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QUASI-GENERALIZED VARIABLES 

J. Baumgarte, G. P. Ostermeyer 

l~ Introduction /471* 

Systems of mass points and fixed bodies, which are subject 

to certain secondary conditions, occur in analytical mechanics. 

These are idealized descriptions of real physical combinations 

between single bodies such as poles, joirits, skids, cutting 

edges, etc. 

One may proceed as follows with the mathematical 

description of the system. After selecting suitable coordinates 
t 

q, q = (ql' ••• , qn)' which may implicitly involve 

part of the combinations, the Lagrange function L is determined: 

L(~l, q, t) = T2 + 1.'1 + To V 
= + qtJl(q, t) q + B(q, t) q + To(q, t) - nq, t) 

as are forces Q, which do not follow from L (non-potential 

forces) 

Q = Q(q, q,t) , 

The combinations which have not yet been considered in the 

chosen coordinates q are ·the so-called holonomic equations: 

I,(q, t) = 0 , y = 1, ... , ~r < n - r 

( 1.1) 

(1. 2) 

(1.3) 

and the ilinear non-holonomic combinations of the velocities q 

g,,(q, q. t) = 0 , u = 1, ... , r < n - 8 • (1. 4) 

*Numbers in the margin indicate pagination in the foreign text. 
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The resulting equations of motion of the observed system 

are now called 

(1. 5) 

Statements (1.3) and (1.4) for the coordinates, and the 

velocities, respectively, are contained herein in explicit form 

as so-called limits. 

The Lagrangian multipli~rs #~ and P2 have to be calculated 

from secondary conditions (1.3) and (1.4). Normally, one 

proceeds as follows: holonomic combinations (1.3) are derived 

twice, non-holonomic combinations (1.4) are derived once totally 

in accordance with an independent variable, time t. 

g" =0. (1.6 a, b) 

These relationships are then linear in accelerations ij. 
If one inserts the similarly linear equations of motion in 

(1~6), one obtains an algebraic system of equations with 

Lagrange multipliers. Becatise of the usual independence of the 

several combinations, these multipliers can be clearly 

calculated as functions of q, q, and t. 

Although equations of motion (1.5) are very convenient in 

considering additional combinations (1.3) and (1.4), they have a 

major disadvantage with regard to numerical integration. The 

numerical solution of (1.5) exhibits characteristic errors of 

the combinations (1.3) and (1.4), which, practically independent 

of the quality of the program of integration, quickly render fhe 

solution useless. Essentially the errors in the combinations 

increase linearly--it should be noted that this implies a 

quadratically increasing error for coor~inates q--and 

quadratically in the combinations (1.3). This pattern of errors 

is implicit in the calculation of the Lagrangian multipliers 
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using (1.6 a, b). Additional instabilities are transofered to 

the equations of motion. 

Although one may achieve very good results by using 

stabilization strategies (see section 2) to diminish these 

instabilities, it is actually unsatisfactory from the analytical 

point of view, out of explicit consideration for combinations 

such as those in movement equations (1.5), to transfer 

instabilities into the motion equations only to eliminate them 

later in the numerical solution. 

Theoretically these difficulties can be completely avoided, 

when all holonomic combinations are implicitly considered via 

suitably chosen generalized coordinates q, and when the /472 

non-holonomic combinations are eliminated through "non-holonomic 

velocity parameters" (Hamel [1]). While non-holonomic 

combinations are eliminated rather easily--non-holonomic 

secondary conditions are generally linear in velocity--this 

procedure is not always very easy or even possible for holonomic 

combinations, which are generally non-linear in coordinates. 

Ther.efore, the following is recommended in related literature. 

Holonomic combinations are completely derived once from time. 

Then they can be treated formally like non-holonomic 

combinations. The reduction using nOn-holonomic velocity 

parameters (I),(I)T = (WI' ••• ,w .. _,_,) then yields a system of 

differential equations of the order 2n - r - s 

q = F(q, (I), t) , w'= G(q, (I), t) . (1.9 a, b) 

In the process, the derived holonomic combinations (1.3) 

ar~ thus implicitly stated using the variables w. The 

combinations (1.3) in the non-derived form are now first 

integrals for the n equations (1.9 a). 
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Peculiarly, the numerical solution disturbs first integrals 

as much as the explicitly considered non-holonomic 

combinations. Here too, it is true that instabilities occur 

which make themselves numerically noticeable in strongly 

increasing errors with reference to the combinations. These 

instabilities are caused by the incomplete--though 

mathematically possible--reduction of the order of differential 

motion equations. 

It is the goal of this work to formulate motion equations 

so that, even with explicitly considered combinations, not only 

the analyti6al, but also the numerical, solution is error-free 

regarding the secondary conditions. 

2~ Stabilization 

The point of departure for stabilizations of combinations 

with motion equations of the order (1.5) or (1.9) involves 

(Baumbarte [2J) calculating the Lagrangian multipliers in (1.5) 

no longer using (1.6 a) or (1.6 b), but rather the 

asymptotically stable differential equations 

{J=lX>O; g~ + yy" = 0 , y > 0 . (2.1 a; b) 

. The :Lagrangian multipliers )1-1. and)1~ calculated thusly, now 

contain the classic portion together with expressions which 

disappear identically in the analytical solution, but for which 

regulator terms constitUte the numerical solution regarding the 

combinations. The stabilizations (2.1 a, b) limit the errors 

regarding the combinations (1.3) and (1.4) in the numerical 

solution. From the regulating-technical point of view, (2.1 b) 

is a P- and (2.1 a) a PD-regulator. 

Extremely precise stabilizations (Ostermeyer [3J) may be 
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obtained by inducing an I-member into the regulator, since then, 

on one hand, the temporal median of the numerical combination 

error disappears and, on the other hand, the coefficients in the 

stabilizations can be directly indicated after inducing such a 

substitute constant T* using the optimum criterion employed in 

regulator technology. 

, , 
--- - -- -- dT =0' .. 1(. 1 IJ) 

/ -1 21'* 4/ \- ~l'* / + Hi1'*2 / , 
. 1(.1J) g + 2T* g T 47'* gdT =0, T*>O. (2.2a; b) 

I •. . t. 

These stabilizations certainly increase the order of a 

differential equations system--with the additional differential 

equation 

z = /(x, t) or = g(x, ~, t) 

one obtains the in~egrations necessary with z using the 

combinations, but the substitute time-constant "T*" only 

accounts for the process of the "real", i.e., error-ridden, 

intE~gration. 

An optimum value can be given even for quantity T* , 

whereby essentially the salient frequencies of the then adaptive 

regulator, as a function of the highest occurring frequency in 

the mechanical system, are conducted (OSTERMEYER [4]). Thus the 

parameters in the stabilizations are completely determined. 

Even first integrals can be stabilized with the integration 

of a given mechanical system (BAUMGARTE [5]). The integrals 

1.(x,:e, t) = 0 are hereby interpreted as non·-linear non-holonomic 

combinations, just as in the velocities. From the Gaussian 

principle of the smallest limit, one can formally obtain the 

motion equation with the "limit" 

Z =u1·. .. (2.3) 
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The usual calculation of the Lagrangian multiplicator from 

. 
1=0 (2.4) 

yields, of course, (f == 0, si.nce, according to the definition, 

the motion equations j = Dare identically realized. However, , 
if the multiplier d is calculated from Iv in the stabilized form 

(2.1 b), (2.2 b), one obtains an algebraic expression for d. 

This expression is a pure regulator-term and disappears 

identically upon the exact solution. 

The stabilizations are a simple aid for controlling 

numerical instabilities with great accuracy and little effort. 

But some questions still remain (see [4]). Although the 

procedure of stabilization seems very plausible, it has not yet 

been determined in a general fashion whether and in what sense 

the numerical solution of (1.5) with stabilized combinations is 

altogether better than the numerical solution of (1.5) without 

stabilization,. if one disregards the component of the total 

numerical error, which makes itself noticeable in the 

disturbance of the combinations. 

3 ~ Quasi·-Generalize.d Var iables 

A differential equation system is given in the variables 

X X (t) 1Nith ;VT = (Xl"" ,X .. ): 

~ = F.(~, t) , (3.l), (3.2) 

Apply an additional combination.to this system 

I(~, t) = 0, wi th f(~o' to).= o. (3.3) 
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There are two classic means in mechanics to obtain a 

solution to this problem. 

A. Reduction 

Here the generalized variable y(t),yT = (!h, ... ,Yi,-l) , generalized 

on n - 1, which covers the subspace given by (3. 3), is 

transformed. With 

X := x(y, t) , (3.4a) 

one obtains the differential equations 

T'" J?( ( t) t) . ( .T)-l (J<' J.' ") ,'JCl1 Y + X, = ;{! !/, , , or y = X y ' .1/1 .1;/1 -"t· (3.4b) 

B. Lagrangian Multiplier Technique 

Here, the minimum of the quadratic form Z 

Z = i- (:i: - .f1')7' (oi: - F) (3.5 ) 

with regard to the quantity ~ is sought under the secondary 

condition {3.3}. Once (3.3) has been totally derived according 

to time, then one obtains a linear combination for~. with the 

Lagrangian multiplier ~, one obtains from 

a . 
".--. (Z - Il/) = 0 "x . 

(3.6) 

the differential equation system 

oi: = Ji' + pi", , I(;c, t) = 0 . (3.7 a, b) 

• 
If one inserts (3.7a) into f = 0, one has an algebraic 

equation for calculating)U" The integration of the n 

differential equations 
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a: = J!' _ I~fi' -I- It I 

I~ . f., /IIJ 
(3.8) 

yields the solution to the problem. 

Procedure A yields numerical solutions which conform 

exactly to the combinations. The disadvantage of this procedure 

is that, under certain circumstances, the search for generalized 

variables is not very easy. 

Procedure B has the advantage that one simply obtains the 

resulting differential equation system. The numeric instability 

of the combination is disadvantageous. 

Principle procedure C, submitted here--introduction of 

quasi-generalized variables, see below--no longer considers a 

differentiai equation system with the actual involved variable.1Q. 

x and y, but rather introduces auxiliary var iables "fi,"fiT = (Xl'"'' X,,) , 

which are unrelated, but which contain the involved related 

var iables x (1. e. x wi th f (,e, t) ~ 0) in a' simple fashion. The 

differential equation systems pertaining to ~ should be easily 

constructed and formed in such a way that, after numerically 

solving the differential equations in £, one may transform from 

(3.8) into the numerical error-free solution of x regarding the 

combination. 

The point of departure is the formulation of the problem in 

the form (3.7) or (3.8). If ).=~(t) is an arbitrary 

(continuous) function of time, it is valid that: 

(3.9) 

with the transformation 

(3.10) 
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one obtains further 

(3.11) 

If one executes the differentiation of the term (f ) and 
x 

re-inserts (3.7), (3.11) is simplified to 

~ := (1 - I./",z) (l<' + p/",) - )./z - i./z! • (3.12) 

Since on this premise, the analytical solution x of (3.7) 

or (3.9) of the combination conforms exactly to f(x,t) = 0, the 

following is valid using (3.10) 

/(a!, t) = /(x(x, A), t) == 0 . (3.13) 

Using (3.10), the right side of (3.12) can be completely 

formulated in the new variable X. According to the 

construction, X for A i 0 no longer lies on the hypersurface 

given by the combination. 

Until now ~ can be set arbitrarily. The solution of /474 

(3.12) in the new variable ~ contains the first integral 

(3.13) } eX).) t) = O. How should A b~ suitably chosen? I t is 

possible, here for instance, to set A = O. Then, a; == x + c ./", 

with the set constant c is valid for the analytical solution. 

If one is to insert the constant c for ~ into the equation 

resulting from (3.10) 

:r = (I - i./u ) (F + p/,:) - A/XI (3.14 ) 

the calculated solution for x obtained from the numerical 

solution for X in (3.14) using (3.10) disturbs the combination 

as much as the numerical solution of the starting system (3.7) 

or (3.8)0 Up to now one has only executed a coordinate 

transformation which leaves the same numerical difficulties as 

before, because the numerical solution of (3.14) itself disturbs 
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its first integral (3.13). But only the exact satisfaction of 

(3.13) with the integration of (3.14) guarantees that the 

re-transformation of arbitrary values for ~ to the. starting 

coordinates x excludes errors in the combination f(x,t) = 0 or x. 

The first integral (3.13) can be used to eliminate and 

in (3.12). This reduction (of the arbitrary choice of A) has 

the result that (3.13) is implicitly considered in (3.12) and 

that thus (3.13) can no longer be disturbed by the numerical 

solution of (3.12). Furthermore, using simple calculation, one 

finds the identity 

(3.15) 

so that the motion equations now have the following form 

(3.16 a, b) 

. 
The analytical expression for ~ can now be calculated from the 

total derivation of (3.16 b) to t, or, for instance, from the 

total derivation of (3.13) to t. (This is equivalent to the 

transformation of jJ. in (3.7), (3.8) into X)d. The first method 

presumes that ~ can be indicated explicitly from the implicit 

system of equations (3.10), (3.13). The second method yields an 

explicit expression for t even when l is numerically 

iteratively established (see sections 4, 5). 

This choice of procedure for A corresponds in principle to 

the possibility to partially integrate the Lagrangian 

multiplier,. in (3. 7a). (SE~e Baumgarte, Ostermeyer [6]). 

In this sense, n variables i are quasi-generalized 

variables, since the differential equations (3.16) formulated by 

them no longer contain the classic "limit" term pix and since 

they implicitly contain the relevant solution x, which exactly 

satisfies the combination aft~r the construction. 
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The last point is given inasmuch as the first integral 

(3.13) regarding the variable £ through the reduction regarding 

the freedom in the choice of ~ is also exactly numerically 

satisfying. 

c. Procedure for Induction of Quasi-Generalized Variables 

The new var iable 'iii, 'iiiT = (Xl' ... ,Xn) on n is here transformed 

with 

'iii = re -A/z, I(re, t) := 0 , re = re('iii, }., t) , A = }.(x, t) • 
(3.17) 

The differential equation system is 

These are n first-order differential equations in X. The 

relevant solution x is established after the (numerical) 

integration of (3.18). x is error-free regarding the 

combination f(x,t). The starting quantities of x are calculated 

from Xo ~sing (3.17), and calculated using an arbitrary 

value A (to). For the choice A (t 0) ;:.: 0 it is true that 

(3.19) 

4~ Treabment of First Integrals 

If, for a differential equation system 

-or :;::: F(re, t) (4.1) 

the combination f(x,t) = 0 is a first integral (f is then a 

so-called inner connection), then lit + I, = 1~1" + I, = 0 is valid, 
• 

and the Lagrangian multiplier is ,1,'=: 0 with the tranformation 

into quasi-generalized variables. The differential equation 

system (4.1) is transformed with 'iii =(1: +A/", into 
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~ = (1 - )../"'''') F - A/zt '. (4.2) 

Example 1: The Quaternion Differential Equation 

While describing the position of a fixed body or a 

gyroscope, with a given turning vector 

(I) = w(t) , 

singularities occur in Euler's angles ("frame-locking"). In 

order to avoid these difficulties, other position coordinates 

are often introduced. 

The turning quaternions x, x T = (Xl> X:' 3:3 , X,). constitute /475 

one possibility. The related differential equation is ,,';'I>~, 

a: = ~ Ox ( 4 • 3 ) 

with 

(

0 -W1 -W: 

o = W 1 0 W3 

W 2 -W3 0 

W3 W2 -W1 

(4.4) 

The quaternions satisfy the first integral 

I(x) = X2 - 1 = 0 . (4.5) 

Numerical integrati~n of the system (4.3) disturbs the 

combination (4.5) linearly in t. The procedure C (see sectio~ 

3) leads v using the transformation 

~ == x - i./,., = x -2J..:r: , x = "ii/(l - 21.) (4.6) 

to the new differential equation system 

14 



• I , I) ;1; I. .!.. 1 1)"'-

?i = 'if (I - 211.1) Olw • (1 _ 2it) uzw. ~ = -~' Ol&~ • (4.7) 

The differential equation system in the quasi-generalized 

variables (4.7) has the same form as the starting system. 

For the re-transformation into the.starting variable, ~ is 

needed. The insertion of (4.6) into (4.5) yields: 

A = -HI - I~I) . (4.8) 

Therefore 

(4 • 9 ) 

The rule used to divide quaternions by their norm, after 

every step of integration, to take the next step of integration 

with the new starting values for the quaternions x, has been 

known for a long time as a numerical variant of the integration 

of the differential equation (4.3). (4.9), however, signifies 

more: when dealing with the problem (4.3), formulated in the 

quasi-generalized variables (4.7), one may not interfere in the 

integration. One only has to realize the depiction onto the 

starting quaternions at those points of time when the solution 

is relevant. The resulting x vector is, independent of these 

points of time, a numerically correct solution of (4.3), which 

exactly satisfies its inner combinations. 

Example 2: The Unperturbed Kepler Problem 

wi th a: = (Xl' Xz, xa) and r : == I xl, the motion equations are 

_ ](2 
:I: +-~ --0 r3 - • 

K2= parameter of gravitation (4.10) 

The analytical solution to the unperturbed Kepler problem 

can be given immediately. In practice, one will often work with 

a mildly perturbed Kepler problem (see Stiefel, Scheifele [8]). 
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However, the numerical difficulties with integration of Kepler 

equations m~y be examined with particular ease in the 

unperturbed problem. 

An essential difficulty with the integration of (4.10) is 

the upset of the energy integral 

I = .1.;i:2 _ K2 - E = 0 , 
2 r E =const <0. (4.11) 

Since the energy determines the frequency of revolution ~, 

Kepler's orbit will be only mildly perturbed with numerical 

errors in (4.ll)--the Kepler problem is stable in orbit--but the 

error in calculating the location of the satellite in orbit 

increases quadratically with time. 

The consideration of (4.11) using quasi-generalizeed 

variables in procedure C can be executed when (4.10) is written 

as a first-order differential equation system. 

oi::=v, 
. K2 
V=--a: ,.a (4.12 a, b) 

with 

1 2 K2 E 
f{a:, v) = TV - ./- = . 

fa:2 (4.12 c) 

The transformation could be executed with regard to x and v. 

Consequently, one has a form of the gradient procedure. 

However, the principles of mechanics indicate that--(4.1i) 

being understood as a non-holonomic combination--the combination 

is only considered in the equations (4.12 b), meaning that only 

the quantities v have to be transformed into the quasi

generalized variable ~. 

Using 

i v = v .- AV , . v = VI(1 -c A) 
(4.13 ) 
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can be calculated from (4.12 c), using the abbreviation V for 

the potential 

(4.14) 

the multiplier ~ into 

(4.15) 

and thus the transformed motion equations into 

V /::--=--:= 
.l: = -,v-, .J2(E -:- V), 

..!.. 'v, v--
- ~/2(E -- V) 

(4.16 a, b) 

Re-transformation into the variables (x, v) yields 

solutions to (4.12) which exactly satisfy the energy integral. 

Example 3: The Perturbed Kepler Problem 

Generally, one always has to work with a mildly perturbed 

problem: 

•• J{2 0(') a: +- '-;:aO:V = f", • .c, or; t . (4.17) 

If the forces £Q are potential, the energy integral (4.12 

c), with additional potential terms, continues to be valid. The 

transformed equations keep the structure (4.16). If the 

terms € Q are non-potential forces, the energy integral is no 

longer valid. with expansion, however, of the motion equations, 

the transformation can even be executed here. Using 

;, = - V", +eQ, i:,,= eQv (4.18 a, b, c) 

one again induces a first integral: 

I(or, v) = -} t~2 -I- l'(o:v) - E == 0 . (4.18 d) 
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As the errors in the additional scalar differential 

equation (4.18 c) are significantly smaller, using the numercial 

interpretation, than the errors in the system (4.18) with regard 

to the integral (4.18d), the transformation into quasi

generalized variables yields, even here after re-transformation, 

significantly better results. The transformed system reads 

l' ---
~ ::= !v! y'2(E' - T') • 

. !v! 
13= (-- V", --I- eQ) , 

\/2(E - V) . 

Example 4: The Symmetric Gyroscope 

Wi th the principle moments of inertia 11 = 12.13 , which 

belong to the center of gravity (fulcrum), and with the 

components of the angular velocity with regard to the solid 

principle axis of inertia, Euler's equations read 

(4.19) 

TT _ 11 - 13 0 . (4 2 0 b ) 
.n. - I W3 • '. a , , c 

3 

The system contains the first integral 

Using the transformation 

follows, from (4.20), the system 

(4.21) 

Here again, one obtains the starting system, formulated 

with the new variables. The re-transformation reads 

(4.22) 
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Concerning the practically important problem of the 

perturbed gyroscope, one can proceed similarly to deliberations 

of the perturbed Kepler problem. with the vector of 

, the system how reads 

(()3=F const. , (~.23) 

The integral is 

(4.24) 

The transformation into quasi-generalized 

var iables W1 , W ~ leaves the structure of system (4.23) 

unchanged, as above. Re-transformation (4.22) into the 

values (.,)1' (..)~ after numerical integration of (4.23), is 

error-free after construction with regard to (4.24). 

5~ Concerning Numerics with Non-Explicitly Realizable 

Trans.formation into Quasi-Generalized Variables 

In all the previously examined examples, the transformation 

could be explicitly executed. The non-symmetric gyroscope 

constitutes an example with which this no longer seems 

possible. For purposes of simplification, let us examine it 

here in its unperturbed form. The perturbed case can easily be 

examined as demonstrated above. 

Example 5: The Non-symmetrical Gyroscope 

With the terms of the previous example, Euler's equations 

her(~~ read 

19 



The system contains two first integrals: 

Here Cl and C2 are constants for the unperturbed case. 

The specification for transformation reads 

i =: 1,2,3. (4.25) 

The motion equation with quasi-generalized variables reads 

(4.26) 

The remaining equations can be obtained via cyclical 

permutations. 

In (4.26), however, the Lagrangian multipliers A1 ,)..;1. are 

still to be calculated using (4.23) and (4.24). This 

calculation can be performed numerically. One must consider, 

however, that with every new call-up of the differential 

equation (4.26), through the numerical routine of integration, 

the actual multipliers 

(4.27) 

should be established via an iteration procedure. 

It may also occur that not only the Lagrangian multipliers 

~, but even the initial variables x as a function of the 

quasi-gerueralized variables ~cannot be explicitly established. 

In this case, the (n + m) equations 

~ - a: - I",;' = 0 , /(a:, t) = 0, ).T. = (At, ... , )."') (4.28 a, b) 

have to be solved iteratively into x and l to establish the 

differential equation system 

20 



~ = FCii, oc, )., t) (4.29) 

for the integration routine. 

To avoid difficulties while searching for the zero digit, 

as well as long iteration periods, the following procedure has 

proved effective. 

The starting quantities of the quasi-generalized variables 

are defined with only the exception of a free choice of starting 

quantities of A.. For purposes ot simplification, ).(t = to) =0 

is given (see (3.19». If the transformations into x and ~ 

following from (4.28) can be explicitly executed, it will be 

evident that the Lagrangian multipliers increase, in general, 

linearly when using the numerical integration of (4.29), and 

even quadratically, when using the quasi-generalized variables 

for holonomic combinations (see section 6). 

If one now evaluates the system (4.28) during and after the 

first step of integration IJt, the desired solution vector x(to + LIt) 

is present. At the beginning of the next step of integration, 

the vector value ;t can again be des ignated zero, ;.(to + .1t) = o. 
wi th the vector of solution oc(to + .1to) ,one obtains, using 

(4.28), the initial quanti ties ~(to + .1t) for the next step of 

intE!gration. 

If one proceeds in such a way through every step of 

integration, vector ~ remains very small. Numerical experiments 

haVE! indicated that, using this procedure to evaluate equations 

(4.28), only orie or two steps of a Newtonian procedure are 

needed to obtain very high accuracies--for instance, to obtain 

the factor 10 5 or 1010 tim~s better than the stabilization 

in section 2. Using our integrational procedure, RKF 7 [8], the 

differential equation system is evaluated at a total of 13 times 

per step of integration. Having executed each time the 

iteration of (4.28), the resulting calculation time was slightly 

21 



longer, by a factor of 1.5 than the integration of the starting 

differential equation system. 

6~ Treatment of Holonomic Connections 

The holonomic combination is f(x,t) = O. If one examines 

it in derived form like a non-holonomic combination using 

non-holonomic velocity parameters, one obtains the system 

(1.9). f(x,t) = 0 is then a first integral of equations (1.9) 

and can be treated with the procedures in sections 4 and 5. 

If f(x,t) = 0 is examined using a limit in the 

motion equations (see (1.5», these read: 

or, as a system' of the first order 

~ = F(a:, vt) -+ ,41£' (6.1 a, b) 

In this instance, transformation into a quasi-generalized 

variable is also possible. Using 

(6.2) 

one again obtains, using the secondary condition 

~ = :I:(~, i., t) , .t. = ).(~, t) • (6.3 a, b) 

In Baumgarte, Ostermeyer [7] it is shown that conversion 

into quasi-generalized variables ~ conve~ts the equation 16.1) 

into the following system 

~ = lU-l(V + lUs)') , i; == 'll -\- iUs)' 
using v = v + ~fs, Us)' = 1_(lU-1v :.- )·1,;) + fill" 

(6.4 a, b) 
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It is given that X -)1-' In this instance, the function x, 

established via numerical solution of (6.4) and (6.3), is also a 

solution to initial system (6.1) which is error-free with regard 

to the combinations f(x,t) = O. In the system (.6.4), ~ can be 

calculated either by total derivation of l or from the derived 

combination i = o. Since the derived combination is linear in 

its velocities, transfotmations into v can always be explicitly 

executed: 

v . = It>(V, i, :J:, t) = v -I.fz , 
'. . --' . Izv + Iz 
A =i.(v,x,t) = If' 

.t' z 

If this is substituted into (6.4), only the calculation of 

X (x,At) and A ::: ).(X, t) remains. If this is not explici tly 

possible, one may proceed numerically in this instance, as 

demonstrated in section 5. 

23 



REFERENCES 

1. HAMEL, G.; Theoretische Mechanik (Theoretical Mechanics), Springer 
Verlag, (1967). 

2. BAUNIGARTE, J.; Stabilization of Constraints and Integrals of Motion in 
Dynamical Systems, Compo Meth. App1. Mech. and Eng., 1, (1972), 1-16. 

3. OSTERMEYER, G.P.; The Stabilization of Constraints and first Integrals 
as control problems and their consequences, ZAMv1~ 65, (1985), 3, 185-187. 

4. OSTIlRMEYER, G.P.; On a Theory of BAUMGARTE's Stabilization Procedures, 
in preparation. 

5. BAUMGARTE, J.; Asymptotic Stabilization of Integrals for Cornmon 
Differential Equations of the First Otder,ZAMv1 53, (1973) 701-704. 

6. BAUMGARTE, J. and OSTERMEYER, G.P.; On the NlUllerically Exact Consideration 
of Internal and External Constraints, Ganuntagung 1984, appeared in ZAMv1 

7 . BAUMGARTE, J. and OSTERMEYER, G. P .; Elaborations on the D' Alembert 
Principle, in preparation. 

8. STIEFEL, E" L. and SCHEIFELE, G.; Linear and Regular Celestial Mechanics, 
Springer Verlag, Berlin, 1971. 

Submitted July 23, 1984 

Address: Prof.. Dr. ~ Ing. J. BAUMGARTE, and Dr. - Ing . G. P. OSTERMEYER, 
MechanikzentYlUll, Technische Universitaet, D-3300 Braunschweig, 
Post Box 3329, Federal Republic of Germany 

* ZAMM = Zeitschrift fuer angewandte Mathematik und Mechanik (Journal of 
Applied Mathematics and Mechanics) 

, 

24 



End of Document 


