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QUAST-GENERALIZED VARIABLES

J. Baumgarte, G. P, Ostermeyer
1. Introduction o /471%

Systems of mass points and fixed bodies, which are subject
to certain secondary conditions, occur in analytical mechanics.
These are idealized descriptions of real physical combinations
between single bodies such as poles, joints, skids, cutting

edges, etc.

One may proceed as follows with the mathematical
description of the system. After selecting suitable coordinates
: t » . . . . .
d, 9 =-(ql, cee g qn), which may implicitly involve
part of the combinations, the Lagrange function L is determined:

L((l, q,t) = Tz -+ Tl + To - v
o =34'Mg,t) q + Blg,t) g + Tolq, t) - Tig, ) _ (1.1)

as are forces Q, which do not follow from L (non-potential

forces)
Q=0 0.0, Q=@ -, . ' (1.2)

The combinations which have not yet been considered in the

chosen coordinates g are ‘the so-called holonomic equations:

Ma.)=0, v=1.,e<n—r (1.3)

and theilinear non-holonomic combinations of the velocities q

.gx(qiq’t)=0, .”—"—‘-1,...,1'<n—8. (1.4)

*Numbers in the margin indicate pagination in the foreign text.
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The resulting equations of motionvof the observed system

are now called

(LY —Lg = Q + faty + Ggpra -~ (1.5)

Statements (1.3) and (l.4) for the coordinates, and the
velocities, respectively, are contained herein in explicit form
as so-called limits.

The Lagréngian multipliers u, and M, have to be calculated
from secondary conditions (1.3) and (1.4). Normally, one
proceeds as follows: holonomic combinations (l1.3) are derived
twice, non-holonomic combinations (l1.4) are derived once tdtally

in accordance with an independent variable, time t.
=0, .=0. ' (1.6 a, b)

These relationships are then linear in accelerations q.
If one inserts the similarly linear equations of motion in
(1.6), one obtains an algebraic system of equations with
Lagrange nultipliers. Because of the usual independence of the
several combinations, these multipliérs can be clearly

calculated as functions of q, ¢, and t.

Although equations of motion (l1.5) are very convenient in
considering additional combinations (1.3) and (1.4), they have a
major disadvantage with regard to numerical integration. The
numerical solution of (1.5) exhibits characteristic errors of
the combinations (1.3) and (1.4), which, practically independent
of the quality of the program'of integration, quickly render the
solution useless. Essentially the errors in the combinations
increase linearly--it should be noted that this implies a

quadratically increasing error for coordinates g--and
| quadratically in the combinations (1.3). This pattern of errors
is implicit in the calculation of the Lagrangian multipliers



using (1.6 a, b). Additional instabilities are transofered to

the equations of motion.

Although one may- achieve very good results by using
stabilization strategies (see section 2) to diminish these
instabilities, it is actually unsatisfactory from the analytical
point of view, out of explicit consideration for combinations
" such as those in movement equations (l1.5), to transfer
instabilities into the motion equations only to eliminate them

later in the numerical solution.

Theoretically these difficulties can be completely avoided,
when all holonomic combinations are implicitly considered via

suitably chosen generalized coordinates a, and when the '/472

non-holonomic combinations are eliminated through "non-holonomic
velocity parameters" (Hamel [l]). While non-holonomic
combinations are eliminated rather easily--non-holonomic
secondary conditioné are generally linear in velocity--this
procedure is not always very easy or even possible for.holonomic
combinations, which are generdlly non-linear in coordinates.
Therefofe, the following is recommended in related literature.
Holonomic combinations are completely derived once from time.
Then they can be treated formally like non-holonomic |
combinations. The reduction using non-holonomic velocity
parameters ,o” ={(w,..,0-r-s) then yields a system of

differential equations of the order 2n - r - s

q_=F(q,w,t), w.=G(q,w,t').A (1.9 a, b)

In the process, the derived holonomic combinations (1.3)
are thus implicitly stated using the variables w. The
combinations (1.3) in the non-derived form are now first
integrals for the n eguations (1.9 a).



Peculiarly, the numerical solution disturbs first integrals
as much as the explicitly considered non-holonomic
combinations. Here too, it is true that instabilities occur
which make themselves numerically noticeable in strongly
increasing errors with reference to the combinations. These
instabilities are caused by the incomplete--though
mathematically possible--reduction of the order of differential

motion eqguations.

It is the goal of this work to formulate motion equations
'so that, even with explicitly considered combinations, not only
the analytical, but also the numerical, solution is error-free

regarding the secondary conditions.

2. Stabilization

The point of departure for stabilizations of combinations
with motion equations of the order (1.5) or (1.9) involves
(Baumbarte [2]) calculating the Lagrangian multipliers in (1.5)
.no longer using (1.6 a) or (1.6 b), but rather the
asymptotically stable differential equations

fo+2f, + 8, =0, P=x>0; fHty=0, y>0. (2.1 a; b)

"The Lagrangian multipliers u, and/u2 calculated thusly, now
contain the classic portion together with expressions which
disappear identically in the analytical solution, but for which
regulator terms constitute the numerical solution regarding the
combinations. The stabilizations (2.1 a, b) limit the errors
regarding the combinations (1.3) and (1.4) in the numerical
solution. Prom the regulating-technical point of view, (2.1 b)

is a P- and (2.1 a) a PD-regulator.

Extremely precise stabilizations (Ostermeyer [3]) may be



obtained by inducing an I-member into the regulator, since then,
on one hand, the temporal median of the numerical combination
error disappears and, on the other hand, the coefficients in the
stabilizations can be directly indicated after inducing such a
substitute constant T* using the optimum criterion employed in
regulator technology.

¢ ' ¢
| | 1 . 1 .1 - .k
f”l‘@??(“f’{"zﬁf‘f‘l—wmf/d’f):o; 9+."27;;‘(g -1‘4—7.;:[9‘_17)—()’ T*>0. (2.2a; b)
Te - e {s
These stabilizations certainly increase the order of a
differential equations system--with the additional differential

equation
z=fx,t) or =glx, &1

one obtains the integrations necessary with z using the
combinations, but the substitute time-constant "T*" only
accounts for the process of the "real", i.e., error-ridden,
integration.

An optimum value can be given even for gquantity T* ,
whereby essentially the salient frequencies of the then adaptive
regulator, as a function of the highest occurring frequency in
the mechanical system, are conducted (OSTERMEYER [4]). Thus the
parameters in the stabilizations are completely determined.

Even first integrals can be stabilized with the integration
of a given mechanical system (BAUMGARTE [5]). The integrals
I(x,&,t)=0 are hereby interpreted as non-linear non-holonomic |
combinations, just as in the velocities. From the Gaussian
principle of the smallest limit, one can formally obtain the
motion equation with the "limit"

" Z =ol..
e (2.3)



The usual calculation of the Lagrangian multiplicator from

’I'-=0 | | . (2.4)

yields, of course, ¢ = (), since, according to the definition,
the motion equations j:= (0 are identically realized. However,
if the multiplier ¢ is calculated from jy in the stabilized form
(2.1 b), (2.2 b), one obtains an algebraic expression for o.
This expression is a pure regulator-term and disappears
identically upon the exact solution.

The stabilizations are a simple aid for controlling

numerical instabilities with great accuracy and little effort.

But some questions still remain (see [4]). Although the
procedure of stabilization seems very plausible, it has not yet
been determined in a general fashion whether and in what sense
the numerical solution of (l.5) with stabilized combinations is
altogether better than the numerical solution of (1.5) without
stabilization, if one disregards the component of the total
numerical error, which makes itself noticeable in the

~disturbance of the combinations.

3. Quasi-Generalized Variables /473

A differential equation system is given in the variables
X = X(t‘,) with &7 = (x,, ..., za): '

E=Fat)y, tel=[,t], With x(t=t)=mx,cR". (3.1), (3.2)
Apply an additional combination . to this system

f@,t) =0, with f(xy,t) =0. (3.3)



There are two classic means in mechanics to obtain a
solution to this problem.

A. Reduction

Here the generalized variable #(t),y" = (y,..,¥.1) , generalized
on n - 1, which covers the subspace given by (3. 3), is
transformed. With

m==:c(y,t),» @y fo=0 (3.4a)
one obtains the differential equationsv
a@+aémwwm,m y=mﬁﬁwﬂ—m- ' (3.4b)
B. Lagrangian Multiplier Technique
Hefe, the minimum of the quadratic form 2
Z:=;4¢-FV«&-—F) ' (3.5)
with regard to the quantity x is sought under the secondary
condition (3.3). Once (3.3) has been totally derived according

to time, then one obtains a linear combination for x. With the
Lagrangian multiplier M oOne obtains from

==y =0 | (3.6)

the differential equation system

& =F +ufe, fi£,)=0. : | (3.7 a, b)

If one inserts (3.7a) into f = 0, one has an algebraic
equation for Calculating)#. The integration of the n
differential equations



_fF | (3.8)

yields the solution to the problem.

Procedure A yields numerical solutions which conform
exactly to the combinations. The disadvantage of this procedure
is that, under certain circumstances, the search for generalized
variables is not very easy.

Procedure B has the advantage that one simply obtains the
resulting differential equation system. The numeric instability

of the combination is disadvantageous.

Principle procedure C, submitted here--introduction of

. quasi-generalized variables, see below--no longer considers a
differential equation system with the actual involved variables
x and y, but rather introduces auxiliary variables # &T = (%, ..., %)
which are unrelated, but which contain the involved related
variables x (i.e. x with £(x,t) = 0) in a simple fashion. The
differential equation systems pertaining to X should be easily
constructed and formed in such a way that, after numerically
solving the differential equations in X, one may transform from
(3.8) into the numerical error-free solution of x regarding the

combination.
The point of departure is the formulation of the problem in

the form (3.7) or (3.8). If 3=2# is an arbitrary
(continuous) function of time, it is valid that:

e=F+ifat@—Nf (3.9)
With the transformation

== : (3.10)

10




one obtains further

Fe=F =MLY + - (3.11)
If one executes the differentiation of the term (fx) and
re-inserts (3.7), (3.11) is simplified to

T == (I — Max) (F + pfa) — Mo — . | (3.12)

Since on this premise, the analytical solution x of (3.7)
or (3.9) of the combination conforms exactly to f£(x,t) = 0, the

following is valid using (3.10)

fa, t) = f(x(@, A), ) = 0. (3.13)

Using (3.10), the right side of (3.12) can be completely
‘formulated in the new variable X. According to the
construction, X for A 7£()no longer lies on the hypersurface
given by the combination.

Until now A can be set arbitrarily. The solution of /474
(3.12) in the new variable X contains the first integral
(3.13) f(f;k)t});;g. How should A bg suitably chosen? It is
possible, here for instance, to set A = 0. Then, T=x +c-fx
with the set constant ¢ is valid for the analytical solution.
If one is to insert the constant c for A into the equation
resulting from (3.10)

® = (I — i) (F + pf) — Mu (3.14)

the calculated solution for x obtained from the numerical
solution for X in (3.14) using (3.10) disturbs the combination
as much as the numerical solution of the starting system (3.7)
or (3.8). ‘Up to now one- has only executed a coordinate
transformation which leaves the same numerical difficulties as
before, because the numerical solution of (3.14) itself disturbs

11



its first integral (3.13). But only the exact satisfaction of
(3.13) with the integration of (3.14) guarantees that the
re-transformation of arbitrary values for X to the starting

coordinates x excludes errors in the combination f(x,t) = 0 or x.

The first integral (3.13) can be used to eliminate and
in (3.12). This reduction (of the arbitrary choice of,i) has
the result that (3.13) is implicitly considered in (3.12) and
that thus (3.13) can no longer be disturbed by the numerical
~solution of (3.12). Furthermore, using simple calculation, one
finds the identity

AE u, | (3.15)

so that the motion equations now have the following form

T=U e F = Mifexfo +fe) - A=AED) (3.16 a, b)

The analytical expression for i can now be calculated from the
total derivation of (3.16 b) to t, or, for instance, from the
total derivation of (3.13) to t. (This is equivalent to the
transformation of'#,in (3.7), (3.8) into i;X). The first method
presumes that A can be indicated explicitly from the implicit
system of equations (3.10), (3.13). The second method yields an
explicit expression for X even when A is numerically

iteratively established (see sections 4, 5).

This choice of procedure for A corresponds in principle to
the possibility to partially integrate the Lagrangian
multiplier'ﬂ in (3.7a). (See Baumgarte) Ostermeyer [6]).

In this sense, n variables X are quasi-generalized
variables, since the differential equations (3.16) formulated by
them no longer contain the classic "limit"'ternl)uf; and since
they implicitly contain the relevant solution x, which exactly

satisfies the combination after the construction.

12



The last point is given inasmuch as the first integral
(3.13) regarding the variable X through the reduction regarding
the freedom in the choice of A is also exactly numerically

satisfying.
C. Procedure for Induction of Quasi-Generalized Variables

The new variable %, zT =(%,..,%) on n is here transformed

with

T=x —As, fle, t) =0, x =z, A1), A=z, 1) . (3.17)

The differential equation system is
T = (I = Hoa) F — Wifaafs + far) - (3.18)

These are n first-order differential equations in X. The
relevant solution x is established after the (numerical)
integration of (3.18), X is error-free regarding the
combination f(x,t). The starting quantities of X are calculated
from X, using (3.17), and calculated using an arbitrary

value Afﬂ) . For the choice l(fo) =0 it is true that

Tt =t) = a(t =1t). (3.19)
4., Treatment of First Integrals
If, for a differential equation system
i = F(x,1) (4.1)

the combination f(x,t) = 0 is a first integral (f is then a
so-called inner connection), then.hi4*h==kF-F =0 1is valid,
and the Lagrangian multiplier is A= 0 with the tranformation
into quasi-generalized variables. The differential equation
system (4.1) is transformed with T=«+A3= into

13
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T

‘(I—}*/zz)F—Afu'- (4.,2)
Example l: The Quaternion Differential Equation

While describing the position of a fixed body or a

gyroscope, with a given turning vector

o = w(t), ol = (w0, w,, wg)

singularities occur in Euler's angles ("frame-locking"). 1In
order to avoid these difficulties, other position coordinates
are often introduced.

The turning quaternions 27 ==, %% %) constitute /475
one possibility. The related differential equation is e
& =30 . (4.3)

with

o=[" 0 @ —o) (4.4)
Wy —wy 0 Wy
w3 W, —w; 0

The quaternions satisfy the first integral
fe)=a*—1=0. (4.5)
Numerical integration of the system (4.3) disturbs the
combination (4.5) linearly in t. The procedure C (see section
3) leads, using the transformation
T=z—)fp=x—2x, x=3F1—2)) ' (4.6)

to the new differential equation system

14



- — ¢ ) e by : = .1 .-
& = (I —21)8 =23 bzw. | .;.Qa:' (4.7)
The differential equation system in the quasi-generalized

variables (4.7) has the same form as the starting system.

For the re-transformation into the.starting variable, ),is
needed. The insertion of (4.6) into (4.5) yields:

A= (0— ). | ' (4.8)
Therefore
@ = %] - ' (4.9)

The rule used to divide quaternions by their norm, after
every step of integration, to take the next step of integration
with the new starting values for the quaternions x, has been
known for a long time as a numerical variant of the integration
of the differential equation.(4.3). (4.9), however, signifies
more: when dealing with the problem (4.3), foxmulated in the
quasi~generalized variables (4.7), one may not interfere in the
integratioh. One only has to realize the depiction onto the
starting quaternions at those points of time when the solution
is relevant. The resulting x vector is, independent of these
points of time, a numerically correct solution of (4.3), which

exactly satisfies its inner combinations.

Example 2: The Unperturbed Kepler Problem

-

With @ =(z,z,2) and r := ]x’, the motion equations are

2
5—+é;w==0, Kk — parameter of gravitation (4.10)

The analytical solution to the unperturbed Kepler problem
can be given immediately. In practice, one will often work with

a mildly perturbed Kepler problem (see Stiefel, Scheifele [8]).
15



However, the numerical difficulties with integration of Kepler
equations may be examined with particular ease in the
unperturbed problem.

An essential difficulty with the integration of (4.10) is
the upset of the energy integral
K2

f=3# - —E=0, F=cont<0. (4.11)

i

Since the energy determines the frequency of revolution (),
Kepler's orbit will be only mildly perﬁurbed with numerical
errors in (4.11)--the Kepler problem is stable in orbit--but the
error in calculating the location of the satellite in orbit

increases quadratically with time.

_ The consideration of (4.11) using quasi-generalizeed
variables in procedure C can be executed when (4.10) is written

as a first-order differential equation system.
E=v, O=——g (4.12 a, b)

with

1 Kz nl .
f(w,v)=—a-v2—7;;=b- (4.12 ¢)

The transformation could be executed with regard to x and v.

Consequently, one has a form of the gradient procedure.

However, the principles of mechanics indicate that--(4.11)
being understood as a non-holonomic combination--the combination
is only considered in the equations (4.12 b), meaning that only
the quantities v have to be transformed into the quasi-
generalized variable 7. '

/,'6-'=v._zv’ v =71 —A) (4.13)

16



can be calculated from (4.12 c¢), using the abbreviation V for

the potentiél
V = — K2 (4.14)
the multiplier A into
A=1~¥|5|/|’2“§E—~“i7) | (4.15)

and thus the transformed motion equations into

‘el
Y
‘P

b= BE V), b=— g (4.16 a, b)

S

- Re~transformation into the variables (x, v) yields
solutions to (4.12) which exactly satisfy the energy integral.

Example 3: The Perturbed Kepler Problem
Generally, one always has to work with a mildly perturbed

problemi

R T T | (4.17)
If the forces gQZare potential, the energy integral (4.12
c), with additional potential terms, continues £o be valid. The
transformed equatioﬁs keep the structure (4.16). If the
termsECQ are non-potential forces, the energy integral is no
longer valid. With expansion, however, of the motion equations,

the transformation can even be executed here. U;ing
d=v, b=—Vedsd, E=eQv | (4.18 a, b, c)
one again induces a first integral:
f@,v) =1e 4 V@) —E=0. o (4.18 4)

17



As the errors in the additional scalar differential
equation (4.18 c) are significantly smaller, using the numercial
interpretation, than the errors in the system (4.18) with regard
to the integral (4.18d), the transformation into quasi-
generaliZed variables yields, even here after re-transformation,

significantly better results. The transformed system reads

- [v] -
R L I
Y2E —V)

k X

| @i
E

&=L YHEZT), (~Ve+¢0), E=eQZfHE=T). (4.19)

3l

S

Example 4: The Symmetric Gyroscope

With the principle moments of inertia I,=1,1, , which
belong to the center of gravity (fulcrum), and with the
components of the angular velocity with regard to the solid

principle axis of inertia, Euler's equations read

- L —1I, o
,Izd‘l"——sz! Il(’b2= —le, I3(b3:0é(03=wg’ I{=—1—I‘af3wg° '(4.20 A, b’ C)

The system contains the first integral
flw) =3 Loi+ o)) —E=0.

Using the transformation

_ Ws
RV Al

* T —AL)
follows, from (4.20), the system

Ixéx = Kwy, 'Ila'_’z = —Kw,, L, =0. : (4.21)

Here again, one obtains the starting system, formulated

with the new variables. The re-transformation reads

: —%E  _ . (4.22)
Doy = | e =1,2.
'“fVm&+ﬁW“ :

18



Concerning the practically important problem of the
perturbed gyroscope, one can proceed similarly to deliberations
of the perturbed Kepler problem. With the vector of

perturbation N = (¥, N, N;)* + the system nhow reads
Lis, = Kay+ oNy, Ly = —Ko, +¢N,, K=21%
10y 2 T €Ny, 10 = —HKw; +elNyg, =T wy, w3+ const., (4.23)
I3, = +F;N3 s E = g(Nyw, + N,w,) . ‘
The integral is
f=%hwi+ o) —F=o. | (4.24)
The transformation into quasi-generalized /477

variables 5&, C&tleaves the structure of system (4.23)
unchanged, as above. Re-transformation (4.22) into the
values W,y Wy after numeriqal_integration of (4.23), is
error~-free after construction with regard to (4.24).

5. Concerning Numerics with Non-Explicitly Realizable
Transformation into Quasi-Generalized Variables

In all the previously examined examples, the transformation
could be explicitly executed. Thé non-symmetric gyroscope
constitutes an example with which this no longer seems
possible. For purposes of simplification, let us examine it
here in its unperturbed form. The perturbed case can easily be
examined as demonstrated above. '

Example 5: The Non-Symmetrical Gyroscope

"With the terms of the previous example, Euler's equations

here read
Loy =~ L) oy, Ty = (L= Loy, L= (I, — I)ow,. (4.22 a, b, c)

19



The system contains two first integrals:
h =“:T_('[1w%+12(/)§+-’awg) -0, =0, _fg=%(1fw%+l§w%+l§§)§) —C,=0.(4.23), (4.24)

Here C

The specification for transformation reads

1 and C2 are constants for the unperturbed case."

E)‘=(0(—'1111w¢—121?w1, i==1,2,3. (4.25)

The motion equation with quasi-generalized variables reads

T =gy = 1) T, — L) ©,0, , 4.26)
] (1 -—),112 —%Ig) (1 -— AII:; - ‘;‘21%)' ( |

Ilwl =

The remaining equations can be obtained via cyclical
permutations.

in (4.26), however, the Lagrangian multipliers ;11 ,)j_are
still to be calculated using (4.23) and (4.24). This
calculation can be performed numerically. One must consider,
however, that with every new call-up of the differential
equation (4.26), through the numerical routine of integration,
the actual multipliers

h@odd) =0,  h®ud,2) =0, 4 =X®), 2I=2~@) (4.27)
should be established via an iteration procedure.

It may also occur that not only the Lagrangian multipliers
2, but even the initial variables x as a function of the
quasi-generalized variables 3 cannot be explicitly establisheéo
In this case, the (n + m) equations

T—x—foh =0, fle,t)=0, IT==(fb"':/m)’_ )'T.=(}'1""’;""f)r (4.28 a, b)

have to be solved iteratively into x and l to establish the
differential equation system

20



* = F(&,x, A1) _ (4.29)

for the integration routine.

To avoid difficulties while searching for the zero digit,
as well as long iteration periods, the following procedure has

proved effective.

The starting quantities of the quasi-generalized variables
are defined with only the exception of a free choice of starting
guantities of A. For purposes of simplification, A =t,) =0
is given (see (3.19)). If the transformations into x and A
following from (4.28) can be explicitly executed, it will be
evident that the Lagrangian multipliers increase, in general,
linearly when using the numerical integration of (4.29), and
even quadratically, when using the quasi-generalized variables
for holonomic combinations (see section 6).

If one now evaluates the system (4.28) during and after the
first step of integration At, the desired solution vector (¢, + 4

is present. At the béginning of the next step of integration,’

the vector value l can again be designated zero, At + 4t) = 0.
With the vector of solution (4 4¢) , one obtains, using

(4.28), the initial quantities E(t, + 4t) for the next step of
integration.

If one proceeds in such a way through every step of
integration, vector A remains very small. Numerical experiments
have indicated that, using this procedure to evaluate equations
(4.28), only one or two steps of a Newtonian procedure are )
needed to obtain very high accuracies--for instance, to obtain
the factor 105 or 1010 times better than the stabilization
in section 2. Using our integrational procedure, RKF 7 [8], the
differential equation system is evaluated at a total of 13 times
per step of integration. Having executed each time the

iteration of (4.28), the resulting calculation time was slightly
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longer, by a factor of 1.5 than the integration of the starting
differential equation system.

6. Treatment of Holonomic Connections

The holonomic combination is f(x,t) = 0. If one examines
it in derived form like a non-holonomic combination using
non-holonomic velocity parameters, one obtains the system
(1.9). f(x,t) = 0 is then a first integral of equations (1.9)
and can be treated with the procedures in sections 4 and 5.

If £(x,t) = 0 is examined using a limit in the ' /4
motion equations (see (l1.5)), these read:

Mz, )& =F,@,1) + pfe.
or, as a system of the first order
=MW, &=Fao)tuls. (6.1 a,

In this instance, transformation into a quasi—generalized
variable is also possible. Using

Z:i=2 — Mo | (6.
one again obtains, using the secondary condition
@ =z@At), *I=AT1). - (6.3 a,
In Baumgarte, Ostermeyer [7] it is shown that conversion
into quasi-generalized variables X converts the equation (6.1)

into the following system

F=MF M), B =F i) 6.4 a,
using =0 + M () = fealMT = M) + fer.

b)

2)

b)

b)
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It is given that XEE/L In this instance, the function x,
established via numerical solution of (6.4) and (6.3), is also a
solution to initial system (6.1) which is error-free with regard
to the combinations f(x,t) = 0. In.the system (6.4), A,can be
calculated either by total derivation of A or from the derived
combination f = 0. Since the derived combination is linear in
its velocities, transformations into v can always be explicitly

executed:

f20 + fo
f.t'/x )

u:maign=s—m,'i=ﬂa%d=

If this is substituted into (6.4), only the calculation of
x(f,/hf) and A:l(f,t) remains. If this is not explicitly
possible, one may proceed numerically in this instance, as
demonstrated in section 5.
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