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Summary

Reaction-rate coefficients and thermodynamic and transport properties are reviewed and sup-
plemented for an 11-species air model. These coefficients and properties can be used for analyzing
flows in chemical and thermal nonequilibrium up to temperatures of 30000 K. Such flows will likely
occur around currently planned and future hypersonic vehicles. Guidelines for determining the state
of the surrounding environment are provided. Curve fits are given for the various species propertics
for their efficient computation in flow-field codes. Approximate and more exact formulas are pro-
vided for computing the properties of partially ionized air mixtures in a high-energy environment.
Limitations of the approximate mixing laws are discussed for a mixture of ionized species. An clec-
tron number-density correction for the transport properties of the charged species is given. This
correction has generally been ignored in the aerospace literature.

Tabulated values of the curve-fit cocfficients and computer subroutines to evaluate the various
species properties using these coefficients are available from the NASA Computer Software Manage-
ment and Information Center (COSMIC).

Introduction

Currently envisaged transatmospheric and aeroassist missions (refs. 1 to 4) have created a
resurgence of interest in the aerothermodynamic design of hypersonic vehicles. However, the
velocities and altitudes at which these proposed craft would operate are different, and sometimes
more severe, than those experienced in the past. As a result, the nonequilibrium flow environment
that will surround these vehicles will considerably impact the vehicle aerodynamics, thermal loads,
and propulsion-system efficiency. Since such an environment is difficult to simulate in current ground-
based test facilities, the design of these future vehicles will rely heavily on numeric calculations. In
turn, these calculations will require a good understanding of the physical modelling required to
simulate these phenomena.

Under hypersonic flight conditions, a vehicle travelling through the atmosphere will excite the air
that flows around the body to very high temperatures as the kinetic energy of the vehicle is dissipated
to the gas. Depending on the flight velocity, various chemical reactions will be produced behind a
shock wave as shown in figure 1 (which is adapted from ref. 5) for the stagnation region of a sphere
with a radius of 30.5 cm. These reactions will affect the properties of air and cause considerable
deviation from those of a thermally and calorifically perfect gas. A vehicle flying through the higher
reaches of the atmosphere at high velocities may also experience thermal nonequilibrium (fig. 1),
since the lower density reduces the collision frequency, and the high velocity results in smaller
transit times for the air molccules. Both of these processes create a delay in the equilibration
of translational, rotational, vibrational, and electronic modes of the thermal energy. Under these
conditions, the modelling of the air chemistry requires a multitemperature approach in contrast to
classical single-temperature formulations.

Four regions (I to IV) are delineated in figure 1. These regions show when the various chemical
activities are initiated at a given altitude and velocity. The initiation of chemical and thermal
nonequilibrium processes for different velocity and altitude conditions is similarly depicted through
regions A, B, and C. This figure clearly shows that the sct of chemical reactions and thermodynamic
and transport propertics would change continuously for a given flight trajectory. For example, in
regions A and B (i.c., before initiation of thermal nonequilibrium), the specific heat at constant
pressure Cp, would change as follows:

Cp = Constant in region I before the excitation of vibrational energy mode

Cp = Cp(T) in region I after the excitation of vibrational energy mode and
before the dissociation of oxygen

Cp = Cp(C;,T) after the dissociation of oxygen



Similarly, the equation of state changes along the flight trajectory as the thermal equilibrium and
thermal nonequilibrium regions (ref. 6) are traversed:

R
p=p—=—T (in regions A and B)
M
R .
p= p% Tir  (in region C)

where Ti; is the translational temperature in an environment of thermal nonequilibrium.

In numerical simulations, the thermodynamic and transport properties and reaction-rate coef-
ficients (in the case of finite-rate chemistry) are usually required. It is obvious from the previous
discussion that these properties and the equation of state should be evaluated carefully when chemi-
cal and thermal nonequilibrium conditions exist in the flow field around a hypersonic vehicle. Under
chemical and thermal equilibrium conditions, the transport and thermodynamic properties of high-
temperature air and its components are well documented in the literature (refs. 7 to 12). However,
for flows with finite-rate chemistry, the individual species properties and appropriate mixing laws
that are required are not as well established. For example, in a partially ionized gas mixture, the
conventional mixing laws (refs. 13 and 14) developed for nonionized mixtures cannot be extended to
higher temperatures without considerable error (ref. 15).

The purpose of this report is to review the thermodynamic and transport properties and the
reaction-rate coefficients of the most important reactions for the 11 constituent species of air (N, O,
N2, Oz, NO, N*, O*, NJ, OF, NO*, ™) for temperatures up to 30 000 K. Those species properties

that are not available in the literature for this 11-species model are provided, and curve fits are -

obtained for all properties to permit their efficient computation in flow-field codes. Tabulated values
of the curve-fit coefficients and computer subroutines to evaluate the various species properties using
these coefficients are provided in reference 16. These values and codes may be obtained for a fee
from:

COSMIC

Computer Services Annex
University of Georgia
Athens, GA 30602

(404) 542-3265

Request the code by the designation LAR 14447. This code is written in FORTRAN 77 for use on
computer with a FORTRAN compiler.

Approximate and more exact mixing laws for the various species properties are also provided
for partially ionized gas mixtures. The limitations of th¢ approximate mixing laws are pointed out,
especially for a mixture of jonized species. An electron number-density correction for the transport
properties of the ionized species, which has been generally neglected in the aerospace literature,
is provided. Sources of the input data used in the calculation of various flow-field properties are
identified. Appropriate formulas are provided for using these properties in computations of flows
with thermal nonequilibrium.

Symbols
Apg:,Bp:,Cpgs curve-fit coeflicients for collision cross section ratio Bi”j
ij ij ij
(eq. (47))
Ap , coefficient in modified Arrhenius form of backward

reaction-rate constant (eq. (3b))
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curve-fit cocfficients for diffusion coefficient D, j
(eq. (42c))

coefficient in modified Arrhenius form of forward
reaction-rate constant (eq. {3a))

matrix clements of first Chapman-Enskog formula
ratio of collision cross sections, ﬁg’z) / ﬁg;'l)
curve-fit coefficients for equilibrium constants Koq.r
(eqs. (5¢) and (5d))

curve-fit coefficients for frozen thermal conductivity of
species ¢, K p; (eq. (26))

cocflicients of polynomial curve fits for thermodynamic
properties, n = 1,2, ..., 7 (egs. (10a) to (10c))

curve-fit cocflicients for viscosity of species i, y,

(cq. (25))

curve-fit coeflicients for collision cross sections ﬁg}'l)
(eq. (45))

curve-fit coefficients for collision cross sections _Q(J?'Q)
(cq. (46))

first Bohr radius, 0.52918 x 10~% cm

temperature exponent for backward reaction-rate
constant

temperature exponent for forward reaction-rate constant

Q(13 )/9(1 1)

mass diffusion parameter defined by equation (A10)

. - . (1
ratio of collision cross sections, (5Q£j

specific heat at constant pressure, (%}7':) , cal/g-mole-K
p

reactive specific heat at constant pressure,

NS ac

> hig | cal/g-mole-K

=1

P

frozen %peciﬁc heat at Constant pressurc,

Z CiCyp; ( Z h; ?)4) , cal/g-mole-K

p

specific heat at constant pressure of species 1,
(%%L) , cal/g-mole-K

P
clectronic component of Cy, ;. cal/g-mole-K
internal component of C,, ;, cal/g-mole-K

rotational component of Cp,;, cal/g-mole-K
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translational component of Cp,;, cal/g-mole-K

vibrational component of ), ;, cal/g-mole-K
specific heat at constant volume, (g%) , cal/g-mole-K
v

specific heat at constant volume of species ¢,
(g%)v’ cal/g-mole-K

internal component of C,, ;, cal/g-mole-K
translational component of C ;, cal/g-mole-K
coefficient of self diffusion, cm?/sec

binary diffusion coefficient, cm?/sec

= pD;j, cm?-atm/scc

multicomponent diffusion coefficient, cm? /sec
activation energy for backward reaction r, erg/g-mole
activation energy for forward reaction r, erg/g-mole
internal energy of mixture, cal/g-mole

internal energy of species i, cal/g-mole

free encrgy of species i, cal/g-mole

free encrgy of species i at the standard state of 1 atm
pressure (1 atm = 101.3 kPa), cal/g-molc

NS
enthalpy of mixture 3. C;h;, cal/g-mole
=1

Planck constant, 6.6261 x 10727 erg-sec
enthalpy of species ¢, cal/g-mole

specific-heat function for species ¢, cal/g-mole-K

standard heat of formation of species ¢ at temperature
T,ef, cal/g-mole

conversion factor from calories to ergs, 4.184 x 107
ergs/calorie

kth component of diffusion mass flux of species i, k = 1
to 3, g/cm?-scc

total effective thermal conductivity of mixture in
thermodynamic equilibrium, Ky + K, cal/cm-sec-K

thermal conductivity of electrons, cal/cm-sec-K

component of thermal conductivity of mixture due to
electron excitation, cal/cm-sec-K

equilibrium constant for reaction r, ky . /ky -

frozen thermal conductivity of mixture in thermo-
dynamic equilibrium, K + Kjy, cal/cm-sec-K
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frozen thermal conductivity of species i in thermo-
dynamic equilibrium, Ky ; + Kjy i, cal/cm-sec-K

internal component of frozen thermal conductivity of a
mixture in thermodynamic equilibrium, Kot + K+ Kq,
cal/cm-sec-K

internal component of frozen thermal conductivity of
species ¢ in thermodynamic equilibrium, cal/cm-sec-K

reaction component of thermal conductivity of a mixture
(egs. (A19) and (A20)), cal/cm-sec-K
translational thermal conductivity of mixture from first

Chapman-Enskog approximation, cal/cm-sec-K

translational thermal conductivity of mixture without
contributions caused by electron-heavy particle collisions,
Ky — K¢, cal/cm-sec-K

translational component of thermal conductivity of
species ¢, cal/cm-sec-K

vibrational component of thermal conductivity of mix-
ture, cal/cm-sec-K

Boltzmann’s constant, 1.38066 x 10716 crg/K

backward reaction-rate coefficient for reaction r,
cm® /mole-sec or em®/mole?-sec

forward reaction-rate coefficient for reaction r,
em3 /mole-sec

Lewis number, defined by equation (A9)
frozen binary Lewis number, pC) Dij /Ky
total binary Lewis number, pC),D;; /K
multicomponent Lewis number, pCy, bl—j /K
molecular weight of mixture, g/g-mole
molecular weight of species 7, g/g-mole

mass of particle i, g

Avogadro’s number, 6.0221 x 10?3 molecules/g-mole
total Prandtl number, Cpu/K

frozen Prandtl number, Cy /K

number density, particles/ cm?

number density of species 1, particles/cm3
pressure, atm

electron pressure, atm

limiting value of electron pressure, atm
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translational partition function per unit volume, 1/cm3

kth component of overall heat-flux vector, & = 1 to 3,
cal/cm?-sec

universal gas constant, 1.987 cal/g-mole-K

radius of electron orbit from solution of Schrédinger
equation, cm

Coulomb cutoff (or Debye shiclding) radius, cm
density cutoff radius, cm

entropy of species i at temperature T, cal/g-mole-K
temperature under thermodynamic equilibrium, K

characteristic reaction temperature for backward reac-
tion v, Ep,/k, K

characteristic reaction temperature for forward reaction

r, Ef‘r/ks K

clectron temperature, K

electronic excitation temperature, K

reference temperature, 298.15 K

rotational temperature, K

translational temperature, K

vibrational-electron-clectronic excitation temperature, K

vibrational temperature, K

time, sec

mean molecular velocity of species ¢, cm/sec i

kth component of diffusion velocity of species ¢, k =1
to 3, cm/sec

mass rate of formation of species i, g/cm>-sec
concentration of species i, moles/volume
mole fraction of species ¢

kth component of general orthogonal coordinate system,
k=1to 3, cm

constants (used in eq. (2¢)) given in table I
stoichiometric coeflicient for reactant ¢ in reaction r
stoichiometric coefficient for product ¢ in reaction r
ratio of specific heats, Cp/Cy

mole mass ratio of species j, X;/p

defined by equation (34), cm-sec
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Subscripts:
b
e

el

rot

tr

ve

v
Abbreviations:
ASTV

mol.

NASP

NATA

defined by equation (35), cm-sec

mean-free path of pure species ¢, cm

modified mean-free path of species 7 in a mixture, cm
mean-free path of species ¢ in a mixture, cm

viscosity of mixture from first Chapman-Enskog approxi-
mation, g/cm-sec

viscosity of species i, g/cm-sec
density of mixture, g/cm?

density of species 1, g/<31113

average collision cross section (used for diffusion, viscos-
ity, translational, internal, and reaction components of

thermal conductivity) for collisions between specics 7 and
j, A% (1 A= 1078 cm)

average collision cross section (used for viscosity and
translational component of thermal conductivity) for
collisions between species i and j, A?

average collision cross sections (used for translational
component of thermal conductivity) for collisions be-
tween species ¢ and j, A2

backward recaction
electron

clectronic excitation
species ¢

species j

species [

constant pressure
reaction

rotational energy mode
translational energy mode
vibrational-electron-clectronic energy mode

= NS, total number of species

Aeroassisted Space Transfer Vehicle
molecules
National Aero-Space Plane

Nonequilibrium Arc Tunnel Analysis



NIR total number of independent reactions

NJ sum of recacting species (NS) plus number of catalytic
bodies

NR total number of reactions

NS total number of specics

Chemical Kinetic Model and Reaction Rates

Thermal Equilibrium

When chemical reactions proceed at a finite rate, the rate-of-production terms appear iy the
energy equation, when formulated in terms of temperature, and in the species continuity cquations
(refs. 17 to 19). For a multicomponent gas with NS reacting chemical species and NR chemical
reactions, the stoichiometric relations for the overall change from reactants to products are

kfr NJ

Zazr Zﬁﬂ“ (1)

kb,r

where r = 1, 2, ..., NR and NJ is equal to the sum of the reacting species (NS) plus the number
of catalytic bodics. The quantities «; » and §;, are the stoichiometric coefficients for reactants and
products, respectively, and &y . and k. are the forward and backward rate constants. The quantities
X; denote the concentrations of the chemical species and catalytic bodies in moles per unit volume.
The catalytic bodies (NJ - NS) may be chemical species or linear combinations of species that do
not undergo a chemical change during the reaction.

The net mass rate of production of the ith species per unit volume resulting from all the reactions
NR may be obtained (ref. 18) from

or
NR
Wi =M; Y (Bir — i) Ry — Ry (2b)
r=1
where
NJ
Rf,r = kf,r H (ij)aj’r (2C)
j=1
Ry, =k, [] (vj0)r (2d)
j=1

Here, the mole-mass ratio v; (also known as the mole number) is defined as

X C;
LoG o (=128
Y =94 NS (2e)
j=NS+1,...,NJ
Z (j~NS),i i (] + )




The constants Z;_ng); are functions of the catalytic efficiencies of the NS species and are
determined from the linear dependence of the catalytic bodies upon the NS species. Values of these
constants for the 11-species air model are given in table I.

The reaction rates in equation (1) or equations (2c¢) and (2d) are expressed in the modified
Arrhenius form as

1 /mole\ %
k'f,r = Af“TTBf-T exp(——TDf‘r/T), & ( P ) (3&)
iy = Ag, IO exp(—Tpy, /T), — (m‘)l‘f)’ﬂr (3b)
’ T sec \ cm
where

NJ
Qr = Z Qjr — 1 (4a)

1=1

NJ
Br = Z /Bi,r -1 (4b)

i=1

and where Tp, and T, _are the characteristic reaction temperatures for the forward and backward
reactions, respectively. Values for the reaction rates k 7, and k. are tabulated in table II for the
11-species air model. For a specified temperature, density, and species composition, equations (2) to
(4) can be used to obtain the production rate of a species 7 in a multicomponent gas by employing
the catalytic body efficiencies and reaction rates from tables I and II. The first seven reactions and
reaction rates in table II are taken from reference 20 and were employed in reference 17 for the
7-species air model (N, O, Ng, Og, NO, NOt, e7). Reaction rates for reactions 8 to 20 of table II are
taken from reference 21. Some of these reactions have been regrouped here (and in ref. 22) through
the use of third bodies M| to My, which is similar to the approach used in reference 17.

The reaction rates given in table II are appropriate for flow velocities of about 8 km/sec (i.e., up
to the Shuttle-type reentry velocities). For higher flow velocities, the backward reaction rates can
be obtained from the forward reaction rates! by using the following relation:

ky, = Ky (D) (5a)

' Keq,r(T)
The equilibrium constants Keqr have been obtained by using the atomic partition functions and
the molecular partition functions provided in reference 23. The electronic partition function for the
atomic species and internal partition functions of molecular species are tabulated in reference 23. The
internal partition functions of the molecular species were obtained using existing data on molecular
constants augmented by solving the Schrédinger equation. The translational component required
for obtaining the total partition function (which is used to compute the equilibrium constant) is
obtained from

Quri = (2rmkT/R%)3? (5b)

where Qy;; is the translational partition function per unit volume and h is the Planck constant.
The computed values of Keq,r have been curve-fitted here by the least-squares curve-fit method
as a function of temperature using the expression

. 4 . 3 2 .
Keqr = {eXp(qu.r)} (104/7) (Aeqr 2 + Breqr 2+ Choqr 7+ Dkeqr 2+ Bk ) (5¢)

or,
In(Keqyr) = Afog, Z° + Big, Z° + Cor Z2° + Dioq, 2% + Ekto, Z + Fro, (5d)

I The high-temperature data for the forward reaction rates are not well-defined.
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where

Z =1n (10Y/7) (5¢)

The curve-fit coefficients in equations (5¢) and (5d) are given in table I11. Caution should be exercised
in evaluating the equilibrium constant Keq, from the cocfficients given in table III. All the six
significant digits for the coefficients should be used. Equation (5d) is preferred to equation (5¢) in
computing the equilibrium constant for reasons of accuracy, because the exponent of the exponential
term in equation (5c) is a large number. Since the electronic partition functions of atomic species
{tabulated in ref. 23) are significantly affected at high temperatures and low densities, the curve-fit
coeflicients are given for 6 different valucs of the total number density. These number densities
cover the range of practical intcrest for acrospace applications. Figure 2(a) shows the variation
of the equilibrium constant with temperature for different values of the total number density. The
equilibrium constant clearly exhibits a number-density dependence at very high temperatures and low
total number densities. Figure 2(b) gives a comparison of the present curve fit with the exact values
calculated from the partition functions. Values obtained from Park’s curve fits (ref. 23) and from
table IT by employing the relation Keqr = k. /kp, arc also shown. Park’s five curve-fit coefficients
were obtained by using five discrete temperatures (2000, 4000, 6000, 8000, and 10 000 K); thus, they
arc in disagrcement with the exact values and the present curve fits at the higher temperatures.
Comparison of the exact values with those obtained from table II also gives an indication of the
temperaturce range beyond which the backward reaction rates of table IT should not be employed.
The cquilibrium constant K, is usually given as a function of temperature only. Figure 2(a)
and table III indicate, however, that under low-density and high-temperature conditions Keq,r is also
a function of the total number density n. This dependence arises because the electronic partition
functions of nitrogen and oxygen atoms and ions are dependent upon the total number density under
those conditions. In reality, there is a finite (as opposed to infinite) number of electronic states that
contribute to the clectronic partition function. This finite number of states is obtained because
(a) the orbits of electrons cannot cxtend beyond the distance to the nearest neighboring particle
(a phenomenon known as the density cutoff) and (b) the Coulomb field is truncated due to the
perturbation of the ficld by the electrons and ions in the neighborhood (a phenomenon known' as
the charge shiclding). On the average, the distance to the necarest particle is given in centimeters as

rg=1/nl/3 (5f)

where n is the total number density in particles/cm? and ry is the radius of an clectron orbit as
the result of density cutoff. In the hypersonic flight regime of interest, this radius prevails over the
Coulomb cutoff radius r., (or Debye shielding) defined in centimeters by

Te = 6.90 (Z)m (5g)

e
Further, the quantum theory gives the allowable radius r, of an electron orbit as follows:

re=aN* ) (5h)

where ay = 0.52918 x 1078 cm and is known as the first Bohr radius, and N (which is an eigenvalue
in the solution of the Schrodinger equation) is called the principal quantum number. Equating the
smaller of the two radii given by equations (5f) and (5g) with equation (5h) yields the cutoff quantum

number Nmqax as
) Te r .
Ninax = 4 £ or \ /—i (51)
ag agp

Only clectronic states with principal quantum numbers up through Ny contribute to the electronic
partition function. Since the contribution from the highly excited states with quantum numbers near

10
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Nmax is proportional to N3, exp(—E/kT), where E is the ionization cnergy, these highly excited
states dominate the overall partition function at sufficiently high temperatures or low total number
densities, and the partition function then becomes strongly dependent on number density (egs. {5f),
(5g), and (5i)). Under these conditions, most of the atoms present in the gas are in the highly excited
clectronic states near Npax rather than in the ground state. Since these highly excited atoms have
very different properties than ground-state atoms, the reaction-rate data given in table II, which were
determined for primarily ground-state atoms, are no longer appropriate for the low-density, high-
temperature conditions at which the number-density dependence of the partition function becomes
significant. Therefore, more general models, which account explicitly for the behavior of the excited
atoms, are required. This regime lies outside the range of primary interest for acrospace applications,
however, and is not covered in this study.

Park (ref. 24) has recently presented a new set of reaction rates for use in computing highly ionized
flow in the hypersonic environment. In particular, the power of the precxponential temperature of the
rate coefficients for the associative ionization and dissociative recombination reactions (reactions 7,
10, and 13 in table II) is assigned a value of zero at temperatures greater than 6000 K to keep
the rate coefficients from becoming unrealistically large at very high temperatures, for which no
experimental data are available. Since the power of the preexponential temperature of the rate
cocfficients is negative and zero for reactions 10 and 13, respectively, in table TI, Park’s suggestion
is already implemented in the reaction rates for these reactions. The preexponential power of the
rate cocfficient for reaction 7 may neced to be reexamined when the temperatures become excessively
large.  Further, for extremely high temperatures, such as those encountered with earth reentry
velocities greater than 12 km/sec, much slower reaction rates have been recommended (refs. 25
and 26) for clectron-impact ionization reactions 8 and 9 given in table II. Also, the reaction rates
given in reactions 8 and 9 in table II are from expansion flow data, which tend to be lower than data
obtained under compressive flow conditions.

Thermal Nonequilibrium

The reaction rates given in table IT were originally used by Blottner (ref. 17) and Dunn and
Kang (ref. 21) in the context of a single temperature assuming thermal cquilibrium. Park’s
(ref. 25) guidelines (in the context of his two-temperature model) may be used for defining the rate-
controlling temperature in dissociation and the clectron-impact ionization reactions under thermal
nonequilibrium conditions. These guidelines were used in reference 27, for example.

Based on the preferential dissociation concept, Park has suggested the use of a temperature
weighted with the vibrational tempcrature to characterize dissociation reactions (ref. 25). The
reaction rates in Park’s model are assumed to be dictated by the geometric average temperature

Tav = VTu T (6a)

and the dissociation reaction rates are given by
By,
kf,r = Af,rTav Cxp(-—TDfir /Td\) (Gb)

The recombination (or backward) reaction rate, however, depends only on the temperature of the
impacting particles and may, therefore, be cvaluated from

kp,, = kf,r(Ttr)/A,eq.r(Ttr) (6¢)

Treanor and Marrone (refs. 28 and 29) suggested a more rational (but slightly more difficult) way
than Park’s method to account for the effect of vibrational relaxation on dissociative reactions with
the preferential dissociation concept. They suggested the use of a vibrational coupling factor (refs. 27
to 29) with the dissociation reaction rates obtained under the assumption of thermal equilibrium.

11



Recent work of Jaffe (ref. 30), based on collision theory and using methods of statistical
mechanics, yielded no evidence of preferential weighting to any particular energy mode in obtaining
the total energy available in a collision, whether it is an elastic, inelastic, or reactive encounter. Jaffe
found that the multitemperature effects on the reaction rates were small for dissociation. These
findings were supported by those of Moss et al. (ref. 31), who carried out flow-field analyses with
the Direct Simulation Monte Carlo (DSMC) approach. Thus, a weaker dependence of &y, on Ty
(such as the one suggested by Sharma et al. (ref. 32) as Ty = TPr6T‘91g) might be more realistic,
especially for highly energetic flows.

It is obvious that the multitemperature kinetic models for high-energy flows based on both
preferential and nonpreferential dissociation assumptions employ a considerable degree of empiricism.
They exemplify the degree of uncertainty that exists in modelling the multitemperature kinetics.
Quantum mechanical studies of the type in reference 30, supplemented by nonobtrusive laser
diagnostic studies, would be desirable for establishing these models on a sounder basis.

Species Thermodynamic Properties and Mixture Formulas

Thermal Equilibrium

Thermodynamic properties (i.e., Cp; and h;) are required for each species considered in a finite-
rate flow-field calculation. For calculations with chemical equilibrium, the free energies F; are
also required. Since the multicomponent gas mixtures are considered to be mixtures of thermally
perfect gases, the thermodynamic properties for cach species are calculated by using the local static
temperature. Then, properties for the gas mixture are determined in terms of the individual species
properties through the following relations:

NS
=1
where
T f
h; = —/72 Cpi dT + (AR )Tmf (7)
ref
and NS
Cpy = > CiCpi o
i=1
where oh
C .= (_i> (8b)
p oT P

The mixture Cp, as defined by equation (8a) is the “frozen” specific heat. This definition does
not account for species production or conversion due to chemical reactions. Frozen specific heat
is commonly used in defining the Prandt]l and Lewis numbers? for a mixture and is related to the
mixture enthalpy h through the relation

NS NS
ok ac;
Cor=|gr-2higp| =2 ljcic,,,i (9)
1=

i=1

p

Expressions for Cy,; using the partition-function approach were obtained in reference 33, whereas
a virial coefficient method was used in references 34 and 35. If the effects of nonrigidity of the rotor

2 See appendix A for various definitions.
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and anharmonicity of the oscillator are included in these two methods, the two formulations are
equivalent (see section 3.1 of ref. 36) and can be used interchangeably. Using the virial formulation,
Browne (refs. 34 and 35) obtained the thermodynamic properties as corrections to those of the
monatomic gas in terms of the first and second virial coefficients and their temperature derivatives.

Reference 33 provides curve fits for C,,; and h;, whereas references 34 and 35 provide tabulations
of these data. Since the use of curve fits reduces the expense of computing the original functional
relations, the tabulated thermodynamic properties of references 34 and 35 have been curve-fitted
here as a function of temperature for the temperature range of 300 K < T < 30000 K. The following
polynomial equations are employed for these curve fits:

Specific heat:
Cypi
Pt Al + AT +A372+A473+A574 (10a)

Runiv

Specific enthalpy:

h; AT AsT?  AT3 AT Ag
——=A — 10b
R Mt T3ttt (10b)
For equilibrium calculations, the following curve fit for the free energies F; may be used:
F? AT AsT? AT? AsTY A
L= At - In(T)] - — - - =t =4 1
Ro.r ~ Al =] - = 6 12 20 T T (10c)

where Fio is the free energy of species i at a pressure of 1 atmn (standard state). The specific-heat
data are easily curve-fitted to the polynomial form of equation (10a). Other polynomial forms are
based on the following thermodynamic relations at constant pressure:

dh; = Cp, dT (11a)
dT
dS; = Cp, T (11b)
dh; =T dS; (11c)
and
d¥F; = =5, dT (11d)

where F; is the free energy and S; is the entropy of species i at temperature T.

The polynomial coefficients have been evaluated by using the least-squares curve-fit technique. In
particular, the following polynomial for the specific enthalpy has been curve-fitted to the tabulated
values of references 34 and 35:

hi - ASRuniv

=4 +ZQT+Z3T2 +Z4T3 +Z5T4 (12a)
RunivT

Constants A to As in equations (10a) to (10c) are then obtained from
Ap = nAn (n=1,2,3,4,5) (12b)

The constant Ag in equations (10b) and (10c) is computed separately. This constant is related
to the heat of formation through the relation

AsRuniv = (hi)r=0 = (AR])1, = [(hi) 1, — (hi)T=0) (12¢)

In equation (12c), [(hi)T,; — (hi)T=0] is available from the tabulated data to be fitted. Sources giving

tabulated values of specific enthalpy and free energy generally use 0 K as the reference temperature.
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To transform this reference temperature to the reference of 298.15 K employed here, it is necessary
to know the heat of reaction at the new reference. Appendix B gives the method used for calculating

(AR 129815
It is sometimes useful to define a specific-heat function h; such that

> hi - (Ahlf)T“f

hy = T (12d)

This relation may be used to obtain T from fzi in an iterative manner. Equation (12d) may be
expressed in a polynomial form by using equations (12a) and (12¢) as follows:

[((hi)T — (hi)T=0]

Ry = (A + AT + AT + AT + AT Ry — T (12¢)
or, with the approximation fOT“‘f Cp; dT = Cp, i Trefs
- - _ — — C,:T
hi = (Al + AT + A3T2 + A.ITB + ASTll)leiv - %ﬂjf (12f)

The constant A7 has been obtained by subtracting the remaining terms of the free-energy
polynomial (eq. (10c)), evaluated with the other known constants, from the tabulated free-cnergy
data as follows:

— (hi)T=0
RunivT

, A3T? T3 T4
A7=A1[1—111(T)]——A—2T~ 37 _ Ay AT

2 6 12 20 (13)

Table TV is a listing of the polynomial constants (A to A7) for the 11-species air model. The
polynomial cocfficients have been obtained for five temperature ranges between 300 and 30000 K.
To assurc a smooth variation of thermodynamic properties over the entire temperature range, values
of A, to A7 should be linearly averaged across the curve-fit boundaries (i.e., 800 < T" < 1200, 5500 <
T < 6500,14500 < T < 15500, and 24500 < T < 25500), because the curves are not continuous
at the boundaries. A sample subroutine that evaluates the polynomial curve fits and performs the
linear averaging is presented in appendix C. This routine may bc easily modlfiod to suit the user’s
requirements.

Temperature T in equations (10) to (12) is in kelvins. With the universal gas constant in cal/g-
mole-K, the specific heat and enthalpies have the units of cal/g-mole-K and cal/g-mole, respectively.

Figure 3 is a comparison of the values of specific heat obtained from the polynomial curve fit
(eqs. (10)) with the data of Browne (ref. 35). Values provided by Hansen (ref. 37) are also included
for comparison. Hansen’s values begin to deviate from those of references 33 and 35 beyond 4000 K -
for Oy (fig. 3(a)), beyond 8000 K for Ny (fig. 3(b)), and beyond 6000 K for NO (fig. 3(c)). . This
deviation may be a result of the rigid-rotor and harmonic-oscillator partition function employed by
Hansen and of the neglect of electronic contribution. At higher temperatures, the population of levels
corresponding to the nonparabolic regions of the potential-energy curve are no longer negligible, and
it becomes neccssar\ to introduce the nonrlgldlty and anharmonicity corrections into the energy -
levels of the molocules as was done in reference 35. : L o

Reference 38 has prox 1dod tabulated values for specific heats, enthalpies, and internal cnergies
for the 11-species air model up to temperatures of 6000 K. These values are nearly identical to those
given in references 33 to 35. The minor differences that do exist may be due to different forms of the
partition functlon different spectroscopic data, inclusion of excited- state data, 1nc]u510n of isotopic
cffects, different heats of formation, or other factors.
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Thermal Nonequilibrium

The thermodynamic property data of references 33 to 35 can be used to separate the contributions
of different internal energy modes to the specific heat, as is required in the case of multitemperature
flow-field models. For example, in a two-temperature model (refs. 25 and 27), advantage may be
taken of the fact that the translational and rotational energy modes are fully excited and equilibrated
at room temperature; therefore, the heat capacities for these modes are independent of temperature.
The combined vibrational-electronic specific heat for species 4, (Cp;)ve, can then be evaluated by
using the value for the total specific heat C),; evalnated at temperature Ty and by subtracting out
the constant contribution from the translational and rotational specific heats. This can be described
(see fig. 4 for the various contributions) by

[(Cp,i)ve]Tvc = (Cp,i)Tw - (Cp.i)tr - (CpAi)rut‘ (14)

where the translational component of the specific heat (C, ;)i is % Ryuiv for all species, while the
rotational component (Cp;)rot 18 Rypiy for diatomic species and 0 for monatomic species.

The enthalpy h; for a two-temperature model can be evaluated similarly, since contributions
from the translational and rotational modes are lincar with temperature. Therefore, the vibrational-
electronic enthalpy for species 4, (h;)ve, can be obtained from the specific enthalpy h; evaluated at
temperature Ty, by subtracting the contribution from the translational and rotational enthalpics
evaluated at Ty, as well as the enthalpy of formation as follows:

[(hi)vo]Tw = {hi]Tvc - [(Cp‘i)tr + (Cp,i)rot](Tve - Trcf) - (Ahif)T“.f (15)

The specific enthalpy from all the contributions of internal energy modes can then be obtained by
adding the contributions of translational and rotational enthalpies (evaluated at the translational-
rotational temperature) and the enthalpy of formation to the vibrational-electronic enthalpy as
follows:

hi(T: Tvc) = [(hi)ve]Tw + [(Cp,i)tr + (Cp,i)rot](T - Trcf) + (Ah'zf)Tr[,f (16)

The procedure outlined here for obtaining the specific heats and enthalpies for different internal
energy modes can be used only with one- or two-temperature models. This approach may be used
for a three-temperature model only if one of the energy modes is partially excited and the rest are
fully excited. If more than one internal energy mode is only partially excited, the partition-function
approach (with appropriate corrections for the rotor nonrigidity and oscillator anharmonicity) would
be needed to obtain the thermodynamic properties of different ecnergy modes.

Species Transport Properties and Mixture Formulas

Thermal Equilibrium

The transport propertics required in flow-field calculations are viscosity, thermal conductivity,
and diffusion coefficients. The collision cross sections required for these properties have been
recomputed herein using the same molecular data used previously by Yos (refs. 7 to 9). The
computational techniques employed in the calculations are described in references 39 to 41; these
references give details of the NATA (Nonequilibrium Arc Tunnel Analysis) code. In NATA, the

average collision cross sections ﬂﬁg's) for the collisions between species i and j are calculated from
basic cross-section data as functions of temperature and gas composition for each pair of species in
the mixture?. The basic data are either in tabular form or are given as simple analytical functions of
temperature or composition. NATA contains 12 methods or options for calculating the cross sections

wﬁg'l), wﬁ(Q'Q)

i and B;‘J- (the ratio of cross sections). The options include using the Coulomb cross

3 Different combinations of the indices [ and s are required for higher order terms of the Chapman-Enskog theory.
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section for the electrons and ions plus using exponential potential (ref. 42) and Lennard-Jones (6-12)
potential (ref. 36) for neutral species in high and low temperature ranges, respectively. The formulas
used in NATA to compute the transport properties from the collision cross sections are obtained
from an approximation (ref. 43) to the first-order Chapman-Enskog expressions. These formulas arc
provided in subsequent sections.

Transport properties of single species. The viscosity p; and frozen? thermal conductivity
Ky; of a gas containing a single molecular species are given, to a good approximation, by the
formulas in chapters VII and VIII of reference 36. First, the viscosity is

x 1016 (17a)

or

ﬂ\/AI,‘T (17b)

pi = (26693 x 107°) Y=
! ( ) 7(91(1_2.2)

Further, the viscosity can be written in terms of the mean free path A; as

Bi = 5o pud; ' (17¢)
where the gas density is
p = pi = myn; (17d)
the mean molecular velocity is
8kT
u=u; =, (17¢)
Tmy
and the mean free path is
— -1
A= [\/ﬁnimg?’”} x 1016 | (17f)

Next, the frozen thermal conductivity can be written in the modified Eucken approximation (ref. 36)

as .
Ky; = Kiri + Kint,i (18a)

Here, Ky, ; is the translational component of the thermal conductivity and Kjy; ; is the component
of thermal conductivity resulting from the diffusion of internal excitation energy of the molecules.
The translational component may be written as

i 75 k/7kT Jm; : '
Kij= @”Tg)l x 1018/ (18b)
ﬂQii'

W\/T/A’fi 7 R (18C)

- (1.9891 x 10‘4)

nﬁgf’Z)
15 p; Ryniv
_15 18d
4 M, - ( )
3 1i(Cpidtr
_ 341Gy, 18
27 M, (18¢)

4 See appendix A for various definitions.”
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By idir (18f)

i

B n

or, in terms of the mean free path A;, as

57 pud; P

i = S22t | 2(Coilu] (182)

The internal component of thermal conductivity may be written as

— 3 ( vai _ §) kV TrkT/mi x 1016/J (18h)

M7 8 \ Runiy 2 A

_ (6.3605 x 10"5) mVT/M; ( Cpi _ §) (18i)

ﬁgzll) Runiy 2
) D.. .
= £ (228) (Cpalin (18)
_ 57 piuwidi(Co,i)iny (pz’Du) (18K)
32 M; i

where the internal specific heat has been introduced from the relation

5 3
(Cp,i)int = (Cv,i)int = Cp,i - éRuniv = Lyi — §Runiv (181)

and the coefficient of self diffusion D;; from the first Chapman-Eﬁskog approximation is as follows:

JrmkT (1
Dy; = g% (-) x 1016 (18m)
SO P
11
TI'\/TS M;
= (2.6280 x 10*3) T{)l (18n)
TP

The coefficient of self diffusion D,; must be regarded as somewhat artificial. It is more correct to
regard it as a limiting form of the coeflicient of binary diffusion.

Using equations (18a), (18d), (18j), and (18l), the frozen thermal conductivity may now be
expressed as

Runiviy; [15 pDii Cpi 5
K - umv /1 [__ ( ”) ( D, _ =z 19
i M, 4 + B Ryniy 2 (192)
or, from equations (18a), (18e), and (18j),
Ky, = -% [E(Cp,i)tr + (p—ml) (Cp.i)int} (19b)
. T5 D..
= '% [i(cv,i)tr + (p_u;‘l’) (Cv,i)int:| (IQC)
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From equations (17a) and (18m) the factor {pD;;/ ;) is related to the collision cross sections Wﬁg’l
through the following relation

—(2,2
pDu _ 670" (20)
1 5 glbb)

i

The ratio ﬁﬁ,ﬁ?’z)/wﬁg_}'l) in equation (20) is a very slowly varying function of temperature T'; hence,
pD;i/ 1 is very nearly constant. This factor, appearing in equations (18j), (18k), (19a), (19b), and
(19¢), has a value close to 1.32 for the Lennard-Jones potential over a wide temperature range
(ref. 44). If this factor is approximated by unity, equations (19b) and (19c¢) for the frozen thermal
conductivity reduce to the form

. 4 13
Kpi = 4 | 3(Cnide + (Crodin] (21a)

; 5
= ;\L[li (Cp,i + ZRuniv> (le)

4 9
= ]/\—I’: (Cu,{ + ZRuniv) (21(3)

or, using equation {17¢) to express the results in terms of the mean free path,

. S puk; 9
hf,i = 3_2 ( ﬂ[iz) (Cv,i + ZRuniv) (21d)

This is the form for the thermal conductivity derived originally by Eucken. Tt differs from the
modified Eucken approximation {eq. (19)) used in the present work by the ratio

1+ i(cl',i)illt (PlﬁDii):; [1 + i'(cv-,'i)int]
15 Runiv Hi 15 Runiv

which is about 6 percent in the case of a diatomic gas near room temperature, where the only internal
energy excited is the rotational energy.

The modified Eucken approximation (egs. (19)) neglects the effects of inelastic collisions on the
thermal conductivity. Such collisions introduce a coupling between the translational and internal
components of the thermal conductivity; this coupling tends to reduce the total frozen thermal
conductivity below the value (eqs. (19)) predicted by the modified Eucken approximation. The
cffects have been treated in detail for various polyatomic gases near room temperature. It has been
found (refs. 45 to 47) that the errors in equations (19) may approach 10 to 20 percent when there is
a rapid exchange of encrgy between the internal and translational states through inclastic collisions,
as is normally the case for rotational excitation in low-temperature polyatomic gases. However, the
errors become smaller when the exchange is less rapid, and are negligible when 20 or more collisions
are required for the exchange of energy between internal excitation and translation.

The effects of inelastic collisions on the thermal conductivity of high-temperature air have
apparently never been treated in detail. However, it appears that the ineclastic cross sections
should, in general, be small enough to make errors in the modified Eucken approximation (egs. (19))
negligible for air at temperatures greater than about 1000 K. At temperatures below 1000 K, it
may be desirable for more accurate calculations to correct equations (19) for the effects of inclastic
rotational-translational energy transfer using the analysis of references 45 to 47. However, this
correction has not been included in the values presented here.
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The collision cross sections Wﬁg'n or wﬁgfs)"’ are, in general, the weighted averages of the cross
sections for collisions between species @ and j. These collisions have been defined (refs. 7 to 9) as

) _ I Iy exp(—y2)y25t3(1 — cos! x)dmoyjsiny dx dy
N Jo© o exp(—=?)y25+3(1 ~ cos! x)sinx dx dy

(22)

where 0;; = 0;5(x,g) is the differential-scattering cross section for the pair (i.j), x is the
scattering angle in the center-of-mass system, g is the relative velocity of the colliding particles,
and v = ([mimj/Q(mi + mj)kT]l/Q)g is the reduced velocity. For collisions between the similar

species, equation (22) yiclds wﬁg'” required in equations (17) and (18). Various combinations of the

indices [ and s are required for higher order terms of the Chapman-Enskog theory. For the order
(1.3)
Q

considered here, only Wﬁ(,l»']), Wﬁg;’z), T and Trﬁg‘z) are needed.

3]
The collision cross sections Tl'ﬁl(} D and nﬁz(-? 2) employed here are the same as those used by Yos
(refs. 7 to 9). The cross sections for the neutral species N, Ny, NO, O, and O, were taken from
the tabulations of Yun, Weissman, and Mason (ref. 48) for temperatures up to 15000 K. Above
15000 K, the cross sections for atomic N were obtained by extending Yun's calculations to 30 000 K
using the same input data and techniques that were used in his work. The cross scctions for the
remaining species Ng , NO, O, and O3 were extrapolated to 30000 K assuming the same temperature
dependence as calculated for N.
For the ionized species, the calculations used effective Coulomb cross sections that were chosen
to make the computed transport propertics for a fully ionized gas agree with the correct theoretical
results (ref. 49) discussed in references 7 and 9. The specific formulas used in the calculations are

e = 1.20Q. x 101 (for clectrons) (23a)
o22) _ 4 16 .

87 =1.3627Q. x 10 (for ions) (23b)
ol _ w1 _ 4 16 .

e = w7 =0.7952°Q. x 10 (for electrons and ions) (23c)

where Z =1 for singly ionized species and

4

Qe = ~¢—1nA cm? 23d)
(kT2

The shielding parameter A is defined as

r 3 2712
L [ 160k (230
4mebn, c‘1n3/3
- - - 2/3 1/2
— -2
= 12.09x 10 (W) +1.52 (W) (231)

where T' is the temperature in kelvins and p, = nckT is the electron pressure in atmospheres.’ In
equation (23d), e = 4.8 x 1010 esu is the electron charge. Equations (23a) to (23f) arc applicable

‘s . . &l s . (1
5 The collision cross sections designated here as le(j ) are the same as ﬂ'rrzﬂg.s) given in reference 36 and as ng )

given in reference 39.
6 For Aows with thermal nonequilibrium, p. = nekTe should be used to obtain the electron pressure.
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only for electron pressures below the limiting value given by

T

4

for which the shielding factor In A is equal to 1 in equation (23d) (ref. 49), and should not be used
for electron pressures above this limit. The limiting electron pressure, pen, from equation (23g)
is plotted as a function of temperature in figure 5. The electron pressures encountered in typical
aerospace applications should fall well below this limit.

In the present report, the transport properties of the charged species (i.e., ions and electrons) are
provided for the limiting electron pressure pe = pem at which the shielding factor In A = 1. For any
other electron pressure, it is necessary to correct the tabulated transport properties of the charged
species according to the formula

pipe) _ Krilpe) _ Kuilpe) _ Kineilpe) 1
#i(Pem) Kf,i(pem) Kt‘r,i(pen'l) Kint,i(Pem) 1n A(pe)
2

= 7\ NUE
In |2.09 x 10—2 ( ) + 1.52 ( )
" 1000p./ 1000p./*

Similarly, the collision cross sections Wﬁg’s) (for the pair of species for which both are ions or electrons
or a combination of the two) for any other electron pressure p. may be obtained from the values
provided herein for pe = pem by employing the relation

(24a)

— l‘
;" o)

— =In A(pe)
WQI(;.S) (Pem)

) T 4 8/3

_ -2

=3 In |2.09 x 10 (——1/4) + 1.52 (—m) . (24b)
1000p, 1000p,

Equation (24b) is also applicable for i = j (single species).
In calculating the contribution Ky ; of the internal energy states to the thermal conductivity

for the atomic species N and O, the diffusion cross section ﬂﬁg’l) in equation (18h) or (18i) has
been set equal to the corresponding charge-exchange cross section for the atom and atomic ion
(refs. 8 and 50). As discussed in reference 7, this approximation allows for the effects of excitation
exchange in reducing the contribution of internal energy states to the thermal conductivity in a gas
of identical atoms. For consistency, the same approximation has also been employed in the tabulated
cross sections and self-diffusion coefficients for these species. 7

The individual species viscosities and thermal conductivities computed using equations (17)
and (18) have been curve-fitted herein as a function of temperature by employing the following
relations:

o pi = [exp(C,)] Tl Au W T+By,] (25)

g, (In T)3+BKf>i(ln T)2+c,<h In T+DKN]

Ky = [exp(Bx, )T (26)

The curve-fit coefficients in equations (25) and (26) are given in tables V and VI for the 11
chemical species. These coeflicients yield values of the viscosity and frozen thermal conductivity
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of ionic species at the limiting electron pressure (eq. (23g)) and should be corrected for any other
electron pressure (or number density) by using equation (24a).

Similar to the equilibrium constant calculations from equation (5d), the thermal conductivity
should be evaluated from the logarithmic form of equation (26). Also, all the five significant digits
for the coefficients appearing in table VI should be used.

Figure 6 displays typical results from the viscosity curve fit (eq. (25)) of equations (17) for
some of the neutral and charged species. The frozen thermal conductivity curve fit (eq. (26)) of
equations (18} is shown in figure 7 for the same species. Figure 7 and table V show that fourth-order
curve fits are needed for the thermal conductivity.

Transport properties of multicomponent mirtures. Rigorous kinetic theory formulas that
have been derived directly from a solution of the Boltzmann equation using the classical Chapman-
Enskog procedure (refs. 36 and 51) are available for obtaining the transport properties of a gas
mixture from the molecular constituent species. In the first Chapman-Enskog approximation,
formulas for both the viscosity and translational component of thermal conductivity Ki; of a gas
mixture are of the general form

An A | o
|
|
ulh or Ky = - | 14,1 (27)
Aul A | Ty
i - oz, | O

where z; is the mole fraction of the ith species, v(= NS) is the total number of species present in
the mixture, and the matrix elements A;; can be expressed in the form

v
Aij = Aji = —TiT;ja;j + 6ij (I,‘Ai + Z Iil'[a[-[> (28)
=1

where a;; = a;; and 4;; is the Kronecker delta. Elements A; and a; ; are defined subsequently. The
superscript 1 on p or K, indicates that equation (27) is the first Chapman-Enskog approximation for
the transport property. Further details for obtaining the transport properties by employing the first
Chapman-Enskog approximation are given in reference 43. In principle, the problem of calculating
the transport coefficients for a given mixture consists of two parts: first, the determination of
the collision cross sections 7§; ;j for all possible pairs of species (4, 7); and second, the evaluation
of the Chapman-Enskog formulas. The amount of computation required to evaluate the mixture
transport properties is greatly reduced if approximations to the complete Chapman-Enskog formulas
are employed. Reference 7 has provided approximate formulas for the transport properties based
on the relations developed in references 52 to 54. References 13, 14, and 55, and more recently,
references 15 and 56 have also provided approximations to the Chapman-Enskog formulas. These are
apparently the most satisfactory of the many simplifying approximations for the mixture viscosity
and thermal conductivity that have been suggested by various authors. However, effects of the
elements a;; in the Chapman-Enskog formula are completely neglected in Brokaw’s approximation
(ref. 53), so that this approximation always gives too large a value for the transport properties. In
the Buddenberg-Wilke (refs. 13 and 55) and Mason-Saxena (ref. 14) formulas, the effects of these
elements are accounted for by means of a single empirical constant, which is assumed to be the same
for all gas mixtures. The approximation used by Peng and Pindroh (ref. 52) represents an attempt
to take account of the nondiagonal elements explicitly to the first order at the expense of a somewhat
increased calculational effort. Armaly and Sutton (refs. 15 and 56) neglected the nondiagonal matrix
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clements 4, in a manner similar to Brokaw (ref. 53). However, they did not force the value of A%,

defined as
e

* [
Al = 6(71—1) (29)
t]
to be equal to 5/3 and 5/2 in their approximations for viscosity and thermal conductivity,
respectively.” They assigned different values to A}*j for ion-atom and neutral atom-molccule
interactions. From the computer time, storage, and simplicity point of view, references 13 and 14
appear to be adequate for nonionized gas mixtures, whereas references 15 and 56 are useful for
computing the viscosity and translational component of thermal conductivity for an ionized gas
mixture.

In all the approximations to the Chapman-Enskog formulas for viscosity and translational thermal
conductivity discussed thus far, the transfer of momentum or energy from one species to another
by collisions has been either neglected or has been accounted for by an cmpirical constant. This
transfer process, which is represented by the nondiagonal clements a;; in the Chapman-Enskog
formula (cq. (28)), has the cffect of making the less conductive species in the mixture carry a larger
fraction of the transport. This process, therefore, reduces the overall conductivity of the mixture
below the value it would have if the transfer process were neglected.

In reference 43, Yos obtained approximations to the Chapman-Enskog formulas that account for
the effects of the aforementioned transfer process between different species. These approximations
reproduce the results of the first Chapman-Enskog formula (eqs. (27) and (28)) to within a fraction
of a percent for air at 6000 K and for other cases considered in reference 43 and are simpler to usc
than the latter. Based on the relations developed by Yos (ref. 43), the following formulas may be
used to compute the mixture viscosity and translational component of thermal conductivity:

NS
Z ri/(A; + auv)
por k) = 2= (30)

tr NS
1 — ayy E $l'/(Ag + aav)
=1

Here, NS is the number of species in the gas, z; is the mole fraction of the ith species, and a,y is an
average valuc of the nondiagonal matrix clements contained in equation (28) and is defined as

NS 2
1 1
DEEACEE
1,]=
Gy = ~g . (31a)
> (X -4)
ij=1 o J
where
. - NS
A; =" 1,By (31b)
=1

For the viscosity, the quantitics a;; and B;; in equations (31a) and (31b) are defined as

M (1) _ A
= ) A ) (322)
= cotin T T\T L EREON- = S St t - ‘ o R
By = A AD (32b)

oM,

7 With AY. = 5/3 and 5/2, A;; becomes identical to zero in the Chapman-Enskog formula.
1] J
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For translational thermal conductivity, the above quantities are defined as

2\ MM, [/33 18 MA@
= (418 [ (it Rl i S f e f*)A.. — AN 2
aij = (1184 107) (15k> (M, + M;)? K 2 5 0u) % ' (33)
and
2
By=(4184 x 107) ——-"—
i = I8 0 Ty 3 an)e

1 1
x [SM,;M,AE,Q’ + (M; — M) (QMi - —253111, + ;B;}M,) Af.,”] (33b)

In these equations, Af; is the molecular weight of the ith species, N4 is the Avogadro number, and
k is the Boltzmann constant. The remaining quantities are defined

1/2
1n _ 8, . 20 2M; M (L)
A = 21,5460 x 10 )% 34
y = (15460 )[mevT(Ammj) T (34)
1/2
(2) 16 ) —20 QAIIAIJ =(2.2)
A = (1.54 1 Q 35
y = (1546010 )lanmivT(z’\fi+MJ) T (3)
512 5(13)
5000% — 4]
* J )

and the collision integrals Wﬁg's) are weighted averages of the cross sections defined in equation (22).

The mixture frozen thermal conductivity Ky employed in defining the frozen Prandtl and Lewis
numbers® can be obtained from the modified Eucken approximation (ref. 54)

Ky = K + Kiy (37)

where Ky is the translational component of the thermal conductivity given by equations (30) to (36)
and Kjp; is the component of thermal conductivity resulting from the internal excitation cnergy of
the molecules, (ref. 7) given by

! C, 3
NS | (g2 - 3) 4y
Kot = 2.3001 x 1075 Y (mic ~8) iy 1) (38a)
T Yy A
j=1
o ([52]-
=2.3901 x 1078k L =7 38b
NS

Y g Az(-;)

| j=1

If the approximations of references 52 to 54 are employed in place of the more exact formulas
given by equations (30) to (36), the following approximate formulas for the mixture viscosity and

8 See appendix A for various definitions.
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thermal conductivity may be used (ref. 7). For the mixture viscosity,

NS My
Ny T
u(l) — 2_’ I A : (39)
= Z Zj Az(j)
J=1

For the translational component of thermal conductivity in a mixture,

&M = 23001 x 1080k = Ti 40¢
e =2 i P a— (40a)
=1 2
=Y agzal?

j=1

where Ag) is given by equation (35) and ¢;; is defined as

[1— (M,;/M;)][0.45 — 2.54(M; /M;)]

[+ (M;/M)]° (40b)

aij=1+

The approximations of equations (39) and (40) may be valid only for the range of conditions for
which they have been developed and not for general application because of the approximate analysis
of the nondiagonal matrix elements A;; of equation (27). Generally, these approximate formulas
give good results for nonionized or weakly ionized flows with a savings of about a factor of two in
computation time compared with the more accurate formulation of equations (30) to (33), since it
is no longer necessary to evaluate the nondiagonal matrix element aay in equation (31a).

A further savings of about another factor of two in the transport property calculations may be
obtained if ;; in equation (40b) and the factor

6 ﬂ'Qij

5 Wﬁz(:]l"l)

in equation (20) arc approximated by unity, so that all three of the properties p, Ky, and K, in
NS
(2)

equations (38) to (40) depend on the same parameter 3 z; A 2 in the denominator. With these
j

i

approximations, equations (38) to (40) may be written in the form

s NS
p = =3 (41a)
325
NS <
1y 5w piti A |5
K ' =— —(Cys 41b
C=ma 3o (41b)
and
NS 5
5T (U Ay
K= 5 3 o Coin (41¢)
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where the partial gas density of the ith component is
pi = m;n; (41d)

the mean molecular velocity of the ith component is

u; = +/8kT/mm; (41¢)

and the modified mean-free path of the ith component in the mixture is

—1
NS 522
:z]ﬂ'Qij

j=1 ,/1+mi/mj

In the above equations, n is the total particle density in particles/cm3 and (Cy,i)int = (Cpi)int- The
modified mean-free path }; given by equation (41f) is not the mean distance between molecular
collisions. It differs from the actual mean-free path A} of the ith component in a mixture defined in
reference 6 as

X=|2n x 1016 (41f)

-1

NS
X = [”Zwﬁﬁ?’” Vi+migmy| x 100 (41¢)
j=1

by the factor 2(1 + mi/mj)_l in each term of the summation. The modified mean-free path );
represents the mean distance travelled by species ¢ before losing its average excess momentum
relative to the surrounding gas medium through head-on collisions with species j. (See Hansen,
ref. 57.) From equations (37), (41b), and (41c), the expression for the frozen thermal conductivity,
Ky, of the mixture can be written as

NS Y
57 U A; [ B
Kf = 3—2 i=1 plﬁ}i z |i§(cv,i)tr + (Cv,i)int} (41}1)
NS Y
5w Ui A 9 :
LT CHE L) i

in close analogy to the Eucken expression (eq. (21d)) for a single-component gas. Equations (41a)
to (41i) represent the predictions of the elementary kinetic theory for the viscosity and thermal
conductivity of a gas mixture. (See refs. 36 and 58.) Although less accurate than the approximation
given by equations (37) to (40), they may still be adequate for many applications, particularly in
view of the current uncertainty in our knowledge of the collision cross sections for high-temperature
gases.

The binary diffusion coefficient D;; needed to obtain the binary and multicomponent Lewis
numbers (refs. 17, 18, and 36) is obtained from the complete first Chapman-Enskog approximation
(ref. 36):

Dy kT

Dij = —1 (42&)
p pAz('j)
with
— kT
Dij = —— (42b)
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LML,

[Tl

A

Here, p is the pressure in atmospheres. Equation (42b) for D; ; has been curve fitted in the present
work by using the expression

_ A—”UnTﬂ+B— 1nT+C¥4]
Dij = [exp(Dﬁ,)] T{ Dig Dij Pij (42¢)
4
where T is the temperaturc in kelvins. The curve-fit coefficients of equation (42¢) are given in
table VII for the different interactions in the 11-species air model.
The values of D;; obtained from equation (42c) with the curve-fit coefficients given in table VII
are for the limiting electron pressure per, (eq. (23g)).? If the pair of interacting species are both ions,

both electrons, or any combination of the two, then D;; must be corrected for the given clectron
pressure as follows:

— — 2

Dij(pf') = Dz](Pem) 1 8/3
In |2.09 x 10-2 < Tm) +1.52 (*271)
1000, 1000p,

(42d)

To obtain the viscosity p and the frozen component of thermal conductivity Ky of a gas mixture
cither from the more exact equations (30) to (38) or from the approximate relations in equations (39)

to (41), the binary collision cross scctions Wﬁgl-’s)and their ratios are needed in equations (34) to (36).
These cross sections, defined by equation (226, arc the same as those used by Yos (refs. 7 to 9). In
addition to the formulas given by equations (23) for the Coulomb collision integrals, the following

relations are employed:

70 = 0.79522Q. x 1016 (43a)
T2 = 1.2022Q, x 1010 (43b)

where the subscripts e and I represent clectrons and ions, respectively, and Z = 1 for singly ionized
specics, and Q. is defined in equation (23d).

The NATA (Nonequilibrium Arc Tunnel Analysis) code (refs. 39 to 41) employed to obtain the
collision cross sections Wﬁg,lfs)contains default provisions for cstimating some cross sections if they
are not specified explicitly in the built-in data basc or the input. The defaults are summarized as
follows:

1. If both specics arc ions, the Coilrlormb croés scctions given by e(uizitioris (2'3) and (43) arc
~ 2. If onc species is neutral and the other is fonized, the formula

is employed with the constants A8) defined in the code.
3. If both specics are neutral and are not alike, the cross sections are estimated using the
simple mixing rule

2
alts) 1 (. s
g = (\/ﬂngﬁ’ +/mal )> (44b)

% For flows with thermal equilibrium, p,. = n.kT may be used to obtain the electron pressure. For thermal nonequilibrium
conditions, the electron temperature Ty should be employed instead of T in the previous equation of state.

-
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The built-in data in NATA specify steps for calculating the cross sections for the like-like
interactions of ten specics (¢7, Na, Oz, N, O, NO, NO*, N*, O*, and NJ) and for those unlike
interactions for which experimental or theoretical cross sections are available in the literature. The
cross sections for O;r arc the same as those for N;r in these calculations. NATA contains 12

methods or options for calculating ﬂ'ﬁg}’l), Wﬁg'm, and Bi*j; these methods are described in detail

in references 39 to 41. Reference 59 provides a comparison between the theorctical calculations
based on these cross sections and the experimental values for the thermal conductivity of nitrogen
up to temperatures of 14000 K; fairly good agreement between the two is shown. The accuracy
of the calculated transport propertics is largely determined by the accuracy of the input data for
the cross-section integrals. Reference 7 contains a detailed discussion of the values employed in the
present study, and a brief review of these values is provided in the following paragraph.

Similar to the collision cross sections for single-species transport properties described previously,
the values of nﬁgl-’s)for mixture transport properties for the atomic and molecular interactions have
been obtained from the calculations of Mason (ref. 48) for temperatures up to 15000 K. The cross
sections for the interactions not tabulated by Mason were assumed to be approximately the same
as the other neutral-neutral interactions. For temperatures above 15000 K, the cross sections for
the atomic and other neutral-neutral interactions were obtained by extending Mason’s calculations
up to 30000 K by using the same potential functions that were used in his work (ref. 60). Since
neutral species are not important at high temperatures, the effect of this procedure on the overall
transport properties should be negligible. Further, there appear to be insufficient data available on
the ion-neutral interactions. These interactions have been calculated from the approximate potentials
given by Peng and Pindroh (ref. 52). Those potentials were obtained by drawing a smooth curve
joining the polarization potential at large intermolecular distances to a Morse potential obtained
from spectroscopic data at short distances. Further details for obtaining the interactions between
a neutral species and its own ion with resonant and nonresonant ion-neutral collisions arc given
in references 7 and 8. There has been a lot of experimental work on the electron-molecule cross
sections, whereas the cross sections for electron-atom scattering are somewhat uncertain, as detailed
in reference 7. For Coulomb collisions between the charged particles, effective collision integrals
were chosen in reference 7 so as to make the calculated values of the electrical conductivity and the
clectronic contribution to the thermal conductivity agree as closely as possible with the results for
a completely ionized gas.

Figures 8 and 9 show viscosity and frozen thermal conductivity values, respectively, of equilibrium
air at 1 atm obtained by employing the collision cross sections computed here for the constituent
species. The present calculations employ equation (39) for the mixture viscosity and equations (37),
(38), and (40) for the mixture frozen thermal conductivity. Also, the collision cross sections used
are nearly identical to those obtained in reference 9. The mixing laws employed for the viscosity and
thermal conductivity shown in figures 8 and 9 are accurate for subionization temperatures (less than
9000 K at 1 atm) only. For ionized flows, more accurate mixing laws of the type given in equation (30)
should be employed. Figures 8 and 9 also include viscosity and thermal conductivity values from
other sources for comparison. In these figures, the predictions of Peng and Pindroh (ref. 52) and Esch
ct al. (ref. 61) are based on the Buddenberg-Wilke (ref. 55) type of mixture law and have the same
level of approximation as the present calculations. The mixture laws employed by Hansen (ref. 37)
and Svehla (ref. 44) contain a somewhat lower level of approximation. In Hansen’s and Svehla’s
work, the viscosity is computed by using the simple summation formula for a mixture of hard-sphere
molecules, whereas a linearized expression with Eucken’s assumption (ref. 36) is used for the frozen
thermal conductivity. The viscosity values obtained in the present work are in good agreement
(fig. 8) with the values obtained by Peng and Pindroh (ref. 52) and Esch et al. (ref. 61), presumably
because of the similar mixing laws. Hansen’s (ref. 37) predictions, which are based on the Morse
potential function, are lower, especially at higher temperatures. Svehla’s (ref. 44) predictions, which
are bascd on the Lennard-Jones potential, are also lower than the present results for temperatures
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higher than 2500 K. Even with the beginning of dissociation of molecular nitrogen at about 4000 K
(when the dissociation of molecular oxygen is almost complete), Hansen’s values of viscosity are
not much different from Sutherland’s law. For the frozen thermal conductivity (fig. 9), the present
values are in agreement with those obtained by Peng and Pindroh (ref. 52) up to temperatures of
about 9000 K. The values obtained by Esch et al. (ref. 61) deviate from the present values beyond
6000 K. This deviation may be due to the constant cross-section values that are used for the ionized
species in the 8000 to 15000 K temperature range in reference 61. Hansen’s predictions of thermal
conductivity are lower than the other data and are closer to the Sutherland values up to temperatures
of about 4000 K. Again, the differences between the present computations and those of Hansen are
presumably due to the somewhat more rigorous mixing laws employed herein. Svehla (ref. 44) has
not provided values of the frozen thermal conductivity for equilibrium air and, therefore, his values
are not shown in figure 9. :

There are 121 possible binary interactions for the dlSSOClatlng air with 11 species. Therefore,
121 values of cach of the collision cross sections WQ( ) 9(2 2), and the collision cross-section
ratio B} are required to evaluate the transport propcrtles If the symmetrical equality is used,
e, (¢, JS (j,7), only 66 values of each cross section and cross-section ratio are required. These
valuetg have been Curve—ﬁt in the present study as a function of temperature for the limiting eclectron
pressure pen {€q. (23g)) using the following relations

my’ =_CXD(D§S"1))} %y _ o (45)

2 2) r [ 9(2 2) (ln T) +B (2,2) In T+C_(2 2)]
w1 = exp (Dﬁ(g_g))] T " iy (46)
L ij

AB* In T+BB*]

B;}(?,?) = exp (CB:‘J)] [ i (47)

Curve-fit coefficients in equations (45) to (47) are given in tables VIII to X for all interactions in the
11-species air model. Similar to the calculations for the equilibrium constant and thermal conductiv-
ity, the collision cross sections should be evaluated from the logarithmic forms of equations (45) and
(46) by keeping all four significant digits for the coefficients given in tables VIII to X. For electron
pressures different from per,, the formula given by equation (24b) is used to correct the cross sections
for the ionic species. No such correction is required for the cross-section-ratio parameter Bz*j‘
Figure 10 illustrates some typical curve-fits that were obtained by using equation (42c¢) and
equations (45) to (47) with the associated constants. The figure compares the computed values of
binary diffusion coeficient, collision integrals, and collision-integral ratio with the resulting curve-fit
for different interaction pairs of neutral and ionized species, including electrons. The collision-integral

ratio, B, I is almost constant with temperature as shown in the figure and was fitted with the lower
order curve-fit when possible. The collision integrals WQ( “for the charged species pairs show a

simple T2 dependence that requires only two curve-fit Coefﬁc:lents, as seen in equations (23).

Thermal Nonequilibrium

The transport properties of a multitemperature gas mixture may be obtained by following the
approaches of references 27 and 62. These references have used equations (39) and (40) for the
calculation of mixture viscosity and translational thermal conductivity. The collision integrals
for heavy particles in these equations are evaluated by using the heavy-particle translational
temperature, whereas those for electrons with any other partner are obtained by using the electron
temperature. With these modifications, equations (39) and (40a) can be written for a gas mixture
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where «;; is still obtained from equation (40b). The above definition of K. does not include
contributions due to electron-heavy-particle and electron-electron collisions. These contributions,
defined by K., are given subsequently. The approach outlined here may also be used to obtain the
mixture viscosity and thermal conductivity from the more exact expressions in equations (30) to (36).
Equations (38) for the internal thermal conductivity need to be modified for the multitemperature
formulation. The contributions resulting from the excitation of different internal energy modes
cannot be lumped together into a single term Kj,¢ for such a formulation. Further, equation (37)
can no longer be used to obtain a frozen thermal conductivity for the mixture. The relation given
in equation (37) may be used to obtain a frozen thermal conductivity with only the rotational
mode contributing to the internal energy at the translational temperature. In general, there are
four components of the internal thermal conductivity, similar to the molecular specific heat (fig. 4).
Using these components, the kth component of the overall heat-flux vector can be expressed as

NS
k . or yip 0Ty 0T k
= —(K Kiot) — — Kyjp—= — — — K, E h; V 50
q (Kir + mt)axk vib 5% el 5ok o + £ Pinivy (50a)

where K| is the translational thermal conductivity defined previously by equation (49) and Ko,
Kb, and K are the rotational, vibrational, and electronic thermal conductivities, respectively,
associated with these internal energy modes (ref. 63). Also, K, is the thermal conductivity of
electrons, T is the translational-rotational temperature, T,;, is the vibrational temperature, Ty is
the electronic excitation temperature, T, is the electron temperature, z¥ is the kth component in a
general orthogonal coordinate system, and the last term is the diffusive component of the heat-flux
vector. In the diffusive heat-flux component, p;, h;, and Vik are the density, enthalpy, and diffusion
velocity of species i, respectively. Further details of the heat-flux vector qk and other definitions are
given in appendix A. For a two-temperature model, equation (50a) may be written (refs. 25 and 27)
a8 NS
¢ = (K + Keo) 1 = (Ko + K+ Ko) T 43~ i (50b)
x Oz =
Different components of the internal thermal conductivity in equations (50) can be evaluated
from equation (38a) or (38b) by appropriate modifications for these components. For example, Kot

can be obtained from

T

Cli,i( rot) _ 5 .
[ univ 7] Ti
NS-1

i=mol. E z; Az(']l')(T) + Te Al(-el)(Te)
=1

(51a)

(Krot)partial = 2.3901 x 10_8]{‘ Z

excitation
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=2.3901 x 107 %% ‘Zl NS (1)
i=mol. Z z; Ai»j’ (T) + x, Ai(’ (Te)

=1

(51b)

for partial excitation of the rotational internal energy mode if the temperature is less than that
needed to excite the vibrational energy mode (fig. 3). Values of specific heat at constant pressure
Cp.i in equation (51a) can be obtained from the curve-fit relation of equation (13) by employing the
rotational temperature Ty if different from the translational temperature T. In equation (51b),
(Cp.i)rot is the rotational component of the total Cj, ;. When the vibrational mode begins to excite,
the rotational mode is fully excited, and equation {51a) becomes

T

(Kep)ra = 2.3901x 105k 3 ¢ =

excitation i=mol. Zl .TJ A(l)( ) . {1>(T)
j:

Similarly, expressions for Ky, with partial and full excitations of the vibrational energy mode may
be written as

Cll.l Tvi)
{ l(mi\'|) o %} Ti
(Kyip)pariat = 2.3901 x 1078k Z NS 1 (52a)
excitation L
el ST a AD@) + e AL (@)
J=1 J
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=2.3901 x 107% > - f (52b)
i=mol. Z 7 A(] T 7. Az((”(Tf)
J
and
(Kapdon  =23901 x 108k 3§ ——— wal (52c)
excitation i ) — 1 1
i=mol ZTJA()( )+1'c f{)(()
j=1

Once again, the value of Cp; in equation (52a) can be obtained from the curve-fit relation of
equation (13) by employing Ty4,; also, in equation (52b), (Cp;)vi, is the vibrational component
of the total Cp;. The vibrational cnergy mode is fully excited when the electronic contribution
becomes significant (as shown in fig. 4 for the specific heat at constant pressurc).

The rotational and v1brat10nal cnergy modes are almost fully excited at their respective
characteristic temperatures. Therefore, for rotational and vibrational temperatures greater than
these characteristic temperatures, equations (51b) and (52b) can be used to obtain Krot and Ky,

respectively.
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Expressions for K, with the excitation of electronic energy mode can be written as

Cpi(Th
NS-1 [gj?% - %} x;
Ko = 23901 x 107% 3 { ooy (53a)
DDV FEA e
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]:

\

In equation (53a), higher electronic degeneracy levels begin to contribute to K¢ (and Cp ;. etc.) as
the characteristic temperatures for the electronic excitation of those degeneracy levels are reached.
The term (C},;)e1 in equation (53b) is the clectronic contribution to the total C, ;. The species that
is left out in the outer summation in equations (53a) and (53b) is the electron.

Finally, the thermal conductivity for free clectrons K in equations (50) may be obtained from
the modified form of equation (40a) as follows:

15 kx,
- -8y ¥ C
Ko = (23901 x 107%) gy (54)

S 1asz; AT + 2 AD(T)
j=1

This thermal conductivity results from the collisions between electrons and other species, including
other electrons.

In equations (51) to (53) for the partial conductivities in thermal nonequilibrium, the diffusion
rates of the excited species are assumed to depend on the translational (or kinetic) temperature of the
molecules rather than on the excitation temperature, because the collision frequency of the specics
is likely to depend strongly on the translational temperature. Therefore, the cross sections AT(-JI-)
in the denominators of these equations are evaluated at the translational temperature T. Perhaps
employing some averaged temperature, which would cover the effects of translational temperature
and excitation on the cross sections, would be more desirable.

Concluding Remarks

The present work provides a review of the reaction-rate coefficients and thermodynamic and
transport properties for an 11-species air model that are needed in analyzing the high-energy flow
environment of currently proposed and future hypersonic vehicles. The properties not available in
the literature have been provided for this set of species, and curve fits are given for the various species
for their efficient computation in flow-field codes. Approximate and more exact formulas have been
provided for computing the properties of partially ionized air mixtures in chemical and thermal
nonequilibrium around such vehicles. Limitations of the approximate mixing laws for a mixture
of ionized species are pointed out, and an electron number-density correction for the transport
properties of the charged species is given. This correction has generally been ignored in the aerospace
literature.

The work presented here uses the best estimates of available data needed to compute properties of
the 11-species air model. However, there is need for improved data, especially for air in thermochem-
ical nonequilibrium. There is a considerable degree of uncertainty about reaction-rate coefficients
at high temperatures. For the multitemperature kinetic models, the theoretical basis needs to be
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developed substantially and the experimental data base needs to be expanded considerably. The
virial-coefficient and partition-function approaches for obtaining the thermodynamic properties are
equally accurate at high temperatures if the effects of nonrigidity of the rotor and anharmonicity
of the oscillator are included in the two methods. The curve fits provided here are for the thermo-
dynamic properties based on the virial-coefficient formulation with these high-temperature correc-
tions. These values seem adequate but need further verification. For transport properties, the input
data for obtaining the collision cross sections at high temperatures require further study.
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Appendix A

Heat Flux, Frozen and Total Prandtl and Lewis Numbers, and Associated Definitions

The kth component of the overall heat-flux vector g* for the dissociating and ionizing air model in a
multitemperature formulation can be expressed as follows: 10

) oT T, T, AT,
qk = _(Ktr + Krot) E Kv1b v/lcb Kel 21 — Ke Ak + Z plh Vk (Al)
Oz oz Oz “or

where the various symbols are explained in the main text after equation (50a). For thermal equilibrium
conditions, equation (A1) may be written as

NS
oT
qk =_(Kt*r'f'KrotJf‘Kvib'*'Kel'FKe)w +Z Pz’hiVik (AQ)
i=1
or NS
oT
¢ = —Kfﬂ +y pihi Vi (A3)
T a
where
Kf = (Kt*r + Ke) + Kint (Ad)
and
Kint = Kot + Kvib + Kel ' (A5)

Also, under thermal equilibrium conditions,
Ktr = K:r + Ke (A6)

where Ky, is given by equation (40a), K. is obtained from equation (49), and K. is evaluated from
equation (54). The last terms in equations (Al), (A2), and (A3) represent the diffusion contribution to
the heat-flux vector. The diffusion mass flux of species 1, Jik, is related to the diffusion velocity V;-k through
the relation

JF = pVE (A7)

or, in terms of the concentration gradients, may be expressed (refs. 64 and 65) as

NS
c’)C ocC
/N i § : Aby o A8
) NPr,f 6 ]g + l ( )
l#z

where pressure and thermal diffusion have been neglected and where

NS Cj NS Cj

Le; = — (A9)
i i
NS
M; M;
Aby = Le; — ﬁ’Lf,,-, + (1 - A—I;-) > LyiC; (A10)
j=1
J#i

10 The heat-flux vector is positive for heat flow in the positive coordinate direction.
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The multicomponent Lewis number Ly ;; and the binary Lewis number Le 1.ij are defined, respectively, as
Lyij=pCp;Dij/Ky (Al1)

and
Ler :pCPfDlJ/Kf (Al?)

where D ij 18 the multicomponent diffusion coefficient thdt can be obtained from the binary diffusion coefficient
following the approach of reference 65.
For binary diffusion, equation (A8) may be simplified to (ref. 64)

JF = —pD;; oc:

i l]ﬁ (AIB)

If the species j is assumed to be some cffective mean species for the gas, then using equations (A7) and (A13)
in equation (A3) gives

NS
. oT aC; ,

or, for chemical equilibrium flow applications,

NS
3 or oc; \ oT
k_ g Y Tt A Bl
¢ =K ”;DU"" oT | ouF (AL5)
or T
k . - - .
where K is the total effective thermal conductivity defined as
NS
I oC;
K =Af+p§D,-jh‘i0—Tl (A17)
or -
K=K;+ K, (A18)
with the reactive contribution to the thermal Condtxct.i\’ity K, defined as
NS
. aC;
K, = p; Dl-jh,,-a—:,j (A19)

for chemical cquilibrium conditions.
An alternate definition of the reactive thermal conductivity!’ K for a flow in chemical equilibrium is given
in reference 7 as

NIR ) 2
er = k Z NS N (Ahl/Rllnl\ T) B (AQO)
> [Big — ig)/i] Z By — o)z — (Bjg — aj )] all
i=1 j=1

' The formula for K, ‘given here already includes the effects of ambipolar diffusion (ref. 66) on the reaction conductivity of an ionized
gas.
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where k is the Boltzmann constant, NIR is the total number of independent reactions in the system, NS is

the total number of species in the system, Ahy = 3 (8;; — a;)h; is the heat of reaction per g-mole for

1=

the [th reaction, x; is the mole fraction of species i, AZ(»;-) is defined by equation (34), and a;; and 3;,; arc
the stoichiometric coefficients for reactants and products in the reaction given by equation (1). The thermal
conductivities K given by equations (A19) and (A20) are equivalent under conditions of chemical equilibrium.

Similar to relations (A17) and (A18), the total specific heat at constant pressure may be defined as

Cp = (_giT)p (A21)

or, from equation (9),

= ac
_ M)
Cp=Cyp, + Z hi s (A22)
=1 p
or
with
NS
oC,
Co, =D hl-—a—j,i (A24)
i=1
p
where Cy, is the total contribution to the specific heat at constant pressure.
The specific heat at constant volume C, may be obtained from
Oe
b= —= A25
= (o) A2
where
NS
e=Y_ Ci(hi —pi/pi) (A26)
=1
This equation may be used with equation (A21) to obtain the ratio of specific heats v from
Y= Cy/Cy (A27)

Using the various definitions for the thermal conductivity and the specific heats at constant pressure, the
frozen and total Prandtl and Lewis numbers usually employed in dimensionless heat-flux calculations may now
be defined.!?

Generally, the frozen values of specific heat at constant pressure and thermal conductivities arc employed
in flow-ficld calculations. Associated heat flux from these calculations is, accordingly, expressed in terms of the
frozen Prandtl and Lewis numbers. Alternatively, one may also usc total values of specific heat at constant
pressure and thermal conductivity in flow-field computations. In this case, the heat flux may be expressed in
terms of the total Prandt] and Lewis numbers. However, the total values of C}, and K, as well as thosc of the
total Prandtl and Lewis numbers, can be used only with calculations involving thermal equilibrium. This is
obvious from the definitions of K and Cj, given by equations (A18) and (A23), respectively.

The frozen Prandtl number and Lewis numbers are defined as

Npr = Cpfll/l(f (A28)
Lef,i]- = pCpf Dij/Krf (A?g)

12 Kenneth Sutton of NASA Langley Research Center provided some of these definitions in an unpublished memo.
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where C), f and K are defined by equations (9) and (37), respectively. Generally, the subscript f is not used
in the literature to denote the frozen Prandtl and Lewis numbers as is done here.

The total Prandtl and Lewis numbers (consisting of both frozen and reactive components) are defined by
employing the total values of Cp and K as

Np, = Cou/K (A30)
Le;j = pCyDyj/ K (A31)

where Cp and K are defined through equations (A22) and (A18), respectively. Reference 37 gives similar
definitions of the total Prandt]l and Lewis numbers. The frozen values defined by equations (A28) and (A29)
are denoted as partial values in reference 37 and are denoted as Pr’ and Le’ therein.
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Appendix B
Procedure For Obtaining the Heats of Formation at 298.15 K

As mentioned in the main text, various sources provide tabulated values of the species specific enthalpy and
free energy based on a reference temperature of 0 K. To transform these thermodynamic values to the 298.15 K
reference, the heat of reaction is required at the new reference temperature. The general method employed for
this transformation involves calculation of the heat of formation for the reaction

Reactants Products

S Xi— Y BisX: (B1)

i=1 i=1

For illustration, the following reaction for the formation of atomic nitrogen, N, may be considered:
1
§N2 - N (B2)

The heat of formation of a substance is defined as the change in enthalpy created by its production. Since
the enthalpy is a point function of temperature and is independent of the path used to arrive at that point,
the reactants may be cooled from the reference temperature of 298.15 K to 0 K, thus allowing the formation
reaction to occur at the lower temperature. The products may then be heated to the reference temperature of
298.15 K. Through this process we can obtain the heat of formation of atomic nitrogen, N, at 298.15 K by the
following relation:

(AR 729815 = (AR )70 + Ahy + Ahg (B3)
where
Reactants
Ahy= Y oy, [(hi)r=0 — (hi)T=208.15] (Bda)
i=1
1
=3 [(hny)T=0 — (hNy)T=298.15] (B4b)
Products
Ahg= > Birl(hi)r=29815 — (hi)7=0] (B5a)
i=1
= [(hN)T=208.15 — (AN)T=0] (B5b)

The reference species used here as reactants in the formation reactions are N2, Og, and e ™. Care should be
taken in selecting the reaction for the formation of a particular compound. The reactions used for the formation
of each substance, along with the heats of formation at 0 K and 298.15 K, are listed in table B1. The heats
of formation at 0 K are taken from reference 38. The procedure for obtaining the heat of formation for any
substance at 298.15 K from the corresponding value at 0 K is illustrated in figure B1.
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Table B1. Reactions for the Formation of Various Substances With Heats of Formation

Substance | Reaction
N 3 No =N
0 % 09 — O
N+t 5 Ng— NT + e~
o+t 3 02— 0" ¢
NO 3 N2+ 3 0, - NO
NO* INo+ 10y - NOF+ e
N; Ny — N;r + e~
O; 0Oy — O; + e~
-

V (Ah{)T:QQS.ISv

kcal/g-mole

(An) 7=,
kcal/g-mole

112.973

59.553

449.840

374.949

21.580

236.660

360.779

279.849

0.0

112,529 + 0.024
58.984 + 0.024
447.694 + 0.1
373.024 + 0.024
21.457 + 0.04
235.180 + 0.2
359.298 + 0.01
278.370 + 0.2

0.0
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Reactants - Reactants
at 298.15K Reactants at 0K

: Ahy= % ajf [(hi)1_o — (hi)T=008.15]

E (Ah ") T_008.15 (Ah{) g

s unknown is known

" from

" tabulated

" data

' '

Products -~ , Products

at 298.15K Ah2 _ 'Z‘ Bi,r [(hi)T=298.15 _ (hi)T=0] at 0K

Figure Bl. Flow chart for obtaining heat of formation at 298.15 K from corresponding value at 0 K.
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Appendix C

Sample Program To Evaluate Thermodynamic Properties From Polynomial Curve
Fits

This appendix is a sample Fortran subroutine which evaluates the species specific heats and enthalpies for an

11-species air model using polynomial curve fits as functions of temperature. Five temperature ranges are used
for each species for temperatures between 300 K and 30000 K. Properties evaluated near the temperature range
boundaries are smoothed by linearly averaging the polynomial coefficients to assure continuous derivatives. The
subroutine may be easily modified for different needs.

aagaaaaan

40

20

40

input: T
output: CPI

SUBROUTINE THERMO(T,CPI,HI)

Computes enthalpy and specific heat for 11 species by
approximating polynomials.
arrays Al to A6 and are linearly averaged at the temperature range
boundaries.

temperature, K )
specific heats of the species, cal/g-mole-K

Polynomial coefficients are stored in

HI enthalpies of the species, cal/g-mole
DIMENSION A1(11,5),A2(11,5),A3(11,5),A4(11,5),A5(11,5) ,A6(11,5)

DIMENSION P(6),COEF(11,5,6)

DIMENSION CPI(11),HI(11)
EQUIVALENCE (A1,COEF)

Universal gas constant, cal/g-mole-K

DATA UNIR /1.987/

Coefficients are input for five temperature ranges

K=4
L=5

IF(T.GT.15500.)G0 TO 20
K=3

L=4

IF(T.GT.6500)G0O TO 30
K=2

L=3

IF(T.GT.1200.)G0 TO 40
K=1

L=2

PA=1.0

PB=0.0

IF(T.LE.800.)G0 TO 50
PB=(1./400.)*(T-800.)
PA=1.0-PB

GO TO 50

CONTINUE

PA=1.0

PB=0.0
IF(T.LE.5500.)G0 TO 50
PB=(1./1000.)*(T-5500.)
PA=1.0-PB

GD TO 50

CONTINUE

PA=0.0

PB=1.0



30

60

65

IF(T.GE.25500.)G0D TO 50
PA=1.0

PB=0.0
IF(T.LE.24500.)G0 TQ 50
PB=0.001%(T-24500.)
PA=1.0-PB

GO TO 50

CONTINUE

PA=1.0

PB=0.0
IF(T.LE.14500.)G0 TO 50
PB=0.001*(T-14500.)
PA=1.0-PB

CONTINUE

T2=T*T

T3=T2*T

T4=T3*T

TOV=1.0/T

Compute properties for 11 species

DO 65 I=1,11

DO 60 J=1,6

P(J)=PA*COEF(I,K,J)+PB*COEF(I,L,J)
HI(I)=UNIR*T*(P(1)+0.5%P(2)*T+P(3)*T2/3.+0.25%P(4)*T3
1 +0.2%P(5)*T4+P(6)*TOV)
CPI(I)=UNIR*(P(1)+P(2)+T+P(3)*T2+P(4)*T3+P(5)*T4)
CONTINUE

RETURN

END
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Table I. Third Body Efficiencies Relative to Argon™

Efficiencies relative to argon of—
Catalytic Oy Ny 0] N NO | NO* O; N'{ ot N+
bodies |Z(;_Ng); =1 |(i=2) |(i=3) |(i=4) |i= 5) (i=6)|(i=7)|(:=8)|(i=9) |(i= 10)

My 1,i 9 2 25 1 1 0 0 0 0 0
My 2,1 1 2.5 1 0 1 0 0 0 0 0
M; 3, 1 1 20 20 20 0 0 0 0 0
My 4,i 4 1 0 0 0 0 0 0 0 0
e~ 5,1 0 0 0 0 0 1 1 1 1 1

*Extension for the 11 species and 5 catalytic bodies is based on the work of reference 17.
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Table V. Constants for Viscosity® Curve Fits
(1000 K < T < 30000 K)f

Speciesi Ay, By, Cy

No 0.0203 0.4329 ~11.8153
0, 0484 —.1455 -8.9231
N 0120 5930 ~12.3805
o) 0205 4257 —11.5803
NO 0452 —.0609 —9.4596
NO*t 0 2.5 —32.0453
e | —37.4475
N+ —32.4285
o+ —32.3606
NJ —32.0827
O3 ~32.0148

* Viscosity is obtained in g/cm-sec.

1 For temperatures less than 1000 K, Sutherland’s viscosity law for air may
be used for all species.

! The charged species viscositics given here are for the limiting electron
pressure pem (cq. (23g)). For different clectron pressures, these values should
be corrected by the formula given in equation (24a) in the main text.



Table VI. Constants for Frozen Thermal Conductivity* Curve Fits

(1000 K < T < 30000 K)f

Speciest | Ay, By, Cx,, Dy, Ex,,
N, 003607 | —107503 11.95029 —57.90063 9321782
03 07987 | —2.58428 3125059 | —166.76267 321.69820
N 0 0 01619 55022 ~12.92190
0 0 0 03310 22834 ~11.58116
NO 02792 — 87133 10.17967 —52.03466 88.67060
NO+ | —.06836 257829 | —35.72737 21009215 | —519.00261
e 0 0 00032 2.49375 —27.89805
N+ 0 0 03088 2.06339 ~31.51368
o+ —.04013 132468 | —16.22091 80.96782 | —208.57442
N} 0 —.03723 84192 ~3.59040 ~18.65620
o} — 08373 275459 | —33.74529 18513274 | —401.50753

* Thermal conductivity is obtained in cal/cm-sec-K.

t For temperatures lower than 1000 K, Sutherland’s law for thermal conductivity of air may
be used for each species. 7 -

! The charged species frozen thermal conductivities given here are for the limiting electron
pressure pem (eq. (23g)). For different electron pressures, these values should be corrected by
the formula given in equation (24a) in the main text.
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Table VII. Constants for Diffusion Coeflicient* Curve Fits

Pair Interaction Temperature
number! pair (i — j) Aﬁij BEU CT)ij Dﬁlj range, ki
1 Ng— Np 0 0.0112 1.6182 —11.3091
2 Oy— Ny . .0465 9271 -8.1137
3 03— 09 0410 1.0023 —8.3597
4 N — Ny 0195 1.4880 —10.3654
5 N — 0y 0179 1.4848 —~10.2810
6 N-NS$ .0033 1.5572 —~11.1616
7 0 — N 0140 1.5824 ~10.8819
8 0 - 0, 0226 1.3700 —9.6631
9 O-N —.0048 1.9195 —~11.9261
10 0-0°F .0034 1.5572 —-11.1729
11 NO — Ny 0291 1.2676 —9.6878
12 NO — 04 .0438 9647 —8.2380
13 NO - N 0185 1.4882 -10.3301
14 NO - O 0179 1.4848 —~10.3155
15 NO — NO 0364 1.1176 —8.9695
16 NO*— Ny 0 1.9000 ~13.3343
17 NO*— 0, 1.9001 ~13.3677
18 NO*- N 1.8999 —~13.1254
19 NO*- 0 1.9000 ~13.1701
20 NO*— NO .0047 1.5552 ~11.3713

Footnotes at end of table, page 60.
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Table VII. Continued

Pair Interaction Temperature
number! pair (i — §) 450 BEU CEU Dﬁu range, Kt
21 NO*— NO* 0 0 3.5000 -30.3210
22 e — Ny —.1147 2.8045 | —23.0085 65.9815
23 e”— Oy —.0241 3464 1136 —1.3848 1000 to 9000
—.0029 0856 6655 —.8205 | 9000 to 300000
24 e — N 0 0 1.5000 —2.9987
25 c -0 0581 —~1.5975 15.4508 —40.7370
26 e”— NO .2202 ~5.2261 42.0630 —106.0937 1000 to 8000
2871 —8.3759 82.8802 ~267.0227 8000 to 30000
27 e”— NO* 0 0 3.5000 —25.2128
28 e —e” 3.5000 —24.8662
29 N*- N 1.9000 —13.1144
30 Nt—- 0, 1.9000 —~13.1357
31 Nt-N .0033 1.5572 —~11.1616
32 Nt- 0 0 1.9000 —13.0028
33 N*- NO 1.8999 —13.1254
34 Nt- NO* 3.5000 —30.0951
35 Nt— ¢ 3.5000 ~25.2128
36 N+- Nt 3.5000 —~29.9401
37 0T- Ny 1.9000 —13.1578
38 0*t— 0y 1.9000 —13.1810
39 Ot-N 1.9000 —13.0028
40 0t-0 J .0034 1.5572 —~11.1729

Footnotes ‘at end of table, page 60.
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Table VII. Continued

Pair Interaction Temperature
number! pair (i — j) AEU BEU Cﬁu’ DBU range, K}
41 O*- NO 0 0 1.9000 ~13.1701
42 Ot- NO* 3.5000 —30.1395
43 Ot—e¢” —25.2128
44 Ot-N* —29.9722
45 ot-0t -30.0066
46 NI - Np 1.9000 -13.3173
A7 Ny - Oy —13.3495
48 Ny-N —13.1144
49 N;-O -13.1578
50 NJ— NO —13.3343
51 NI - NO* 3.5000 —30.3036
52 Nf—e” —25.2128
53 Ny - N* —30.0839
~ b4 Ny - 0% -30.1273
55 Ny - Nj —30.2867
56 0 - Ny 1.9000 -13.3173
57 03 -0 —13.3495
58 07— N —13.1144
59 0;-0 -13.1578

Footnotes at end of table, page 60.
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Table VII. Concluded

Pair Interaction Temperature
number! pair (i — 7) Aﬁzj Bﬁz’j Cﬁij Dﬁij range, ki
60 03— NO 0 0 1.9000 —13.3343
61 Of — NO* 3.5000 —30.3036
62 0F — e —25.2128
63 0 - Nt —30.0839
64 OF - O —30.1273
65 O3 — NJ —30.2867
66 03 - 0F ] i —30.2867

*Diffusion coefficients are obtained in cm2-atm/sec. Diffusion coefficients obtained from these curve
fits are for the limiting clectron pressure pem (eq. (23g)). For different electron pressures, the cross sections
should be corrected by the formula given in the main text when the interacting pair of species are both
ions or electrons or a combination of the two. Diffusion coefficients for N; and Og’ are taken to be the
same.

TCross sections 1 to 15 are used in a 5-species air model and 1 to 28 in a 7-species model.

IThe temperature range for all curve fits is 1000 < 7' < 30000 K, except where noted.

SCoefficient for diffusion of internal excitation energy (see p. 20). )
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Table VIII. Curve-Fit Constants for Collision Cross-Section ﬁi j

Pair Interaction Temperature
number! pair (7 — 7) Aﬁﬁ}‘” Bﬁl(;_l) Cﬁ,(,l-’l) Dﬁﬁ,‘-‘” range, Kt
1 Na— Nag 0 —0.0112 -0.1182 4.8464
2 02 - Ng —.0465 .5729 1.6185
3 03 - Oy —.0410 4977 1.8302
4 N - Ny —.0194 _ .0119 4.1055
5 N - Og —.0179 0152 3.9996
6 N-N —.0033 —.0572 5.0452
7 O - Ny —.0139 —.0825 4.5785
8 0-0, —.0226 1300 3.3363
9 O-N .0048 —.4195 5.7774
10 0-0 —.0034 —.0572 4.9901
11 NO - Ny —.0291 2324 3.2082
12 NO - O —.0438 5352 1.7252
13 NO -N —.0185 0118 4.0590
14 NO-O —.0179 0152 3.9996
15 NO - NO —.0364 .3825 24718
16 NO* - Ny 0 —.4000 6.8543
17 NO* - 09
18 NO*-N
19 NO* -0
20 NO* - NO —.0047 —.0551 4.8737
21 NO* - NO* L 0 —2.0000 23.8237

Footnotes at end of table, page 64.




Table VIII. Continued

Pair Interaction Temperature
number' pair (i — j) Aﬁi';"]) Bﬁ;;’l) Cﬁf}'” Dﬁi;'l) range, K?

22 ¢ - Np 1147 —2.8945 24.5080 —67.3691

23 e O 0241 —.3467 1.3887 —0.0110 1000 to 9000
.0025 —.0742 .7235 —0.2116 9000 to 30000

24 e - N 0 0 0 1.6094

25 e O .0164 —.2431 1.1231 —1.5561 1000 to 9000
—.2027 5.6428 —51.5646 155.6091 9000 to 30000

26 ¢ NO —.2202 5.2265 —40.5659 104.7126 1000 to 8000
—.2871 8.3757 —81.3787 265.6292 3000 to 30000

27 e - NO* 0 0 —2.0000 23.8237

23 e e -2.0000 23.8237

29 N* Ny —.4000 6.8543

30 N* - Og —.4000 6.8543

31 N* N —.0033 —.0572 5.0452

32 N* O 0 —.4000 6.8543

33 N* NO —.4000 6.8543

34 N* NO' 7 —2.0000 23.8237

35 N* - ¢ —2.0000 23.8237

36 N+ N~ —2.0000 23.8237

37 O Ny —.4000 6.8543

38 0 -0y —.4000 6.8543

39 O -N —.4000 6.8543

40 0" 0 —.0034 —0.0572 4.9901

Footnotes at end of table, page 64.




Table VIII. Continued

Pair Interaction Temperature
number! pair (i — j) Aﬁf}‘” Bﬁfj_l) Cﬁg—'l) Dﬁg_n range, K?

41 0O* - NO 0 0 —.4000 6.8543

42 O’ - NO' —2.0000 23.8237

43 0 e —2.0000 23.8237

44 O - N* —2.0000 23.8237

45 O -0 —2.0000 23.8237

46 N; - N —.4000 6.8543

47 Ny Og

48 N, - N

49 N, O

50 Nj - NO

51 Ny - NO* —2.0000 23.8237

52 N, ¢

53 Nj - N*

54 Ny - O°

55 N; - Nj

56 0, - Ng —.4000 6.8543

57 05 Og

58 O; -N

59 0, O

60 03 - NO

Footnotes at end of table, page 64.
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Table VIII. Concluded

Pair Interaction Temperature
number! pair (i — j) Aﬁ,(-]l-'l) Bﬁ:}’l) Cﬁg‘l) Dﬁz(']l”l) range, K

61 0j - NO* 0 0 —2.0000 23.8237

62 05 e

63 05 - N*

64 0; -0

65 05 - N3

66 0; - 0} . !

* Cross sections are obtained in A2, 1 A2 = 10716¢m?. Collision cross sections obtained from these
curve fits are for the limiting electron pressure pem (eq. (23g)). For different electron pressures, the cross
sections should be corrected by the formula given in the main text when the interacting pair of species
are both ions or electrons or a combination of the two. Cross sections for N'{ and O;’ are taken to be the

same.

t Cross sections 1 to 15 are used in a 5-species air model and 1 to 28 in a 7-species model.
! The temperature range for all curve fits is 1000 < T < 30000 K, except where noted.
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Table IX. Curve-Fit Constants for Collision Cross-Section QEE’Z)*

Pair Interaction Temperature
number! pair (i — 7) Aﬁgyg) Bﬁg,g) Cﬁgg) Dﬁif‘” range, Ki
1 N2 - Ny 0 —-0.0203 0.0683 4.0900
2 07 - Ng —.0558 7590 .8955
3 09 - Og —.0485 .6475 1.2607
4 N - Ny —.0190 .0239 4.1782
5 N -0, —.0203 0730 3.8818
6 N-N —.0118 —.0960 4.3252
7 O - No —.0169 —.0143 4.4195
8 O -0 —.0247 1783 3.2517
9 O-N .0065 —.4467 6.0426
10 0-0 —-.0207 0780 3.5658
11 NO - Ny —.0385 4226 2.4507
12 NO - O, —.0522 7045 1.0738
13 NO - N —.0196 0478 4.0321
14 NO-O —.0203 .0730 3.8818
15 NO - NO —.0453 5624 1.7669
16 NO* - Np 0 -.4000 6.7760
17 NO* - Og
18 NO* - N
19 NO* -0
20 NO* - NO l
21 NO* - NO* —2.0000 24.3602
22 e - Ng 1147 —~2.8945 24.5080 —67.3691

Footnotes at end of table, page 68.
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Table IX. Continued

Pair Interaction Temperature
numbert pair (i — j) /lﬁg_g) Bﬁg)g) Cﬁ,{f"?) Dﬁg‘g) range, ki
23 e Oy .0241 —.3467 1.3887 —.0110 1000 to 9000
.0025 —.0742 7235 —.2116 9000 to 30000
24 ¢ N 0 0 0 1.6094
25 e -0 .0164 —.2431 1.1231 —1.5561 1000 to 9000
—.2027 5.6428 —51.5646 155.6091 9000 to 30000
26 e - NO —.2202 5.2265 —40.5659 104.7126 1000 to 8000
—.2871 8.3757 —81.3787 265.6292 8000 to 30000
27 ¢ - NO! 0 0 —2.0000 24.3061
28 ¢ - —~2.0000 24.3061
29 N' - Ny —.4000 6.7760
30 N- Oy —.4000 6.7760
31 N' - N —.4146 6.9078
32 N O —.4000 6.7760
33 N- NO —.4000 6.7760
34 N° - NO’ —2.0000 24.3602
35 N -e —2.0000 24.3061
36 N* - Nt —2.0000 24.3602
37 0" Ny —.4000 6.7760
38 0" Oy —.4000 6.7760
39 0" -N —.4000 6.7760
40 0 0 —.4235 6.7787
41 0" NO { —.4000 6.7760

Footnotes at end of table, page 68.



Table IX. Continued

Pair Interaction Temperature
number! pair (i — 7) Aﬁff_g) Bﬁf-f-'z’ Cﬁfu) Dﬁffg) range, K

42 Ot - NO* 0 0 —2.0000 24.3602

43 O —¢ 24.3061

44 0" N 24.3602

45 ot -0 24.3602

46 Na* - Na —.4000 6.7760

47 No* - Oy

48 Ng* - N

49 No* - O

50 No* - NO

51 Na* - NO* —2.0000 24.3602

52 No* - ¢ 924.3061

53 Ng*t - N* 24.3602

54 Nyt - O 924.3602

55 Ng* - Npt 24.3602

56 02" - Ng —.4000 6.7760

57 O2* - O9

58 O2* - N

59 0Ot O

Footnotes at end of table, page 68.
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Table IX. Concluded

Pair Interaction Temperature
number! pair (i — j) Aﬁg’g) Bﬁl(_];,g) Cﬁg’z) Dﬁi?g) range, Kl

60 02t - NO 0 0 —-.4000 6.7760

61 Op* - NO* —2.0000 24.3602

62 Ot - € 24.3061

63 Ot - N* 24.3602

64 02* - O

65 O2* - Na* 4

66 Og* - Og* 4

* Cross sections are obtained in AZ; 1A2 = 10~ 6¢m

. Collision cross sections obtained from these

curve fits are for the limiting electron pressure pe;m (eq. (23g)). For different electron pressures, the cross

sections should be corrected by the formula given in the main text when the interacting pair of species

are both ions or electrons or a combination of the two. Cross sections for N;’ and 02Jr are taken to be the

same.

! Cross sections 1 to 15 are used in a 5-species air model and 1 to 28 in a 7-species model.

! The temperature range for all curve fits is 1000 < T < 30000 K, except where noted.




(1000 K < T < 30000 K)

Table X. Curve-Fit Constants for Collision Cross Section Ratio B;‘J- *

Pair Interaction

number' pair (7 — j) A B!, B By, C B;,
1 Ny - Ny —0.0073 0.1444 —0.5625
2 02 - N2 —.0019 0602 —.2175
3 Og - Oy .0001 0181 —.0306
4 N - Ny .0043 —.0494 2850
5 N - 02 .0033 —.0366 .2332
6 N-N .0002 .0002 .0537
7 O0-Ny .0042 —.0471 2747
8 0 -0y | .0024 —.0245 .1808
9 O-N 0147 —.2628 1.2943
10 0-0 .0002 0 0549
11 NO - Ng —.0045 1010 —.3872
12 NO - O3 —.0010 .0410 —-.1312
13 NO - N .0038 —.0425 2574
14 NO - 0O .0033 —.0366 .2332
15 NO - NO —.0027 .0700 —.2553
16 NO* ~ N» 0 0 1933

17 NO* - 09

18 NO* - N

19 NO* -0
20 NO* -NO .0003 —.0006 .0632

Footnotes at end of table, page 72.
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Table X. Continued

Pair Interaction
number! pair (i — j)

21 NO* - NO*

22 e~ Ny

23 e - Oy

24 e” - N

25 e” O

26 e” - NO

27 e~ - NO*

28 c” ¢

29 N' - Np

30 N - 0Og

31 N N

32 N O

33 N'  NO

34 N' NO-

35 N* e~

36 Nt Nt

37 0" Ny

38 0 0O

39 O' - N

ij

.0002

Footnotes at end of table, page 72.

.0002

4463

4463

4463

1933

1933

0537

.1933

1933

4463

4463

4463

.1933

1933

1933




Table X. Continued

Pair Interaction
number! pair (i — j) A B;, B B;, C B:)
40 0 O .0002 0 0549
41 0O NO 0 1933
42 0 NO! 4463
43 0" —e”
44 0 N
45 o+ 0
46 N3;—Ng 1933
a7 N3Oy
48 N5—-N
49 N{-0O
50 N;-NO
51 N;—-NO* 4463
52 Nj—c™
53 N3 —N*
54 N§-O*
55 N5 =N,
56 0;-No 1933
57 0,-02
58 0,—-N
59 0,-0

Footnotes at end of table, page 72.
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Table X. Concluded

Pair Interaction
number! pair {i — j) A By, B By, C By,
60 0;-NO 0 0 1933
61 0;—-NO* 4463
62 05 —e”
63 O;-N~
64 0;-0
65 03—Ny*
66 0;-07" 4 4

iy

* The collision cross-section ratios are dimensionless parameters and are valid as given for
all electron pressures.
f Cross sections 1 to 15 are used in a 5-species air model and 1 to 28 in a 7-species model.
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Reglons with chemical and thermal nonequilibrium

Chemical species In high-temperature air
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Figure 1. Flight stagnation region air chemistry for a 30.5-cm radius sphere (adapted from ref. 5).
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Figure 2. Variation of equilibrium constant with temperature for reaction N + O _ NO* +e™.
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8- Curve fit to Browne data
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(b) Diatomic nitrogen.

Figure 3. Curve fit to specific-heat values obtained by Browne (ref. 35) and comparison with Hansen’s values

(ref. 37).
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Figure 3. Concluded.
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Figure 4. Specific heats of monatomic and diatomic nitrogen with contributions from excitation of different
energy modes.
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Figure 5. Limiting electron pressure for transport properties of ionic species. The present formulation is
applicable only for electron pressure below this limit.
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Figure 6. Curve fit to viscosity values obtained by employing collision cross sections based on data of
reference 40. : ,
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Figure 7. Curve fit to frozen thermal conductivity values obtained by employing collision cross sections based
on data of reference 40.
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Figure 8. Viscosity of equilibrium air at 1 atm.
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Figure 9. Frozen thermal conductivity of equilibrium air at 1 atm.
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Figure 10. Curve fit to computed values of collision integrals, collision-integral ratio, and binary diffusion
coefficient obtained by using data of reference 40.
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Figure 10. Continued.
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