Real-time Scheduling Using Minimin Search

Prasad Tadepalli and Varad Joshi
Department of Computer Science
Oregon State University
Corvallis, Oregon 97331-3202

Abstract
In this paper we consider a simple model of real-time scheduling. We present a real-time scheduling system called RTS which is based on Korf's Minimin algorithm. Experimental results show that the schedule quality initially improves with the amount of look-ahead search and tapers off quickly. So it appears that reasonably good schedules can be produced with a relatively shallow search.

1 Introduction
Job shop scheduling is one of the most computationally intensive parts of flexible manufacturing systems. Scheduling in the real world is complicated by several factors including the resource contention, unpredictability of events, multiple agents with mutually conflicting goals, and the sheer combinatorial explosiveness of the task. In this paper, we simplify the real world scheduling problem to a great extent and focus exclusively on one aspect of the problem, namely its real-time character.

This paper looks at detailed job shop scheduling at the level of individual machine operations. The scheduling problem is treated as assigning the job-steps to individual machines and ordering them so that (a) the precedence and resource constraints are satisfied, and (b) the schedule is "good" in some measurable objective sense.

Most approaches to scheduling are static in that the scheduling is done all at once and not during the production process. Static scheduling has several obvious drawbacks: First, optimal static scheduling is computationally prohibitive in any realistic manufacturing system, which involves hundreds of jobs and machine operations. Second, since the static scheduler has to make decisions based on predicted information, it has no way of recovering from incorrect predictions even after they were proved wrong. Thus, it is unable to readjust to or recover from changes in the production environment, including machine failures, new jobs, or machine delays.

Real-time scheduling prevents the above two pitfalls of static scheduling by requiring that after every constant time, some real world operation is taken. This not only prevents the system from losing itself in a combinatorially explosive search space, but also makes it possible to continually readjust to the changing environment.

In this paper we present a system called RTS (Real-time Scheduler) which uses the Minimin algorithm of Korf [Korf, 1990] to do real-time scheduling. Minimin is similar to the Minimax algorithm extensively used in games. We view scheduling as a state space search where states represent partial schedules. Minimin performs a fixed depth look-ahead search from the initial state, and applies a heuristic evaluation function to the partial schedules at the leaves of the search tree to estimate the cost of the schedule. This value is backed up to the root of the tree and the system takes the most promising scheduling action, i.e., it assigns a job-step to a machine which leads to a schedule with the best estimated cost.

Since RTS relies on heuristic estimates, the schedules the system produces are not guaranteed to be optimal. However, our experimental results show that the schedule quality initially improves with the amount of look-ahead search and tapers off quickly. So it appears that reasonably good schedules can be produced with a relatively shallow search. We conclude that our approach to real-time scheduling based on Minimin is promising and can be extended in several directions, including learning better evaluation functions, and doing variable depth search.

2 Previous Work
One approach to scheduling is based on expert systems [Fox and Smith, 1984]. However, expert systems approach to scheduling seems inadequate because of the dynamic nature of the scheduling problem, which is due to changes to job loads, availability of machines and labor, introduction of new machines and manufacturing processes, changes in the inventory space, etc. For this reason, there are no experts in this domain, and even if there were, they would be quickly outdated [Kempf et al., 1991].

Many AI-approaches to scheduling are constraint-based [Fox, 1987, Sadeh, 1991, Smith et al., 1986, Zweben and Eskey, 1989]. Here scheduling is viewed as finding a schedule (assignment of machines to various job-steps) which satisfies a set of constraints, including precedence relationships between job-steps and global resource constraints. However, most of these approaches...
assume a static scheduling problem, and are not easily adaptable to real-time scheduling.

Traditionally, the “dynamics” of the manufacturing process is handled by local greedy dispatch rules [Vollmann et al., 1988]. One dispatch rule, for example, recommends to schedule the job with Least Processing Time (LPT) first, while another rule uses Earliest Due Date (EDD) to prioritize jobs. While computationally cheap, such local dispatch rules are too short-sighted, and do not guarantee efficient schedules except in very special cases [Kempf et al., 1991].

In summary, static optimal scheduling is computationally prohibitive and is not sufficiently responsive to change. On the other hand, local dispatch rules are too short-sighted to be generally effective. The expert systems approach is plagued by the dynamics of the scheduling problem and paucity of experts. In this paper, we propose an approach based on real-time search which attempts to address each of the above problems.

3 Problem Description

The problem we address can be characterized as scheduling the job-steps in a set of jobs on various machines in real time. We make the following assumptions.

1. Each job consists of a sequence of job-steps that must be performed serially.
2. There may be several machines of each machine type.
3. Each job-step requires a machine of a particular type to perform it.
4. Each machine can only process one operation at a time.
5. Each job may require the same machine (or machine type) more than once. In other words, we have a “job shop” situation rather than a “flow shop” situation [Vollmann et al., 1988].
6. The machine type required for each job-step and the time for each job-step is known in advance.
7. The real-time constraint means that the time for deciding which job-step to schedule next is “small,” and should not depend on the number of jobs and job-steps.

For example, each job in Figure 1 consists of a sequence of job-steps. The task of the scheduler is to incrementally add new job-steps to the current machine queues. As the machine queues are filled from the back by the scheduler, they are emptied from the front by the machines executing the job-steps. In addition, the job-step must wait until its predecessor job-step in its job is executed. For example, in Figure 1, job-steps S-11, S-22, and S-42 are in the queue for machine M1 in that order. In addition, S-11, S-12, S-13, and S-14 must also be processed sequentially, because they are all part of a single job.

Since scheduling is done while the jobs are getting executed, the scheduler has only a limited time to decide what job-step to schedule next, and on what machine.

Figure 1: Scheduler assigns job-steps to machine queues.

4 Scheduling as State Space Search

We formulate the scheduling problem as a state space search problem. States in the scheduling task correspond to partial schedules represented as queues of job-steps for the machines. The search problem is characterized by an initial state, where there are no jobs scheduled, and a final state, where all the jobs are scheduled. In any state, there are several alternative assignments of the job-steps to machine queues. A job-step is “ready” when all its precedent job-steps have completed. Scheduling operators or “moves” assign job-steps to one of the machines of the required machine type. In other words, they can be placed on any one of the possible queues of the appropriate machine type. Each such placement creates a new state. The scheduling problem is to find a best assignment of job-steps to machine queues according to some measure of goodness (objective function). For example, we may use the total time for the schedule or the sum of the inventory and shortage costs as an objective function.

The static scheduling problem corresponds to finding the best path in the state space from the initial state to a final state. However, static scheduling suffers from the combinatorial explosion due to deep searches and is not sufficiently responsive to the dynamics of the manufacturing domain. In the following, we describe our approach to scheduling that addresses these problems.

4.1 Minimin search

Our approach to scheduling consists of a real-time search method called “Minimin search” [Korf, 1990]. Minimin is similar to minimax search in two-person games, except that instead of alternating Min and Max nodes, the search tree only contains Min nodes.

Minimin works by a fixed depth look-ahead search followed by a real-time action. The search terminates after a small depth called “search horizon,” after which the leaves of the tree are evaluated using a heuristic evaluation function. The evaluation function applied at the leaves estimates the minimum total cost of any solution that begins with a partial path ending with that leaf. It is backed up to the root using the Min function. In other words, the value of any node is the minimum of all the values of its children, and the move that results in
that value is the "best move." After searching for a fixed
look-ahead depth, Minimin chooses the first best move,
executes it, updates the state and once again starts
look-ahead search from that point.

The "knowledge" of the Minimin algorithm lies in its
heuristic evaluation function \(f \). The more closely it fol-
low the real cost of the solution, the more optimal the
algorithm's current decision is going to be. An evalua-
tion function is "admissible" if it never overestimates the
real cost of a solution. An evaluation function is mon-
otonic, if its value is monotonically non-decreasing along
any single path of the search tree.

When the evaluation function of the Minimin search
is monotonic, it is amenable to an effective branch and
bound technique called \(\alpha \)-pruning. \(\alpha \)-pruning works by
pruning the branches whose estimated cost is more than
the current best estimated cost. Like \(\alpha \)-\(\beta \) pruning, \(\alpha \-
pruning is guaranteed to preserve the outcome of the
look-ahead search.

Each time the Minimin algorithm is called it returns
the best next state and its estimated evaluation. The
main program then takes the corresponding action in the
"real world" and updates its current state to this new
state. After this, the program repeats its cycle again by
calling the Minimin algorithm.

4.2 Real-time Scheduling

We noted that in Scheduling the states correspond to
partial schedules and operators correspond to scheduling
actions. In order to complete the mapping of the real-
time scheduling problem to Minimin search, we need to
specify how a schedule is evaluated.

Several optimality criteria might be used to evaluate
the schedules. One of the criteria is the sum of the short-
age and the inventory costs. Another criterion is the total
length of the schedule from the beginning to the end, also
called "make-span." In our system, we currently
use the make-span criterion to evaluate schedules. The
smaller the make-span, the better the schedule. In Min-
imin search, the cost of the schedule must be estimated
after only a small number of steps are scheduled, i.e.,
much before the full schedule is known. To do this effec-
tively, we should necessarily rely on heuristic estimates of
the schedule cost. A good heuristic evaluation func-
tion must approximate the optimality criterion as closely
as possible.

As discussed earlier, there is an implicit precedence
relationship between the job-steps in the same machine
queue, and between the job-steps that belong to the same
job. For any job-step \(s \), let \(PRE(s) \) be the set of job-
steps which are immediate predecessors of \(s \), in that they
need to be performed before \(s \) is done. In Figure 1,
\(PRE(S-12) = \{S-11, S-21\} \).

Our estimate of the make-span is done as follows: first,
we compute the time \(T_i \) by which each machine \(M_i \)
finishes its current queue. Assuming that the expected time
\(ET(s) \) for each job-step \(s \) is known in advance, this can
be calculated exactly. Let the expected start time and
the expected finish time of a job-step \(s \) be denoted by
\(ES(s) \) and \(EF(s) \) respectively. The expected start and
finish times of any job-step can then be calculated using

\[
\text{Minimin}(CurrentState, depth, \alpha)
\]

If \(\alpha = \text{SearchHorizon} \) return \((f(CurrentState)) \);
%Alpha Pruning

If \(f(CurrentState) \geq \alpha \) return \((\alpha + 1) \)
\(\alpha := \text{job-steps which are "ready"} \);
\(M := \{ m \mid \exists s \in S \text{ that needs a machine of } m' \text{ type} \} \).
Pick \(m \in M \) s.t. its current queue finishes earliest.
For each job-step \(s \in S \) which matches \(m' \) type, Do

Begin

NewState := Assign(s,m);

Val := Minimin(NewState, depth + 1, \alpha);

If Val < \alpha

Begin

\(\alpha := Val; \)

BestNextState := NewState;

End;

End;

Return(\alpha, BestNextState);

End Minimin;

Table 1: Minimin Applied to Scheduling

the following recurrence relations.

\(ES(s) = \max_{r \in PRE(s)}\{EF(r)\} \)
\(EF(s) = ES(s) + ET(s) \)

Let \(T_i \) be the time by which machine \(M_i \) finishes the last
job-step in its current queue. The goal of the Minimin
search is to find the best next job-step to add to the cur-
rent queue by doing a look-ahead search of fixed depth
in the space of partial schedules (machine queues).

A job-step is considered "ready" if all its predecessors
are either already executed or present in one or the other
of the machine queues. At any given state, RTS first
filters its machines by discarding those machines which
do not have any ready job-steps waiting for their machine
type. It then chooses the machine \(M_i \) which is expected
to finish its queue the earliest, i.e., with a minimum \(T_i \),
and considers scheduling various job-steps on it. Each
"ready" job-step \(s \) whose type matches that of machine
\(M_i \) is a possible choice. For each such possible choice,
Minimin creates a new state by assigning \(s \) to \(M_i \), and
updates the expected finish time of \(M_i \)'s current queue
using the above recurrence relations. RTS proceeds in
depth first search in this manner until it reaches the
search horizon.

At the leaves of the look-ahead search tree, the total
time required to complete the remaining schedule must
be estimated. Since none of the job-steps in the remain-
ing schedule is assigned to a machine yet, their expected
finish time cannot be exactly estimated. It is here that
we rely on a heuristic lower bound.

Let \(T_K \) be the maximum of \(T_i \) of all machines \(M_i \)
of type \(K \). Let \(W_K \) be the total work remaining on
machines of type \(K \), i.e., the total expected time of all
job-steps that need a machine of type \(K \). Assume also
that there are \(N_K \) machines of type \(K \). Ignoring all the
precedence constraints between the job-steps, the work
remaining on machines of type \(K \) can be distributed as
measured the total time into 3-4 types, problems. Each problem had about 4-6 machines divided
given some assigned a machine type. Each job-step is generated randomly, bound
bounds on the number of steps for machines) and two numbers which specify the upper
number of jobs, the number of machines, the number of
The problem specification consists of the number of jobs, the number of machines, the number of
types of machines (this has to be less than the number of machines) and two numbers which specify the upper
bounds on the number of steps for any job and the processing time for any step. Number of steps for each job
is generated randomly, bound by the upper bound given in the problem specification. Each job-step is randomly
assigned a machine type. Each job-step is also assigned some processing time randomly, bound from above as
given in the problem specification.

We tested RTS on a sample of 39 randomly generated problems. Each problem had about 4-6 machines divided
into 3-4 types, and 4-6 jobs each of which had about 5 steps, each step taking up to 6 units of time. We then
ran the system with different look-ahead depths, and measured the total time to execute the whole schedule

5 Future Work

The work reported here is preliminary and a lot remains to be done to make the ideas more practical and applicable
in a real-world setting. A few of the promising directions to pursue are listed below.

Reactivity: One of the major reasons for building "real-time" systems is that they are more responsive to changes in their environment. This is especially crucial in the manufacturing domain, where unexpected events such as machine break-downs and tool failures are common. We believe that our system would respond better to such changes than a static scheduler. Indeed, it is possible to completely change the machine and job configuration before every cycle of the Minimin algorithm. The system should still be able to make locally optimal decisions with respect to its changed configuration. However, we expect that the system's behavior degrades gradually as the dynamics in the system configuration increases. It might also be expected that the usefulness of the look-ahead search decreases with increased dynamism. These hypotheses need to be experimentally verified.

Variable Depth Search: We assumed that the search horizon is fixed. However, this need not be the
Learning: The performance of the system at a given search horizon depends mostly on the goodness of the evaluation function used to estimate the optimality of the schedule. Although our current evaluation function performed fairly well on the problems that we tested it on, it does not take into account factors such as bottleneck resources, which are crucial for a good scheduler. However, it is time-consuming and laborious to encode sophisticated evaluation functions. Besides, good evaluation functions are sensitive to the scheduler’s environment, and hence may not be generally effective. Hence we plan to apply machine learning to learn effective evaluation functions [Lee and Mahajan, 1988]. There have already been some machine learning methods applied to scheduling domains [Kim, 1990; Shaw et al., 1990]. We think that significant improvements beyond current scheduling techniques can be achieved using machine learning.

6 Summary

In this paper we described a real-time scheduling system based on the Minimin algorithm and showed that it is effective and capable of producing good schedules with reasonably small effort. In particular, we showed that the schedule quality improves with increased lookahead, confirming some of the results of Korf on Real-time Search in the scheduling domain. The future work includes evaluation function learning, variable depth searches, and demonstration of the reactivity of the system. Although much remains to be done, the preliminary results reported in this paper appear promising.

Acknowledgments

We thank Logen Logendran, Toshi Minoura, and Vijay Srinivasan for many fruitful discussions, and the department of computer science for financial support.

References

