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The attitude matrix minimizing Wahba's loss function is computed directly by a method that

is competitive with the fastest known algorithm for finding this optimal estimate. The method

also provides an estimate of the attitude error covariance matrix. Analysis of the special case

of two vector observations identifies those cases for which the TRIAD or algebraic method
minimizes Wahba's loss function.

Introduction

In 1965, Wahba posed the problem of finding the proper orthogonal matrix A that

minimizes the non-negative loss function [1]

t/

L(A)-liZ=la i ]bi-Ari] 2, (1)

where the unit vectors r i are representations in a reference frame of the directions to some

observed objects, the b i are the unit vector representations of the corresponding observations

in the spacecraft body frame, the a i are positive weights, and n is the number of observations.

The motivation for this loss function is that if the vectors are error-free and the true attitude

matrix Atrue is assumed to be the same for all the measurements, then b i is equal to Atruer i

for all i and the loss function is equal to zero for A equal to Atrue.

Attitude determination algorithms based on minimizing this loss function have been used

for many years [2-9]. The original solutions to Wahba's problem solved for the spacecraft

attitude matrix directly [2-5], but most practical applications have been based on

Davenport's q-method [6-8], which solves for the quatemion representing the attitude

matrix. In this paper, we present a new method that solves for the attitude matrix directly, as

well as the covariance matrix, and which is competitive with the well known QUEST

algorithm [9] in speed. Analysis of the special case of two observations serves to relate this

method to the TRIAD or algebraic method [8, 9].

Statement of the problem

Simple matrix manipulations transform the loss function into

L(A) = A0 - tr(ABT),

where

(2)

tl

%- (3)
n T

B- Z a i bir i , (4)
i=1
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tr denotes the trace, and the superscript T denotes the matrix transpose. Thus Wahba's

problem is equivalent to the problem of finding the proper orthogonal matrix A that maximizes

the trace of the matrix product A B T. The weights are often chosen so that 2.0 = 1, but this is

not always the most convenient choice, as will be discussed below.

This optimization problem has an interesting relation to a matrix norm. The Euclidean

norm (also known as the Schur, Frobenius, or Hilbert-Schmidt norm) is defined for a general

real matrix M by [ 10, 11]

[1M [12 _ y_ M ij2 = tr(M MT), (5)

where the sum is over all the matrix elements. The assumed orthogonality of A and

properties of the trace give

JJA-BJ[2= tr[(A - B)(A - B) 1"] = tr I- 2tr(AB T) +JJBIJ 2, (6)

where I is the 3 × 3 identity matrix. The orthogonal matrix A that maximizes tr(A B T)

minimizes this norm, so Wahba's problem is also equivalent to the problem of finding the

proper orthogonal matrix A that is clc_sest to B in the Euclidean norm J 12].

The matrix B can be shown to have the decomposition [13]

B = U+ diag[S 1, S 2, S 3] V+ T (7)

where U+ and V+ are proper orthogonal matrices; diag[...] denotes a matrix with the

indicated elements on the main diagonal and zeros elsewhere; and S l, S 2, and JS 3 ], the

singular values of B, obey the inequalities

S 1 >S 2> JS3J. (8)

The optimal attitude estimate is given in terms of these matrices by [13]

Aop t = U+ V+ T. (9)

Equation (7) differs from the singular value decomposition (SVD) [10, 1 I] in that U+ and V+

are required to have positive determinant. In reference [13], S 3 was denoted by ds 3, where

d = + 1 and s 3 >_0.

The SVD provides a robust method for computing the matrices U+ and V+, and thus the

optimal attitude estimate, but it is not very efficient [13]. The purpose of this paper is to

present a more efficient method to estimate the attitude.

Computation of the attitude matrix

Noting that the adjoint of the transpose of B and the product BBTB can be written as

adj BT= U+ diag[S2S 3, $3S l, SIS2] V+ T, (10)

and

BBTB = U+ diag[Sl 3, $23, $33] V+ T, (11)
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it is a matterof simple algebrato seethat

aopt = [(K+ IIBII2)B+ AadjBT-BBTB]/_,

where

II II2: st2+s22+s32,

and the other scalar coefficients are defined by

1¢= $2S 3 + $3S 1 +SIS 2,

- S 1 + S 2 + S 3,

and

(12)

(13)

(14)

(15)

_'= (S2 + $3)(S 3 + S1)(S 1 + $2). (16)

The matrices in equation (12) can be computed without performing the singular value

decomposition, but this equation is an improvement over equation (9) only because the scalar

coefficients _-, _, and _'can also be computed without the SVD, as we will show below.

Iterative computation of the scalar coefficients

We first find expressions for the other scalar coefficients in terms of _. A little algebra

shows that

_c= ½0. 2- 118112) (17)

and

= to&- detB. (18)

Let A(A) denote the expression for the attitude matrix given by equations (12), (17), and

(18) as a function of 2 and B. This is equal to Aop t ira is given by equation (15). Equations

(7), (9), and (15) give

2 = tr(Aop t BT), (19)

so ,,1,can be computed as a solution of the equation

x = trIA(_.)_rl = tr[(_c+ liB 112)BBT+ ;t (det B)I - (BBT)2]/_. (20)

(21)

(22)

Substitution of equations (17), (18), and the identity

lie II4- trl(BSr) 21= 2 IIadj B I]2

0:Q(&)-K2-2&det B - Iladj8 II2.
lets us write this as

Since lois a quadratic function of _, Q(&) is a quartic polynomial. It can be shown to be the

same quartic that is used in QUEST, up to an irrelevant factor of one-fourth. Substitution of

equation (7) into equation (22) gives the four roots of the quartic in terms of S 1, S 2, and S 3.

We must use equation (17) for t¢ rather than equation (14) in this substitution, which gives

4Q(,a.) = (,a.-s 1 -$2-$3)(_.-s 1 +s2+s3)()t+s1-s2+s3)(,q.+s I + $2- $3). (23)
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The roots of this equationareall real, andtheyarethe four eigenvaluesof the K matrix

in the q-method, as is well known [7, 9]. Equations (8) and (15) show that we require the

maximum root, and that this root is distinct unless S 2 + S 3 = 0. When S 2 + S 3 = 0, the attitude

solution is not unique, as is discussed in reference [13]; in the method introduced in this

paper, this results in _"= 0 and all the elements ofAop t having the indefinite form 0/0.

We now note from equations (2) and (19) that

L(aop t) = 20 - A > 0. (24)

For small measurement errrors, the loss function should be close to zero, so the maximum

root of equation (22) should be close to/1. o [9]. Thus we can find X by Newton's method,

starting with this value. This defines a sequence of estimates of )t by

)_i=2i_l-Q()_i_l)/Q'(#_i_l), i= 1,2 ..... (25)

Substitution of equation (23) shows that this sequence would be monotonically decreasing

with infinite-precision arithmetic, but a computation with finite-precision arithmetic

eventually finds a 2i > Ai-l" At this point, the iterations are terminated and Ai-1 is taken to

be the desired root to full computer precision. This iteration converges extremely rapidly in

practice, except in the case that the maximum root of Q(/I.) is not unique. In that case the

derivative in the denominator of equation (25) goes to zero as the root is approached, so the

computation is terminated and a warning is issued that the attitude is indeterminate. Halley's

method [14] would give convergence in fewer iterations than Newton's method, but would

require more computations per iteration, so it was not investigated further.

It is important to carry out the computation of A to full machine precision, since otherwise

the computed attitude mau'ix will not be orthogonal. Straightforward matrix computation gives

A (2)A T(A) = I - Q(A) (A21 - BBT")/( 2. (26)

This shows the orthogonality of the c_,mputed attitude matrix if A is a root of Q(,_), and

estimates the departure from orthogonality otherwise.

Analytic computation of the scalar coefficients

The scalar coefficients can also be computed as functions of the largest singular value S t

of B by

_c= St(S 2 + S 3) + $2S 3 = Sl(S 2 + $3) + Sl-ldet B, (27)

X = S 1 + (S 2 + $3), (28)

and

_" = (K"+ SI 2) (S 2 + $3), (29)

where

S 2 + S 3 = {S1-2[ ]1adj B []2 _ (Sl-ldet B)2] + 2Sl-ldet B}I/2 (30)

This form is chosen to avoid near-cancellations in near-singular cases. The largest singular
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value is found asthepositivesquareroot of the largestroot of the cubic characteristic
equationof the matrixBB 1" [7]:

0 = (S12) 3 - tr(BB T) (S12) 2 + tr[adj(BB T) ]S12 - det(BB T)

_ 2=(S12) 3 11B[[2(S12)2+ ]ladjBllzS1 -(detB) 2. (31)

The largest root of this equation is given by [7, 15]

SI 2 = 1 { II II2+2  ncos[ cos-t( -3/2]_ )] }, (32)

where

a-llsII4-311adjB II2, (33)

and

3-lIB/16- (9/2)118 [12lladj BII 2+ (27/2)(det B) 2. (34)

Equation (7) can be used to show that oc _>0, with equality if and only if S 1 = S 2 = I $3 I, in

which case ,/3= 0 also. Thus we have a complete analytic solution of Wahba's problem.

Computation of the covariance matrix

The quality of the attitude estimate is best expressed in terms of the covariance of the

three-component column vector q_of attitude error angles in the spacecraft body frame. This

parameterization gives the following relation between the estimated and true attitude

matrices A and Atrue:

A = {exp[(- qb)x] }Atn, e = {1 - [_) x] + ½ [_) ×]2 + ...}Atrue, (35)

where the matrix [u x] is defined for a general three-component column vector u as

[ux]= u 3 0 -u . (36)

u 2 u 1

This notation reflects the equality of the matrix product [ux]v and the cross product u x v.

Shuster [16] has recast the Wahba problem as a maximum likelihood estimation problem

[17], which leads to a very convenient method for computing the covariance matrix. Asymp-

totically, as the amount of data becomes infinite, the covariance matrix tends to the inverse of

the Fisher information matrix F, which is the expected value of the Hessian of the negative-

log-likelihood function J;

Fj k - E [_2J/OcpjOCk ] . (37)

The distribution of the components of the ith measurement error vector perpendicular to the

true vector are assumed to be Gaussian and axially symmetric about the true vector with

variance O'i2 per axis. Then the negative-log-likelihood function for this problem is [13, 16]

n_i2J=½_=l - Ibi-Ari[2+ .... (38)
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wherethe omitted termsare independentof attitude.For any positive2oand with
tl

Crtot 2 - ( Z cri-2) -1, (39)

the weights i= 1

ai = 20Crtot2] cri 2 (40)

are positive and satisfy equation (3). With this choice

J = 20-1crt_2L(A) + .... (41)

which means that the solution to Wahba's problem is a maximum-likelihood estimate, since it

minimizes the negative-log-likelihood function. Substituting equation (35) into equation (2)

and using the identity

[uxllv x] =- (VTU)I + vu T (42)

gives, to second order,

L(A) = 2 O- tr(Atrue B T) + tr{[_ x]Atrue B T}

= 20 - tr(Atrue B T) + tr{ [q_×]Atrue B T}

Inserting this into equation (41) and then equation

1
F= 20 - crt_ 2 [tr(Atrue BT)I- ½

and, by matrix inversion, the covariance matrix

+½ tr{[(_T_)l -d_T]Atrue B T}

+½_l'[tr(atrue BT)I -atrue BT]_. (43)

(37) gives the Fisher information matrix

B T(Atrue + BAtrueT)], (44)

= - B T + BAtrueT)] -1P 29_ot2[tr(Atr,e BT)I ½ (atrue (45)

The true attitude matrix is not known in a real attitude estimation problem, of course, so

Aop t must be used in place of Atrue in computing the covariance. Making this replacement in

equation (46) gives, with equation (19) and the symmetry of the matrix product Aopt BT,

which follows from equations (7) and (9),

P = 20Crtot2(2 1 - Aop t BT) -!= 20Crtot 2 ad.j(2 1 -Aop t BT)/det(21 -Aop t BT). (46)

Equation (46) is one of the forms for the covariance matrix given in Appendix B of [13], which

is also the result obtained in [18], simplified to the case that only the attitude is estimated.

The computation of the matrix inverse can be avoided as follows [19]. Equations (7), (9), and

(15) show that

2.1 -Aop t B 1"= U+ diag[S 2 + S 3, S 3 + S 1, S I + S2]U+ T. (47)

The determinant of this matrix is given by equation (16) as

det (21 -Aop t B 1") = _', (48)

and its adjoint is

adj(2I -Aop t B T) = _¢I + BB T, (49)

yielding the desired manifestly symmetric result

P = 2ocrtot2( _¢I + BBT)I_. (50)

542



We see that thecovariancematrix is infinite when _"= 0, which agrees with the conditions

for indeterminacy of the attitude solution discussed above. In the case of near-indeterminacy,

the singular values are approximately S 1 = &, S 2 = S 3 -- 0 [13], which gives the covariance

P= 2tOatot2U+ diag[,_2/_, _,-1, &-l] u+T. (51)

A good criterion for terminating the iterative solution for & by equation (25) is

Q'(&)=2_'< 1_3.. 2"_0 Vtot, (52)

since equation (51) predicts attitude estimation error standard deviations larger than 22/20

radians when this inequality is satisfied. This error can only be small if & <</%0, in which case

the attitude estimate is poor because the loss function is large.

Normalization of the weights

The results above are valid for any positive value of the parameter 20 , but only two

choices are useful:

20 = 1 (normalized weights) (53)

or

20 = ¢rtot 2 (unnormalized weights). (54)

Past treatments of this problem have generally used normalized weights, which give a B

matrix with elements of order unity. This is convenient in computations using fixed-point

arithmetic, but floating-point arithmetic is an option on virtually all present-day computers.

The normalized form may also be useful if the measurement weights are arbitrarily assigned.

The unnormalized form is more natural if the weights are computed in terms of measure-

ment variances, as in equation (40), since the unnormalized weights are just equal to the

inverse variances. The unnormalized form also simplifies the computation of the covariance,

as shown by equation (50), but this form can potentially lead to numerical problems. The

elements of B are of order Crtot 2 if the weights are not normalized, which means that

IIadjB II2 is of order Crtot 8. Since °'tot can be of order 10 -6 for highly accurate sensors,

IIadj B II2 can be of order 1048, leading to exponent overflow in floating-point representations

that do not provide an adequate exponent range. This is not a problem with double-precision

arithmetic in conformity with ANSIflEEE Standard 754-1985 for binary floating-point

arithmetic [20], since this standard mandates eleven bits for the exponent, allowing

representation of numbers as large as 10308 . The Standard Apple Numerical Environment

[21] and VAX GFLOATING [22] double-precision arithmetic employ eleven-bit

exponents, but VAX D_FLOATING double-precision arithmetic allots only eight bits for the

exponent. This is the same as in IEEE-standard single-precision arithmetic, and allows

representation of numbers only as large as 1038 . Single-precision arithmetic would lead to

exponent overflow problems for measurement variances ¢rtot 2 less than about 10 -9, but

double-precision arithmetic is certainly preferred in such cases.
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Algorithm test - accuracy

Two forms of the new algorithm, the form with the iterative solution for ,t. (FOAM -- Fast

Optimal Attitude Matrix), and the form with the analytic solution for S 1 (SOMA -- Slower

Optimal Matrix Algorithm), were compared with the SVD method [13] for minimizing

Wahba's loss function. The three methods were implemented in double-precision FORTRAN

and executed on a DEC VAX 8830 computer. FOAM and SOMA were implemented in

G_FLOATING arithmetic with unnormalized weights. FOAM was also implemented with

normalized weights in both G_FLOATING and D_FLOATING arithmetic, while the SVD

method was implemented with unnormalized weights in D_FLOATING arithmetic.

Four sets of reference vectors were used for the tests:

r 1=11,0,0] T,r 2=I0, 1,01 T, r 3=[0,0,1] T , (55)

r I = [0.6, 0.8, 0] T, r 2 = [0.8, - 0.6, 0] 1', (56)

r I = [1, 0, 0] T, r 2 = [1, 0.01, 0] T, r 3 = [1, 0, 0.01] T, (57)

and

r 1 = [1, 0, 01 T, r 2 = 10.96, 0.28, 0] T, r 3 = [0.96, 0, 0.28] T (58)

Set (55) models three sensors with orthogonal boresights along the spacecraft body axes,

while set (56) models two sensors with orthogonal boresights not along the body axes.

Reference vector set (57) is intended to model three star measurements in a single star

sensor with a small field-of-view. Set (58) models one sensor with its boresight along the

body x- axis and two sensors with boresights 16.26 degrees off this axis. The observation

vectors were computed as

where

b i = Atr,, e r i + ni, (59)

Atrue =

"l

0.352 0.864 0.360 /
/

- 0.864 0. 152 0.480/'

0.360 - 0.480 0.800 J

(60)

which has all non-zero matrix elements with exact decimal representations and is otherwise

arbitrary, and ni is a vector of measurement errors. The tests were run both with n i = 0 and

with measurement errors simulated by zero-mean Gaussian white noise on the components

ofni . All the methods normalize the input observation and reference vectors; some

cfficiencies in the normalization process were found and applied to the three algorithms.

The results of the accuracy tests are presented in Table 1. The reference vector sets are

labeled REF. The standard deviations (in radians) in the table were used to compute the

measurement weights and also the level of measurement errors in the tests where these

were simulated. Only two measurements were used in the tests in which only two standard

deviations are given. The quantities presented in the table are the estimation error in radians
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(computedwith simulatedmeasurementerrors),

sin-l(2 - T
3/21] A op t A true - A true A opT (61)II),EST =

the maximum computation error for all FOAM and SOMA variants (computed with n i = 0),

COMe= Ilaop, - a,rue[I, (62)

and the maximum orthogonality error for FOAM and SOMA,

ORrH= IIA opt a o_t - I II. (63)

The estimation error was the same for all methods, to the accuracy of the computation errors.

As expected, the very robust SVD method gives the smallest maximum orthogonality error

(2.16 x 10 -16) and computation errors (4.72 x 10-17 for cases 1 - 4, 1.63 x 10 -10 for case 5,

3.74 x 10-15 for cases 6 - 11, and 2.10 x 10 .9 for case 12). No significant differences were

seen between FOAM and SOMA or between normalized and unnormalized weights.

D_FLOATING arithmetic was about one decimal digit more precise than G_FLOATING

arithmetic, as expected [22]; but this is not significant, since the computation errors are much

less than the estimation errors in all cases with realistic noise. It is clear that cases with

widely differing measurement accuracies furnish the greatest computational challenges.

Algorithm test - speed

The above methods were compared with Shuster's QUEST (QUaternion ESTimation)

algorithm [9] for computational speed, since QUEST is the fastest previously known

algorithm for solving Wahba's problem. In addition to the reference and observation vectors

Table 1

Accuracy Test Results. See text for explanation

CASE REF c_1 C_2 (_3 EST COMP ORTH

1 (55) 10 .6 10.6 10 .6 1.38 x 10 .-6 4.61 × 10 -16 1.12 × 10-15

2 (55) 10.6 10.6 -- 2.02 X 10--6 3.05 x 10 -16 6.11 × 10-16

3 (55) .01 .01 .01 1.39 X 10 .2 5.27 x 10-16 1.01 X 10 -15

4 (55) .01 .01 -- 2.05 x 10.2 3.05 x 10-16 1.12 x 10 -15

5 (56) 10 .6 .01 -- 1.12 x 10 -2 7.83 X 10 .9 2.73 x 10.8

6 (57) 10 -6 10-.6 10 .6 2.51 x 10 .5 4.66 x 10-12 8.94 x 10 -12

7 (57) 10 .-6 10.6 -- 3.18 x 10-5 7.84 x 10-12 1.54 × 10 -11

8 (57) .01 .01 .01 0.186 4.04 x 10-12 7.50 x 10 -12

9 (57) .01 .01 -- 8.82 x 10 .2 5.70 x 10-12 1.12 x 10 -11

10 (58) 10 .6 .01 .01 1.72 × 10.2 1.49 x 10 .7 2.97 x 10.7

11 (58) 10.6 .01 -- 3.33 x 10.2 1.45 x 10.7 2.87 x 10.7

12 (58) .01 10 .6 -- 3.48 x 10-2 3.01 x 10 .7 6.00 x 10 .7
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and the measurementstandarddeviations,QUESTrequirestheinput of five control
parameters,which were takenasQUIBBL = 0.1, FIBBL = 10 -5, QUA(Z7 = 10 -8, NEWT= 10,

and IMETH = 1. The measured CPU times were effectively the same for normalized and

unnormalized weights. They consist of a part that is independent of the number of

observations processed and a part proportional to the number of observations:

tQUES T = 0.24 + 0.09 n msec. (64)

tFOAM = 0.27 + 0.07 n msec, (65)

tSOMA = 0.36 + 0.07 n msec, (66)

tsv D = (3 + 1) + 0.07 n msec. (67)

The greater n-dependent time in QUEST as compared to the other algorithms is clue to the

method used to compute the covariance matrix in QUEST. The computation of _. generally

requires one or two iterations in QUEST and two to six iterations in FOAM, due to the need

to iterate to convergence in the latter method, which accounts for the greater n-independent

time in FOAM. The transcendental function calls in SOMA account for its longer running time

compared to FOAM, which is definitely preferable to SOMA since it is faster and no less

accurate. The range of times for the SVD method is related to the rank and conditioning of the

B matrix. This method is significantly slower than all the other methods tested, as has been

noted previously; but the SVD method may still find applications in nearly singular estimation

problems. The exact CPU times will vary from case to case, and the time required for either

FOAM or QUEST appears to be quite modest in comparison with other computations

performed in spacecraft attitude determination.

It should be pointed out that FOAM computes the attitude matrix directly, while QUEST

computes an attitude quaternion. If an attitude matrix is required from QUEST, an additional

step is required to compute it from the quatemion. This requires only multiplications and

additions, though, and no transcendental function evaluations. If it is desired to compute a

quaternion from FOAM, the standard method for extracting it from the attitude matrix can be

used [23]. This requires the evaluation of one square root, but FOAM is faster than QUEST

even with this addition. The principal advantage of FOAM over QUEST in practice is that it

requires no control parameter input; its only inputs are the number of observations, the

reference and observation vectors, and the measurement standard deviations.

Two-observation case

In the special case of two observations, the rank of B is at most two, so det B = 0, which

gives with equation (22)

= IladjB II, (68)

/, = (2t¢ + lIB112)m, (69)

and

= _¢,;1,. (70)
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Both 1¢and,kmustbepositive in orderfor _ to be thelargestroot of Q(A). The explicit form

for B as a function of the reference and observation vectors then yields

adj B T = ala2(b I x b 2) (r 1 x r2 )T, (71 )

_'=ala2lb I xtl2] Ir I xr2], (72)

and

Z = {al 2 + 2 ala2[ [b I x b 21 [rl x r2[ + (blTb2)(rlTr2 )] + a22}1/2 (73)

The attitude is indeterminate if either the two reference vectors or the two ob_rvation

vectors are parallel or antiparallel. Thus we will assume that both Or , the angle between r 1

and r 2, and 0b , the angle between b I and b 2, are strictly greater than zero and strictly less

than pi. Now set &0 = al + a2 = 1 for the remainder of the discussion in this section, define

e- (0 b - Or)/2, (74)

and note that ]e ] < _/2. This allows the expression for ,,l to be written more compactly as

Jl = (1 - 4 ala2sin2 e)1/2 (75)

These expressions for ,,l in the two-observation case are equivalent to equation (72) in [9].

It is convenient to write the optimal attitude estimate in terms of the orthonormal triads:

r+ = (r 2 + rl)/[2coS(Or/2)],

r_ - (r 2 - ri)/[2sin(Or/2)],

and

r+

b+ --

b__

b+ x

x r_ = (r 1 x r2)/] r 1 x r21,

(b 2 + bl)/[2cos(Oh/2)],

(b 2 - bi)/[2sin(0h/2)] ,

6_ = (b 1 x b2)/I b 1 x b21.

(76a)

(76b)

(76c)

(77a)

(77b)

(77c)

Other orthogonal triads can be defined, but these preserve the maximum symmetry between

the two measurements. The optimal attitude matrix expressed in terms of these triads is

• 2 -1/2 T) _ _Aopt=(1-4ala2sm _) [cose(b+r+T+b r +(a 1 a2}sine(b+r T-b_r+T)]

+ (b+ x b_) (r+ x r_) 7" (78)

It is interesting to note that a factor of ala 2 in the denominator of equation (12) has cancelled

an identical factor in the numerator. Thus the attitude estimate has a well-defined limit as

either a 1 or a 2 tends to zero, even though Wahba's loss function does not have a unique

minimum in either limit. Another interesting property of the two-observation ca_ is that the

optimal estimate is independent of the weights when e = 0. Equations (24) and (75) with

20 = 1 show that the optimized loss function is zero if any _)f a 1, a 2, or _ is zero.
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We now investigatethe conditionsunderwhich this optimal attitudeestimatecanbe
obtainedby a generalizationof thesimplerTRIAD or algebraicmethod[8, 9]. This is a
well-knownalgorithm for computinganattitudematrix from two vectorobservationsby
forming orthonormaltriads from thereferenceand observationvectors.One of vectorsin the
referencetriad is the normalizedcrossproductof the two referencevectors,and the othertwo
areorthonormallinearcombinationsof the two referencevectors.The mostgeneralform for
the referencetriad that we will consideris:

r I - cOS_rr+ - sinvr r_ = [sin(Nr + 0r/2)r 1 - sin(_ r - Or/2)r2]/sinO r , (79a)

rlI = cOS_r r_ + sinNr r+ = [coS(Nr- Or/2)r 2 - coS(Nr + Or/2)rl]/sinO r , (79b)

r I x r I = r+ x r_, (79c)

where _r is some rotation angle in the plane spanned by r 1 and r 2. The observation triad is

b I = COSNb b+ - sin_Fb b = [sin(N/, + Ob/2)b I - sin(N0 - Ob/2)b2]/sinO b , (80a)

bll = cosNb b_ + sinNb b+ = [cos(_b - 0tj/2)b 2 - cos(u/b + Ob/2)bl]/sinO b , (80b)

bI x bll = b+ x b_, (80c)

similarly. The angles Nr and NO are chosen to give more or less weight to the two vector

measurements. The choice Nr = NO = 0, for example, gives equal weight to the two

measurements. The choice Nr = Or�2 and N/_ = Ob/2 gives

r I = r 1, (81 a)

rll = (r 2- cos0 r rl)/sinO r, (81b)

and similar relations for b I and b n, with maximum weight on the first measurement. The

choice t//r = - Or�2 and %_ = - Oh�2, on the other hand, gives

r I = r 2, (82a)

rll = - (r 1 - cos0 r r2)/sinO r , (82b)

and similarly for I_ and thl, with maximum weight on the second measurement. The key point

is that fl/r is some function of 0 r and the measurement weights, and Nb is the same function of

0b and the weights. Note that this does not imply that _r = Nb except in the case that e = 0.

Often, the TRIAD method is understood to mean only the special cases of equations (81) or

(82), rather than the generalized method specified by equations (79) and (80).

The TRIAD attitude estimate is given by

ATRIA D = [b I " bli" b I x bli ] [r I "ril " r I x rn]T= blrlT+ bllrli T + (b I x bi]) (r I x rrl) T

= cos(Nb - Nr) (b+r+ T+ b r T) + sin(_b _ Vr) (b+r- T - b-r+ T)

+ (b+ x b_) (r+ x r_) T. (83)

Wc now attempt to find angles U/r and Nb such that the TRIAD solution gives the optimal
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attitudeestimateof equation(78).We immediatelyfind suchanglesin four specialcases:

1)Ire = 0, thenNr= Nbautomatically,all TRIAD solutionsare the same, and they all agree

with the optimal estimate, which is independent of the weights in the loss function.

2) If a t = a 2 = 1/2, the TRIAD solution with gr = gb = 0 and with vector triads given by

equations (76) and (77) gives the optimal estimate.

3) Ifa 1 = 1, a 2 = 0, the TRIAD solution with _r = Or/2, _b = Ob/2 and with triads as in

equations (81) gives the optimal estimate.

4) Ifa 1 = 0, a 2 = I, the TRIAD solution with O/r = - Or/2, rib = - Oh/2 and with triads as in

equations (82) gives the optimal estimate.

We will now show that the TRIAD solution does not minimize Wahba's loss function except

in these four special cases. Comparing equations (78) and (83) gives the following necessary

condition for agreement of the TRIAD and optimal attitude estimates:

tan(qt b - %) = (a 1 -a2)tane. (84)

Set Or = 0o, some arbitrarily chosen angle, and denote the corresponding value of _r by _t0,

which is also a function of the observation weights. Then

tan(_/b- ?'tO) = (al -a2)tanl(Ob- 00)/2] = (al- a2) Z'b" (85)

This equation must hold Ior any Or , with _0 and 00 regarded as fixed parameters, since _b is

required to be a function of 0b and the weights only, and not of 0 r . Now setting 0b = 00 in

equation (84) gives _b = _o and

tan(q r - v/0 ) = (a I -a2)tan[(O r - 00)/2 ] = (a 1 -a2)r r , (86)

which must hold for any 0 b . In fact, equation (86) could have been written directly in analogy

with equation (85), since _tr is required to be the same function of Or and the measurement

weights as v/b is of 0b and the weights. Now combining equations (85) and (86) with some

elementary trigonometry gives

tan(_tb- %) = tan[(_b- t//0) - (q/r- _t0)] = (al- a2)(rb- rr)/[1 + (al- a2)2rbrr ]

= (a t -a2)tan_(1 + rbrr)/[1 + (1 - 4ala2)rbrr]. (87)

Equating the right sides of equations (84) and (87) gives, after some cancellations, the

necessary condition

4ala2rorr(al - a2)tane = 0, (88)

which is satisfied in the four special cases discussed above. It is also satisfied if either r b or

r r is zero, but these conditions cannot be satisfied in general since 0o is an arbitrarily chosen

angle. Thus the TRIAD method cannot find the optimal attitude minimizing Wahba's loss

function in the general case, but only in the special cases c = 0, a 1 = 0, a 2 = 0, and a I = a 2.

549



Conclusions

A new algorithm for minimizing Wahba's loss function has been found, which solves for

the optimal attitude matrix directly, without the intermediate computation of a quaternion or

other parameterization of the attitude. The attitude quaternion can be computed from the

attitude matrix, if desired; and the new method with iterative solution of the scalar

coefficients in the attitude matrix is at least as fast as existing methods even with this

additional computation. The scalar coefficients used in computing the optimal attitude matrix

are also used to compute the covariance of the attitude error angles. Since the attitude matrix

is inherently nonsingular, there are no problems with special cases like 180 degree rotations,

and no special procedures are needed to deal with such cases. The principal practical

advantage of the new method over existing fast optimal attitude estimators is that it requires

no control parameter input; its only inputs are the number of observations, the reference and

observation vectors, and the measurement standard deviations.

A closed-form solution for the optimal attitude matrix is presented for the special case of

two observations. This solution is compared with the estimate produced by the well-known

non-optimal method based on orthonormal triads formed from the observation and reference

vectors. When the angle between the two reference vectors is equal to the angle between the

two observation vectors, all triad choices give the optimal estimate, which is independent of

the weights in the loss function. Except for this case, the optimal and triad-based attitude

estimates agree only when the two vector measurements are given equal weights in the loss

function or when the weight given to one vector measurement is negligible compared to the

weight given to the other.
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