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SUMMARY

The various forms of bifurcations that can occur between steady and unsteady
aerodynamic flows are reviewed. Examples are provided to illustrate the various
ways in which bifurcations may intervene to influence the outcome of dynamies tests
involving unsteady aerodynamics. The presence of bifurcation phenomena in such
tests must be taken into consideration to ensure the proper interpretation of
results, and some recommendations are made to that end.

INTRODUCTION

An understanding of unsteady aerodynamics is becoming increasingly important in
the design of highly maneuverable aircraft. At present, however, unsteady aerody-
namic flows are poorly understood, particularly when extensive changes (bifurca-
tions) occur in the flow field. To develop an understanding of unsteady aerodynam-
ies, it is important, first, to understand the various types of aerodynamies that
can occur under conditions where the boundary conditions are steady as well as the
types of bifurcations that can occur as the parameters representative of the steady
boundary conditions, such as angle of attack, are changed. Second, the interaction
of the bifurcations in the flow field with unsteady boundary conditions needs to be
understood.

The present paper contains a review of the various types of aerodynamics that
occur under steady-state boundary conditions and the various types of bifurcations
that can occur under these conditions. Next, the roles that these bifurcations can
play when the boundary conditions are unsteady are described. Then examples illus-
trating the impact of bifurcations on testing are introduced. Examples include
cases of both forced and free oscillatory motions. Finally, some recommendations
are made to assist the consideration of bifurcation phenomena in experiments involv-
ing unsteady aerodynamics.



AERODYNAMICS AND BIFURCATIONS WITH STEADY BOUNDARY CONDITIONS

Aerodynamics

Aerodynamic flows with steady boundary conditions can be categorized into five
general types. They are: (1) steady-state single-valued, (2) steady-state multi-
valued, (3) unsteady periodic, (4) unsteady quasi-periodic, and (5) chaotic. Fig-
ure 1(a) shows an example of the first type in which the response in lift coeffi-
cient C 1is steady (i.e., time-invariant) and a single-valued function of angle of
attack a. An example of the second type is shown in figure 1(b). For a steady-
state multi-valued response, there is a range of a within which the aerodynamic
response, e.g., the lift coefficient CL' can have two or more values for the same
value of a. This is commonly referred to as static hysteresis. There are at least
three different types of aerodynamic flows that are unsteady (i.e., time-varying)
even though the boundary conditions are steady. The first of these is periodic
unsteadiness. A common example is the periodic shedding of vortices in the wake
behind a circular cylinder in cross flow. Vortex-shedding gives rise to a periodic
variation of 1ift and a periodic component of drag. Another example of a periodic
aerodynamic flow is illustrated in figure 1(c¢), showing the lift coefficient for an
airfoil. At low o« the lift coefficient is steady and is a single-valued function
of a. Above some critical value of a, the flow separates from the upper surface
of the airfoil. Depending on the Reynolds number, separation can give rise to a
periodic lift about some nonzero mean value, as is indicated schematically in fig-
ure 1(c). Periodic flows normally first occur with a single frequency. However, in
more complex situations, additional frequencies can occur, and if the additional
frequencies are integer multiples of each other, we have what are referred to as
multiply-periodic flows. On the other hand, flows in which the ratio of frequencies
is nonintegral or irrational are referred to as quasi-periodic, because any finite
sample of the time series of a coefficient will not contain any periodicity. How-
ever, a Fourier analysis or power spectrum will show the relevant frequencies. This
case is not illustrated in figure 1.

The final case is that of chaos. Here, the flow or the aerodynamic response is
aperiodic and its power spectrum will be very broad. The power spectrum may contain
a peak at a frequency of a periodic state but the peak will be very broad and will
not drop off to the background noise level indicative of experimental noise. The
chaotic type of aerodynamic flow is illustrated in figure 1(d). Here again is shown
the 1ift coefficient versus angle of attack for an airfoil. Again at low values
of a, the lift is steady-state and single-valued. Separation will occur above a
critical value of a, and, for a certain range of Reynolds numbers, the flow struc-
ture and hence the 1ift will be chaotic. According to the theory of nonlinear
dynamical systems, the presence of what is called a strange attractor would be
suggested by this type of flow. A more thorough description of chaotic flow proper-
ties and strange attractors is given in reference 1.




Bifurcations

In the above discussion, changes in flow have been described and illustrated in
figure 1. These changes are often referred to as bifurcations. We have discussed
the role of bifurcations in aerodynamics previously in references 1-4. The theoret-
ical basis for our studies can be found in summary form in references 5-8. The
following is a brief review.

Bifurcations can occur between any of the states illustrated in figure 1. 1In
addition bifurcations can occur in two ways and hysteresis can occur in still
another way. The two types of bifurcation are subcritical and supercritical. These
are illustrated in figure 2. In the supercritical case (fig. 2(a)) a perturbation
(labeled C) in a coefficient is zero until a critical value of a parameter represen-
tative of the steady boundary conditions, here a, is reached. At this point,
solutions split into three branches. One branch remains the original solution
(i.e., C = 0), but it is unstable and will not occur in practice. The other two
branches, shown as symmetric around C = 0, represent stable perturbation solutions
that depart from zero. The important point here is that departure from zero is
continuous. That is, for a small change in the representative parameter (here, a)
beyond the critical value, there is a corresponding small change in the perturbation
solution.

In the case of subcritical bifurcation (fig. 2(b)), there is again a branching
of solutions as the critical value of the parameter is crossed, but in this case all
three solution branches are unstable at the critical point. However, the nonzero
initially-unstable branches are multivalued, and they become stable beyond the
turning points. As a result, after crossing the critical value of a, the flow
field jumps to a new stable configuration, and hence there is a finite change in the
perturbation solution for an infinitesimal change in a. This behavior is a source
of static hysteresis. With further increases in a beyond the critical value, the
perturbation solution continues to move along the stable branch. However, when a
diminishes, the perturbation solution remains on the upper branch and returns to the
lower branch only after a has diminished sufficiently below its critical value to
pass below the value where the upper branch has a turning point.

There is another condition that leads to static hysteresis, namely, the fold.
Note that in figures 2(a) and 2(b) both the subcritical and supercritical bifurca-
tions have two branches beyond the critical value of a, reflecting a symmetry in
the boundary conditions. Under these conditions, if we fix « at a value above the
critical value and change another variable, e.g., the roll angle ¢, the correspond-
ing response (here the rolling-moment coefficient Cz) will have the form shown in
figure 2(c). Hence static hysteresis in the rolling-moment response will be present
if the range of the roll-angle variation includes the turning points of the
response.



Importance of Bifurcations

The importance of bifurcations for changes in parameters such as the angle of
attack is intuitively obvious. It is possible to make this intuition more mathemat-
ically precise by illustrating that bifurcation leads to a loss of Fréchet differen-
tiability. Our use of indicial responses allows us to see this by inspection of
figure 3. The top left part of this figure shows a plot of the angle of attack as a
function of time . At time 1t and thereafter, the angle of attack is fixed at a
constant value. In the bottom left part is shown the lift coefficient that results
from this motion. The top right part of figure 3 again shows an angle-of-attack
history. The history prior to time <t is the same as before, but now after time
1, the constant value of the angle of attack is increased by a small amount Aa.

The history of the lift response to this motion is shown at the bottom right of the
figure. Now consider the ratio of the increment in lift to the increment in the
angle of attack as the measuring time t goes to infinity for two cases. In the
first case there is no bifurcation of the equilibrium flow at the given fixed value
of a(t). In the second case a bifurcation occurs at a(t). In the first case we
obtain the following relation.

ACL(t)
Aa

lim exists at t + =

Aa+0

The limit in this case exists and is what is referred to as a Fréchet derivative.
When a bifurcation occurs at a(t), the limit does not exist. This is easy to
understand for suberitical bifurcation and for a fold, because in these cases the
increment in C; will be finite for an infinitesimal change in the angle of

attack. For supercritical bifurcation, the loss of Fréchet differentiability is not
as easy to see. Here we could have a bifurcation from a steady state to a periodie
condition. In this case the equilibrium lift changes from a constant value to a
mean value plus a time-periodic term. Then the limit may exist but it will be
periodic with time, indicating that the form of the solution has to change.

BIFURCATIONS AND UNSTEADY BOUNDARY CONDITIONS

The role of bifurcations in cases where the boundary conditions are unsteady
becomes exceedingly diverse and complex. We shall explore this role through exam-
ples of two distinct classes of flows having forced and free boundary conditions.
In particular, the classes will be represented by examples taken from experiments
involving forced and free oscillations.

Forced Oscillations

To fully understand the role of forced unsteady boundary conditions we must
examine examples from forced oscillations under two sets of conditions: first, when




the oscillations occur in domains where no bifurcations exist under steady-state
boundary conditions; second, when the oscillations occur over a domain within which
a bifurcation exists under steady-state boundary conditions. In both of these
cases, we will be concerned with low and high reduced frequency.

Forced oscillations in domains without bifurcations are examined for two rea-
sons: first, to establish the traditional background of unsteady aerodynamics;
second, to introduce the idea of bifurcations that are induced by the forced-
oscillation boundary condition. The first case to be examined is an oscillation at
low reduced frequency in a domain where the aerodynamic response to steady boundary
conditions is steady and single-valued. This is the traditional case most often
encountered in experiments involving unsteady aerodynamics. In this case the effect
of the forced oscillation is to introduce a phase shift in the aerodynamic response.
The out-of-phase term is the traditional damping term (e.g., Cm + Cm-)' Recent

a
examples of this type of testing can be found in reference 9. gor high reduced
frequencies, it is possible for the oscillation itself to cause a bifurcation. This
topic is being studied in depth for lower-order dynamical systems (e.g., ref. 10).
An example in aerodynamics would be an airfoil undergoing pitching oscillations in
which the peak angle of attack is just below the angle of attack where separation
occurs. Here it is easy to see that if the frequency is high enough, the flow could
be forced to separate on the downstroke.

If forced oscillations are performed in a domain where there are no bifurca-
tions but the base flow is periodic, the aerodynamic behavior is analogous to that
where the base flow is steady. Here again, for low reduced frequencies there is a
phase shift (here, low is relative to the frequency of the periodic base flow). For
high reduced frequencies near that of the base flow, the forcing can introduce a
bifurcation. In this case, since the base flow is already periodic, the bifurcation
will be either to a quasi-periodic or to a chaotic flow. These conditions have been
well studied for lower-order dynamical systems (e.g., ref. 10).

- The first case to be considered where oscillations occur in a domain that
contains a bifurcation involves static hysteresis. The origin of the hysteresis
could be either a subcritical bifurcation or a fold. If the oscillation has a low
reduced frequency, the effect on the flow again is to cause a phase shift and hence
the appearance of a classic damping term. However, care must be exercised in test-
ing to ensure that the hysteresis loop is correctly taken into consideration. The
usual method of determining the damping term is to measure the power required to
drive the oscillation, in which case the hysteresis will contribute a fictitious
damping. The form of this result can be illustrated by considering an example from
the open literature (ref. 11). Here roll damping was measured for the forced roll-
ing oscillation of a fighter-type model in a wind-tunnel test. The measured effec-
tive damping coefficient is shown plotted in figure U4(a) as a function of the ampli-
tude of the oscillation for several reduced frequencies. Note that there is a very
strong effect of the reduced frequency, particularly at the lower values. This is a
very good indication that a static hysteresis loop may have been present. These
data were reassessed by Schiff and Tobak (ref. 12). They found that if the results
were analyzed under the assumption that static hysteresis was present, the results



could be plotted as shown in figure 4(b). When plotted in this manner, the results
for the different amplitudes should fall on straight lines that intercept the zero
reduced-frequency line at the same point. This intercept point is related to the
area of the static hysteresis loop. With the exception of one data point, these
data appear to be consistent with existence of the assumed hysteresis loop. Unfor-
tunately, no static aerodynamic data were taken during this experiment which might
have confirmed the presence of hysteresis. This omission shows the importance of
taking data with steady boundéry conditions over the entire domain where forced
oscillation testing is to be carried out, and in such a way as to cover all of the
possibilities for the existence of hysteresis.

The last forced oscillation case to be considered is that of oscillating over a
domain in which there is a bifurcation from a steady state to a periodic state.
This is the case in experiments involving dynamic stall. Here, the effect of the
oscillation is extreme. Results from a typical set of tests are shown in figure 5
(ref. 13). We see that results even at low reduced frequencies are unexpected. At
a low reduced frequency, k, we expect that oscillation might result in a loop sur-
rounding the static data. We see, however, that even at the low reduced frequency
of k = 0.004, the 1ift on the stroke with increasing angle of attack nearly matches
the static results, whereas on the stroke with decreasing angle of attack, the lift
is much less than static results. These results indicate that the separation which
occurs at an angle of attack of 12° has an even more pronounced effect on the down-
stroke than it does on the static results. The same effect is further indicated at
the high reduced frequency of k = 0.25. Here we see that the flow remains essen-
tially attached on the upstroke, reflected by the resemblance of the variation of
lift coefficient on the upstroke to that for an unstalled airfoil. Further evidence
is provided by the water-tunnel flow visualization shown in figure 5 (ref. 14).
Essentially-attached flow is observed on the upstroke, whereas on the downstroke,
enhancement of the separation is indicated by both the much lower 1ift and the
extensive region of separated flow shown by the flow visualization. Further discus-
sion of the role of bifurcations in dynamic stall can be found in reference 2.

Free Oscillations

An additional factor must be considered in this case, which is that the body
itself is a dynamical system that the aerodynamic system is now forcing and vice
versa. If the free oscillations occur in a domain where the aerodynamic response is
steady and no bifurcations are induced, there is nothing much of interest that can
happen. If the entire system is statically and dynamically stable, a perturbed
motion will simply decay to zero.

If the aerodynamic response for the stationary body is periodic, then the
possibilities are many. If, for example, the body is supported in a spring-mounted
system, the natural frequency of which is less than the frequency of the aerodynamic
response, the motion of the body may be quasi-periodic or even chaotic. This in
fact is the case for a spring-mounted circular cylinder in crossflow and also the
case for a free-to-roll model in a wind-tunnel test.




The case of the circular cylinder in crossflow is well illustrated by the
results of Van Atta and Gharib (ref. 15) (an example is shown in fig. 6). The left
portion of this figure shows measurements of the velocity in the wake and the motion
of the wire (the circular cylinder in this case) for the case of a well-damped
motion. Both the time series and the power spectra are shown. For this well-damped
case, the wake velocity shows a very pronounced frequency at the Strouhal fre-
quency. However, the wire motion is nearly nonexistent (lower-left-portion
plots). The power spectrum is flat and at a level commensurate with experimental
noise. The right portion of figure 6 shows the results for the same conditions
except that there is no damping. Here the power spectrum for the motion of the wire
(lower-right-portion plots) shows a broad peak at a frequency that is near the
Strouhal frequency. In addition, and more importantly, the power level is 10 dB
higher than the noise level of the experiment (left portion of figure) over a very
broad portion of the spectrum. These results show a classic example of chaotic
behavior. The peak frequency occurs at the harmonic of the natural frequency of the
oscillating wire nearest to the Strouhal frequency. Note that under this condition,
the velocity measurements in the wake still show a frequency near the Strouhal
frequency but now the signal shows a very broad spectrum. Hence the wake flow may
be classified as being even more chaotic than the wire motion itself. This problem
is currently under study at NASA Ames. The major thrust of the research is to model
the aerodynamics and hence to arrive at a simple predictive model of this type of
motion. If successful, this research can lead to a better understanding of the
modeling of motions induced by dynamic stall. A simple single-degree-of-freedom
motion with a quasi-static modeling of the periodic aerodynamics is desecribed in
reference 4. Questions still remain whether modeling at the level of a single
degree of freedom can capture the chaotic behavior. A two-degree-of-freedom motion
is also under analysis and here it is already clear that chaotic motion occurs with
periodic aerodynamics.

Another example of a free oscillation being forced into chaotie-like motion is
that of a wind-tunnel model mounted so that it is free to roll. Some results are
illustrated in figure 7 (ref. 16), which shows a typical example of the rolling
motion. This motion appears to have a well-defined frequency, but the amplitude
builds up and decays in bursts. These bursts of motion occur erratically in a
manner which is similar to the intermittent bursts of motion that are known to occur
in certain simple low-order dynamical systems. The phenomenon is often referred to
as intermittent chaos. In this case, the motion is thought to be driven by an
oscillatory rolling moment caused by the phasing between oscillatory shock-induced
separations on each of the wing panels. The existence of such a periodic aerody-
namic driving mechanism creates a dynamic situation in very close analogy to that of
the spring-mounted cylinder in crossflow. An appropriate modeling of the aerodynam-
ics for this motion would provide a good candidate for further study of the occur-
rence of chaotic-like motions in a flight-dynamics setting.



CONCLUDING REMARKS

The different types of aerodynamics and bifurcations that can occur under
steady-state boundary conditions have been reviewed. Bifurcations were found to
involve a loss of Fréchet differentiability. The impact of bifurcations on testing
that involves unsteady aerodynamics was reviewed by means of examples of both forced
and free oscillatory motions. The following summarizes our main observations.

Body motion can be critical when passing through a bifurcation. Existence of a
subcritical bifurcation or a fold can lead to the measurement of a spurious damping
if a hysteresis loop is ignored. Body motion combined with bifurcation may cause
ma jor changes in the characteristics of the aerodynamics, such as those that occur
in dynamic stall. Moreover, bifurcations can lead to changes in the characteristics
of the motion itself. We saw that periodic vortex shedding from an elastically-
mounted circular cylinder in crossflow may cause the cylinder to undergo a chaotic
motion. These observations lead us to the following recommendations concerning the
consideration of bifurcation phenomena in experiments involving unsteady aerodynam-
ics. (1) There should be a complete base of testing under static boundary condi-
tions that encompasses all possibilities for the presence of hysteresis. (2) Tests
need to be conducted in each domain or type of aerodynamics under consideration and
across all bifurcation points. (3) Data analysis must allow for the presence of
bifurcations to ensure the proper interpretation of results.
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