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FLUTTER: A FINITE EL24M PROGRAM FOR AERODYNAMIC

IS'STASILITY ANALYSIS OF GENERAL SMELLS OF REVOLUTION

WITH THERMAL PRESTRESS

By

Dennis J. Fallonl and Earl A. Thornton2

SUMMARY

Documentation for the computer progras FLUTTER is presented. A general

discussion of the theory of aerodynamic instability with thermal prestress

is given. Theoretical aspects of the finite element matrices required in

the aerodynamic instability analysis are also discussed. General

organisation of the computer program is explained, and instructions are than

presented for the execution of the program.

INTRODUCTION

7he computer program FLUTTER was written in the course of research

aimed at evaluating the effects of thermal prestressing on aerodynamic

instability (flueter) characteristics of general shells of revolution.

Specifically, the objective of the research was to compare the conventional

finite element technique to the integrated finite element technique.

Interested readers should refer to reference 1 for further details of the

approach.

The main body of this report presents: (1) concept of aerodynamic

instability, (2) finite element formulations, (3) program organisation and

(4) input instruction.

l Assistant Professor, Department of Civil Engineering, Old Dominion
University, Norfolk, Virginia 23508.

2 Associate Professor, Department of Mechanical Engineering and Mechanics,
Old Dominion University, Norfolk, Virginia 23508.



CONCEPT OF AERODYNAMIC INSTABILITY

The free vibration equations of notion for a finite element analysis

of shell of revolution subjected to I the effect of prestressing forces

and aerodynamic pressure is expressed as (2):

[Ke ] {q } + [Kg] {q } + a [Ae] {q } + [M] {q } - {0 }	 (1)

where the matrices [Ke ], [Kg ], [Ae ] and [M] represents the first order

stiffness, initial stress (geometric), aerodynamic and mass matrices,

respectively. The vectors {q} and {q} represent the nodal displacements

and accelerations as a function of time. The term A represents an

aerodynamic coefficient which is a function of the stagnation pressure and

the Mach nnaber. The derivation of all matrices in equation (1) is given in

the following sentions. It should be noted that prestressing of the shell

is incorporated through the initial stress matrix.

Now assuming that the displacem:nt varies as harmonic function of time,

{q} - fq} elat
	

(2)

where fq} is a vector of nodal displacement independent of time and w is

the natural frequency of the system, rquation (1) reduces to the classical

dynamic equation:

([Ke ] + [Kg ] + a[Ae] -w2 [M]) fq-} 
eiwt - {0}	 (3)

For a solution to equation (3) to exist the determinant of the er+uation in

the parenthesis must vanish. That is

[Ke ] + [Kg] + a[Ae] - J` [M] I - 0
	

(4)

The objective of an aerodynamic instability analysis is to sell: a set

of vibration modes that are unbounded in the time domain. This criteria is

achieved when the natural frequencies, w, defined in equation (2) are

complex quantities. When a-0 in equation (4) the problem degenerates into

the calculation of the in-vacuo natural frequencies of the free vibration

It



case. The matrices Me ), (Kg ) and (M) are symmetric, and the eigenvalues

are real.

As A is increased from zero, two of the eigenvalues approach each

other and coalesce at a critical value of A designated ^ r . As the value

of A is increased beyond 
cr 

the eigenvalues become complex conjugates.

A typical plot of the natural frequencies (square root of the eigenvalies)

versus the aerodynamic constant is illustrated in figure 1(a). Therefore,

the value of Acr represents the onset of flutter of the shell.

As Will be shown later the interpolation function used in the finite

formulation will be a Fourier serieo. Hence, the analysis of a shell

reduces to seeking the eigenvalue solution of equation (4) for each har-

monic. To obtain a complete solution to a given shell, all harmonics must

be searched to determine the lowest value for A. This is illustrated in

figure 1(b). Interested readers are referred ;o reference 3 for an expedi-

ent technique to determine the critical harmonic.

FINITE ELEMENT FORMULATIO11

General Remarks

The classical finite element technique involves the modeling of a large

complex system by the ass .-mblage of smaller elements (4). For the struct,ir-

al analyses in this report, a geometrically exact shell element was employ-

ed. Figure 2 illustrates a typical element where R 1 and R2 are princi-

pal radii of curvature. This element has been shown to produce excellent

results in the computation of natural frequencies and mode shapes fog

general shells of revolution (S). The interpolation functions for this

element are expressed as a Fourier series in the circumferential direction

and simple polynomials in the meridional directio- as follows:

u - I Un(a) cos n e
noo

v - I -V (s) sin n e
nw0

w - I Wn(s) cos ne	 (5)
n-0

a
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where u, v, and w represent displacements in the meridional, circumfer-

ential and normal directions, respectively; Un , Vn , W  are simple

polynomials expressed as:

U  - al n + a2,n a  + a3, n 82ns2 + a4 ns 3

V  = a5 n + a6,n 8  + a 7 ns 2 + a8 
na 

3

W  = a9 ,n + al0 , ns + all,ns2 + a12,ns3 + a13,ns4 + a14,nas
	 (6)

where a.
1,n 

represents the ith generalised coordinate for the nth harmonic;
'.

s is the meridional coordinate and 9 is the circumferential coordinate.

At each nodal circle designated by i and j in figure 2, there are

seven degrees of freedom: W, :s, v, (W' - U 	 u' , v' , (w" - u, ). The
RI

prime denotes the differentiation with respect to s. 	
RI

First Order Strain Energy

The first order stiffness matrix defined in equation ( 1) can be derived

from the first variation of the first order potential energy. The potential

energy for a general shell of revolution is;

1	 2	 2	 2
V =- f  (C 	 + 2C 12 E1 e2 + C 22 E2 + C 66 r12) r dOde

2

2	 2	 2

	

+ 1 11 011 K1 + ?D 12 K 1 x 2 + D 22 K2 + D 66 K12) r dads	 (7)
2

where e 1 , e21 e 3 , are first order meridional, circumferential and

shearing strains according to Novoahilov shell theory (6), K 1 , K2, K12
are first order meridional, circumferential and cross curvature according to

Novothilov shell theory; Ckl and Dkl are elastic stiffness coefficients.

By use of the definitions (see Appendix A) of the strains and curvature

which are explicit functions of the diaplacemet^ ,ta and, --=•L .L_

use of the orthogonality properties of the sine and cc



k.

	 Of
4

2W

	

	 0 w4 1; r-n-0
sin no sin mode -

o	 * m°n

2 *	 0 U 00

j cos no cos m ode	 2R m-n-o
	

(a)
1 m-ns0

the first order stiffness matrix in terms of the nth harmonic is obtained.

Exact expression for this matrix can be found in reference S. Note that

integration with respect to the maridional coordinate s was performed

using a ten point Cause scheme.

Second Order Strain Energy

A consistent Initial stress (geometric) matrix which incorporates the

effects of prestressing is formulated from the cintritution of the second

order strains in the strain energy expression. This energy is (7):

Ug - N^ If xj2 )r dodo + Ne e jj s22) r dads

s	 e )
+ 12 (yee - 

Z 
hss

If {[el I' v c21 9 s + (1- v) oe ci2) r2.	 (4)
(I- 1	 t cos 4

where to $ meg are initial stresses and Ms s , NeA are initi .al moments

due to prestressing in tha meridional and circumferential directions,

respectively; f(2) , C(2) are second-order strains, + is the slope of the

shell surface in the meridi-inai direction; and Bs, ee are ;perturbation

rotations in the mekAdional and circumferential directions, respectively.

The development of the initial stress matrix follows in a similar manne r: as

the first order stiffness matrix. For definitions of the strains acrd

rotations in terms of the displacements refer to Appendix A. Integration

with respect to the meridional coordinate was also performed by a ten point

Cause scheme.

Kinetic Energy

The consistent mass matrix used in this study was derived from the

kinetic energy of the system. Specifically, the kinetic energy is expressed

as (S) •



_ ...C ... ^'3'R++-gfirsvnn.^sv4"'.•.	 .-	 •-.3g.w-.-..^..	 .. -.....-eve.was.r.^e^Y+-a.^awv-:.d...,. _.-.	 _

f	 I
I
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gk - P j f 142 + v2 + M 2 1 t r d Bids	 (10)
2

where p is the sass density; t is the shell thickness and a dot denotes

differentiation with respect to time.

Aerodyn,mmaic Virtual Work

The aerodynamic matrix expressed in equation (1) was derived from the

virtual work of the aerodynamic forces acting on the shell. These aero-

dynamic forces are formulated using a first order, high Mach number 01.7)

approximation to linear potential flow theory (8): 	 f

M 2 - 2
6V	 jjawA [— +` iM —l )v- 2^]rdeds	 (11)

as U -

1/2
where A - B R - (M! - 1)	 MM is the freestream Mach number, q is the

£reestream dynamic press re and U is the local flow velocity, For exact

expression for the aerodynamic matrix refer to Appendix B.

PROGRAM ORGANIZATION

The computer program consists of four basic steps: (1) reading of

input data, (2) the evaluation of element matrices, (3) the acsemblp of

element matrix to form g. ,.obal matrices and (4) the evaluation of eigenvalues

and eigenvectors. A flow chart of the program is illustrated in figure

3.

The input data which will be defined in more detail later in this

report consists of material properties and geometry data of the particular

shell. Such material properties as the modulus of elasticity and Poisson's

ratio are input parameters for the stiffness calculation. The sass density

is required for the evaluation of the mass matrix. These parameters are

assumed to be constant throughout the shell. Some geometry data required on

input is the length of each element and thickness of the shell (also assumed

to be constant). At present the program is set up to do conical shells. To

evaluate the flutter boundaries of other shells the subroutine Radius must

be revised. Interested readers are reAlerred to reference 5 for a detailed

8
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pros.sdure on how this may be done. Also an input parameter for the boundary

conditions must be defined. This is done through the boundary condition

code ICASE which has the interpretation shown in table 1. A free boundary

condition meanp all displacements sad rotations are released. A freely

supported condition implies that ot,y the normal displacements and the rota-

tion are released, whereas in the clamped condition the shell is assumed to

be completely fixed.

The calculation of the member element begins with the evaluation of the .y

transformation matrix per each element. This matrix defines the relation-

ship between the generalized coordinate (see equation .) and the displace-

menu and rotations at the Inds of each element Then per each harmonic the

mass, first order stiffness, aerodynamic and initial stress matrices are

calculated per element. Internal stresses are calculated at each integra-

tion point by a thermal &tress computer program. These stresses are read

off Tapell by FLUTTER.

After element matrices are formed they are superimposed to for_n the

global matrices. Rows and columns are eliminated according to the applica-

ble boundary condition specified by ICASE. Then using a NASA/Langley

Computer Center subroutine complex eigenvalues and eigeo.vectors are compated

per each specified value of aerodynamic coefficient. This procedure is

repeated per each harmonic specified.

INPUT PROCEDURE

The following is the procedure per line of input data for the proper

execution of the program. Note all input is free formatted.

First Line: IDEN

IDEN - any alphanumeric characters to define a particular run.

Second Line: K, NBEG, MAST, ICASE

K - number of element;
BEG - beginning harmonic;
MAST - stopping harmonic;
ICASE - boundary condition Lode.

Third Line: SO

SO - origin of shell's coordinate system

10



Value ICASE Type of Boundary Conditon

1 Free - Free

2 Free - Freely Supported

3 Freely Supported - Free

4 Free - bimply Supported

S Simply Supported - Free

6 Free - Clamped

7 Clasped - Free

8 Freely Supported - Freely Supported

9 Simply Supported - Simply Supported

10 Clasped - Clamped

11 Freely Supported - Simply Supported

12 Freely Supported - Clamped

13 Simply Supported - Freely Supported

14 Simply Supported - Cramped

15 Clasped - Freely Supported

16 Clasped - Simply Supported

Table 1. Boundary Conditions Codes

11



Fourth Line: MY 1 - 1, K

E(I) - length of the ith element; K values required on this
line

Fifth Line: YOUNGI, YOUNG2, ]CMU1, 102, RHO, TR, G12

YOUNGI - Young's Modulus in meridional direction;
YOUNG2 - Young's Modulus in circumferential direction;
XMU1 - Poisson's ratio in meridional direction;
XMU2 - Poisson's ratio in circumferential direction;
RHO - mass dens_cy of shell;
TH - thickness of shell;
G12 - shear modulus of shell

Sixth Line: MACH, NLAMB, IBUCK

MACH reference Mach number;
NLAMB = number of aerodynamic coefficients;
IBUCK 0 (aerodynamic stability problem)

1 (bifurcation buckling loads - eigenvalues
represent buckling loads).

Seventh Line: LAMB

LAMB - aerodynamic coefficient (This line will be repeated
NLAMB times).

CONCLUDING REMARKS

A finite element progran for the computation of the aerodynamic insta-

bility of general shells of revolution with thermal prestress is described.
i

The theoretical formulation of the finite element matrices is discussed and

input instructions for execution of the program are given. Application of

the program are presented in reference 1.

1
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APPENDIX A: EQUATION FOR STRAINS AND WTKTION

Definition of strains and rotations according to Novoshilov shell

theory.

E 1 = u' +g
1

E2= r 8e + r a+R2

r a9	 r

R
K 1 = -^'+ 1 u' --u

R1	

R21

K2 = _ 1 32v + 1 W _ r' v' + r' u
r2 3e2 r R2 ae	 r • r R l

K12 ' - 1 32v +1r' aw + 1 as
+ --
	 v

r a 
83 

r2 ae r Ri ae R2 r R2

2	 2
ei2) = Z [I:- 21 ] 

+ 8 =2 [
ae - vr' - r ^^

e22) = 1 [a - )2 + 1 [ ae - vr' - r J?
2 r 2	 2	 8 r2 as

Bs - [8w-R1J

=-1[ _vrss 	 r ae R2

where

C) denotes differentation with respect to s.

14
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APPEN IX a: AERODYNAMIC COEFFICIENTS

Aerodynamic cot

E/2
[Ae )	 f r

—E/2

Ificients in terms of generalised coordinates.

0	 1	 2 s	 3 s 2 	 4 s 3	 5 04

0 s	 2 s 2 	 83 4 s4 5 as 00	 82	 2 s 3	 3 9 4	 4 a s	 5 as

0	 83	 2 9 4	 3 a s	 4 a 6	 5 a7

0	 84	 2 a s	 3 9 6	 4 s 7	 5 as

0	 as	 2 s6	 3 9 7	 4 s 8	 5 89

ds

0	 0
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