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TECHNICAL MEMORANDUM 

NUMERICAL STABILITY OF AN EXPLICIT F IN ITE  DIFFERENCE SCHEME FOR 
ME SOLUTION OF TRANSIENT CONDUCTION IN COMPOSITE MEDIA 

INTRODUCTION 

Stability of nunlericnl schemes plays a key role in the computer solution of 
trtinsient heat conduction. A stability analysis rel t~tes permissible combillations of 
grid spacing 11nd time step. For a given grid spncing, the time step must be 
s t~ l~ l l e r  thtul 11 certtdn value for an explicit rlurnerical scheme to be stable. A time 
step os close to the mnximunl ns possible i s  desirable to reduce computer run times 
cind cwst. 

111 conlposite medici, the trunsient heat conduction equation is  not valid at inter- 
faces betweell media with different heat conduction coefficients. In this case, a heat 
bt~ltulce technique ctm bc used to drive rm explicit finite difference scheme. The 
derivtition is presented !lerein. nnd t i  theorctic~l stability analysis is performed. 
Ijecause of the coti~plexity of the resulting relationships, a computer graphics code 
was developed to nllow cnsy determination of an optimum time step. A sample problem 
is examined, tlnd grnphics output is presented. 

DE:RIVA?'ION 01: '1'13E: FINITE DIFFERENCE SCHEME 

E'ifl~ro 1 illustrntes the hvnertil problem that is nddrcssed herein. The following 
t~ssumptions ii1.e 111:tde: ( 1 )  Medin interfnces lie &long two directions that are orthog- 
o t i ~ ~ l ,  e .g .  . vcrticill o r  horizo~ltril. cis shown in Fig~lre  1. ( 2 )  Interfaces lie along 
lines of grid poi~l ts ;  c~nd wllcn nwre than two meditt intersect. they do so nt R grid 
point. ( 3 )  Rledin intcrft~uirtl contacts nre perfect. i . c . .  infinite interfncial conductnnce. 
( 4 )  Ct1rtcsiiul coordinates :Ire used. (5 )  Heat conduction is in two dimensions. 

'l'lie preceding nss~~niptic~ns were rl~nde for simplicity of present ntion and are not 
nbsolutc restrictio~ls on the uscf\~lncss of the methods described. All results can be 
g'cnernlized so thnt none of ttic: preceding nssumptions is required. 

Pigurc 1 sliows t~ s n ~ t l l l  clcmct~t centered around grid point ( i ,  j ) .  An explicit 
finite differcncc etlurttion is ticsired invol\ring t11c tcnlpernture nt ( i .  j )  and surround- 
ing grid points t ~ t  time t ~tntl nt tinlc t + At, where 1 is the time step. The desired 
result is ~tc*con~plisIit~d using rt her~t bnlnnce. The hcnt balnnce is  in the form 

C'htrn!gc~ of i r~tcrr~nl c*nc?'gy within the element (luring the time step = 
hccrt t*ot~ductiort into thc. element during the t ime step. 

A het~t balnllce form is uscci bccttusc the hattt conduction equation i s  not valid at the 
interface bet ween medin. 111 equnt ion form , t hc preceding relation is 



Figure 1. Finite difference grid arrangement for the general case 
of four intersecting media. 

where 

T = temperature 

i = subscript corresponding to x direction 

j = subscript corresponding to y direction 

n = superscript corresponding to the time step 



Ax = x grid spacing 

Ay = y grid spacing 

At = time step 

kl , k2, k3, k4 = thermal conductivity of the media in quadrants 1 through 4 

P I '  P2, P3' P4  = density of the media. 

The terms in equation (1) are 

Change in the internal energy o f  the element during time At = heat 
flow into the element fmm the left-hand side during time A t  + heat 
flow into the element from the bottom + heat flow into the right-hand 
side + ;.,oat flow in f r o m  the top. 

Equation (1) is an explicit form ; i .e. , the temperature one time step ahead can 
be determined from temperatures at the grid point and adjacent points at the current 
time step. To see this more clearly, equation (1) is rewritten in the following form: 

If the media in the four quadrants are the same, equation (2) reduces to 



Observe that equation (3) i s  just the finite difference form of the heat conduction 
equation. The assumption of steady state heat flow with Ax = by reduces equation 
(3)  to 

. ' 
The superscript is dropped from equation (4) because it is superfluous. Observe 
that the preceding equation i s  a well-known finite difference form of LaPlacets equa- 
tion, i.e. , the steady state heat flow equation. 

The finite difference f ~ r m  for the heat balance equation was derived and is 
given by equatiol: (2). This equation is in explicit form and, hence, is only condi- 
tionally stable. An inequality relating At, Ax, Ay , and the material parameters must 
be found so that the marching technique suggested by equation (2) is  stable. For 
equation (3 ) ,  the relationship can be shown to be [ I )  

The normal procedure for obtaining stable solutions is to select Ax for adequate reso- 
lution of the temperature field and use equation (5) to calculate the maximum A t .  The 
relationship analogous to equation (5) for the heat balance equation wiU be derived in 
the next section. 

STABILITY OF THE EXPLICIT FINITE DIFFERENCE EQUATION 

The stability analysis of the finite difference equation ( 2 )  will follow the pm-  
cedure outlined by Richtmyer and Morton [ 11. First consider the real solution of 

equation ( 2 )  given by T , ~ ;  . The actual solution calculated on the computer will be 
n ' * J  

f.". = TiVj + ~~y~ . where 5 is a small error that may be due to roundoff or  trunca- 
1 * I  i ,j 

tion, function evaluation e rmr ,  etc. I f  the solution with error is plugged into equa- 
n n tion ( 2) . it can be seen that F. i ,  is a solution to the same equation as T. since 

n 1 , j  
T, ; is a solution of ( 2 )  and hence will cancel out. Reference 1 shows that the e rmr  

A r J  n function 6 i ,  can be represented in the form 

where 3 = . 



Here ( is ,  in general, a complex amplitude factor; and 6" mems 5 raised to the 
nth power (not 5 superscript n) .  B and y can be considered free parameters that 
can change independently of each other. Substituting equation (6) into equation (2) 
yields, e iter some rearrangement , 

(kl + k2 - k3 - k4) 
sin B + 2 

where 

In the example of the discretized form of the heat conduction equation, 6 is real. 
For the current form, 6 is. in general, complex. For a given grid point, the ampli- 
fication factor for any error i s  given by equation (7). If the mc~dulus of 6 is greater 
than unity, any error present can amplify and disrupt the numerical solution of +' 2 

temperature field. To assure stability of the solution, 16 1 3 1 must be satisfied at  
every grid point in the interior of the composite region and at every boundary point 
(if heat flux or radiation boundary conditions are specified). 

For a given grid point in a composite medium, 5 is a two-parameter function of 
B and G in the complex plane. If Ax and At are selected and 15 ] s 1 for every 
value of B and G ,  then the stability condition is not violated. 

To better understand equation (7) ,  fix G at some arbitrary value. Then the 
following representations can be made : 

I m 1 6 1  = c3 sin B + c4 

where 

Re[51 = real part of F, 

Im[F;l = imaginary part of [ 



Let 

T hen 

X - C  2 -- = cos B 
1 

Finally, 

n 

This is the equation of an ellipse centered in the complex l, plane at 6 = c2 + i c 4  

with semimajor axes cl  and cj. Reference to the definitions of cl and c3 indicates 

that the senlimajor axes are constants for a given composite medium ; i.e., they are 
not functions of G .  c2  and c4 are functions of G and can be written in the form 

c4 = B 1  sin G , 



where 

Equation (11) is the parametric form for an equation of an ellipse. Equations (10) 
and (11) represent R s e r i ~ s  of ellipses centered on points on an ellipse. At this 
point, two approaches can be taken. The first to be considered involves trying to 
find an envelope for the series of ellipses defined by the preceding two equations. 
Determining an equation for the envelope involves combining equations (10) anfl (11) 
in the following form : 

If an envelope exists, it is  necessary that it satisfy the following two equations (see 
Reference 2 ,  for example) : 

f (x ,y .G)  = 0 

f G ( x . y . G )  = 0 . 

The subscript G refers to partial differentiation. Conditions (13) become 

where 

( X  - <.ul cos G - t i 2 )  ( y  - d l  sin G )  
2 

+ --- 
2 2 - 1  = 0 

C 1 C 3 

tan G + k l  sin G - k - 0 , 2 - 



The gsual procedure for solving for the envelope involves elimination of G from the 
two equations in ( 1 4 ) .  Because of the transcendentnl nature of these equations, 
elimination of G is  difficult. Rather than proceed in an attempt to obtain an analytical 
solution, a computer program was written to plot up the series of ellipses. This pro- 
gram is  described in the following section. 

COMPUTER GRAPHICS STABILITY DETERMINATION 

The graphics program is based on equations (8) and (11) , which are presented 
here in slightly different form for convenience, 

x = c cos B + cr cos G + a,, 1 1 
(15) 

y =  C s i n B  + B1 sin G . 3 

This represents a two-parameter family of curves. The finite difference form of 
equation ( 2 )  is stable, if the following inequality is  true : 

The preceding two-parameter family is plotted by hdding G constant and varying B 
between 0 and 2n. This plots one ellipse. After G is  incremented between 0 and 21r, 
a serles of ellipses is drawn that allows visual determination of the 5 envelope. The 
program listing in the appendix draws the circle 1 T, 1 = 1 and the ellipses. I f  a part 
of the envelope falls outside the unit circle, instabilities can be expected. If thie 
occurs, At must be reduced and 8 new graph drawn. When the envelope just stays 
in the unit circle, the corresponding value of At is nearly optimum. 

To better illustrate the method, the foll~wing section outlines an example prob- 
lem and indicntes how optimum time increments can be obtained. 



EXAMPLE STABILITY ANALYSIS 

The example geometry of Figure 2 is used to illustrate principles outlined in the 
preceding sections. The composite medium is made up of capper, plexiglass, cork for 
insulation, and Dow - Corning 200 Series oil (viscosity 1000 centietokee) . Although the 
oil is a fluid and subject to convection, its high viscosity and the low temperature 
gradients of the problem (low Rayleigh number) mean that most heat transfer is k. 
conduction. Ax and Ay are 0.1 cm for the example. Given these values for PI.:< 
Ay , the object of the stability analysis i s  to determine the maximum At for a st.. jle 
sol t tion. 

CORK 

Figure 2. Composite medium geometry. 
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Each grid point can be classified into one of several categories, as  indicated 
in Figure 3. To assure stnbility , each of these categories must be tested. For the 
example problem, stability consiczrations pre dominated by copper because of its high 
conductivity relative to the other three materials of the composite medium. Exper- 
ience shows that the only cattqjries of interest are those containing copper in at 
least one of the four quadrants. 

DC - 200 SERIES OIL 

PLEXIGLAS 

A trial ilnd error procedure indicates that At = 0.002 sec is nearly the maximum 
or optimum value. Figure 4 shrws the stability plots for the interiors of aach of the 
four materials. E, is real in .. .z interiors and becomes significmi only for the case of 
copper. The plots of Figme 5 show the remaining categories listed in Figure 3. 



OC OIL 1 DE OIL 

COPPER 1 COQIER CORK I CORK PLIX I PLEX 

CORK CORK b PLEX PLEX a (. . 

Figure 3. Classes of grid point arrmgements that must be 
considered for stability. 

Because of the dominance of copper, all curves for the interfaces appear to ' 

circles with centers on the real axis. Although not belonging to orie of the cete- 
p r i e s ,  tile plot of Figure G i s  included to s h o w  more fully the general chrmcter  of 
the stability equations. Even this plot appears to be composed of circles. Again, 
the dominance of copper i s  evident. I f  two dominant materials existed with compar- 
able but unequal conductivity, a series of ellipses could be expected. 

To check the results of this stability analysis, the thermal code biased on 
equation (2)  was programmed. For a value of At = 0.002 sec,  the code was stable. 
For A t  = 0.00225 sec. instabilities soon developed in the solution. 

If inequ~lity ( 5) for copper is used to find the maximum value of At , the 
result is  3 t = 0.0021665 sec. Figure 7 shows the copper category stability plots. 
The amplification factor closely approaches the unit circle. Figure 7a serves a8 a 
check on the code. These findings suggest that stability is determined by inequality 
(5) applied to the dominant materia! of the composite medium. The ros~ll t  is by no 
means proved, however. 



-1. 
-2. -1. a 1. 

RE (XI) 
4(81 

MATERIAU 
1 -CU 
2-CORK 
3-OC OIL 
4 3 U X  

TIME INC - 
.OW# tEC  

MAT ERlALS 
1.CU 
2-CORK 
3-OC OIL 
4 3 L E X  

Figtare 4 .  Stability of t i c  finite difference scheme in t h  interiors 
of the four materials. 



-2. 
-2. -1. 0. 1. 2. 

RE (XI) 
4(c) 

MATERIALS 
l=CU 
2=CORK 
*OC OIL 
WLEX 

TIME INC = 
,00299 SEC 

MATERIALS 

3=DC OIL 
4=PLEX 

4 1 4  

TIME INC = 
.WOO SEC 



MATERIAL8 
1-CU 
2-CORK 
3-OC OIL 
CPLEX 

I TIME INC = 
.rn2mSEC 

MAT ERlALS 
2. 

1 1 1-CU 
2-CORK 
3=DC OIL 
)=REX 

1 M E  INC = 
-SEc 

F; ,~rc  5. Sttitility at the interfaces. 



-2. 
-2. -1. 0. 1. I 

RE (XI) 
5(c) 

MATERIALS 

a-conn 
lpoc 011 
W L E X  

MATERIALS 
1 =CU 
2=CORK 
3-DC OIL 
CPLEX 

TIME INC = 
.n2a SEC 

Figur;: 5 .  (Continued ) . 



-2. 
-2. -1. 0. 1. 2. 

RE (XI)  
5(r) 

I:ig1:?11*e 5. (Concluded). 

MATERIALS 
1-CU 
2-CORK 
3=OC OIL 
I-PLEX 

TIME INC = 
.002OQ SEC 

3ATERlALS 
l = C U  

3=DC OIL 
2=coRK 4-PLEX +- 

TIME INC = 
.@2W SEC 



MATERIALS 
1-CU 
2-CORK 
3-DC OIL 
4)LEX 

TIME INC - 
.@Om SEC 

-2. -1. 0. 1. 
RE (XI)  

' " g ~ r e  6 .  l lvpothetic~l grid point with a different material 
in c :~c l~  of the four quadrants. 



MAT E R l A U  
l e u  

1 WE INC = 
.OD217 SEC 

MATERIALS 
1 =CU 
2-CORK 
3-DC OIL 
CCLEX 

2. 

1. 

= 0. 
X - 
3 

-1. 
TIME INC = 
.a21 7 SEC 

-2. 
-2. -1. 0. 1. a. 

RE (XI) 
7(b) 

Figure 7. Stability plots for the optimum A t .  



MATERIALS 
1-CU 
PCORK 
*DC OIL 
4=PLEX 

-2. -1. 0. 1. 2. 

RE (XI; 
7(dl 
Figure 7. (Continued 

2 

1. 

-- 0. ii - 
z 

-1. 

MATERIAL8 
1-CU 
M O R K  
3=DC OIL 
44LEX 

-2. 

TIME INC = 
.W17 SEC 

J 

-2. -1. 0. 1. 2. 
RE (Xi) 

7(cl 



MATERIALS 
l=CU 
2=CORK 
SlDC OIL 
Crux 

TIE INC = 
-11 SEC 

-2. 
-2. -1. 0. 1. 2. 

RE (XI) 

7CI 
Figure 7. (Concluded 1. 

SUMMARY 

A computer graphics technique was derived that was useful for determining the 
maximum time step in an explicit finite difference equation describing transient con- 
duction in a composite medium. An example was used to illustrate the method. For 
the example, two codes were programmed. The first was the explicit, conditionally 
stable thermal code based on equation ( 2 ) .  The second, o r  stability code, was a 
computer graphics program for determining the optimum time increment which was an 
input for the thermal code. Values of At for which the stability code indicated 
stability (At = 0.002 sec) and instability (At = 0.00225 sec) were input to the thermal 
code. The results from the thermal code were consistent with the predictions from 
the stability code. 

For the example problem. an accurate stability prediction could be achieved by 
applying ineclunlity ( 5 )  to the dominant material, which in this case was copper. 
This result may or may nut be a universe1 one. 

The stability of the conditionally stable explicit finite difference equation ( 2 )  
was contm!led by the dominant material in the example problem. For the other three 
materials. a much lnr:{er maximum time step would be calcultitsd from (5) .  Two 
possibllities exist for overcoming this problem. One i s  to use a larger Ax and Ay in 
the dominant material. Fs:. the exclmple, this procedure Nas not feasible because 
sufficient resolution could not be achieved. The second possibility is  to use a 
different time step in the different materials. This possibility means tha t ,  while the 
solution is  updated every 0.002 sec in the copper of the example, it i s  only updated 
every 0 . 2  sec in the other materials. This variable time method should be explored. 



APPENDIX 

This program listing is written in Hewlett-Packard (HP) Fortran 4 X ,  which ia 
described in Reference 3 .  Except for the multiple statement lines in which statements 
are separated by the dollar sign ($) ,  the program uses standard Fortran IV. The 
graphics subroutines are part of a special package called Graphics 1000, whiah is 
described in Reference 4 .  



F T N 4 ,  L  
PROGRAM TSTHB 

C * 4 4 * * * 0 * * * * + * * * *  (I* c c  ~ 4 4 * 1  C +  * + + * * a  ( I * . C 4 * . 4  Y ~ C  C  + 4 . C 4 * 4 * * * * 4 * * * + 4 * * * * * * * * * * * * *  

C *** *** 
C *** PROGRAMMER: UARREN C k M P B E L L i 3 - 1 B B 6  PC * * 
c *** *** 
C *** PROGRAM PURPOSE: TO CALCULATE S T A B I L  I T Y  FOR F  I H I T E  DIFFERENCE a** 
C *** SCHEME FOR SCILUTICIN OF TRANSIENT COND?ICTIOtJ EQUATION I N  rc** 
C *** COMPOSITE MEDIA WHCISE INTERFUCES ARE OR HORIZONTAL.  *** 
C *** :* * * 
C * * * * * * * * * * . * * * * * * 4 * 4  t. **+$I t *** * * + * * . * * *  (r* t 4 C.C * * . * . * * * * . *  * * 4 * * * 4 * * * * * * * * * * * * *  

**+ *** 
C *** D E F I N I T I D N  OF VCIBIAFLES *** 
5. *+* *** 
C *+*  NOTE: ALL U N I T S  HRE C G S  '**I@ 

+n*  *** 
C *++  RHOCIA = DENSIT7  OF LOPPEP * * * 
C *++ RHOCk 6 DENSITY OF CORK *** 
C * *? pHODC = [)ENSITY OF [!Old CI:IRNIHG 200 ,!,ERIE3 O I L  *** 
C ***  RHOPL = DENSITY OF P L E X I C L A S S  +** 
I: , c . t *  CCU = SPEC I F I i  HEHT [IF l:t:rPPEF *** 
C *.*+ CCK = S P E C I F I C  HEAT OF C . O R K  *** 
i * t *  CDC = S P E C I F I C  HEciT OF DOIJ C(:lHt.IING 201:1 SERIES 12IL *** 
C *+* CPL = SPEOIF I C  HEAT OF PLEXICLASS *** 
C * * t  kCU = THERMAL C.ISHIIIJCTIVITY OF COPPER *** 
C **+ KCk = THERMkl CONC~I ! iT IVITY OF CORK r*** 

C *** KDC = THERMkL C.I~NC)UCTI~/LTY O F  DOW CORNIt4C 200 SERIES CIIL *** 
C *++  KPL = THERMkl C: I~NCJUCTIV~TY OF PLEXILLAC.5 *** 
C * t i  RHO1 .RHOZ,RH03,RH04 = DENSIT'I' I N  1 S T .  2ND, SRD, 4TH I~UQDAAHT * :C * 
1: * * *  it , i L , i . 3 , C 4  = S P E L I F I C  HEAT I N  8 ,  I, 61  I I ,  *** 
C t *  * k 1 , YZ, k3,  t ' 4  = THERMHL Cbt4DUC:TIVIT I!] 7ST.  . . , ETC BUHCJR~NT *** 
C * + +  ClELX = X INI:REME~.(T :I4 F I N I T E  C)IIFFEREt.ICE Eir i lATI i lNE. *** 
C * r  4 DELY = Y ,I 1 I1 ' I  *** 
C * * 4  DELT = T I M €  INCREHFNT **+ 
c *:c+ = DEF I t4ED PARHME TER ic** 

C * * *  X I  = COMPLEX U W P L I F I C H T X I ~ ~ ~ ~  Ft-t iTUR **+ 
5 c t  4 :.; = FEAI. Pefir [:IF THE ~ M P L I F I ~ o T I O I I  F'clCTOF: 4 4 * 
C * * +  Y = IMNGINuPP PAOT 1:lF W r l P L I F I i A f I O N  F k i T O F  Y**  

i t 4  *$I t C + ~ + * . * * ~ C * * . ) I * C * L +  c c  t e a t  ( 4 . k ~  C + * * C $ I Y + C C C C ~ ~ . C * ~ C . C + * C * . ( I S I ~ ~ * Y $ I + ~ . * * ~ * . C * . C *  

i C Y  4  c * 4 + 4  C *  c c  4 4 ~ 4  ~ ( 1 4 4 4 ~  ~ ~ 4 4  ~ . ~ * * + * . t * * * * * h + * 4 ~ 4 * * * + 4  & * * * + a h  +I*+*.********** 
DIMENSION IPLTR*:  1'76 ) . C ( 4  ) ,RHOf ;4 ) .  I N !  4 
R E k L  h a .  4  1, hCl.1, ) r i _ k .  k;DC ,KPL 
P I = 3 , 1 4 1 5 9  
DELX-0 . 1 
DELY=O . 1 
WRITE. 1 , 9 9 4  

989 FORNkT~  " Et lTEk TIPIE IN iEEMENT a_-" J 

FEW[)( 1 ,  * ) ~ E L T  
C * t +  COPPER PHR64fIETEkF * + *  

k 'CU=0.?912 
RHClC U = g .  8 6  
i 5 [I= 11 . "'32 

C * c +  CORY P W H W E T E E S  c t  c 

~ ~ V = L I  , c ~ i ~ U 1  I:!> 

FHOc t, 0 ,  161jL 
iCK=r! O J  

i t t c  DL ?[II:~ [ I I L  F H P ~ Y E T E F S  c t *  

r DT.:-!* Cti107- 



kHODC.= u . 97  1 
COC-0,379 

C * *+  ENTER PLEXIGLASS PHRHNETERS c * *  
K P L - 4 , 4 7 5 E - 4  
QHOPLt1 . I 9  
CPL-0,35 

C *** ENTEQ NfiTERIAL FOR EF\CH O F  THE FOUR QUADRANTS *** 
URITE< 1,1000 > 

1 0 0 0  FORHATi" CUol ,  CORK*;', DC OIL-3, P L E l l r 4 ,  QUAD 1 MAT=B-"> 
RE&D( 1 ,*) I H (  1 > 
URITE(  1 , 1 1 0 0 )  

1 1  O O  FORHATC I' QUAD 2 MAT=b-" 
REI )D<l , * )  I H ( 2 )  
URITE< 1,1200 1 

1200  FORMAT( " QUCID 3 MCITr4-" r 
R E A M  I , * )  IHCJ) 
URITE( 1 , 1 3 0 0 ?  

1 3 0 0  FORMAT( I' QUWO 4 Mkl ~ 4 -  'I ) 

READ< 1 , * ) I N (  4 ) 
DO 1 3 0  I = 1 , 4  
I F i I t I ( I j . N E , l ' )  GO T O  f G O  
Kc I >=ECU 
RHO< I )=RHOCU 
El: 1 :,=L'cu 
GO TO 1 5 0  

1 0 0  I F < I N i I I , N E . 2 ~ C O T C ;  1 1 0  
K( I :j=C:CK 
RWCK I >=RHOC.K 
C( I :)=CCK 
GO TO 130 

1 1 0  I F < I H ! I : ) . N E . 3 : )  GO TO 1 2 0  
K t  I ,=C;DC 
RHO( I \=RHODC 
CS I :)=Or)C 
C;O TO 1 3 0  

1 2 0  Kt: I )=k'PL 
RHO( I ')=RHOPL 
C (  I T=CPL 

1 3 0  CONTINUE 
A = 4 ,  *DELT/ t  DEL:(.*DELY*l. i p s  1 )*RHO! 1 )tin. 2 .,*F!HOc 2 ) + C f  3 ,+RHOt 3 j+C.l; 4 )* 

1 RHO; 4 ) ') ., 
C *.*,+ SET UP PLOTTER ,c** 

URITEb: I, 1 1  1 1 ,  
t 1 11 FORMAT*' " EtITER I D  NIJMEEF 4-" 'I 

HEADc 1 , * ) I tj 
U R I T E < 1 , 1 1 1 2 ]  

11 12 FORMAT#: " ENTER L U  t4UMbEk 4-" 
F E H D ~  l , * ) LU 
CALL PLOTRr 1 PLTP . I 0 ,  1 , LU r 
CALL VIEUP~IPLTP,iS..85..15.,85.~ 
i k L L  Id1NC)Ni 1 P L T k . - Z  , L i .  , - 2 .  ,2* ? 

I PEN= 1 
CALL PEN( I PLTR,  I P E H  , 
CALL L&XESl. I P L T P ,  - . 2 .  [ I .  2 , 0 ,  , it, , S  . , 5 ,  . 1 . ) 

ChLL FRAME! I PL TP ) 

CWLL MOVE*. I P L T R .  1 , ( I ,  ) 

00 200 Is1 , 1 0 1  
w f ? ~ = a .  1 - 1  :*z. +Pf,,'1 i 1 u .  

X.(t.lSSr LtkG I 

Y+SI r?~ ;  kRG ) 



01 19 CALL DRAM( I PLTR, X ,  'i J 

0120 2 0 0  CONTINUE 
0121 CALL PENUP( I PLTR ) 
O f 2 2  DO 21  0 I - 1 , 2 1  
O i  23 CALL PEN< I PL Tk , I PE Id ) 
0124 I C-tI-1.)*2,*PItJ20, 
0125 DO 2 2 0  J = l , S t  
0126 B-t J-1 2*2 , *P I /50 ,  
0 1  2 7  X-1  ,+A*(  0 ,  5 * i  K <  i )+K( 2 )+~:i 3 )+K( 4 ) C O S ~  e >+cost c >-2 ,  > > 
0128 Ym(I*C ( KC 1 >+K< 4  )-KC 2 >-K< 3 )  )* ,5*SI t4< 8 )+C EI' 1 >+KC 2 )-K( 3  >-K< 4 ) 5 
01 2 9  1 *S IN<C) )  
0130  CALL DRAW( IPLTR, X ,  'f ) 
0131 220 CONTINUE 
01 32 CALL PENUP< I PL TR > 
01 33 IPEH=IPEN+i 
01 3 4  I F ( I P E N . L E . 4 )  GO TO 2 1 0  
01 35 IPEN= 1 
0136 2 1 0  CONTIWJE 
0137 CALL V I E U P ~ l P L T k , O . , l S 2 .  . 0 , , 1 0 0 . ,  
01 36 CALL UINDWrIPLTR,0.,1S2.,0.,1000) 
0139 I PEN= 1 
C140 ChLL PEN< IPLTR, IPEN)  
0141 CALL MOVE(IPLTR,50.,  1 0 ,  '1 
0142 CALL CPLOTc IPLTR, -3 .  , ,0 .  j 
0143 CALL LABEL< I PLTk r 
01 44 URITE< LU, 40Cg(1? 
0145 4 0 0 0  FORMAT( l ' qE iX I ) " )  
0146 ChLL HOVE<IPLTR, 1P,  ,SO. > 
01 47  CALL CPLOT*. IPLTR, 0 .  , - 3 ,  i 
01 4 8  CALL LDIRCIPLTR, 1 . 5 7 1  
01 49 CALL LABEL( i PL TF! ) 

0150 Uk ITE<LU,4100 ' )  
0151 41  00 FORMAT< " I M i X I  ) "  .) 

0152 CALL LOIRI: IPL.TR, (1, i 
0 153 CkLL HOVE< IPLTR, SO., PO. 
01 54 CALL CPLOTI' IPLTP,-13. , O .  > 
0 155 CwLL LABEL< IPLTR '1 

0156 WRITE( LU, 4200, 
0157 42 i l l i  FORMAT( "AMPLIFICHTICII~ FHCTOR P L O T "  
0158  CALL HOVE< IPLTR,90 .  , 8 5 .  
0 15'3 C4LL LABEL< IPLTP 'J 

0160 UXITEc LU,4300 ) 

0161 4300  F3RNAT< u M ~ T E k I ~ L S "  ) 

0162 WRITE< LU, 4400  ) 
i l l 6 3  4400 FORMAT( " l=CUU 
0164 WRITE< LU, 4500,  
0165 J5ilO FORMAT*:" ~=LI:IRC:") 
0166 IdR I TEr: LU, 46O il 
0167 46110  FORMAT< 3=C1C O I L "  ) 

0168 WRITE( ~ U , 4 7 i 1 0  ) 

11163 4700 FOFMATC " 4-PLEF:" ! 

(517 CALL HOVE*. IPLTR, 11 SI. , 7 5 .  , 
8171 i A L L  Dkkbli IFLTF!, l ; i O . ,  7 5 .  ) 

i 0172 C.WLL HClVE*. IPLTR, 1 15 .  , 7 0 .  ) 
01 73 CALL DRAUC IPLTR, 115,  .act. ? 

01 74  CALL HOVE< IPLTk ,  11 7 ,  , 7 7 .  ) 
i t  175 CALL LABEL< IPLTR J 

01 76 U k l T E < L U , 4 8 0 0 ~  I H <  1 1 

0 177 48 00 FORMt$T( I 1 
01 70 CQLL HOVEI. I P L T ~ ,  1 1 . 2  . f 7 .  ) 



CALL LABEL.( IPLTk 1 

WRITE(LU,48001 I M d 2 )  
CALL MOVE( IPLTF,~ I .?  , 7 2 , ,  
CALL LABEL< I PLTF! ') 
WR11EClU,4800:1 I M 1 : 3 ' )  
CALL NOVEi IPLTR, 117. , 7 2 .  j 
CALL LABEL( IPLTR i 
YRITE<LU14600j  I M ( 4 j  
ChLL MOVEiIPL'TR,90.,3C). :, 
CALL LABEL< IPLTR > 
WRITE( LU, 4 9 0 0  i DELT 
FORMAT< " T I l l €  I NI:: = " FB . 5 "  SEC" :) 
CALL PEN( IPL T R ,  O ) 
STOP 
END 
END* 
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