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TECHNICAL PAPER 

MORE ON EXACT STATE RECONSTRUCTION IN 
DETERMINISTIC DIGITAL CONTROL SYSTEMS 

I. INTRODUCTION 

Books on modern digital control systems usually address the problem of controlling a continuous- 
time plant driven by a zero-order-hold with a sampled output as shown in Figure 1.  (For example, see 
Reference 1 .) A common solution to this problem is to reconstruct the state of the system at the sampling 
instants using a state observer and then feed back the reconstructed states [2]. However, the state 
observer has two undesirable characteristics. First of all, it is a dynamical system in itself and, hence, 
adds additional states and eigenvalues to the system, which can affect system stability. Second, as a 
consequence, the reconstructed state is normally an approximation to the true state and is usually not a 
good one early in the state reconstruction process unless the initial state of the system is well known. 
Recently, Polites developed a new approach to state reconstruction which has neither of these problems 
[3]. Subsequently, he extended this work and developed what he called the Ideal State Reconstructor 
[4,5]. It was so named because: if the plant parameters are known exactly, its output will exactly equal, 
not just approximate, the true state of the plant and accomplish this without any knowledge of the plant's 
initial state. Besides this, it adds no new states or eigenvalues to the system. Nor does it affect the plant 
equation for the system in any way; it affects the measurement equation only. It is characterized by the 
fact that discrete measurements are generated every TIN seconds and input into a multi-inputlmulti- 
output moving-average (MA) process [6]. The output of this process is sampled every T seconds and 
utilized in reconstructing the state of the system. In this paper, a special form of the Ideal State Recon- 
structor is presented which is simpler to implement than the most general form. Before presenting this 
simpler form, some pertinent results to date for continuous-time plants driven by a zero-order hold are 
reviewed in Section 11. Then, the Ideal State Reconstructor, in its most general form, is summarized in 
Section 111. Finally, the special form of it is presented in Section IV. An example of this special form is 
given in Section V. The conclusions and some recommendations for future study are presented in Section 
VI. 

Figure 1 .  Continuous-time plant driven by a zero-order-hold 
with standard measurements. 



II. PRELIMINARY 

For the plant in Figure 1 ,  x(t) E Rn is the state vector, g(kT) E Rr is the control input vector, ys(kT) 
E Rm is the standard output or measurement vector, F E RnXn is the system matrix, G E Rnx' is the control 
matrix, and Cs E RmXn is the standard output matrix. It is well known that this system can be modeled at 
the sampling instants by the discrete state equations [ I ]  

where 

and 

$(t) E RnXn is the state transition matrix. A E RnXn is the system matrix and B E RnXr is the control matrix for 
the discrete state equations ( 1 )  and (2). 

A and B can be determined analytically using equations (3) to (5). An alternative approach, which 
is also quite suitable for numerical computation, is as follows [7 ] :  @(t) and S t  $(A)dA can be expressed in 
the form of matrix exponential series as o 



respectively. From equations (6) and (7),  

T 
where I E RnXn is the identity matrix. Hence, J +(h)dh can be determined using equation (7) with t = T 
and this result substituted into equation (8) td) get +(T). With these results, A and B can be found using 
equations (4) and (5). 

Now consider the plant in Figure 2, which is a generalization of the one in Figure 1. In addition to 
the standard output ys(kT), the plant in Figure 2 has the output yF1(kT) generated as follows. First, the 
continuous-time output ~ ( t )  E RP is sampled every TIN seconds.- very N samples are multiplied by the 
weighting matrices Hj E Rqxp, j = 0,1,. . . ,N- 1, and then summed to generate the output yF(kT) E Rq, 
every T seconds. Functionally, this is equivalent to passing the discrete measurements every 
TIN seconds through a multi-inputlmulti-output MA process with coefficient matrices Hj, j = 0 ,  I ,. . . ,N- 
1, and then sampling the output of this process every T seconds to generate yF(kT). Then yF(kT) has E- 
u[(k- 1)T] subtracted from it, where E- E RqXr, to produce the modified  refiltered measurement vec- - 
tor yF1(kT) E Rq. This is catenated with ys(kT) to form the total measurement vector yT(kT) E Rn'+q. In - 
~ i ~ u r e  2, CF E Rpxn since ~ ( t )  E RP anbx(t) E Rn. 

Previously, Polites [8] showed that when 

where H E R ~ ~ ( ~ P )  is given by 



Figure 2. Continuous-time plant driven by a zero-order-hold with standard 
and modified MA-prefiltered measurements. 
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and p E ~ ( ~ p ) ~ ~  is 

the discrete state equations for the plant in Figure 2 become 

where D- E Rqxn is given by 

and a E is 



From equation (1 3), 

where CT E R(m-q)xn. 

E- and D- can be evaluated analytically using equations (3), (9) to (1 l) ,  (14), and (15). An 
alternative approach, which can be either analytical or numerical, is as follows. Let t = -j(T/N), where j 

-j(T/N) 
= 0,1, . . . ,N- 1 , and use equation (7) to determine J 

0 
+(X)dh, j = 0,1, ..., N-1. Substitute these 

results into equation (8) to get +[-j(T/N)], j = 0,1,. . . ,N-1 . At this point, E- and D- can be found using 
equations (9) to (1 I ) ,  (14), and (15). 

Ill. THE IDEAL STATE RECONSTRUCTOR 

A general block diagram of the plant and the Ideal State Reconstructor, in its most general form, 
is shown in Figure 3. Notice the similarity between Figures 2 and 3. By virtue of this, if E- is given by 
equation (9), then equations (1 2) to (16) define the discrete state equations for the system in Figure 3 up 
to the output - yT(k). proceeding further, - yT1(k) is related to yT(k) by the expression 

However, for equation (17) to be meaningful, (CTT CT)-' must exist, and this occurs only when (CTT CT) 
is nonsingular. Recall that CT E R(n'+q)xn . If (m + q) 3 n and CT has maximal rank (i.e. ,' rank n), then (cTT 
CT) is positive definite and therefore nonsingular [9]. Hence, equation (1 7) requires that (m + q) 2 n and 
rank (CT) = n for it and the Ideal State Reconstructor to be meaningful. Assuming this is the case, it 
follows from equations (12), (13), and (17) that the discrete state equations for the system in Figure 3 are 

Hence, the output of the Ideal State Reconstructor, yTt(kT), exactly equals the true state of the plant, 
x(kT). Consequently, if one is given the plant in ~ i ~ u r e  1 and modifies it to conform to Figure 3,  he can - 
exactly reconstruct the state of the plant without adding any new states, eigenvalues, or dynamics to it, 
since the plant equation (18) for the system in Figure 3 is identical to the plant equation (1) for the plant in 
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Figure 3. Block diagram of the plant and the Ideal State Reconstructor in its most general form. 



Figure 1. In Figure 3, exact state reconstruction is achieved when E- is given by equation (9) and CT is 
given by equation (16) where D- is given by equation (14). In addition, CT must satisfy the requirements 
just imposed on it. 

One of these is that the dimensions of CT, namely (m + q)xn, satisfy the relationship (m + q) a n. 
However, this can be rewritten as q 2 (n-m). Hence, the number of rows, q,  in the weighting matrices 
Hj, j = 0,1,. . . ,N- 1, must equal or exceed the number of states, n,  in the plant state vector, ~ ( t )  or x(kT), 
minus the number of elements, m, in the standard measurement vector, ys(kT). Since q can be chosen 
arbitrarily, this requirement can be easily satisfied. The other requirement on CT is that it have rank n. 
One approach to satisfying this requirement is as follows. Recall that CT is defined by equation (16) 
where D- is defined by equation (14). Assuming Cs is given, then one can choose D- so that CT has rank 
n and then find H to give the desired D-. One solution to the problem of finding H to give the desired D- 
is to let 

This follows from equation (14). However, like before, this requires that (aT a )  be nonsingular. Recall 
that a E ~ ( ~ p ) ~ " .  If (Np) n,  or equivalently N nlp, and a has maximal rank (i.e., rank n), then (aT a )  
is nonsingular. The first requirement can be easily satisfied because the number of weighting matrices 
N, where the weighting matrices are Hj, j = 0,1,. . . ,N-1 , can be arbitrarily chosen so that N a n/p. 
Recall that n is the number of states in the plant state vector, ~ ( t ) ,  and p the number of elements in the 
output vector ~ ( t ) .  

In summary, the procedure to achieve exact state reconstruction with the Ideal State Reconstruc- 
tor is as follows. Given the plant in Figure 1, modify it to conform to Figure 3. Choose the number of 
rows, q ,  in the weighting matrices Hj, j = 0,1,. . . ,N-1 , so that q 2 (n-m) where n is the number of states 
in the plant state vector, ~ ( t )  or x(kT), and m is the number of elements in the standard measurement 
vector, ys(kT). Choose the number of weighting matrices, N, so that N 2 n/p where p is the number of 
elements in the output vector z(t). Assuming the (Np)xn matrix a ,  defined by equation (15), has maximal 
rank (i.e., rank n), let H be given by equation (20) where D- is chosen so that the (m + q)xn matrix CT, 
defined by equation (16), has maximal rank (i.e., rank n). The weighting matrices Hj, j = O,l,. . . ,N- 1 ,  
are found by partitioning H as in equation (10). Finally, let E in Figure 3 be given by equation (9) where 
p is defined by equation (1 1). The discrete state equations for the system in Figure 3 are now given by 
equations (18) and (19). Hence, the output of the Ideal State Reconstructor, - yTr(kT), exactly equals the 
true state of the system, x(kT). 

In the event no standard measurements are used in the state reconstruction process, thenys(kT) is 
a null vector, Cs is a null matrix, and the Ideal State Reconstructor in Figure 3 degenerates to the one 
presented in Reference 4. In this case, the methods in Reference 4 for choosing the parameters in the 
Ideal State Reconstructor to achieve exact state reconstruction, as well as the one described here, are 
applicable. 



IV. A SPECIAL FORM OF THE IDEAL STATE RECONSTRUCTOR 

As indicated in Section 111, one requirement of the Ideal State Reconstructor is: the number of 
rows, q ,  in the weighting matrices Hj, j = 0,l ,. . . ,N- I .  must be chosen so that q 2 (n-m) where n is the 
number of states in the plant state vector, ~ ( t )  or E ( ~ T ) ,  and m is the number of elements in the standard 
measurement vector ys(kT). A special form of the Ideal State Reconstructor, which is simpler to 
implement than the most general form, can be obtained by letting q = n-m. In general, CT E K""-L1"" . 

Hence, for this special case, CT E RnXn, which is a square matrix. Now, if D- can be chosen so that CT is 
nonsingular, then 

which follows from equation (17), and the Ideal State Reconstructor assumes the special form shown in 
Figure 4. From equations (12), (13), and (21), the discrete state equations for the system in Figure 4 
become equations (18) and (19), like before. Again, the output of the Ideal State Reconstructor, yT1(kT), 
exactly equals the true state of the plant, z(kT), but with a minimum number of rows in the weighting 
matrices, in this case. 

Observe, from equations (12) and (13), that when CT is square and nonsingular, yT(k) becomes a 
legitimate state vector for the system. Solving for - x(k) in equation (13) and substituting this result into 
equation (12) yields the plant equation for the system in terms of the state vector - yT(k). The result is 

where A* = CT A cT-I and B* = CT B. ConsequentIy, if it is sufficient to construct the state vector 
y(kT) in place of the state vector K ( ~ T ) ,  then the special form of the Ideal State Reconstructor in Figure 4 - 
can be simplified, because there is no reason to calculate yT1(kT). - 

V. AN EXAMPLE 

Consider the double integrator plant and the special form of the Ideal State Reconstructor shown 
in Figure 4. Manipulating this plant into the format of Figure 3 yields 
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Figure 4. Block diagram of the plant and the special form of 
the Ideal State Reconstructor. 
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Figure 5. Double integrator plant and the special form of the 
Ideal State Reconstructor. 



and 

Since F E RnXn, G E RnXr, Cs E RmXn, and CF E Rpxn, it follows from equations (22) to (24) that n = 2 and r 
= m = p = 1.  Using equations (22) and (23) and the formulas presented in Section 11, 

and 

For the special form of the Ideal State Reconstructor, q = n-m = 1. The requirement N n/p can be 
satisfied by letting N = 4. Now a and P can be evaluated using equations (1 l ) ,  (15), (23) to (25), and 
(26), and are found to be 



and 

respectively. In equation (27), eliminating any two rows forms a 2x2 matrix with nonzero determinant, 
assuming of course T > 0. Hence, rank (a )  = 2 = n and so (aT a) is nonsingular. Consequently, 
(aT&)-' aT exists and is found to be 

using equation (27). Since (aT a)-' aT exists, H can be given by equation (20) where D- needs to be 
chosen so CT is square and nonsingular. Since D- E RqX", then D- becomes a 1x2 matrix. Now, if D- is 
chosen to be 

it follows from equations (16), (24), and (30) that 



Obviously, CT is square and nonsingular and there is no need to calculate - yT1(kT) in Figure 5.  From 
equations (lo),  (20), (29), and (30), 

which reveals the weighting matrices Hj, j = 0,1,2,3. From equations (9), (28), and (31), 

The special form of the Ideal State Reconstructor is now completely defined for this example. 

VI. CONCLUSIONS AND RECOMMENDATIONS 

This paper has presented a special form of the Ideal State Reconstructor for deterministic digital 
control systems which is simpler to implement than the most general form. The Ideal State Reconstructor 
is so named because: if the plant parameters are known exactly, its output will exactly equal, not just 
approximate, the true state of the plant and accomplish this without any knowledge of the plant's initial 
state. Besides this, it adds no new states or eigenvalues to the system. Nor does it affect the plant equa- 
tion for the system in any way; it affects the measurement equation only. It is characterized by the fact 
that discrete measurements are generated every TIN seconds and input into a multi-inputlmulti-output 
MA process. The output of this process is sampled every T seconds and utilized in reconstructing the 
state of the system. 

The Ideal State Reconstructor is ideally suited for systems where measurements are available at a 
faster rate than the control law equations need to be solved. A good implementation of it would be to 
have a microprocessor dedicated to solving the MA-prefilter calculations recursively as the 
measurements become available every TIN seconds. Every T seconds or N calculations, the result could 
be transferred to a central processor where the remaining calculations in the reconstructor are made and 
the control law equations are solved. 

Since it is an open loop type state reconstructor, the Ideal State Reconstructor may be less robust 
than the state observer when parameter uncertainties and measurement and process noise are considered. 
This is an area for further study. However, intuitively it would seem: the more measurements used in 
reconstructing a given state, the more robust the reconstructor. If so, then making N as large as possible 



would help. Perhaps, N could be as large as 100, or even 1000, with the suggested implementation, in 
many practical problems. If it turns out that robustness is still a problem, then the future of the Ideal State 
Reconstructor may be that of a prefilter to the state observer, or better yet the Kalman filter. In a system 
where measurements are available at a much faster rate than the Kalman filter algorithms can be solved, 
the Ideal State Reconstructor might provide a descent estimate of the state which could then be further 
improved by the Kalman filter. This also is an area for future study. 



REFERENCES 

Jacquot, R. G.: Modem Digital Control Systems. Marcel-Decker, New York, 1981, p. 126. 

O'Reilly, J.: Observers for Linear Systems. Academic Press, London, 1983, p. 1. 

Polites, M. E.: A New Approach to State Estimation in Deterministic Digital Control Systems. 
NASA TP-2745, George C. Marshall Space Flight Center, Huntsville, Alabama, July 1987. 

Polites, M. E.: Exact State Reconstruction in Deterministic Digital Control Systems. NASA 
TP-2757, George C. Marshall Space Flight Center, Huntsville, Alabama, August 1987. . 

Polites, M. E.: Further Developments in Exact State Reconstruction in Deterministic Digital Control 
Systems. NASA TP-2812, George C. Marshall Space Flight Center, Huntsville, Alabama, March 
1988. 

Kailath, J.: Linear Systems. Prentice-Hall, Englewood Cliffs, New Jersey, 1980, p. 116. 

Franklin, G. F. and Powell, J. D.: Digital Control of Dynamic Systems. Addison-Wesley, Reading, 
Massachusetts, 1980, p. 136. 

Polites, M . E. : Modeling Digital Control Systems With MA-Prefiltered ~easurements. NASA 
TP-2732, George C. Marshall Space Flight Center, Huntsville, Alabama, June 1987. 

Greville, T. N.: The Pseudoinverse of a Rectangular or Singular Matrix and Its Application to the 
Solution of Systems of Linear Equations. SIAM Review, Vol. 1, No. 1, 1959, p. 38. 



1. REPORT NO. 2. GOVERNMENT ACCESSION NO. 3. RECIPIENT'S CATALOG NO. 

NASA TP-2847 I 
14. T I T L E  AND SUBTITLE 

More on Exact State Reconstruction in Deterministic 
Digital Control Systems 

7. AUTHOR(S) 

Michael E. Polites 
9. PERFORMING ORGANIZATION NAME AND ADDRESS 

George C. Marshall Space Flight Center 
Marshall Space Flight Center, Alabama 358 12 

National Aeronautics and Space Administration 
Washington, D.C. 20546 

5. REPORT DATE 

8. PERFORMING ORGAN1 ZATION REPORr # 

10.  WORK UNIT NO. 
M-5 9 7 I 

1 1. CONTRACT OR GRANT NO. 

13, TYPE OF REPORT & PERIOD COVERED 

Technical Paper 

1.1. SPONSORING AGENCY CODE 

I 
15. SUPPLEMENTARY NOTES I 

I Prepared by Structures and Dynamics Laboratory, Science and Engineering Directorate. I 
16. ABSTRACT 

This paper presents a special form of the Ideal State Reconstructor for deterministic digital control 
systems which is simpler to implement than the most general form. The Ideal State Reconstructor is so 
named because: if the plant parameters are known exactly, its output will exactly equal, not just approxi- 
mate, the true state of the plant and accomplish this without any knowledge of the plant's initial state. 
Besides this, i t  adds no new states or eigenvalues to the system. Nor does it affect the plant equation for 
the system in any way; it affects the measurement equation only. It is characterized by the fact that 
discrete measurements are generated every TIN seconds and input into a multi-inputtmulti-output 
moving-average (MA) process. The output of this process is sampled every T seconds and utilized in 
reconstructing the state of the system. 

17.  KEY WORDS 10. DISTRIBUTION STATEMENT 

Digital Control Systems 
Multirate Sampling 
State Estimation 
State Reconstruction 

Unclassified - Unlimited 

Subject Category: 31 

- - 
For sale by Natlonal Technical Idonnation Service, Springfield, ~ k i n i n  22  16 1 

I 
19. SECURITY CLASSIF. (of thle rep&\ 

Unclassified 
20. SECURITY CLASS! F. (of thlr page) 

Unclassified 
2 1 .  NO. OF PAGES 

24 

22. PRICE 

A0 2 



BULK RATE 
POSTAGE & FEES PAID , 

NASA 
Permit No. G-27 

National Aeronautics and I 

Space Administration , I 
Code NTT-4 I 

I 

Washington, D.C. 
I 

20546-0001 
1 

I I 

I 

O t l ~ c ~ a l  Bus~ness 
Penally lor Provale Use. 5300 

1 

I 

I , 
i 

' / 

I / 

I i \ 

I 

, 
! 

1 
I POSTM&TER: If Undeliverable (Section 158 

I Postal Manual) Do Not Return 

I 
I 

I 

\ 




