
NASA Contractor Report 172418

ICASE REPORT NO. 84-34
i

' NASA-CR-172418
i 19840023918
i

A MODEL OF ASYNCHRONOUS ITERATIVE

ALGOR[THMS FOR SOLVING LARGE, SPARSE,
LINEAR SYSTEMS

Daniel A. Reed

and

Merrell L. Pate[ok

Contract Nos. NASI-17070, NASI-17130

July 1984

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING

NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Unlversltie8 Space Research Association

[IBflA[IYCBPY
;-P"_:51984National Aeronautics and .:_. -

Space Administration

Langley Research Center LANGLEYRESEARCHcENTERLIBRARY,NASA

Hampton,Virginia 23665 HAMPTON,VtRGtNIA

• li.l_ k I _ "_ I it It I tt+l'l_ Iil

. - • _._ r -.- --
TOfi i-_-t-i -. tll;)ill_ i _ _ -- ..

! .'..- _-.1! _t:, _s t_.!ll_S

.....' L_...... Cha;,-,e]- _ i-I_
ML:.................! M; .Hi/Ki- I- U._ _,_., H,_ ._" _:/i_H I _: _ '....... 1_, ,,,- Hi -.,,.,.--."".'rtfl t._ i=L.-, , i i-'_ Uli I ",/-._ ._"---! "...- ! i= •

1 B_'_". !. ! /
,_.r-,_. ,___- - " ' _ ",-'--" " " --- -- i_i-_t_
...................... -s., ,,_....]CL--: _:......... l/

'_.....; _ _ :-IH':; ''_ ,-,,_._,_._r-.-',r,_..... ,.-,,_ ";'-, .."' '" "I I "'' "'- H,.-,_,'"" I<"-,,H"-:"-i]

!;!Hdb: /"HI l_t!_] ,_,',-'-_o ,-, ,__,_-',liL_ lJ",ll;'] IPR'HI] _i_", "'_- _ --'_'.'-i _'''-'_="

A Model of Asynchronous Iteratlve Algorithms for
Solving Large, Sparse, Linear Systems

Daniel A. Reed _

Department of Computer Science
University of North Carolina

Chapel Hill, North Carolina 27514

Merrell L. Patrick t

Department of Computer Science
Duke University

Durham, North Carolina 27706

ABSTRACT

Solving large, sparse, linear systems of equations is one of the fundamen-
tal problems in large scale scientific and engineering computation. A
model of a general class of asynchronous, iterative solution methods for
linear systems is developed. In the model, the system is solved by creat-
ing several cooperating tasks that each compute a portion of the solution
vector. This model is then analyzed to determine the expected intertask
data transfer and task computational complexity as functions of the
number of tasks. Based on the analysis, recommendations for task parti-
tioning are made. These recommendations are a function of the sparse-
ness of the linear system, its structure (i.e., randomly sparse or banded),
and dimension.

_The research reported here was supported in part by the National
Aeronautics and Space Administration under NASA Contracts No.
NAS1-17070 and No. NAS1-17130 and was performed while the authors
were visitors at ICASE, NASA Langley Research Center, Hampton, VA
23665. In addition, the second author was also supported by Control
Data Grant No. 80D05.

t

Introduction

In this paper we focus on iteratlve methods for solving large, sparse linear systems

on MIMD computers. In related work, Adams [1] has studied parallel implementations

of iterative methods for the linear systems arising from finite element analysis, with p_o
_Z

ticular emphasis on mapping the methods on the FEM [3], an MIMD machine being

developed at the NASA Langley Research Center. She has also developed models _for

predicting the performance of these algorithms and validated them using the FEM [2].

Gannon and Van Rosendale [6] have also recently proposed a parallel architecture for

another class of iterative algorithms based on multigrid methods. Finally, Amano,

Yoshida, and Also [5] have proposed a parallel architecture, called the Sparse Matrix

Solving Machine, (SM)2, for iteratively solving sparse linear systems.

In the remainder of the paper, Weprecisely define both the problem and the class of

iterative methods used to solve it, and we discuss one possible implementation. We then

define a probabilistic model for predicting iteration time and an optimal number of data

: partitions given the dimension and sparsity of the coefficient matrix and the costs of

computation, synchronization, and communication. We conclude with graphs and ana-

lyses of execution time as a function of the number of matrix partitions for various

parameter values.

Problem Definition

Consider a linear system of equations of the form

Kz --_ I ,(1)
where K is a large N X N sparse matrix and z and f are vectors of length N. Such sys-

tems are frequently rewritten in the form

z "_ Az + c

and solved using the iteration formula

= + (2)
where z and c are N-vectors and A is another sparse N X N matrix. Although A is a

-2-

function of K, and c is a function of K and the f vector, there are many ways to choose

A and c such that (2) describes a convergent iterative scheme for (1). We only assume

that they are chosen such that the sequence of iterates <x(0> converges to the solution.

Henceforth, we consider only the parallel imp!ementation of the computation defined by

(2).
.

Parallel Solutlon Technique

One parallel computation schema for (2) is illustrated by the diagram in Figure I.

The matrix A and the vectors c and z (i + 1) (denoted by XN) are partitioned into sets of

rows. A basic iteration step of the computation is then partitioned into the set of com-

putations defined symbolically by

XSET [I] ----ASET [I]* XO + CSET [I] I ---- 1,...,M.

After each basic iteration, a norm of the vector XN - XO must be checked for

convergence. If convergence has occurred or the maximum allowable number of itera-

tions has been exceeded, the iteration halts; otherwise XO is replaced by XN, and the

iteration step is repeated.

This computation schema can be realized as follows. In the main program, the,

data objects and their types are declared. In addition, worker tasks, called X_TASKs,

and their controlling task, the C_TASK, are defined. The body of the main program

reads the input data, initiates the control task, which in turn initiates the worker tasks,

and prints the solution vector after the control task has terminated.

X_TASK[I] computes the components of the vector XN corresponding to XSET[I].

To accomplish this, X_TASK[I] needs the non-zero elements of A corresponding to

ASET[I], the elements of c corresponding to CSET[I], and a portion of the vector XO,

specifically those elements whose subscripts are the same as the column subscripts of the

non-zero elements of A in ASET[I]. Initially, this information is sent to each of the

X_TASKs by the C_TASK. After each iteration, if convergence has not occurred, the

...... XN A. XO C

XSET [I] ASET [I] CSET [1]

XSET [2] ASET [2] _- CSET [2]

-- X + --

XSET [M] ASET [M] CSET

Figure I Partitioning of a linear system

-4-

vector XO is replaced with the vector XN. Because of this replacement, each X_TASK

must send those components of XN that it computes to the other XTASKs that need

them. Each X_TASK then determines if the XN components just computed have con-

verged and notifies the CTASK accordingly by sending a boolean flag. When an

X_TASK is notified by the CTASK that all X_TASKs report convergence of their com-

ponents, it sends the current values of its XN components to the C_TASK and ter-

minates.

The role of the C_TASK is now clear. After initializing the X_TASKs and sending

them the initial data they need to iterate, it receives local convergence information from

each X_TASK, determines if global convergence has occurred, and notifies the XTASKs

accordingly. If global convergence has occurred, the C_TASK then receives the com-

ponents of XN and terminates.

An Analytical Model of the Computation

Objective8

Because the intent of parallel computation is a reduction of the expected execution

time, we must consider the performance of the parallel, sparse, linear systems iteration

algorithm just described. Unlike sequential algorithms, the performance of a parallel

algorithm depends not only on the number of arithmetic operations but also on the

amount and frequency of intertask data transfer. Consequently, we derive formulae

describing

the amount of data transfer among XTASKs needed for each iteration,

i

• the computational complexity of each X_TASK, and

o the time to synchronize the X_TASKs.

Based on these formulae, we create a model for predicting performance as a function of

both the number and size of matrix partitions and the matrix sparsity. This perfor-

mancepredictionmodelis then appliedto both the generalcase of randomlysparse

matricesand an importantspecialcase,the bandmatrix.

Notation and Assumptions

Unlessotherwisespecified,we assumethe elementsof the matrixA are randomly

non-zerowith probabilityP (i.e., p (aii _ 0) = P). In our modelof matrix sparsity,

the probabilityfunctionP is determinedby imposingtwo veryweak conditionson A.

First,we requireeach rowof A to containat least Z non-zeroelements,each randomly

distributedthroughoutthe row. Second,eachrowelementnot knownto beoneof the Z

non-zerovaluesis itselfassumedto benon-zerowith probabilityq.

Giventhe two conditionsabove,the value of P can be derivedusinga straightfor-

wardapplicationof conditionalprobabilities.Wedefinetwoevents:

A: aiiis oneofthe Z non-zeroelementsinrow i

8: aiiis a non-zeroelementwithprobabilityq

Then

I_ N, Z, q) = p(aii _ O)

= p(A) + p(B) - l_AandB) .

Z(1- q) + q.

Finally, we require Z to be greater than zero. Otherwise, this sparsity model includes

matrices containing one or more identically zero rows; the consequent singularity must

be avoided.

Throughout our discussion, M denotes the number of partitions of A (i.e., the

number of X_TASKs), and bi and €i respectively denote the indices of the beginning and

ending rows of partition j. This notation, and that introduced throughout the

remainder of our analysis, is summarized in Table I.
..

-0-

Table I Notation

Quantity Definition

A arbitrary NX N sparse matrix
b matrix semi-bandwidth

bi initial row of partition j

c arbitrary constant N-vector

transmission time for a boolean as a function of
Cb(M} the number of partitions

Cp computation time for arithmetic operations
C, startup time for data transmission

C_M) transmission time for one datum as a function of
the number of partitions

ei final row of partition j

M number of matrix partitions
N matrix dimension

P(N, Z, q) probabilitythat a matrix element is non-zero

Prr(k, 3") probability that partition k transfers data to parti-
tion j

probability that a matrix element is non-zero given
q that it is not known to be zero

S fixed partition width

t_(eomm) communication time for one iteration at partition j

tj(comp) computation time for one iteration at partition j

Tr(k, 3) expected data transfer from partition k to j
z N-vector of unknowns

Z number of known non-zero elements in a row

-7-

Data Transfer for Sparse Matrices

Given a sparse matrix A whose elements are randomly non-zero with probability

P(N, Z, q) and two partitions j"and k, we wish to determine the data transfer from parti-

tion k to partition]"needed to perform one iteration. For pedagogic purposes, we con-

sider three ca.sesof increasing generality.

Case I: $"and k are single row partitions

Partition j requires the single value =bkif and only if abjb_y_ O. Since this occurs

with probability P(N, Z, q), the expected data transfer from k to j" is simply

e(N,Z,q).

Case II: j is a multiple row partition; k is not

Clearly, partition j does not need zbbif and only if aib_= 0 for all i in the range

bi < i < €i" By assumption, each matrix element is randomly non-zero. Hence,

the probability that at least one element of the column bk in partition 3"is non-zero

is

1- [1"- P(N, Z, q)]. 'i-b'-'
Because partition k contains only one row, the expected data transfer from k to j is

the same.

Case III: both j and k are multiple row partitions

This case is illustrated in Figure II. An immediate generalization of the previous

case, partition j does not need any z I if and only if ait_ 0 for i in the range

bi <_ i <_ ¢j and all l in the range bt <_ i <_ et. Consequently, the expected data

transfer from partition k to partition j is just (et - bt + 1) times that of case II,

namely,

Talk, = (3)

(e,- b, + 1) [1- [1- t_N, Z, q)]"-"+'].
Finally, the probability, PT.,(k,j), that partition j"needs at least one element from

-8-

¢

bk ck

\ \

-... \

"--. 'x. 6_

\

\
\

N

X

Figure H

Data transfer between multiple row partitions

-9-

partition k is just the probability that the submatrix delimited by rows bi and ei

and columns bt and et, matrix _. in Figure II, is not identically zero. This probabil-

ity is just

PT,(k,j) = 1-[1-P_N,Z,q)].(eJ-b'+lXe'-b'+l) (4)
Although general, (3) and (4) provide little insight or intuition about data transfer

as a function of either P(N, Z, q) or M. If the partition size is constant, simpler

expressions can be obtained. Hence, we fix (ei- bj -t-1), the partition size, at a con-

stant S-_ N/M for all partitions. Then replacing P(N, Z, q) by its definition, we

obtain

Tr(k, 1) -- N 1 - l - q -M 1 -M

and

Data Transfer for Band Matrices

In addition to randomly sparse matrices, there are many other sparse matrices with

discernible structure, notably band matrices. For a band matrix A with semi-bandwidth

b, aij _ Oonly if li- jl _< b.

Applying the sparsity model derived for the random sparsity ease, the probability

/_i_n_(N, Z, q) that aij _ 0 is given by

P(2b, Z, q) if [i - j[< b

l_oanct(N,Z, q) =
0 otherwise.

Unlike the random sparsity case, all elements of the band matrix are not non-zero with

equal probability. Hence, a direct substitution of/_0"an_(N,Z, q) into (3) is inappropriate.

Consider, however, a single column rn of partition j where bk < m < ek. As with

-IO-

random sparsity, partition j does not need element zm if and only if column m is identi-

cally zero. This occurs with probability

"[I]_an_t _rII 1 - ,ira t_,,Z,q bk _< m ___e_.

Hence, the probability that partition j needs z m is

II z,

and the expected data transfer from partition k to partition j is

, .,[,]1 - H 1 - P_ff,n_(N,Z,q (5)

Now considercolumnm,shown inFigureIll.Itcanonlycontainnon-zeroelementsifit

lies between columns bi- b and ei + b inclusive. Otherwise, it would lie outside the

intersection of the matrix band and partition 3". Moreover, column m can only cause

data transfer from partition k to partition j if it lies between columns b_and e_ inclusive.

Hence, the structure of the band matrix implies that

Now consider the rows I associated with column m. By the definition of a band matrix,

non-zero elements in column m must lie between rows m - b and m + b inclusive. More-

over, the rows are constrained to lie within the partition j. Hence,

Within these constraints on ! and m, t_t_)nS(N,Z, q) is just P(2b, Z, q). Hence, (5) reduces

to

1 - P(2b, Z, q,j_] (6)

where

-11°

t

(e;, e;- b) _-(e;, e;) (e;, e;+ b)

Figure]TI

Band of non-zero elements intersecting partition j

- 12-

and

Pu _ min{ej, re+b}.

To obtain a closed form, we again reduce the problem to one of fixed size partitions S.

Then the limits on (6) simplify to

st = max{(k-1)8+1,(]-1)S+l-b},

s. = min { kS , jS + b},

Pt _ maxl(J-1)S+l ,m-b},

and

Pu = rain{iS,re+b}.

Further simplification of this summation unfortunately requires enumeration of several

ca_es. These cases are a function of the relationships among the matrix bandwidth, the

partition size, and the relative positions in the matrix of the partitions j and k. Fortui-

tously, those cases where j > k are symmetric with j < k. Hence, we consider only the

case j < k. Derivation of the remaining cases is still a lengthy endeavor, providing little

insight. Consequently, we simply describe the cases, using Figure IV, and enumerate the

results.

Case l: (k- 1)S+ 1 > yS + b

Here, the submatrix determining possible data transfer from partition k to partition

j lies outside the matrix band. Consequently, the submatrix is identically zero and

no data transfer occurs. This case arises if

k-y > b- 1 + 1.R

-13-

Figure IV

Data transfer cases for band matrix with fixed partitions (part I)

-14-

For the remainder of the eases, we implicitly assume that some data transfer occurs

(i.e., (k- 1)S + 1 _< iS + b).

Caoe II: b < S

In this case, the partition width exceeds half the bandwidth. Two subeases, based

on possible positions of k, arise.

Subca,e Ha: k > (j + l)

This condition, coupled with that of case II, places the determining submatrix out-

side the band, and no data transfer occurs.

Subca_e Hb: k = (j + l)

Partitions j and k are adjacent. Moreover, partition k is the only partition transfer-

ring data to j such that k > j. The expected data transfer is

Td k,]) ---- b + PIN, Z, q)

Similarly, only partition j- 1 transfer data to j from the other side. Hence, if

b < S, only adjacent partitions must exchange data. This suggests that this parti-

tion size for band matrices might be well suited to a ring architecture.

The probability that partition k must transfer data to partition j is again just the

probability that the submatrix is not identically zero, or

jR+bin[]Pr_ k, J) "_ II II 1 - P(N, Z, q)
m=jR+l _m-b

Case III: b > S

The converse of ease II, the partition size is less than half the matrix bandwidth.

As before, subcases based on the possible positions of partition k arise.

Subcase IlIa: kS < (i-1)S + b

Here, the determining submatrix lies completely within the band, and the expected

- 15 -

Figure IV

Data transfer cases for band matrix with fixed partitions (part II)

-16-

data transfer is

SubcaseIlIb: (j- 1)S+ b+ 1 < kS < .iS+ b

The determining submatrix lies partially within the matrix band, and every column

also lies partially within the band. If T denotes the column of partition j where the

last column of the determining submatrix intersects the right edge of the band, the

expected data transfer from partition k to j is

[
P(N, Z, i) 1 P(N, Z, q)" -- 1 - P(N,Z,q)

Subcasc lllc: kS)_ jS + b

Finally, the determining submatrix can lie partially within the band with some

columns entirely outside the band. This leads to an expected data transfer of

Eel ,,1 11P(N, Z, q)

Parallel Computational Complexity

As noted earlier, the performance of a parallel algorithm depends on both the inter-

task data transfer and the amount of computation performed by each task. ltaving con-

sidered the former, we turn our attention to the latter.

Each of the parallel X_TASKs is itself just a sequential code whose two primary

constituents, inner product and convergence test, were described earlier. Consequently,

we can 'apply standard techniques [4] to determine the complexity of each X_TASK.

The results of this analysis are shown in Table II.

We assume that all indexing and arithmetic operations require the same amount of

time Cp. Combining the results for the inner product and convergence test, the compu-

tational complexity of an arbitrary X_TASK is

- 17 -

Table H Computational Complexity of X_TASKs

Loop Statement Statement
Goat Goat

(1) 2C9 FOR I:-- E [J] to B [J]DO
BEGIN

Ol) SUM :-. 0;

(2) 2Gp FOR K :-. L [J] to U [J] DO
6 Or SUM:==SUM+

ANZ[Ki*x0 [COLStm[Kllt

4Cp XN [I1:-- SUM+ C [I]
END;

• Gp CONVERGED:-. TRUE;

(3) 2Cp FOR I:.=.E [J]to B [J]DO
BEGIN

5Op IF ABS (XN [I]- X0 [I])> EPS THEN
O)) CONVERGED:.- FALSE

3 Or X0 IX]:-- XN [II
END;

r 1

(I): (ei - by -)- I)GpL6(N or2b)l_N, Z, q)..i = 7j 4= 2cp

(2): 6Gp(N or 2b)P(N, Z, q) + 2Cl,

(3):(e;- b;+ 1)9C+

tANZ and COLSUB are vectors of the non-zero elements of A and the
corresponding column subscripts, respectively. L [J] and U [J] denote the begin-
ning and ending indices of components of these vectors belonging to partition J.

-18-

(ej- bj -t- 1)Cp(6NP(N, Z, q) -k 16) . 5C_ (8)
for the random matrix and

(¢j- by -t- 1)Cp(12bP(N, Z, q) -t- 10) -1- 5%

for the band matrix. The C_TASK must also check for global convergence after each

iteration. This consists of ANDing the M local convergenceflags receivedfrom the

X_TASKs and requires

(3M+ 1)0
operations.

Model Description

Having just determined the expected amount of data transfer among X_TASKs

(partitions), and their computationalcomplexity,we can now define an execution time

model of the parallel, sparse matrix algorithm. This model can then be used to predict

the execution time of one iteration.

Let t_(cornp) denote the computational complexity of XTASK j', t_(comrn) denote

the time required for task j to send and receive all data needed for the next iteration,

and t(sync) be the time required for the C_TASK to receive and test all local synchroni-

zation flags. Then the total execution time for one sparse matrix iteration is

t(,Itnc) + ,<i<Mmax{t,(comp) -I- t,(comm)}. (9)

Clearly, the time required to transmit or receive a datum is some function of the

number of partitions (X_TASKs) concurrently operating (e.g., if only two X_TASKs

were operating in parallel, they should be able to exchange data more quickly than if

fifty additional X_TASKs were also operating). Hence, we make both the time needed

to transmit a boolean, Cb(M), and the time to transmit an z value, {7_M), functions of

M.

We now consider each component of the execution time. Given that C'b(M) denotes

the time needed to transmit a single boolean value, then t(,ync) is given by

-19-

RECEIVE FLA GS TEST FLA GS SEND FLA GS

MC_(M) + (3M + 1)Cp + MC6(ItO.
Of course, t_(comp)isgivenby (8). The communicationcomponent,tj(comm)is, how-

ever, somewhat morecomplicated. In addition to includingthe interpartitiondata

transfer,it shouldalso includestartup costs fordata transmission.That is, two parti-

tions exchangingten data valuesshouldrequirelesstimethan fourpartitionsexchanging

fivedata values. This intent is reflectedby the formula

t_(comm) = send to other partitions (10)

+ rccciue from other partitions

: _[C.Prr(k,i) +=,C_M)Tr(k,$')]

M

+ _ C[M)rr(k, :)

k_j

where C, is the startup cost for initiating a data transfer.

Given these formulae,considerthe two matrixcases forwhich we derivedclosed

formsfor Pr,(k,]) and Tr(k,j_, the randomlysparsematrix and the bandmatrixboth

with fixedpartitionsize.

Randomly Sparse Matrix

Substituting values in (10) for Pr,(k,]) and Tr(k,]) gives

t_'"a°_ comm) =

I-,,[,- •

- 20 -

Band Matrix

For the band matrix, ease lib, we have

Conclusions Based on the Model

As we have seen, the total execution time for one sparse matrix iteration is given

by (9). For equal sized partitions, (9) simplifies to

t(,unc) + t,(comp) + t,(co,,n). (11)

There are two primary means of implementing communication in a parallel system,

shared memory and communication networks. In both cases, the delays incurred for

data transfer increase as the number of parallel tasks increase. (Shared memory suffers

from memory access conflicts, and communication networks, being necessarily incomplete

connections, require additional routing of data.) Hence, it seems appropriate to make the

synchronization and data transmission costs functions of the number of partitions M

(i.e., the number of parallel X_TASKs). We used the functions

1

log2(M)

M

in the communication component of (11) to reflect the possible range of communication

costs one might encounter in a complete connection, tree, square mesh, and ring, respec-

tively.

- 21 -

Using (11) and the communication cost function, ._M), we then plotted total execu-

tion time as a function of matrix sparsity,/_N, Z, q), computation time, Cp, communica-

tion time, Ct and C,, and synchronization cost, C6, for the random sparsity case. These

plots, shown in Figures V-VII, are discussed in detail below. In all cases, the smallest

number of partitions chosen was M _-- 5.

Figure V

This figure shows iteration time as a function of the number of matrix partitions

(X_TASKs) for varying communication costs. Each matrix row contains 14 non-zero ele-

ments, a typical number for a matrix arising from a finite element method.

As can be seen, there exists an optimal level of parallelism in each case. Not

surprisingly, the optimum level of parallelism declines as the communication costs

increase. Even the complete connection cannot support as many parallel tasks as there

are matrix rows. The 'reason is quite simple, as the number of partitions grows, syn-

chronization costs become prohibitive.

Figure VI

This figure shows the effect of matrix sparsity on iteration time for communication

costs proportional to vt"M; the lowest curve corresponds to greatest sparsity. As

expected, increasing the number of non-zero elements results in increased iteration time.

In addition, the optimum level of parallelism increases as the number of non-zero ele-

ments increases.

, Figure VII

Finally, this figure shows iteration time for varying matrix sizes, again with com-

munication costs proportional to vt-M.

I : I I

Figure V" Execution time for N -- 1000

J(M) = M

Number of Partitions M

I 1 I I

Figure VI Execution time for N ---_ 1000

Quantity Value

C6 V_
c, 1
c. 1
c, v_
q 0.0,0.01,...,0.I I

G_

Time z 4

I I

Number of Partitions M

I I

Figure VII Execution time for N -_-- 100, 500, 1000, 1500

Number of Partitiona M

- 25 -

BandMatrices

The executiontime model for bandedmatrices,case A, is easier to analyze. We

haveseenthat intertaskdata transferoccursonlybetweenadjacenttasks if the widthof

a partitionis at least as largeas the matrixsemi-bandwidth.If this conditionis met,

the optimumnumberof partitions(X_TASKs)dependson the relativecostsof computa-

tion and communication.

Summary

As we haveseen, the performanceof a parallelalgorithmdependsnot onlyon the

amountof computationperformedby each task but also on the amountand frequency

of intertaskdata transferand task synchronization.

For a parallelimplementationof iterativemethodsforsolvingsparselinearsystems

of equations,we have derivedthe expectedintertaskdata transferand definedan execu-

tion time modelthat can be used to predictiterationtime. Wehave appliedthe model

to both the generalcase of randomlysparse matricesand one importantspecialcase,

bandedmatrices.

Resultsof the modelclearlyshow that the executiontimeof the solutionmethods

can be reducedby partitioningthe computationinto parallelsubtasks. However,the

optimumnumberof partitionsis very dependentonsynchronizationand communication

costs.

Acknowledgments

We are particularlyindebtedto LoyceAdams,PiyushMehrotra,TerryPratt, John

van Rosendaleand RobertVoigt,ourcolleaguesin the XFEMResearchgroupat ICASE,

NASALangleyResearchCenter, for many helpfuldiscussions.We wouldalso like to

thank DennisGannonof PurdueUniversityand MikeLeuzeof VanderbiltUniversityfor

theirideas.

-26-

I_fere_

[1] L. Adams, '_terative Algorithms for Large Sparse Linear Systems on Parallel

C(mputers,"NASA (_-166027, NASA Langley Research Oenter, November 1982, (also
publishedasa Ph.D.dissertation,UniversityofVirginia).

[2] L. Adam and T. Cro(kett,'_x_eli_ AlgorithmF_eoatlonTLme on ProcessorArrays,"
IEEE Cog_ter, Vol. 17, No. 7, July 1984,pp. 38-44.

[3] L. Adams and R. Voigt,'_es_n, Development,and Use of the Finite_nt Machlne,"

ICASE ReportNo. 83-56,NASA CR-1722.50,NASA Langley ResearchOenter,October 1983,

(also published in Proc. of Oonferenoe on large Scale Scientific Oomputatlons,
UniversityofWlsco_in,1983,AcademicPress).

[4] A.V. _ho,J. E. Hopcraft,andJ. D. Ullmln,TheDesignand_nalyslsofComputer
Algoritk_s,Addlson-Wesley,1974.

[5] H._no, T.Yosh_da,andH.Also,"(SM)2:SparseMatrixSolvingMachine,"ThelOth
Atonal InternationalSymposiumon Computer Architecture,ACM Si_arch Newsletter,
Vol. II, No. 3, June 1983,pp. 213-220.

[6] D. Gannon and J. Van Iksendale,'_arallelArchitecturesfor IterativeMethods of

Adaptive, Block StructuredGrids," ICASE Report N_ 83-39, NASA CR-172195, NASA

LangleyPesearchGenter,August1983,(alsoFabllshedintheProceedlr_sof the
MmltereyEllipticSolverConference,AcademicPress,G.Blzkhoff,(ed.)).

1. Report No. NASA CR-172418 2. Government Accession No. 3. Recipient's Ca_log No.
ICASE Report No. 84-34

4. Titleand Subtitle 5. Reporl Date

A Model of AsynchronousIterativeAlgorithmsfor July 1984
Solving Large, Sparse, Linear Systems 6. PerformingOrganizationCode

7. Author(s) 8. PerformingOrganization Report No.

Daniel A. Reed and Merrell L. Patrick, 84-34

10. Work Unit No.
9. Performing Organization Name and Address

Institutefor ComputerApplicationsin Science
and Engineering '11.ContractorGrantNo.

Mail Stop 132C, NASA Langley Research Center NASI-17070, NASI-17130

Hampton, VA 23665 13 TypeofReportandPeriodCovered
12. Sponsoring Agency Name and Address Contractor Report

NationalAeronauticsand Space Administration 14.SponsnringAgencyCode

Washington, D.C. 20546 505-31-83-01
15. Supplementary Notes

Langley Technical Monitor: R. H. Tolson

Final Report

16. Abstract

Solving large, sparse, linear systems of equations is one of the fundamental
problems in large scale scientificand engineeringcomputation. A model of a general
class of asynchronous,iterative solution methods for linear systems is developed.
In the model, the system is solved by creating several cooperatingtasks that each
compute a portion of the solution vector. This model is then analyzed to determine
the expected intertaskdata transfer and task computationalcomplexityas functions
of the number of tasks. Based on the analysis,recommendationsfor task partitioning
are made. These recommendationsare a function of the sparseness of the linear
system, its structure(i.e., randomlysparse or banded),and dimension.

17. Key Words (Sugg_ted by Author(s)} 18. Distribution Statement

Sparse linear algebraic systems, 62 - Computer Systems

asynchronous iterative algorithms, 64 - Numerical Analysis
computational and data transfer model

Unclassified - Unlimited

19. S_urity Oa_if. (of thisreport) 20. S_urity Classif.(o! this _) 21. No. of Paget 22. Dice

' Unclassified Unclassified 28 A03

.-3os Forsaleby theNationalTechnicalInformationService,Springfield.Virginia2216!

