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Abstract

The attitude matrix minimizing Wahba's loss function is computed directly by a method that
is competitive with the fastest known algorithm for finding this optimal estimate. The method
also provides an estimate of the attitude error covariance matrix. Analysis of the special case
of two vector observations identifies those cases for which the TRIAD or algebraic method
minimizes Wahba's loss function.

Introduction

In 1965, Wahba posed the problem of finding the proper orthogonal matrix A that
minimizes the non-negative loss function [1]

2 (1)

n
L(A) E%Zlai | b; - Ar;
=

where the unit vectors r; are representations in a reference frame of the directions to some
observed objects, the b; are the unit vector representations of the corresponding observations
in the spacecraft body frame, the g; are positive weights, and n is the number of observations.
The motivation for this loss function is that if the vectors are error-free and the true attitude
matrix A, is assumed to be the same for all the measurements, then b; is cqual t0 Ay T;
forall i and the loss function is equal to zero for A equal to Ay,

Attitude determination algorithms based on minimizing this loss function have been used
for many years [2-9]. The original solutions o Wahba's problem solved for the spacecraft
attitude matrix directly [2-5], but most practical applications have been based on
Davenport's g-method [6-8], which solves for the quaternion representing the attitude
matrix. In this paper, we present a new method that solves for the attitude matrix directly, as
well as the covariance matrix, and which is competitive with the well known QUEST
algorithm [9] in speed. Analysis of the special case of two observations serves to relate this
method to the TRIAD or algebraic method [8, 91.

Statement of the problem

Simple matrix manipulations transform the loss function into

L(A) = A - tABD), (2)
where n
Y=L dis (3)
L T
B=X a; br;’, (4)

=1
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tr denotes the trace, and the superscript T denotes the matrix transpose. Thus Wahba's
problem is equivalent to the problem of finding the proper orthogonal matrix A that maximizes
the trace of the matrix product ABT. The weights are often chosen so that Ay = 1, but this is
not always the most convenient choice, as will be discussed below.

This optimization problem has an interesting relation to a matrix norm. The Euclidean
norm (also known as the Schur, Frobenius, or Hilbert-Schmidt norm) is defined for a general
real matrix M by [10, 11]

IMI2=2m? = wmam, (5)

where the sum is over all the matrix elements. The assumed orthogonality of A and
properties of the trace give

lA-BI*= vid-ByA- B 1 =11 - 2048 +| B2 (6)

where 1 is the 3 x 3 identity matrix. The orthogonal matrix A that maximizes tr(A BT)
minimizes this norm, so Wahba's problem is also equivalent to the problem of finding the
proper orthogonal matrix A that is closest to B in the Euclidean norm [12].

The matrix B can be shown to have the decomposition [13]
B = U, diag[S}, Sy, S31V, T (7)

where U, and V_ are proper orthogonal matrices: diag[...] denotes a matrix with the
indicated elements on the main diagonal and zeros elsewhere; and Sy, 85, and lS3 I the
singular values of B, obey the inequalitics

§128,2 |8,]. (8)
The optimal attitude cstimate is given in terms of these matrices by [13]
T
Aop = UV, (9)

Equation (7) differs from the singular value decomposition (SVD) [10, 11] in that U +and V.
are required to have positive determinant. In reference [13], S3 was denoted by ds3, where
d=%1and s320.

The SVD provides a robust method for computing the matrices U, and V., and thus the
optimal attitude estimate, but it is not very efficient [13]. The purpose of this paper is to
present a more efficient method to estimate the attitude.

Computation of the attitude matrix

Noting that the adjoint of the transpose of B and the product BB'B can be written as

adj B' = U, diag[$,S3, 535,, 5,5,1 V., (10)
and ‘
BB'B = U, diag(s,? 5, 8.3 v, 7, (11)
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it is a matter of simple algebra to see that

Agp = Lx+ || B 2B + A adj BT - BB'B)/¢, (12)
where
B2 =5%+5%+55, (13)

and the other scalar coefficients are defined by

AES1+S2+S3, (15)
and
(= (52+S3)(S3+S1)(S1 +38,). (16)

The matrices in equation (12) can be computed without performing the singular value
decomposition, but this equation is an improvement over equation (9) only because the scalar
coefficients k, A, and ¢ can also be computed without the SVD, as we will show below.

Iterative computation of the scalar coefficients

We first find expressions for the other scalar coefficients in terms of A. A little algebra
shows that
c= 1 A2- 1811 (17)
and
{ =xA-detB. (18)

Let A(A) denote the expression for the attitude matrix given by equations (12), (17), and
(18) as a function of A and B. This is equal to Aoptif), is given by equation (15). Equations
(7), (9), and (15) give

A=tr(Agy B, (19)
so A can be computed as a solution of the equation
A= wfA(WBT) = ul(x+ [|BIH)BB + A (det B - @BHAIL. (20)
Substitution of equations (17), (18), and the identity
18114 - w1B8H* = 2ladi B* 1)
lets us write this as
0=0M) =k2-2Adet B~ [ladj BII* (22)

Since K is a quadratic function of 4, O(A) is a quartic polynomial. It can be shown to be the
same quartic that is used in QUEST, up to an irrelevant factor of one-fourth. Substitution of
equation (7) into equation (22) gives the four roots of the quartic in terms of Sy, S,, and Sj.
We must use equation (17) for k rather than equation (14) in this substitution, which gives
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The roots of this equation are all real, and they are the four eigenvalues of the K matrix

in the g-method, as is well known [7, 9]. Equations (8) and (15) show that we require the
maximum root, and that this root is distinct unless Sy + S3 = 0. When Sy + §3 = 0, the attitude
solution is not unique, as is discussed in reference [13]; in the method introduced in this
paper, this results in = 0 and all the elements oonp, having the indefinite form 0/0.

We now note from equations (2) and (19) that
LAy = 2Ag-A20. (24)

For small measurement errrors, the loss function should be close to zero, so the maximum
root of equation (22) should be close to Ay [9). Thus we can find A by Newton's method,
starting with this value. This defines a sequence of estimates of A by

/1,' :/,Li—l - Q().l'_])/Q'(A,'_]), =12, ... (25)

Substitution of cquation (23) shows that this sequence would be monotonically decreasing
with infinite-precision arithmetic, but a computation with finite-precision arithmetic
eventually finds a A; 2 A;_|. At this poin, the iterations are terminated and A;_1 is taken to
be the desired root to full computer precision. This iteration converges extremely rapidly in
practice, except in the case that the maximum root of Q(A) is not unique. In that case the
derivative in the denominator of cquation (25) goes to zero as the root is approached, so the
computation is terminated and a warning is issued that the attitude is indeterminate. Halley's
method [14] would give convergence in fewer iterations than Newton's method, but would
require more computations per iteration, so it was not investigated further.

It is important to carry out the computation of A to full machine precision, since otherwise
the computed attitude matrix will not be orthogonal. Straightforward matrix computation gives

AMAT ) =1-0 A4 -BBTYE2 (26)

This shows the orthogonality of the computed attitude matrix if A is a root of Q(4), and
estimates the departure from orthogonality otherwisc.

Analytic computation of the scalar coefficients

The scalar coefficients can also be computed as functions of the largest singular value §,
of B by

K= S1(Sy+S3) + 85,853 = §,(S, +83) + 5, et B, (27)
A=5,+(Sy+Sy), (28)
and
 =(x+52) (S, + Sy, (29)
where
Sy+S3=148, " lladi B||* - (5, "det BY?) + 25, 'det B) 12, (30)

This form is chosen to avoid near-cancellations in near-singular cases. The largest singular
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value is found as the positive square root of the largest root of the cubic characteristic
equation of the matrix BBT {71

0=(5,2° ~ wBB") (5,7 + uladiBB")1S,” - det(BB)

=503 1811 D2 + lladj B11%5,* - et B (31)
The largest root of this equation is given by [7, 15]
Sl2 = % (IBI?+ Zal/zcos[% cos” (a1}, (32)
where
a=|B]*-3llagiB % (33)
and
B=1B1° - o) l|B*adi BII? + @772)(det B)”. (34)

Equation (7) can be used to show that a 2 0, with equality if and only if §; =5, = |S3 | ,in
which case = 0 also. Thus we have a complete analytic solution of Wahba's problem.

Computation of the covariance matrix

The quality of the attitude cstimate is best expressed in terms of the covariance of the
three-component column vector ¢ of attitude error angles in the spacecraft body frame. This
paramelerization gives the following relation between the estimated and true attitude
matrices A and A,

A = (explc OX1 A e =1 - 10X] +4 1017+ .} Aype (35)

where the matrix [u x] is defined for a general three-component column vector u as

0 —uy up
[UX]E i3 0 —up . (36)
~uy up 0

This notation reflects the equality of the matrix product [ux]v and the cross product uXxv.

Shuster [16] has recast the Wahba problem as a maximum likelihood estimation problem
[17], which leads to a very convenient method for computing the covariance matrix. Asymp-
totically, as the amount of data becomes infinite, the covariance matrix tends to the inverse of
the Fisher information matrix F, which is the expected value of the Hessian of the negative-
log-likelihood function J; 5
ij = E[d J/a¢j8¢k]. 37)
The distribution of the components of the ith measurement error vector perpendicular to the
true vector are assumed to be Gaussian and axially symmetric about the true vector with
variance 0'1-2 per axis. Then the negative-log-likelihood function for this problem is [13, 16]

noo2 2
J:%lElO'i |bl—Arl| + ..., (38)
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where the omitted terms are independent of attitude. For any positive A, and with

I3
Oror =(X 077, (39)
the weights = -
a; = X0o1 10 (40)
are positive and satisfy equation (3). With this choice
J=2y o PLA)Y + .., (41)

which means that the solution to Wahba's problem is a maximum-likelihood estimate, since it
minimizes the negative-log-likelihood function. Substituting equation (35) into equation (2)

and using the identity
[ux]|vx]=-(vIw] + vl (42)
gives, to second order,

L(A) = /10 - tr(Alrue BT) +1ur{[¢ ><]Atrue BT} +% U{[(¢T¢)I - ¢¢T]Atrue BT}
= Ay~ (A BY) + ([0 x]A,,,, BT} + Lo'tuA, BN -4, B0, (43)

Inserting this into equation (41) and then equation (37) gives the Fisher information matrix

-1 2 T T T
F= A() [tr(Atrue B - %(Atrue B" +BA; )], (44)

Oror
and, by matrix inversion, the covariance matrix
2 T T T,,-1
p= AOO-I()I “r(Atrue B M - % (Airue B +BAtrue )] . (45)

The true attitude matrix is not known in a real attitude estimation problem, of course, so
Apr must be used in place of A,,,,, in computing the covariance. Making this replaceme;lt in
cquation (46) gives, with equation (19) and the symmetry of the matrix product Ao B,
which follows from equations (7) and (9),

P = A)010, (Al = Agp BN '= 240, adi(A 1 - Aoy BTYdetAT - A BTy, (46)

Equation (46) is one of the forms for the covariance matrix given in Appendix B of [13], which
is also the result obtained in [18], simplified to the case that only the attitude is estimated.
The computation of the matrix inverse can be avoided as follows [19]. Equations (7), (9), and
(15) show that

AL=Auyy B'= U, diaglS, + S3, S, + 5., 8, + S,U,T. (47)
The determinant of this matrix is given by equation (16) as
det (A1 -A,yB)=¢ (48)
and its adjoint is r .
adj(;tl—A(,p,B )=x1+BB", (49)

yielding the desired manifestly symmetric result

P =240, (k1 + BB, (50)
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We see that the covariance matrix is infinite when ¢ = 0, which agrees with the conditions
for indeterminacy of the attitude solution discussed above. In the case of near-indeterminacy,
the singular values are approximately Sy =4, S, =53~ 0 [13], which gives the covariance

P = X0, U, diaglaHg, A7 Ao, (51)
A good criterion for terminating the iterative solution for A by equation (25) is
0N =20 < 2’0, (52)

since equation (51) predicts attitude estimation error standard deviations larger than 2A/4
radians when this inequality is satisfied. This error can only be small if A << A, in which case
the attitude estimate is poor because the loss function is large.

Normalization of the weights

The results above are valid for any positive value of the parameter Ay but only two
choices are useful:
Ag =1 (normalized weights) (53)
or
Ay = 0',0;2 (unnormalized weights). (54)

Past treatments of this problem have generally used normalized weights, which give a B
matrix with elements of order unity. This is convenient in computations using fixed-point
arithmetic, but floating-point arithmetic is an option on virtually all present-day computers.
The normalized form may also be useful if the measurement weights are arbitrarily assigned.

The unnormalized form is more natural if the weights are computed in terms of measure-
ment variances, as in equation (40), since the unnormalized weights are just equal to the
inverse variances. The unnormalized form also simplifies the computation of the covariance,
as shown by equation (50), but this form can potentially lead to numerical problems. The
elements of B are of order om ' 2 if the weights are not normallzed which means that
|| adj B || is of order Gtot . Since o0y, can be of order 107 for highly accurate sensors,

I adj B || can be of order 10®, leading to exponent overflow in floating-point representations
that do not provide an adequate exponent range. This is not a problem with double-precision
arithmetic in conformity with ANSIIEEE Standard 754-1985 for binary floating-point
arithmetic [20], since this standard mandates eleven bits for the exponent, allowing
representation of numbers as large as 10398 The Standard Apple Numerical Environment
[21] and VAX G_FLOATING [22] double- precision arithmetic employ eleven- bit
exponents, but VAX D_FLOATING double- precision arithmetic allots only eight bits for the
exponent. This is the same as in IEEE-standard single-precision arithmetic, and allows
representation of numbers only as large as 1038, Single-precision arithmetic would lead to
exponent overflow problems for measurement variances Gmlz less than about 107 , but
double-precision arithmetic is certainly preferred in such cases.
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Algorithm test - accuracy

Two forms of the new algorithm, the form with the iterative solution for A (FOAM — Fast
Optimal Attitude Matrix), and the form with the analytic solution for S; (SOMA — Slower
Optimal Matrix Algorithm), were compared with the SVD method [13] for minimizing
Wahba's loss function. The three methods were implemented in double-precision FORTRAN
and exccuted on a DEC VAX 8830 computer. FOAM and SOMA were implemented in
G_FLOATING arithmetic with unnormalized weights. FOAM was also implemented with
normalized weights in both G_FLOATING and D_FLOATING arithmetic, while the SVD
method was implemented with unnormalized weights in D_FLOATING arithmelic.

Four sets of reference vectors were used for the tests:

r=101,0,0"r,=10, 1,0, r; =10, 0,177, (55)
r;=[06,08,01", r,=[0.8, - 0.6, 0], (56)
r=101,0,0", 1, = (1,001, 017, r;=11,0,001)7, (57)
and
r =11, 0,00, v, =096, 028, 017, r; = 10.96, 0, 0.28". (58)

Sct (55) models three sensors with orthogonal boresights along the spacecraft body axes,
while set (56) models two sensors with orthogonal boresights not along the body axes.
Reference vector set (57) is intended to model three star measurements in a single star
sensor with a small field-of-view. Set (58) models one sensor with its boresight along the
body x- axis and two sensors with boresights 16.26 degrees off this axis. The observation
vectors were computed as
b; =A. v+ 1y, (59)
where
0.352 0.864  0.360
Ajpe=1 -0864  0.152 0480 |, (60)
0.360 —0.480 0.800

which has all non-zero matrix clements with exact decimal representations and is otherwise
arbitrary, and n; is a vector of measurement errors. The tests were run both with n; =0 and
with measurement errors simulated by zero-mean Gaussian white noise on the components
ofn; . All the methods normalize the input observation and reference vectors; some
efficiencies in the normalization process were found and applied to the three algorithms.

The results of the accuracy tests are presented in Table 1. The reference vector sets are
labeled REF. The standard deviations (in radians) in the table were used (o compute the
measurement  weights and also the level of measurement errors in the tests where these
were simulated. Only two measurements were used in the tests in which only two standard
deviations are given. The quantities presented in the table are the estimation error in radians
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(computed with simulated measurement errors),
EST = sin™ (2 Y2 Ao Arrut ~ Arrue Aopt 1D (61)
the maximum computation error for all FOAM and SOMA variants (computed with n; = 0),
comMP= || Agp = Asruell, (62)
and the maximum orthogonality error for FOAM and SOMA,
ORTH = || Agp Agpr —1 . (63)

The estimation error was the same for all methods, to the accuracy of the computation errors.
As expected, the very robust SVD method gives the smallest maximum orthogonality error
(2.16 x 10‘16) and computation errors (4.72 X 10"17 for cases 1 - 4, 1.63 X 10"10 for case 5,
3.74 X 10713 for cases 6 - 11, and 2.10 X 1072 for case 12). No significant differences were
seen between FOAM and SOMA or between normalized and unnormalized weights.
D_FLOATING arithmetic was about one decimal digit more precise than G_FLOATING
arithmetic, as expected [22]; but this is not significant, since the computation errors are much
less than the estimation errors in all cases with realistic noise. It is clear that cases with
widely differing measurement accuracies furnish the greatest computational challenges.

Algorithm test - speed

The above methods were compared with Shuster's QUEST (QUaternion ESTimation)
algorithm [9] for computational speed, since QUEST is the fastest previously known
algorithm for solving Wahba's problem. In addition to the reference and observation vectors

Table 1
Accuracy Test Results. See text for explanation
CASE REF O o, o, EST COMP ORTH
1 (55) 100 10°  10°  138x10°  461x 1071 112x 107
2 (55) 100 10° —  2.02x10°  3.05x 1071 611x 1071
3 (55) .0l 01 01 139x102  527x107%  1.01x107?
4 (55) .01 01  205x102 305x107'%  pr12x107?
5 (s6) 10° .01 — Ll2x 102 783x10°  2.73x 107
6 57y 10 100 10°  251x107  466x 10712 g9ax 10712
7 577 100 100 —  318x 107 7.84x 1012 154x 107!
8 (57) .01 01 01 0.186 404x 10712 7.50% 10712
9 (57) .0l 01 _ ggax102  s570x1072 n1zx 107!
10 (58 10 01 01 L72% 102 149%107  2.97x107
11 (58 10 o1 _ 3mx102 145x107  2.87x107
2 (58 01 10— 348x107  301x 107 6.00x 107
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and the measurement standard deviations, QUEST requires the input of five control
parameters, which were taken as QUIBBL = 0.1, FIBBL = 10_5, QUAOC = 10_8, NEWT = 10,
and IMETH = 1. The measured CPU times were effectively the same for normalized and
unnormalized weights. They consist of a part that is independent of the number of
observations processed and a part proportional to the number of observations:

QUEST = 0.24+0.09n msec. (64)
TEOAM = 0.27 +0.07 n msec, (65)
tsoma =036 +0.07n  msec, (66)
tqyp= B+ 1)+0.07n msec. (67)

The greater n-dependent time in QUEST as compared to the other algorithms is due to the
method used to compute the covariance matrix in QUEST. The computation of A generally
requires one or two iterations in QUEST and two to six iterations in FOAM, due to the need
to iterate to convergence in the latter method, which accounts for the greater n-independent
time in FOAM. The transcendental function calls in SOMA account for its longer running time
compared to FOAM, which is definitely preferable to SOMA since it is faster and no less
accurate. The range of times for the SVD method is related to the rank and conditioning of the
B matrix. This method is significantly slower than all the other methods tested, as has been
noted previously; but the SVD method may still find applications in nearly singular estimation
problems. The exact CPU times will vary from case to case, and the time required for either
FOAM or QUEST appears to be quite modest in comparison with other computations
performed in spacecraft attitude determination.

It should be pointed out that FOAM computes the attitude matrix directly, while QUEST
computes an attitude quaternion. If an attitude matrix is required from QUEST, an additional
step is required to compute it from the quaternion. This requires only multiplications and
additions, though, and no transcendental function evaluations. If it is desired to compute a
quaternion from FOAM, the standard method for extracting it from the attitude matrix can be
used [23]. This requires the evaluation of one square root, but FOAM is faster than QUEST
even with this addition. The principal advantage of FOAM over QUEST in practice is that it
requires no control parameter input; its only inputs are the number of observations, the
reference and observation vectors, and the measurement standard deviations.

Two-observation case

In the special case of two observations, the rank of B is at most two, so det B = 0, which
gives with equation (22)

k= |ladj B, (68)
A=0x+ |B|HY (69)

and
=xA. (70)
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Both Kk and A must be positive in order for A to be the largest root of Q(A). The explicit form
for B as a function of the reference and observation vectors then yields

adj BT = ayay(by x by (r X 1), (1)
K:alazllebzllrlxrzl, (72)

and
A = (a2 + 2 agayl [by xby| 1y x 05| + by by "yl + a2} (73)

The attitude is indeterminate if either the two reference vectors or the two observation
vectors are parallel or antiparallel. Thus we will assume that both 8, the angle between ry
and r,, and 6, , the angle between by and b,, are strictly greater than zero and strictly less
than pi. Now set Ag=a; +ay = 1 for the remainder of the discussion in this section, define

e=(6,-6)/2, (74)

and note that |£ | < 7/2. This allows the expression for A to be written more compactly as
2 =(1-4aasin’e) (75)

These expressions for A in the two-observation case are equivalent to equation (72) in [9].

It is convenient to write the optimal attitude estimate in terms of the orthonormal triads:

r = (r2+r1)/[2cos(9r/2)], (76a)

r_= (r2—rl)/[2sin(6r/2)], (76b)

r+><r_=(r1><r2)/|rl><r2|, (76¢)
and

b,=(by+ bl)/[2cos(9b/2)], (77a)

b = (bz—bl)/[ZSin(Gb/Z)], (77bH)

b, xb_ = (b x by)/ [ by x b, . (77¢)

Other orthogonal triads can be defined, but these preserve the maximum symmetry between
the two measurements. The optimal attitude matrix expressed in terms of these triads 1s

Aapt =(1-4 alazsinze)—”z[coss (b+r+T + b_r_T) + (a - az)sine (b+r_T — b_r+T)]
+(b+><b_)(r+><r_)T. (78)

It is interesting to note that a factor of ayd, in the denominator of equation (12) has cancclled
an identical factor in the numerator. Thus the attitude estimate has a well-defined limit as
either a, or a, tends to zero, even though Wahba's loss function does not have a unique
minimum in either limit. Another interesting property of the two-observation case is that the
optimal estimate is independent of the weights when € = 0. Equations (24) and (75) with

)\ﬂ = 1 show that the optimized loss function is zero if any of a, a,, or € is zero.
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We now investigate the conditions under which this optimal attitude estimate can be
obtained by a generalization of the simpler TRIAD or algebraic method [8, 9]. This is a
well-known algorithm for computing an attitude matrix from two vector observations by
forming orthonormal triads from the reference and observation vectors. One of vectors in the
reference triad is the normalized cross product of the two reference vectors, and the other two
are orthonormal linear combinations of the two reference vectors. The most general form for
the reference triad that we will consider is:

rp=cosy,r, —siny, r_ = [sin(y, + 6,/2)r| - sin(y, - 8,/2)r,)/siné, (79a)
Iy = COSY, I_ +siny, ry = [cos(y, - 6,/2)r, — cos(y, + 6,/2)r,)/siné, (79b)
rpXrp=r, Xr_, (79¢)

where y, is some rotation angle in the plane spanned by ry and r,. The observation triad is

b, = cosy, b, — siny, b_ = [sin{y), + Bb/2)bl - sin(!//b -6, /2)h2]/sin6b s (80a)
b, = cosyy, b_ + sim,z/b b, = [COS(l//b - 6[) /2)b, — cos(y), + 91; /2)b1]/sin9b s (80b)
bebII:b+xb_, (80¢)

similarly. The angles ¥, and y, are chosen to give more or less weight to the two vector
measurements. The choice y, = v, = 0, for example, gives equal weight to the two
measurements. The choice y, = 6,./2 and ¥, = 6,/2 gives

r=ry, (81a)
r; = (ry —cosB, ry)/sing, , (81b)

and similar relations for b; and by, with maximum weight on the first measurement. The
choice y, = - 6./2 and ¥, = - 6,,/2, on the other hand, gives

r =ry, (82a)
rp =-(r; - cosb, rp)/sing, , (82b)

and similarly for b, and by, with maximum weight on the second measurement. The key point
is that y, is some function of 6, and the measurement weights, and ¥, is the same function of
6, and the weights. Note that this does not imply that y, = ¥y, except in the case that €= 0.
Often, the TRIAD method is understood 10 mean only the special cases of equations (81) or
(82), rather than the generalized method specified by equations (79) and (80).

The TRIAD attitude estimate is given by
_ o T T T T
Arriap = [Py 2 by £ by X byl [ ey sy el = by + by + (by X by) (o x 1)
= cos(yy - ) (byry” +br ") + sin(yy, - w) (byr T —br,”)
+ (b, xby(r, xr)T, (83)

We now attempt to find angles W, and v, such that the TRIAD solution gives the optimal
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attitude estimate of equation (78). We immediately find such angles in four special cases:

1) If £ = 0, then y, = y,, automatically, all TRIAD solutions are the same, and they all agree
with the optimal estimate, which is independent of the weights in the loss function.

2)Ifa; = ay = 1/2, the TRIAD solution with y, = y;, = 0 and with vector triads given by
equations (76) and (77) gives the optimal estimate.

Nlfa; =1,0ay= 0, the TRIAD solution with y, = 0,12, y, = 6,12 and with triads as in
equations (81) gives the optimal estimate.

4Hlfa, = 0,a, =1, the TRIAD solution with y, = - 6,/2, ¥, = - Gb /2 and with triads as in
equations (82) gives the optimal estimate.

We will now show that the TRIAD solution does not minimize Wahba's loss function except
in these four special cases. Comparing equations (78) and (83) gives the following necessary
condition for agreement of the TRIAD and optimal attitude estimates:

tan(y;, - ¥,) = (a) — apy)lane. (84)

Set 8, = 6, some arbitrarily chosen angle, and denote the corresponding value of v, by y,
which is also a function of the observation weights. Then

tzm(l;/b — WO) = (Cll — az)tan[(eb - 60)/2] = (al — az) T’J (85)

This equation must hold for any 6, , with ; and 6, regarded as fixed parameters, since , is
required to be a function of 8, and the weights only, and not of 8,. Now setting 6}, = 6, in
equation (84) gives v, =y, and

tan(y, — y) = (a; — a,)tan{(6, - 6y)/2] = (ay - ax)7,, (86)

which must hold for any 6, . In fact, equation (86) could have been written directly in analogy
with equation (85), since , is required to be the same function of 6, and the measurement
weights as ), is of 6, and the weights. Now combining equations (85) and (86) with some
elementary trigonometry gives

tan(yy, - y,) = an(y;, — yp) — (W, — Yp)l = (@ —a) (g, - 7)1 + (4 —az)zr,,r,]
= (4} —az)tane(l + o, T+ o= 4a1a2)rbrr]. (87)

Equating the right sides of equations (84) and (87) gives, after some cancellations, the
necessary condition

4a,a,7,7,(a; - a))tang = 0, (88)
which is satisfied in the four special cases discussed above. It is also satisfied if either 7, or
7, is zero, but these conditions cannot be satistied in general since 6, is an arbitrarily chosen
angle. Thus the TRIAD method cannot find the optimal attitude minimizing Wahba's loss
function in the general case, but only in the special cases € = 0,a;,=0,a,=0,and a; = a,.
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Conclusions

A new algorithm for minimizing Wahba's loss function has been found, which solves for
the optimal attitude matrix directly, without the intermediate computation of a quaternion or
other parameterization of the attitude. The attitude quaternion can be computed from the
attitude matrix, if desired; and the new method with iterative solution of the scalar
coefficients in the attitude matrix is at least as fast as existing methods even with this
additional computation. The scalar coefficients used in computing the optimal attitude matrix
are also used to compute the covariance of the attitude error angles. Since the attitude matrix
is inherently nonsingular, there are no problems with special cases like 180 degree rotations,
and no special procedures are needed to deal with such cases. The principal practical
advantage of the new method over existing fast optimal attitude estimators is that it requires
no control parameter input; its only inputs are the number of observations, the reference and
observation vectors, and the measurement standard deviations.

A closed-form solution for the optimal attitude matrix is presented for the special case of
two observations. This solution is compared with the estimate produced by the well-known
non-optimal method based on orthonormal triads formed from the observation and reference
vectors. When the angle between the two reference vectors is equal to the angle between the
two observation vectors, all triad choices give the optimal estimate, which is independent of
the weights in the loss function. Except for this case, the optimal and triad-based attitude
estimates agree only when the two vector measurements are given equal weights in the loss
function or when the weight given 10 one vector measurement is negligible compared to the
weight given to the other.
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