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ABSTRACT

Analyses are given for the dynamic response to
operational maneuvers for spinning symmetric space-
craft with radial and axial booms. The research
was performed as part of the prelaunch dynamic
analysis of the ISEE-3 spacecraft placed in a halo
orbit around an Earth-Sun Tibration point, and
Tater renamed ICE when it was directed to fly-by
comet Giacobini-Zinner. The results presented use
simple spacecraft niodels with the aim of developing
understanding, and they frequently gave predictions
that were good and easily obtained when the results
from using a general purpose multi-body dynamics
program were very time consuming to obtain. The
operations encountered during the spacecraft history
that are analyzed here are, deployment of radial
booms, spin-up after partial deployment, station
keeping, and trajectory changes. The latter two
can involve both axial thrusting and pulsed radial
thrusting onte per revolution.

Keywords: Flexible spacecraft, attitude dynamics,

deployment, spin-up, vibration modes during thrusting.

1. INTRODUCTION

This paper addresses a series of problems associated
with the dynamic response of flexible spinning space-
craft during thrust maneuvers. It is a companion
work to Reference 1, which determined spacecraft
vibration modes and frequencies, and dynamic response
during spin-up, of the IMP-J (Interplanetary Monitor-
ing Platform) spin stabilized spacecraft with radial
wire antennas. The work reported here was done as
part of the pre-Taunch dynamic analysis of the ISEE
{International Sun-Earth Explorer) series of space-
craft (whose name had just been changed from IME at
the time of the study). This $eries represented a
follow-on program to the IMP series, employing very
similar spacecraft configurations. Particular
attention is given the ISEE-3 spin stabilized space-
craft with four long radial wire antennas, and short-
er spin axis booms.

The spacecraft was subjected to various thrust
maneuvers while the radial and axial booms were
deployed, and this paper aims at developing simple
models to predict the associated vibrational resp-
onse of the flexible vehicle. The maneuvers con-
sidered include the following. After orbit injection
the radial wire antennas are deployed, and the effect
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of the deployment rate history on spin rate and
spin rate vibations is studied. In order to main-
tain at Jeast a minimum spin rate, deployment is
periodically interupted for a spin-up maneuver.
After the radial and axial wires and booms are de-
ployed, orbit mairtenance maneuvers are required
to maintain the satellite in its unstable halo orbit
about the libration point. Because of reliability
considerations it is undesirable to retract and
Tater extend booms and wires for such maneuvers.
In addition to the orbit maintenance maneuvers,
there are orbit change maneuvers to go from the
{ibration point orbit to a large Earth orbit, and
eventually to the comet fly~by after various moon
fly-bys for gravity assist. The satellite has the
capability of maneuvering in the plane of the spin
using pulsed radial thrusting that is turned on for
a portion of each spin cycle. Maneuvering along
the spin axis can be accomplished with spin axis
thrusters, or by performing an attitude change and
using the radial thruster.

The aim of the analysis here is to use simple models
to obtain an understanding of the spacecraft vib-
rational response to these maneuvers. The pre-
launch dynamic analysis also included many computer
simuiations using large general purpose multibody
dynamics programs. Often, such simulations were
quite time consuming, while the equations derived
here predicted the results accurately and quickly
in terms that were easily understood and gave more
insight.

2. SPIN-UP AND DEPLOYMENT MANEUVERS

The spacecraft is modeled as a cylindrical rigid hub
with radial and axial booms represented as rigid
spherical pendulums, with a Tinear spring constant
restoring torque at their pivot points. The spring
constant is chosen to match the first bending mode
frequency of the boom as a cantilever beam. This
simple model makes many of the problems tractable.
In one case it was possible to obtain results for
the first vibrational mode starting with partial
differential equation models, and this resulted

in the same ordinary differential equation as the
above simple model, except that the gain coefficient
in the driving term was altered from 1.5 to 1.566.
This small difference gives confidence in the other
results obtained from this simple miodel.

Reference 1 develops the fundamental spacecraft mode
shapes for the satellite before the spin axis booms
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are deployed. Both deployment and spin-up directly
excite only the o¢ mode shown in Fig. 1, in which
all radial booms simultaneously lag or lead, while
the hub rotates in the opposite direction. Only this
mode will be considered here.

2.1 Derivation of differential equations

This section derives differential equations in suf-
ficient generality that they can subsequently be
used for both spin-up and for deployment. In the
former case, there is a torque applied to the space-
craft hub, and in the latter there is kinetic energy
associated with the radial motion of the booms.
Figure 2 gives the nomenclature used, where x,y are
inertial, @& is the angle of rotation of the hub

and q is the radial position of a generic volume
element on a boom of ienght JZ(%). The portion

of each boom remaining in the hub at any time i3
modeled as a point mass at the radius r of the

hub. The total kinetic energy is the sum of:

1) The kinetic energy of the hub 1/2I 0_e;"‘and
that of the coiled booms. 2) The kine@1c energy
of the tip masses of mass m.. 3)The kinetic
energy of the booms. The po%ential energy of
all radial booms together is 1/2 koe® et
be the density per unit length of the booms

and let their total length be £t . Then by
Lagranges equations one obtains the o¢ equation

2
T =T, +Mrie 2MrL + Ml
M=t (""t""f"l-) W
M2= K ('“¢+ %P}-)
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ML eM,reosa] L & + M g% + (Ml sinet) &
+2M AL (4 8) + e = O (2)
The @ equation has a first integral, Eq. 3, when
no torque is applied to the hub. C is a constant
" of integration, here evaluated for zero initial con-

ditions. The Lagrange equation for @ is Eq. 4
below.

[T-2Mar L (1-creed 18 + (ML +M,r coect ] Lk
+Mrlainot = C
C= I, = (Tyordpdrre+um,r*)

(3)

[E-2Myrd G- coe )] @ + [, L+ Myrese o] A8 .
*[2Mrh o ]8 +TE - 20, L= cove) -20ar L 52 4]0

+ef+ “irr,éﬂyiwat .
¥ \'_n‘ri,‘m - (Mzrﬂw o)k + 2“'\211]"‘ =Q (*)

I=2(nr+ M,L14

Here Q is the spin-up torque, and @, the initial
spin rate.

2.2 Radial boom dynamics during deployment

We are interested in isolating a differential equa-
tion for radial boom deformation o¢ alone, by elim-
inating ® dependence in Eq. 2. We assume the boom
deformations are small so that linearization in ot
and & about zero is appropriate. There is no need
to pick a nominal © history to Tinearize about.
Decoupling of the linearized equations is complicated
by the presence of time dependent coefficients, so

that methods such as Laplace transforms cannot be
used. Making use of all three equations, Eqs. 2-4,
one can obtain

T [TM, 5= M5 5 + [2I° ML =T My, (3mr+ 4™, L)
+20rem)ME 1id + [Tk + et C®
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This equation is too complex for analytic solution.
If one considers a constant deployment rate, then
the coefficients become polynomials in t, but the
degree of the polynomials isghigh. For example, the
coefficient of & contains t”.

If the deployment rate is slow one could conceive of
a quasi-static steady stateassociated with the par-
ticular solution. Then the approximate particular
solution is given by dividing the right hand side

of Eq. 5 by the coefficient of o on the left hand
side.” This solution often gives rather good results.
It can be simplified by making further assumptions
in order to obtain the offset angle during spin-up
that was derived by approximate means in Ref. 2:
0, T - 20/(rwo).

2.3 Dynamic response of radial booms during spin-up

Jo obtain a differential equation for the radial
boom deflection ot during a constant torque Q spin-
up, linearize Egs. 2 and 4 for ©¢ about zero, and
for & about the nominal spin rate that would exist
if the spacecraft were rigid. Decoupling the
equations, introducing a new independent variable
=1 +et and denoting differentiation with respect
to ¥ by a prime results in the following equation
for ot

"+ (Rt T¥) i = =K

€ = Q/(Iwn)

k= k/(Mrlwd)

0% = (1Marlod)/T€(EN 12~ )
K = QMy/Le(zmet-m3)]

The quantity € 1is small for the spacecraft con-,
sidered, since the spin-up torque Q is small. {2,
is the radian natural frequency of the ol spacecraft
mode when spinning at w,

(€

In the companion paper, Ref. 1, Eq. 6 was solved
analytically for the case of wire booms with k=0.
The contribution here is to study the effect of a
nonzero boom stiffness on the solution to Eq. 6.

In Ref. 1 a transformation was found to convert the
equation to a Bessel equation, for which the comp-
lementary function is in terms of Bessel functions
of order x1/4. "The particular solution for a con-
stant torque Q was found to be expressible in terms
of a Struve function of order =1/4. An alternative
expression for the particular solution was given

as an infinite series in Bessel functions., Simpler
approximate solutions were also obtained, by the
WKB method (Ref. 3} for the complementary function,
and in the form of an asymptotic expansion for the
particylar solution.
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It is found here that the introduction of the boom
stiffriess term k precludes obtaining analytic sol-
tions in terms of Bessel and Struve functions.
However, the WKB method and the asymptotic expan-
sion method can stil1 be applied, although the
resyits are more complicated.

2.3.1 The WKB approximation to the complementary
function

Generating the WKB approximation as in Refs. 1,3,
one obtains the complementary function, Eq. 7
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which is a good approximation whenever Eq. 8 is
satisfied which it is in this case because of the
€* divisor 1n'111. A and & are arbitrary cons-
tants. It is of interest to determine whether this
approximate solution is sufficiently accurate that
there is no large accumulation of phase error after
many oscillations. Let C, be the arbitrary const-
tants associated with the alternative exponential
form of £q. 7. The error in the approximation can
be characterized by these constants becoming funct-
ions of time 7. An approximation to the total
change AC, in C_ going from =1 to o gives
(Refs. 1,37) =

acte/Ce) € T/(800) (1)

The bound could be made much tighter, but the pre-
sence of € as a divisor in Q) nevertheless makes
this bound small. We conclude that the approximate
solution Eq. 7 is valid for the whole range of
interest from T=1 tovo.

2.3.2 Asymptotic expansion solution of the forced
response.  The asymptotic expansion solution obtain-
ed when k = 0 was in a simple form of a divergent
series in inverse powers of ¥ . Because of jts
simple form it was easy to obtain the solution to
any prescribed power, and to obtain error bounds as
a function of the number of terms chosen. It was
found that use of only two terms in the expansion
gave results with very little error, and the third
term is down by a factor of 1078 compared to the
first. Of course, if too many terms are taken the
error will start to grow again, since the expansion
is divergent.

When stiffness k is present it is no Tonger a simple
matter to obtain the expansion in general form for
any order, but the same technique nevertheless
applies to develop the expansion term by term, and
to bound the error at each stage.

The expansion is obtained by first assuming that
the time varying coefficient is sufficiently slowly
varying that it can be considered constant for the
purpose of generating a particular solution. This
solution is plugged into the left hand side of Eq.
6. The difference between the result and the right
hand side is the forcing function for a differential
equation whose solution is the error in the previous
solution, and whose differential operator is the
same as in Eq. 6. This equation is solved by the
same method, and the procedure is repeated indef-
initely. When three terms are developed by this
method one obtains
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A bound on the error, obtained starting from the
variation of parameters solution, and written in
terms of the forcing function for the next error
equation, F(z), is
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The general solution of Eq. 6 obtained as the sum
of Eqs. 7 and 10, applied to the case k=0, and using
only two terms in the expansion, predicted well:

the jinitial amplitude of the oscillations resulting
from applying the step change in torque to the hub,
the decay in amplitude and the increase in freq-
uency as the spacecraft spins~-up. The nonoscil-
latory part of the solution coming from the particu-
larsolution predicted the initially large angles
which converge to zero as 7 gets large due to
growth of centrifugal force on the booms. These
predictions are simple to obtain from the equations
here, but the multibody dynamics program simulation
of 11 minutes of spin-up, required 30 minutes of
computatuion time on an IBM 360-91.

3. AXIAL THRUSTING MANEUVERS

During station keeping maneuvers it would be natural
to require velocity and position corrections both

in the plane of the spin and along the spin axis.
This section is devoted to studying the effect of
axial thrusting on the boom dynamics, both for the
radial booms and for the axial booms. Such thrusting
can be destabilizing to the spin axis booms, and the
interplay and trade-offs are established here between
such factors as: axial boom stiffness, axial boom
length, axial acceleration magnitude, spacecraft

spin rate, displacement of the boom axis from the
spin axis, and misalignment of the boom direction
from the spin axis direction. The spacecraft is
assumed to be in a steady spin, and in the case of
spin axis boom dynamics, the spacecraft is assumed

to undergo a prescribed acceleration along the spin
axis, with the boom motion having no influence on the
hub motion.

3.1 Response of radial booms to axial thrusting

Axial thrusting directly excites the B8 spacecraft
mode in Fig. 1. Use of Lagranges equations gives
the boom deflection Vad in terms of arbitrary const-
ants C; and C2 as

B= Pp t Cleemlfpt + Cprim gt
£ = = (MLQ)/ (R +Myyo3) L
= { ks M1/ T =/ 1T

3.2 Axial boom dynamics with boom misalignment and
offset from spin axis

Figure 3 indicates nomenclature needed for the anal-
ysis of the Efiﬁj boom response to axial thrust. The
coordinates 7, J; K are inertial. The position of
the center of the top surface of the satellite hub
is given as #ct? R so that the axial acceleration
of the hub is prescribed as c. The base of the
axial boom is displaced a distance ry from the spin
axis, and hub fixed coordinates are centered at the
base of the boom with T/ along the direction of
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the displacement r.,. The angular orientatfog ofl\/
the boom is prescribed by angles &, in the 7/,%
plane and angle ©,. If the boom unstressed dir-
ection is misaligned and not parallel to the spin
axis, the misalignment is assumed to be small

enough for Tinearization to apply, and is denoted

by €4 5 Sy

As before, due to space limitations, derivations
must be deleted. Developing Lagranges equations
for £0,, §©a and linearizing in these quantities
as well as in 8,5, ©,, produces

§6+ G656 + K80 =il 1 o] + wlule,
- :

§6 =180, 6,1 ; ©,= (6, 6,0]' 3

8= 8t 88

0 -20, _ix K ]
= ; K —1 2
G [2@0 o} ] ? K, K,

Kz o (o — w2 + 02 8,)
K= “-’:"’;ezo

w|1= 2./‘*l’oz

wr= | +3c/(2h0f)

Wyt = (34)(r, /L)
N = ke /(4 2%)

Here £) is the radian natural frequency of the first
mode of the boom vibration as a cantilever beam,
and mp is the boom mass. Consider one of these
equations explicitly

Q) | @ @ ) ) (14)

§6, = 2w,88, + [a2-wi - 35 + L i (F)g,] 56,

+ %“’: (%) 6z 26, = %“":(%)*‘ B+ %_) 6y
) &) (8)

Term (1) represents gyroscopic coupling, The brack-
et multiplying 8, would represent the square of
the. vibration frequency of the boom, if there were
no coupling with the §8,equation, but is still
related to the natural frequency here. This brack-
et contains the square of the boom's natural freq-
uency, term (2), which is decreased by the satellite
spin rate, term (3), and by the axjal acceleration
of the spacecraft, term (4). Term (5) can either
decrease or increase the value in the bracket de-
pending on the sign of the boom misalign-

ment ©,5. Term (6) represents coupling in the
stiffness matrix due to misalignment. The offset
of the base of the boom from the spin axis produces
a forcing function to the differential equation,
term (7), as does the boom misalignment ©,,, term

(8).

i= 1,2

The general solution for ©,, ©, is
OW)= B, + 58 + C ainwit + Coanwt 09)
+ Cgatn Vit + Cqeoo vzt

86, = (wl-wl+ 010, wat w3 6,0) ~wind 6;
\ ( Wi B 2 2 2 2
G w3 ) = (wg )

wl ¢ w3 (wi-w?)

(wp-wf+wiee)*- (‘-’3'919)4620

SQPZ =[

iz % {r e 0l hele,) &

(4 a+el-oieate,) tater e
Ci= [Ci\, CGe)T 5 §=u234
¢, = (Regw,Caa + K, C2)/ Qs W)
Cai = ( Ry Caz— 2wuw, C‘,_)/(K.—w.’)
Car = (R2uw,wa Cuz + 1Kz €52 )/ (i —via®)
Cat = (1 Cyz = 20, Wa Cz2) /(4 w3

C,+w, C3 =0
Co+Cyq = —58, + se,\

c=0
The last two equations evaluate the arbitrary con-
stants Cyp, Co2, €32, C42 for the case of zero
initial conditions. §6p represents the linearized
expression for the altered equilibrium position of
the boom due to spin and acceleration. Certain
special cases are of interest:

W= |we k02 - 5_—%\ 3 6,50 or =0
T

86,7 F3al pAO-0-35),0] ;=0

$6,= (w2 + 35)6 /(0 -~ 3§) 5 =0

Ignoring stability due to gyroscopic .coupling,

which is of no practical significance since it dis-
appears in the presence of energy dissipation in the
beam, stability of the differential equation occurs
if and only if the stiffness matrix K is positive
definite. This requires K;>0 and hence the square
bracket in Eq. 14 must be positive. For any given
boom stiffness k and boom lenght . , there exists

an upper 1imit on the allowable spacecraft spin

rate @, combined with the allowable axial acceler-
ation, expressed by this condition. The same effect
is shown by the particular solution $8,.

4. PULSED RADIAL THRUSTING

Because the spacecraft is spin stabilized, station-
keeping and trajectory modifications requiring cor-
rections in the plane of the spin are accomplished
by turning on a radial thruster for a fraction of
each revolution of the hub. Here we study the
dynamic response of the spin axis booms to this
repetitive transverse excitation at their bases.

As in the previous section we assume that the hub
motion is unaffected by the boom vibrations. An
offset ry of the boom from the spin axis is included
again, but misalignment is ignored, i. e. ©,=0.

Figure 4 describes the nomenclature for the problem.
Il\\xes 1) » 3, K, are inertial coordinates, axes 13 ,
Ja s ?2 are centered on the top gf the spacecraft
with X, along the spin axis %nd 7: along the thrust
direction, and axes i3, ﬁ; , ks are rotated with
respect to the hub coordinates by angle ¥ about
the spin axis and translated along the resulting
direction by ry so that the origin of the coordinates
is at the base of the boom. The path of the origin
0, of the hub coordinates gxecytes a prescribed
zig-zag trajectory in the 3, , Jy plane as a result
of the pulsed radial thrusting.

Developing Lagranges equations for €, and ©,,
linearizing, and defining ©=8,+i8,, i{=§y=7 ,
results in the differential equation

8 +24ib +(n*-})e
=-3F(A+iA) +

(1€)
3 Wi
L
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= (F/m) e &
2= (F/m)an €
or telnTnTHT] | n=0,1,20
F= {m for & InTe, (w)T]

Here Ay, A2 are the components of the inertial
acce]erat1on of the or1g1n 0y in 3 axes, F is the
thrust magnitude, m is the tota1 spacecraft mass,
and T is the period of revolution of the hub. F
is pulsed as indicated.

The solution of the homogeneous equation is

6y = Caexe(iO®) +Dyenp (%) ()
ﬂ, = N-o
N,==N-w

The process of finding a particular solution is
somewhat complicated. The forcing function is
piecewise constant, and within each thrust-on or
thrust-off interval a constant particular solution
would apply. But using such a combined solution
is simplistic in the sense that it does not cor-
respond to a solution of the differential equation
for any initial conditions. The particular solut-
ion for any chosen initial conditions would norm-
ally require solving the differential equation on
the first interval from 0 to %, evaluating the
arbitrary constants, and then finding &), &(t).
These would be used as initial conditions for the
arbitrary constants in the solution from € to T
using the constant particular solution. The
process would have to be repeated indefinitely to
obtain the solution for all t.

However, the forcing function is a periodic funct-
ion, which suggests that there should be a periodic
particular solution for properly chosen initial
conditions. By finding these initial conditions
one only needs to find the particular solution
over one period, and then it is known for all t.
Hence, we Took for a solution in the following form
where the arbitrary constants are determined by the
given boundary conditions:

0 = Gerplin®) + Dexp il ¥ Ky Osk<
B6) = Caexp(iLt) + DExp (LOL) = (K14 i)
Ky rereT

Ky =(32) Ay /@ -0)  4FV2

K, =(3/2) 036 /1L (QF-03)]

8@ ) =06k

é(z") =6 (Y

() = 6N

6o = ¢ (19)

The general solution for the boom response to axial
thrusting, after employing the particular solution
resulting from the above and after evaluating the
arbitrary constants in terms of ©¢0) , ©(0), is

O) = 0, + ¢, € 4 Dyeifit (19)

Q‘((._) for T2t <enT+T n=o,1,2,

NG ..__—-K‘ﬁ:‘:‘ {ec'“'“ -znT) & ein,&»'z-'a'):.(
8,0= b- ,’r‘).:i]

for wTrr st Oen)T

B0 = C, et T,y @ lale- T, K,
K, +.,l<z{ - & iy, (.\ﬂ_.t)g
[“ AW\(:_Q-T)

Doz (K,ﬂKz) { ~Ln, _cm(T+z)/a 2ginl(b02,2)
o h-2) 2o (BT

Ca= -

i 8(0) +.ﬂ.,_9(°)';nzK3
n,-a

Dy= - D + c6(o)+_f2. oY =1, %3

O — (2

Cy= ~Ca—

If pulsed radial thrusting is maintained long enough
that the steady state oscillations are reached, then
the periodic particular solution represents the boom
response. The complete solution is needed to eval-
uate the initial transient response, and to deter-
mine the maximum deflections encountered in a man-
euver.

Figure 5 presents numerical results using these
equations. The thrust Tevel produced 0.4 ft/sec
acceleration (corresponding to 10 1bs thrust), and
thrust was kept on for 90° of rotation. The boom
lenght was £ = 23 ft with a natural frequency of
£ = 2.756 rad/sec (corresponding to a 1-1/8 inch
STEM boom). The boom offset ry was chosen as 0.1
ft, which was considered large but possible,
spacecraft spin was o= 20 vpm = 2.09 rad/sec,

and the thrust angle ¥ = 0. The top two graphs in
the figure give the response of &,&) and ©.¢t)
for zero initial conditions. The second two graphs
give the periodic particular solution for &, and
©,, while the final graph gives the associated
thrust-on jntervals. Although the vertical axes
are labeled as angles, the units on the axes are
converted to tip deflection in feet. These results
agree well with an independent analysis using a non-
linear multibody dynamics program.
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