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The observed distributions of the thermodynamic variables near stratocolylulus

top are highly bimodal. We examine two simple models of sub-grid fractional

cloudiness motivated by this observed bimodality. In both models, certain ,low-

'	 order moments of two ;independent, moist-conservative thermodynamic variables are

assumed to be known.

The first model is based on the assumption of two discrete populations of

parcels: a warm-dry population and a cool-moist population. If only the first

and second moments are assumed to be known, the number of unknowns exceeds the
3

number of independent equations. If the third mments are assumed to be known

as well, the number of independent equations exceeds the number of unknowns. 1
i

The second model is based on the assumption of a continuous joint bimodal 	 }
k

distribution of parcels, obtained as the weighted sum of two binormal distribu-

tions. For this model, the third moments are used to oiutain 9 independent non-
r
i

linear algebraic equations in 11 unknowns. Two additional equations are needed

i
to determine the covariances within the two subpopulations. In case these two

internal covariances vanish, the system of equations can be solved analytically.

i



1. Introduction

Stratocumulus sheets are one of the most widespread cloud forms over the

globe. For this reason, and in view of the importance of cloudiness as a fore-

cast product for numerical weather prediction, and as a pivotal component of

the climate system (JOC, 1975), major efforts have been mounted to simulate

stratocumulus clouds in general circulation models (Randall, 1976, 1982; Slingo,

1980; Ramanathan and Dickinson, 1981; Suarez et. al., 1983). These efforts have

been limited by a number of simplifying assumptions, notably including the

assumption that at a given level the fractiorial cloudiness is either zero or

one.

Fractional cloudiness enters the problem in two different ways. First, as

discussed by Sundqvist (1978, 1981), cloud decks are rarely unbroken over an

area the size of a general circulation model grid box (several hundred kilometers

on a side). Sundqvist has proposed methods to determine the macroscale fractional

cloudiness within a grid box, and this will undoubtedly be an active area of

research in coming years.

However, fractional cloudiness also enters into the micro-scale dynamics

governing the local structure of the clouds. It is this aspect of the frac-

tional cloudiness problem that is addressed in the current proposal. Radiation

and the buoyancy flux, which strongly control the rate of cloud-top entrainment

(Randall, 1980a, b), depenl sensitively on the fractional cloudiness at each

level. Near cloud top, there is a layer within which the fractional cloudiness 	

Y

decreases with height from near 100% to zero.

The upper boundary of a layer of stratocumulus clouds is inevitably somewhat

irregular; turrets can be pushed up here and there by convective turbulence, and
ti

shearing instabilities can give rise to wave-like features. The bumpiness of
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cloud top complicates the theoretical description of such important cloud-top

processes as radiative cooling and turbulent entrainment, since at a given level

the fractional cloudiness is greater than zero but less than one. The clear air

near cloud top is typically very warm and dry compared to the cool, moist cloudy
r

air lying nearby at the same height (Fig. 1).

Up to now, only the high-resolution three-dimensional model of Deardorff

(1980) has explicitly simulated the effects of partial cloudiness near cloud

top; Deardorff remarked that even in his model the vertical resolution (50 m)

appeared to be inadequate to accurately represent processes near cloud-top. He

advocated the use of a parameterization of sub-grid fractional cloudiness as an

aid in the simulation of cloud-top processes.

Such parameterizations have been proposed and discussed by Deardorff and
r

Someria (1977), Mellor (1977), Oliver et. al. (1978), and Bougeault (1981a, b).•

The first two studies dealt with fractional cloudiness in air characterized by
1

binormal probability distributions of a,pair of moist-conservative thermodynamic 	
a

variables, such as liquid-water static energy and total mixing ratio. Oliver

et. al. proposed a simpler model, based on ad hoc assumptions. Bougeault

generalized the Deardorff-Someria-Mellor model to allow skewed distributions,

at the expense of additional tunable parameters.

However, the observed distributions of the thermodynamic variables near

stratocumulus cloud-top are not well-represented by gaussian or even skewed-

gaussian distributions, because of the very sharp changes of temperature and

moisture with height in the capping inversion (Lumley, 1979). The observed 	
j

distributions are stongly bimodal; there are a lot of warm-dry parcels from the
i

inversion above, and a lot of cool-moist parcels from the cloud below, but

relatively few warm-moist or cool-dry parcels. An example given by Mahrt and



Paumier (1982) is shown in Fig. 2. A parameterization of the subgrid fractional

cloudiness near stratocumulus top must take this bimodality into account.

The purpose of this paper is to report on efforts to develop a new para-

meterization of subgrid-fractional cloudiness, in which joint bimodality of

the thermodynamic variables is permitted. The parameterization is intended

to represent the subgrid-fractional cloudiness near the top of a stratocumulus

deck; however, it may have wider applications. The results of this study should

make possible improved parameterizations of stratiform cloudiness for use in

climate models. They may also provide some guidance for parameterizations of

inacro-scale fractional cloudiness for climate models.

k
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We begin by investigating a hi ghly idealized model for which bimodality

is the whole story. Consider a mass of air consisting entirely of two kinds

of parcels. Parcels of Type 1 have liquid water static energy sl and total

mining ratio (vapor plus liquid) ql; parcels of Type 2 have liquid water

static energy s2 and total mixing ratio q2. Since (s,q) can assume only

the discrete values, (s l , R l ) and (82 , q2), we refer to this as the "discrete

model." At a given height, the fraction of Type 1 air is fl, and the fraction

of Type 2 air is ( 1 - f i ). The physical picture is illustrated in Fig. 3.

The joint Probability density function is zeri except at a pair of points,

where it is infinite (Fig. 4).

The first and second moments of s and q are given by

B = s l f I + s2 (1 - f l )	 (2.1)

q = g l f I + q2 (l: - f l )	 (2.2)

s^ 2 = (s l - s)2 f l + (s
2-
 -	 fl)	 ,	 (2.3)

q' 2 	( q l - q ) 2 f I + (q 2 - q) 20	 f l )	 (2.4)

(s t	 s ) ( q l	q )fl '4' ( s 2	 s)( q 2 	q)(1 - f l ).	 (2.5)

We assume that these moments are known, as for example in a second-order

closure model. Then (2.1-2.5) appear to represent 5 equations which c,.n be

solved for the 5 unknowns sl , s 2 , q 1 , q 2 , and. f 1.

-4-



From (2.1-2.4) we can solve for s l , 92, q l , and q2 in terns of f l , as

follows: From (2.1), we obtain

s I - s - ( s I - s 1 )(1 - f 1 )	 (2.6)

ORIGINAL PAGE i5
s 2 - s (s 2

 9 1)fI	 OF POOR QUALITY	 (2.7)

Substituting into (2.3), we find that

(s 2 - s 1 ) 2 ° s' 2/[f I (1 - f 1 )].	 (2.8)

Going back to (2.6), we square both sides and substitute from (2.8) to

obtain

81	 8 ± 0(1 - f1) /f1] 8'211/2	 (2.9)

Similarly, from (2.7) and (2.8), we find that

S2 s & ± 1(f 
1 /0 - fl)) s7211/2
	

(2.10)

7-

By analogy, ql and q2 are given by'

q 1 ° q ± 1[1 - f 1 )/f 1 ] q' 2 1 1/2	 (2.11)

q 2	q	 {[f1/(1 °- f1)I q1211/2	 (2.12)

If we choose the + in (2.9), then s 1 > s necessarily, and so s2 must be less

than s, i.e., we must choose the minus in.(2.10). A similar argument holds for

(2.11) and (2.12). Suppose we choose the (+) in (2.9), so that sl ) s. Then

from (2.5) we see that choice of the (+) in (2.4), implying ql > q, would.

guarantee s'q' > 0. Thus if the sign of s'q' is known, the choice of signs in

-5-
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(2.9) and (2.11) cannot be made independently. Then let's proceed as follows,.

Define

1, 7;7 > 0	 pR-t j ,̂  ,,,A . PACE GJ

M 
_	 OF POOR. QUALITY

(2.13)

-• 1, 7V 4 0.

We arbitrarily choose the + in (2.9), and all else follows:

$l = s + 1[(1 — f l )/f i ] s i2 1 I/2	 (2.14)

s 2 = s — 1[f 
1 /0 — f l )J s1211/2	 (2.15)

q l = q + M 1[(1 - fl)/ fla
 q1211/2 	 (2.16)

q 2 = q - M 1[f 1 /0 - f 1 )) q '2
1 1/2	 (2.17)

Note that now by definition Type 1 air has a higher liquid water static energy

than Type 2 air.

From (2.14x-2.17) we can obtain s l , s 2 , q l , and q2 if f l is known. Thus

we rely on (2.5) to determine f l . Substituting (2.14-2.17) into (2.5), we

obtain

s'q' = M • (si2 q )1/2	 (2.18)

Since fl has dropped out of (2.18); knowledge of the covariance does not help

us to determine fl. We have more unknowns than we have equations. Some new

information is needed.

One possibility is to assume that-the predicted variances are explained

by the smallest possible differences between the two types of air, i.e."assume

-6-



is

that (s 2 - 6
1 
)2(q2- q1)2 is minimized. However, this leads to f l 	1/2 in

every case, so the assumption is not useful.

Another possibility is, to introduce the third moments: 7 3 , 931 s12g1,

and s'q i2 . These we assume to be known, as for example in a third-order

closure model. We fine that

8 i3 (8 1 — s) 3f 1 +(s 2 -8) 3 (1 -f1)

1[(1 — f 1 )/ f 11 
0213/2 

f 1
	J[f 1/(1 — f1)] 8;213/2(1 — f1).

(2.19)
From (2.19) we can derive a quadratic equation for fl:

f 1 2 [4 + (sv 3)2(sv 2)-31 - f 1 [4 + (s' 3)2(s1 2)-31 + 1 = 0,	 (2.20)
F

the solution is

f l - 1 {[1 - s' 3 [4(x' 2 ) 3 + ( 8 13)2 ]-1/2}	 (2.21)
2

In (2.21), the sign before the radical has been chosen by the following consi-

derations. Regardless of the choice of sign, we have f l 	1/2 for 8 i3 - 0.

Fig. 5 shows a section along which fl < 1/2. Suppose for simplicity that s l > 0

and s2 - -sl. (This is consistent with our choice sl > s 2 .) It is clear from

the figure that s i3 > 0, since along the section there is a small amount of air

with large positive s', and a large amount with small negative s'. We conclude

that f l < 1/2 for s i3 > 0, and fl < 1/2 for s'3 > 0. This explains the

choice of the minus sign in (2.21).

Since we need 0 C f l < 1, we must require that

--1 < 8 13 [4(812)3 + (si3)2]-1/2 < i.	 (2.22)

F This will be satisfied as long as s r2 > 0.

f	 C RIUMMAI PA IF 6'S

OF POOR QUALITY
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Of course, we can also determine f i from g i2 and q.'3a

f1	 {1	
Hq,333 [4( gi2 ):3 # (gta)-1/2}/2	 (2.23)

The problem is that there is no guarantee that (2.21) and (2.23) will agree.

We can snow that the mixed tripe moments s' 2q' and s'q' 2 provide two more

independent formulae for f l . With only the first and secs;nd moments we, had

too many unknowns and not enough equations. Now with the addition of the

t' third moments we have too many equations and not enough unknowns. We have
t

r
to introduce some additonal unknowns by revising our fundamental assumptions,

and admitting that the variances are not entirely due to a mixture of just
i

two types of air.

This we could do by introduc'y.g Type 3 air, with properties 03, q3) and

fraction f3- However, this approach is not consistent with the observed bi-

modal distribution of properties at cloud top. A more promising approach

is to allow continuous if highly bimodal distributions of s and q.

ORIGINAL Pg " 1
OF POOR QUALITY

-8-



x
00.,> -

ORIGINAL PAGe ji;
or POOR QUALITY

R< 3.	 The Continuous Model

Again we consider a mass of air containing two populations of parcels,

fY but this,time we assume that within each population s and q have joint normal

fl

distributions about their mean values within the population (Fig. b), i.e.

" P(s,q) - f 1G(s - 6 1' os 1' q - gl'agl'rsql)

Y

+ 0 - f l ) G (a - a 7 , o9 2 ' q - Q 2' 0g 2 ' r8g 2) (3.1)

where G is the joint-normal distribution:

G (x ' ax ' y rQy.rxy) _ (2Kaxay( 1 - rxy)1/21-1

ex {	 -1 _	 x2 -	 2rxyxy + y 2P	 _
( 3.2  )2(1 - rx2)	 ox 2	 axay	 ay2

and rxy - x'y'/(axay) is the correlation between x and y within each population.

As before, we have assigned weight f l to population 1, and weight (1 - f l ) to

population 24	 Of course,

-W	 Go

j	 J	 p ( e,9)dsdq - 1	 . (3.3)

Since s and q are continuously distributed, we refer to this as the "con-

k	 w

tinuous model."	 to case the two populations are the same, the model reduces to

F the gaussian model of Dear3orff and Sommeria (1977), and Mellor (1977).

Using the properties of the joint-normal distribution G, we can derive the

following relations:

r -9-
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q=f l g l +( 1 -f1)g2

8 12 = f1[QS12 + (s C s)2] + (1 - f1)[0822 + (s 2- j) 21 	 r

q i2	 f l [vg 1 2 + ( q l- q ) 2 ] + ( 1 - f i )[vg 2 2 + ( q2 q ) 2 ]	 >

(3.4)

(3.5)

(3.6)

(3.7)

3.'q'	 f 1 [( s l - s)(q C q) + (s'q' ) 1 ] + ( 1 - fl)[(s 2 B ) ( q2 q ) + (s'q1)21

(3.8)

9 #3 = f l ( s l - s)[3as 1 2 + (s 1- s ) 2 ] + (1 - f1)(s2 7)[30s 22 + (s2 s)2]

0.9)

qi3 = f1(gl- q)[3ag12 + (q 1- q)2] + (1 - f1)(g2 q)[3ag22 + (q2 Q)2] 	 s

(3.10)

s "q' = f l {[os1 2 + ( s l- s) 2 ]( g l - q ) + 2(s l - s)(s ^)1}

+ (1 - f l ){[as 22 + 
(s2- s) 2 ]( q 2 q ) + 2(s 2 - s)( s'q')21

(3.11)

s0q'2 = f l {(s i—  s)[1g12 + (q l- q) 2] + 2 ( q 1 - 9)(—,  $=)1}

+ (1 - fi){(s 2 - s)[QQ22 ,+ ( g 2- 9) 2 l + 2 ( 92 - 9)(s'q')2}

(3.12)

In (3.8), ( 3.11), and ( 3.12), (7'q 1 ) 1 and (7'q 1 ) 2 are the covariances associated

with populations 1 and 2, respectively. The 9 equations (3.4 - 3.12) involve

the 11 unknowns sl, s 2. q 1. q 2 • Qs l 2 1 Qs 2 2 1 ag l 2, ag 22 • fl, (Sqq ) 1 , and (7'q1)2.

Two additional equations will be required for solution of the system. Thei7e

additional equations essentially determine (7'q 1 ) 1 and (8'q')2•

-10-
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If any of the triple moments are non-zero, we will necessarily find

that s 1	s2	 or q.	 q 2 ^
	

or both.	 This follows from the fact that,
4

for Gaus sian distributions, all odd moments about the mean vanish.

From (3.4) and (3.6) 0 we can derive

ORIGINAL PA,Ge ^3
2 - _ 1	 1 / 2s l	 s + ((s	 Qs )(1 - f l )/f	 •1 j

OF POOR QUALITY (3.13) 

s2 . s - [(s' 2 - 7-2)f /(I - f1)jl/2 (3.14) 

where

s82 _ f l vg 1 2 + (1 - fl) 0132 ( 3.15)

Similarly, from (3.5) and (3.7), we find that

q l	 q + 1t {(q' 2 - jg 2 ) ( 1 - fl )/f 1 j112 (3.16)

q 2 s q _ M ( ( qr2	 g2)f1/(1 - f l ) jl/2	 • (3.17)

where

cq 2 = f lvg l 2 + (1 - f l )Qg 2 2 ( 3.18)

From (3.16-3 . 17), we recognize the rather obvious requirements I

3

"^s 2 < s#2 (3.19)

Qq2 < q v2	 . (3.20)	 {

We now use (3 . 4) and ( 3.5) to eliminate 92 and q 2 from (3.6) -

>i

(3.12):

02Qs2 + (s 1_ s) 2f 1 Al - f l )	 . (3.21)

q, 2	 Qq 2 + ( q C q)2fi/(1 - f l )	 ,	 (3.22)

-11-
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s'q'	 _ (s l- s )( q l- q )f l /(1 - f 1 ) + f I (8'q') I+ ( 1 - f 12 . (3.23)

s' 3 . f l ( s l- s)[36as 2 + ( sl- s)2 ( 1 - 2f I )/( 1 - fl )2 1 . (3.24)

q ' 3 ' f l (g 1- q )[38ag2 + (q l- q ) 2 (1 - 2f 1 )/(1 - f l 
)21. (3.25)

s i2q' f l { ( q l- q)[das 2 + ( s 1- s) 2( 1-2f 1)/(1-t1)2 ] + 2(s 1- s ) d(s^gT)} , ( 3.26)

s1 q 12 . f l {( s l- ;)[6ag2 + (q l- q) 2(1-2f 1 )/(1-f 1 ) 2 ] + 2(q l	 q )d( 's r)} (3.27)

Here we have used the convenient definitions

das 2 _ as12 - as 2 2	 ,	 (3.28)

60q  aql - 0q 2 	 ' (3.29)

d(s' q ') = (s'q' ) I - (s' q ') 2	 (3.30)

Since as2 and oq 2 appear only in (3.21) and (3.22), respectively, the remaining

five equations (3.23-3.27) can be used to determine the five unknowns (sl - s),

(q l - q), 6as 2 , 60q 2 , and f l , as functions of (s'q' ) 1 and (s'q') 2 . Inspection

of (3.24-27) shows that fl cannot be zero unless all of the triple moments vanish.

We can eliminate das 2 between (3.24) and (3.26), obtaining

s' 3 (g l- q) - 3s'2q'(s 1 - s) _ -2f1 ( s1- s ) 3 ( q	 q)(1 - 2f 1 )/(1 - f1 ) 2

6f l ( s l - s) 2 d(sTg r)	 (3.31)

This can simplified using (3.23):

s i3 ( g l- q) - 3s i2q'(s l- s) _ - (s l- s) S.
	

(3.32)

where

S = (s l- s){F(f l ) [s r - f 1 (srq-r) 1- (1 - f  —srgr) 21 + 6f l 6(s T)} , (3.33)

I	 M

I
-12-
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F(f l )	 =	 2(1 - 2f 1 )/(1 - f l ) (3.34)
if

Similarly, we can use (3.23) 1, (3.25),	 (3.27), and (3.33) to obtain

g93(s1- s) - 3s'q' 2(g 1 - q) - - (g 1- q) 2S/(s
1
- s) . (3.35)

From ( 3.32) and ( 3.35), we obtain a cubic equation for S:

S3 — S2 6 s i2q' + S 3[s'q' 2 . SO + 3(s'2q')21

+ s,3(sr3 qv3 _ 9 s' 2q' s'q i2) = 0 (3.36)

We can also show that

Q 3 _ Q26 s'gi2 + Q3[s,2q'	 . qt3 + 3(s'q,2)2j

+ q
,3(sv3 q,3 - 9 s i2q'	 s'q 92)	 0, (3.37)

where

Q	 =	 ( q l - q )	{F(f 1 ) [s' q '	 - f 1(s,'q') 
1- 

(1 - f 1)(s'q') 2] + 6f 16(s'q') }.(3.38)

The cubic equations (3.36) and (3.37) can be solved by standard methods (e.g.,

Abramowitz and Segun, 1968); we choose the roots which are always real. In

this way, S and Q can be obtained directly from the known moments.

In the remainder of this Section, we consider the special case in which

(s'q' ) 1	 6S-V)= 0.	 For this case, we can use (3.33) and (3.38) in (3.23)
2

to show that f l satisfies

(16 + X)f 1 2 - (16 + X)f l + 4	 0, (3.39)

{

-13-
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where

X =	 'q'

	

SQ/(s) 3.	(3.40)

Since SQ and s'q' always have the same sign, X cannot be negative. The solu-

tion to (3.39) is

	f l- 1 1 + [X/(16 + X)] 1/2 1/2 	(3.41)

For X = 0, we have f l - 1/2. From the form of (3.41), it is clear that

0 < f 1 < 1 will be satisfied.

How can we choose the sign in (3.41)? For very large X, f l approaches

either 1 or '0, depending on the choice of sign. From (3.34), we see that F > 0

for 0 < f1 < 1/2 (choice of the minus), and F < 0 for 1/2 < f l < 1 (choice of

the plus). Since, by convention, (sl - s) > 0, (3.33) implies that F must be

positive when s'q' and S have the same sign; otherwise, F must be negative.

Therefore, when S and s'q' have the same sign, we take the minus in (3.41);

otherwise, we take the plus.

If S and Q both turn out to be non-zero, completing the solution is straight-

forward. After solving for S and Q using (3.36) and (3.37), we obtain f l from

(3.41). Next, s-s l and q-q l are obtained from (3.33) and (3.38), respectively.

Of course, s2 -s and q 2-q are determined from (3.4) and (3.5). Finally, as 2
, Qq2,

dos 2 , and 6ag 2 are obtained from (3.21), (3.22), (3.26), and (3.27). It is then

easy to obtain as 1 2 , as 2 2 , og l 2 , and Qg22.

On the other hand, suppose that S = 0. Then from (3.40) and (3.41) we have

f l = 1/2, which implies F - 0. It follows that Q - 0. Thus, S and Q are always

zero or non-zero together; and when they are zero, f l = 1/2. Inspection of (3.36)

and (3.37) shows that this happens for

s 0 qi3 - 9 s t2gi s l q ,2 = 0.	 (3.42)

-14-
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In this case, we cannot use (3.33) and (3.38) to solve for s 1 - s and q 1 - q.

Instead, we return to (3.23) - ( 3.27), which are now simplified to

s'q'	 _ (s 1- s ) ( q 1- q )	 . (3.43)

(2/3) s ' 3 . (s 1- s) So s
2 (3.44)

(2/3) q13 - ( q 1- q ) Sog 2 (3.45)

2 s i2q'	 = ( q 1- q ) Sos2 (3.46)

i

2 s'qi2	 (sl- s)	 60g2
(3.47)

5

From ( 3.45) and ( 3.47), we obtain

3 s'q' 2 ( q	 q)	 q' 3 ( s 1- s). (3.48)1-
is

Multiplying ( 3.48) through by (s 1- b), and using ( 3.43), we find that trt

s - s = (3 s'q' 2 s'q'	 / g t3)1/2 (3.49)
1

Here we have followed our convention that sl > s. 	 Similarly, we have

q l- q'	M ( 3 s,2q' s'q' / si3)1 / 2 (3.50)
i

From ( 3.46) and ( 3.47), we now find that
r'

Sos 2 	2M (s^ 2q^	 s'3 / s rq^ )1/2 (3.51)

Soq ? _ 2(s'gi2 q .3 / sTq,)1/2 (3.52)

If we multiply ( 3.49) and (3.50) together, we get

(s 1 - s )( q 1 - q ) - M s'q'	 [9sr2q'	
0 q ,2 / ( s t3 q^3)^1 / 2 (3.53)

-15-



use of (3.42) now allows us to recover (3.43).

Obviously, each quantity that appears +_=rider a square root in (3.49)-(3452)

must be non-negative. There is no guarantee that this will be the case; if it

is not, then the given (or predicted) moments simply cannot be described by the

model. This must be accepted as a possible outcome. If such a failure of the

model occurs, it is analogous to the failure of a higher-order closure model

that predicts an unrealizable set of moments.

p.^

i
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.t
4. Discussion and cotclusion

We have solved the continous model for the case ( s'q') 2 0. Is this

sufficient? Such a solution will have s l A 8 2 and q i A q2 whenever 
S rq^i' # 0;

otherwise ( 3.8) cannot be satisfied. Thus we will almost always have two distinct

populations. However, the joint distribution of s and q need not necessarily

have two maxima. Perhaps the additional generality provided by non-zero

values of (s r) 1 and ( s q 2 is not needed. Further study is needed to resolve

this issue.

To apply the theory in a higher order closure model, it is necessary to

consider the joint distributions of s and q with the vertical velocity w,

in order to determine the buoyancy flux. Can we assume that ( s,w) and (q,w)

are jointly bimodal? This would imply that at a given level the thermodynamic

properties of rising and sinking air have been determined by different processes-

a very plausible idea. Further studies are in progress.

-17-
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FIGURE LEGENDS

Figure 1: Schematic diagram illustrating the irregularities in cloud top

height.

Figure 2: Observed joint probability distributions of potential temperature

and specific humidity for an aircraft flight-leg during AMTEX, as

reported by Mahrt and Paumier (1982). Darkest shading indicates

> 200 observations, double-hatched > 100, single-hatched > 50, and

outlined > 25.
s

Figure 3: Schematic diagram illustrating the spatial distributions of Type 1

and Type 2 air in the discrete model.

Figure 4: Sketch showing the assumed joint probability distributions of

liquid water static energy and total mixing ratio for the discrete

model.

Figure 5: Diagram used to relate changes in s ;7 to changes in f l , for the

discrete model. Along the dashed line, f l < 1/2.

Figure 6: Sketch ehowing the assumed joint probability distributions of liquid

water static energy and total mixing ratio for the continuous model.

For illustrative purposes, it is assumed that the cool-wet population

has an internal correlation consistent with the Clausius-Clapeyron

relation, and relatively large standard deviationo, while the warm-

dry population has no internal correlation, and relatively small

standard deviations.
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