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Many lava flows have two distinct volumetric components during 
emplacement. First, there is a component actively flowing in accordance 
with Newtonian or other constitutive relations. Second, there may be an 
inactive, stationary component that is no longer participating in the 
forward movement of the flow. Such passive components may take the form of 
flow-confining levees, solidified lateral margins, overspills, plating, 
small ponds and sidestreams, or a lava tube. To describe the conservation 
of flow volume for the active component, the governing equation is taken as, 

where h = h(x,t) is the depth of the flow, w = w(x) is the width, Q = Q(x,t) 
is the local flowrate, x and t represent the distance from the source and 
time, and X 2s a rate constant for the volumetric loss to levees or other 
stationary constructs. "Global" volume conservation is described by, 

Q(tt) dt' = h(x, t) dx + X S' w(x') h(x',tt) dx' dt' 
0 0 0 

Discharge - - Active + Passive (2 

where Q(t) = Q(0,t) is the effusion rate and L(t) is the length of the flow. 
Eqs. (1) and (2) with X=O have been studied by Baloga and Pieri [I9861 and 
Baloga [1986]. Eq. (2) accounts for the entire discharge by distributing it 
dynamically between the active and passive components. From eq . (2) , the 
active volume of the flow, V(t), is given by, 

-X(t-t' ) 
h(x, t) dx = 

0 0 
Q(tt) dt' 

The growth of the stationary volume fraction is determined solely by the 
effusion rate and the rate constant. Because h(x,t) must satisfy eq. (I), 
we have in eq. (3) a key relationship between levee production, time- 
dependent source behavior, the advance of the flow front, and viscous 
changes along the flow path. Studies of these interactions are in progress. 

To illustrate some of the consequences of eq. (1) alone, we will choose 
a highly specialized flowrate, 

sin @ h(x) >w(x) 
Q(x> = 

3 v (XI 7 

where g is gravity, Q is the slope and v is the viscosity, and use data from 
the 1951 eruption of the Mihara volcano in Japan [Minikami, 19511. Figure 1 
shows the relevant geometrical data for this flow and appropriately fitted 
lines. Although the width and depth of the flow increase appreciably 
downstream, the product of the flow width and the slope measurements are 



approximately constant. The theoretical formalism simplifies considerably 
if w(x) sin 0 is taken as its average value, <w sin 0>. In Figure 1, the 
average is indicated by the dashed line. From eqs. (1) and (4), with the 
boundary condition h(0) = ho, 

1/3 2X vo 2/3 
h(~)=h~[%] [I- p U ( ~ '  )1/3w(x' ) 

h g <w sin 0> o 
0 

This solution indicates that the flowdepth is affected by both the local 
viscosity and its cumulative behavior along the path of the flow. Because 
depth and width variables are, unlike viscosity, more amenable to direct 
measurement while the flow .is active, a more useful result is obtained by 
inverting eq. (5) for the viscosity in terms of the depth and width. One 
can show that, 

where Qo = g<w sin 0> ho3/ 3 vo. This interesting result shows that the 
viscosity has a simple power law dependence on the local depth of the flow 
unless significant flowrate losses are occurring. Estimated lava 
viscosities were computed by Minikami using a form of the Jeffreys' equation 
[Williams and McBirney, 19791. The particular formula used by Minikami does 
not account for changes in width pr flowrate losses, but does have a slope 
dependence. Minikami also attempted to correct the viscosity estimates for 
effects from the sides of the channel. His values are shown in Figure 2, 
where a constant lava density of 2.5 gm/cm3 has been assumed. Figure 2 also 
shows results computed from eq. (6) using identical parameters and the 
linear fits to the depth and width data. When X = 0, the volumetric 
flowrate is conserved in the channel and the computed viscosities are 
significantly higher than the conventional Jeffreys' equation results. Even 
for a small A ,  the effect of a small flowrate loss eventually accumulates 
and produces a significant discrepancy between methods of estimation. The 
flowrate can also be recast directly in terms of depth and width 
measurements without resorting to intermediate viscosity computations. Eqs. 
(4) - (6 )  imply, 

Q(x) = Fixf I )  w(xl ' )  dx' ' 
Qo 

In principle, measurement of the flowrate and the flow geometry, i.e., both 
sides of eq. (7), provides a mechanism for testing the validity of the 
theory. Flowrates computed from the Mihara flow data are shown in Figure 3. 
Although a flowrate loss seems clearly evident, Minikami discusses a variety 
of errors that could easily account for the flowrate variations depicted. 
Figure 3 also shows typical results from eq. ( 7 ) ,  illustrating the form of 
the flowrate loss associated with linear fits to the flow depth and width 
data. There is enough uncertainty in the data to preclude these results 
from being considered as actual improvements over Minikami's analysis. 
Efforts are underway to apply eqs. (1) and (2) to lava flows at Alba Patera, 
Mars, where high resolution Viking images clearly indicate the presence of 
levees and other passive components and dimensional data has been compiled 



[Pieri et al., 19861. A model that describes the emplacement of leveed lava 
flows is expected to provide interesting inferences about the nature of the 
eruptions and possibly the compositions involved. 
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