 4.
STAB T=00004 IS ON COMPUTER USING NODES ELKS N=00000

0001 FTN4.L
0002 PROGRAM TSTAB
0003 C+++}
0004 C
0005 C *** PROGRAMMER: WARREN CAMPBELL/3-1886
0006 C ***
0007 C *** PROGRAM PURPOSE: TO CALCULATE STABILITY FOR FINITE DIFFERENCE
0008 C *** SCHEME FOR SOLUTION OF TRANSIENT CONDUCTION EQUATION IN
0009 C *** COMPOSITE MEDIA WHOSE INTERFACES ARE VERTICAL OR HORIZONTAL.
0010 C ***
0011 C+++}
0012 C ***
0013 C *** DEFINITION OF VARIABLES:
0014 C ***
0015 C *** NOTE: ALL UNITS ARE CGS
0016 C ***
0017 C *** RHOCU = DENSITY OF COPPER
0018 C *** RHOCK = DENSITY OF CORK
0019 C *** RHODC = DENSITY OF DOW CORNING 200 SERIES OIL
0020 C *** RHOPL = DENSITY OF PLEXIGLASS
0021 C *** C CU = SPECIFIC HEAT OF COPPER
0022 C *** C CK = SPECIFIC HEAT OF CORK
0023 C *** C DC = SPECIFIC HEAT OF DOW CORNING 200 SERIES OIL
0024 C *** C PL = SPECIFIC HEAT OF PLEXIGLASS
0025 C *** K CU = THERMAL CONDUCTIVITY OF COPPER
0026 C *** K CK = THERMAL CONDUCTIVITY OF CORK
0027 C *** K DC = THERMAL CONDUCTIVITY OF DOW CORNING 200 SERIES OIL
0028 C *** K PL = THERMAL CONDUCTIVITY OF PLEXIGLASS
0029 C *** RH01,RH02,RH03,RH04 = DENSITY IN 1ST,2ND,3RD,4TH QUADRANT
0030 C *** C1,C2,C3,C4 = SPECIFIC HEAT IN " " " " " "
0031 C *** K1,K2,K3,K4 = THERMAL CONDUCTIVITY IN 1ST,...,ETC QUADRANT
0032 C *** DELX = X INCREMENT IN FINITE DIFFERENCE EQUATIONS
0033 C *** DELY = Y " " " "
0034 C *** DELT = TIME INCREMENT
0035 C *** A = DEFINED PARAMETER
0036 C *** X! = COMPLEX AMPLIFICATION FACTOR
0037 C *** X = REAL PART OF THE AMPLIFICATION FACTOR
0038 C *** Y = IMAGINARY PART OF AMPLIFICATION FACTOR
0039 C+++}
0040 C
0041 DIMENSION IPLTR(192),K(4),RH0(4),IM(4)
0042 REAL K(4),KCU,KCK,KDC,KPL
0043 PI=3.14159
0044 DELX=0.1
0045 DELY=0.1
0046 WRITE(1,999)
0047 999 FORMAT(" ENTER TIME INCREMENT & _")
0048 PE=0.1,1.) DELT
0049 C *** COPPER PARAMETERS ***
0050 KCU=0.9512
0051 RHOCU=0.286
0052 C CU=0.112
0053 C *** CORK PARAMETERS ***
0054 KCF=0.000103
0055 PHOCF=0.160
0056 C CK=0.04
0057 C *** DL 200 OIL PARAMETERS ***
0058 RHODL=0.037
CALL DRAW(IPLTR, X, Y)
CONTINUE
CALL PENUP(IPLTR)
DO 210 I=1,21
CALL PEN(IPLTR, IPEN)
DO 220 J=1,50.
X=(I-1.)*2.*PI/20.
B=(J-1.)**2.*PI/50.
GO TO 210
IPEN=IPEN+1
CONTINUE
CALL VIEW(IPLTR, 0.,152.,0.,100.)
CALL WINDW(IPLTR, 0.,152.,0.,100.)
IF(IPEN.LE.4) GO TO 210
IPEN=1
CALL PEN(IPLTR, IPEN)
CALL MOVE(IPLTR,50.,10.)
CALL CPlot(IPLTR,-3.,0.)
CALL LABEL(IPLTR)
WRITE(LU,4000)
FORMAT("RE(XI)")
CALL MOVE(IPLTR,10.,50.)
CALL CPlot(IPLTR,0.,-3.)
CALL LABEL(IPLTR)
WRITE(LU,4100)
FORMAT("IM(XI)")
CALL LDIR(IPLTR,0.)
CALL MOVE(IPLTR,50.,90.)
CALL CPlot(IPLTR,-13.,0.)
CALL LABEL(IPLTR)
WRITE(LU,4200)
FORMAT("AMPLIFICATION FACTOR PLOT")
CALL MOVE(IPLTR,90.,85.)
CALL LABEL(IPLTR)
WRITE(LU,4300)
FORMAT("MATERIALS")
WRITE(LU,4400)
FORMAT(" 1=CU")
WRITE(LU,4500)
FORMAT(" 2=CORK")
WRITE(LU,4600)
FORMAT(" 3=OIL")
WRITE(LU,4700)
FORMAT(" 4=PLEX")
CALL MOVE(IPLTR,110.,75.)
CALL DRAW(IPLTR,120.,75.)
CALL MOVE(IPLTR,115.,70.)
CALL DRAW(IPLTR,115.,80.)
CALL MOVE(IPLTR,117.,77.)
CALL LABEL(IPLTR)
WRITE(LU,4800) IM(1)
FORMAT(I1)
CALL MOVE(IPLTR,112.77.)
CALL LABEL(IPLTR)
WRITE(LU,4800) IM(2)
CALL MOVE(IPLTR,112,72.)
CALL LABEL(IPLTR)
WRITE(LU,4800) IM(3)
CALL MOVE(IPLTR,117.,72.)
CALL LABEL(IPLTR)
WRITE(LU,4800) IM(4)
CALL MOVE(IPLTR,90.,30.)
CALL LABEL(IPLTR)
WRITE(LU,4900) DELT
4900 FORMAT("TIME INC = "F8.5" SEC")
CALL PEN(IPLTR,0)
STOP
END
END*
REFERENCES

NUMERICAL STABILITY OF AN EXPLICIT FINITE DIFFERENCE SCHEME FOR THE SOLUTION OF TRANSIENT CONDUCTION IN COMPOSITE MEDIA

By Warren Campbell

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or nuclear energy activities or programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

GEORGE H. FIGHTL
Chief, Fluid Dynamics Branch

WILLIAM W. VAUGHAN
Chief, Atmospheric Sciences Division

J. E. KINGSBURY
Acting Director, Space Sciences Laboratory